EN 13848-1:2019
(Main)Railway applications - Track - Track geometry quality - Part 1: Characterization of track geometry
Railway applications - Track - Track geometry quality - Part 1: Characterization of track geometry
This document gives definitions for the principal track geometry parameters and specifies minimum requirements for measurement and the analysis methods. The aim is to allow the comparability of the output of different measuring systems.
This document does not apply to Urban Rail Systems.
Bahnanwendungen - Oberbau - Gleislagequalität - Teil 1: Beschreibung der Gleisgeometrie
Dieses Dokument gibt Definitionen für die maßgebenden Parameter der Gleisgeometrie an und legt Mindestanforderungen an die Messung und die Auswerteverfahren fest. Ziel ist es, die Vergleichbarkeit von Ergebnissen verschiedener Messeinrichtungen zu ermöglichen.
Dieses Dokument gilt nicht für städtische Schienenbahnen.
Applications ferroviaires - Voie - Qualité géométrique de la voie - Partie 1: Caractérisation de la géométrie de voie
Le présent document donne des définitions pour les principaux paramètres géométriques de la voie et spécifie les exigences minimales pour le mesurage et les méthodes d'analyse. Le but est de permettre la comparabilité des résultats de différents systèmes de mesure.
Ce document ne s’applique pas aux systèmes de rail urbain.
Železniške naprave - Zgornji ustroj proge - Kakovost tirne geometrije - 1. del: Karakteristike tirne geometrije
Ta evropski standard podaja opredelitve za glavne parametre tirne geometrije in določa minimalne zahteve za meritve, metode analize in predstavitev rezultatov. Cilj je omogočiti primerljivost rezultatov različnih merilnih sistemov.
General Information
Relations
Overview
EN 13848-1:2019 - Railway applications - Track - Track geometry quality - Part 1: Characterization of track geometry defines the principal track geometry parameters, measurement requirements and analysis methods to ensure comparable outputs from different measuring systems. The standard establishes a common track coordinate system and parameter definitions for gauge, longitudinal level, cross level, alignment, twist and related quantities. It is intended for mainline railway infrastructure (it does not apply to Urban Rail Systems).
Key topics and technical requirements
- Definitions and terms - precise wording for all principal track geometry parameters and symbols.
- Track coordinate system - standardized reference for position and measurement reporting.
- Principal parameters - treatment of track gauge, longitudinal level, cross level, alignment, twist, including required measurement method descriptions.
- Measurement characteristics - specification of wavelength ranges, resolution, measurement uncertainty, sampling and range of measurement for each parameter.
- Analysis methods - standard procedures for processing raw measurements into parameters and indicators for comparability.
- Filtering and signal processing - normative filter requirements (Annex C) and background guidance (Annex D) including tolerance bands and reference filters.
- Decolouring - new informative Annex A describes decolouring (removal of measurement bias) and verification methods.
- Additional outputs - guidance on acceleration measurement (Annex E), simulation‑ready geometry data (Annex F), cyclic irregularities and dip angle (Annex B).
- Verification and output presentation - requirements to support consistent reporting and comparison between systems.
Practical applications
EN 13848-1:2019 supports consistent, comparable track geometry measurement and reporting for:
- Infrastructure managers conducting condition monitoring, maintenance planning and quality control.
- Measurement system manufacturers and suppliers of track recording vehicles, inspection cars and lightweight devices for calibration and compliance.
- Contractors and maintenance teams specifying acceptance criteria for construction and renewal work.
- Vehicle dynamics engineers and simulation teams using standardized geometry data for ride quality and safety analyses.
- Regulators and auditors assessing conformity with EU Directive 2008/57/EC and national requirements.
By standardizing definitions, filtering and analysis, the standard improves interoperability between measuring systems and enables reliable benchmarking of track quality.
Related standards
- EN 13848-2: Measuring systems - Track recording vehicles
- EN 13848-3: Measuring systems - Track construction and maintenance machines
- EN 13848-4: Measuring systems - Manual and lightweight devices
- EN 13848-5: Geometric quality levels - Plain line, switches and crossings
- EN 13848-6: Characterisation of track geometry quality
- Linked to EU Directive 2008/57/EC (see Annex ZA)
Keywords: EN 13848-1:2019, track geometry, railway track quality, measurement uncertainty, track recording vehicle, alignment, longitudinal level, filtering, decolouring.
Standards Content (Sample)
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.Železniške naprave - Zgornji ustroj proge - Kakovost tirne geometrije - 1. del: Karakteristike tirne geometrijeBahnanwendungen - Oberbau - Gleislagequalität - Teil 1: Beschreibung der GleisgeometrieApplications ferroviaires - Voie - Qualité géométrique de la voie - Partie 1: Caractérisation de la géométrie de voieRailway applications - Track - Track geometry quality - Part 1: Characterisation of track geometry93.100Gradnja železnicConstruction of railways45.080Rails and railway componentsICS:Ta slovenski standard je istoveten z:EN 13848-1:2019SIST EN 13848-1:2019en,fr,de01-junij-2019SIST EN 13848-1:2019SLOVENSKI
STANDARDSIST EN 13848-1:2004+A1:20081DGRPHãþD
EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM
EN 13848-1
March
t r s { ICS
{ uä s r r Supersedes EN
s u z v zæ sã t r r u ªA sã t r r zEnglish Version
Railway applications æ Track æ Track geometry quality æ Part
sã Characterization of track geometry Applications ferroviaires æ Voie æ Qualité géométrique de la voie æ Partie
sã Caractérisation de la géométrie de voie
Bahnanwendungen æ Oberbau æ Gleislagequalität æ Teil
sã Beschreibung der Gleisgeometrie This European Standard was approved by CEN on
t u December
t r s zä
egulations which stipulate the conditions for giving this European Standard the status of a national standard without any alterationä Upætoædate lists and bibliographical references concerning such national standards may be obtained on application to the CENæCENELEC Management Centre or to any CEN memberä
translation under the responsibility of a CEN member into its own language and notified to the CENæCENELEC Management Centre has the same status as the official versionsä
CEN members are the national standards bodies of Austriaá Belgiumá Bulgariaá Croatiaá Cyprusá Czech Republicá Denmarká Estoniaá Finlandá Former Yugoslav Republic of Macedoniaá Franceá Germanyá Greeceá Hungaryá Icelandá Irelandá Italyá Latviaá Lithuaniaá Luxembourgá Maltaá Netherlandsá Norwayá Polandá Portugalá Romaniaá Serbiaá Slovakiaá Sloveniaá Spainá Swedená Switzerlandá Turkey and United Kingdomä
EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre:
Rue de la Science 23,
B-1040 Brussels
t r s { CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Membersä Refä Noä EN
s u z v zæ sã t r s { ESIST EN 13848-1:2019
Decolouring process . 19 A.1 Definition of decolouring . 19 A.2 Decolouring method . 20 A.3 Verification of a decolouring process . 21 A.3.1 Introduction. 21 A.3.2 Verification with test signals . 21 A.3.3 Verification with recorded track geometry data . 22 Annex B (informative)
Other parameters . 24 B.1 Introduction. 24 B.2 Parameters obtained by direct measurement . 24 B.3 Parameters obtained by derived measurement to establish in-service values . 24 B.3.1 Cyclic irregularities . 24 B.3.2 Dip angle . 25 B.3.3 Other parameters . 25 B.3.4 Rail measurements . 26 B.3.5 Supporting data . 26 Annex C (normative)
Filter requirements . 27 C.1 General requirements . 27 C.2 Tolerance bands for filter transfer functions . 27 C.2.1 Introduction. 27 C.2.2 Filter for D1 . 27 C.2.3 Filter for D2 . 30 Annex D (informative)
Background to filtering . 33 D.1 Selection of tolerance bands . 33 D.2 Guideline for custom filters . 33 D.3 Implementation of filters . 36 D.3.1 Off-line implementation . 36 D.3.2 Online implementation . 36 D.4 Reference filter . 37 D.5 Conversion of results of deviating filters . 37 D.6 Comparison of different measurement systems . 42 Annex E (informative)
Measurement of acceleration . 43 E.1 Introduction. 43 E.2 Measurement method . 43 E.3 Frequency range . 43 E.4 Range of measurement . 43 E.5 Sampling frequency . 43 E.6 Measurement conditions . 44 E.7 Analysis method . 44 E.8 Output requirements . 44 E.9 Output presentation . 44 Annex F (informative)
Track geometry data for simulation purposes . 45 F.1 Introduction. 45 F.2 Contents of track geometry data for simulation purposes . 45 F.3 Extended wavelength range. 46 F.4 Numerical resolution . 46 F.5 Pre-processing for simulation . 47 SIST EN 13848-1:2019
Relationship between this European Standard and the Essential Requirements of EU Directive 2008/57/EC aimed to be covered . 48 Bibliography . 50
IEC Electropedia: available at http://www.electropedia.org/
ISO Online browsing platform: available at http://www.iso.org/obp
NOTE Refer also to the symbols and definitions described in Clause 4. 3.1 track geometry quality assessment of excursions in the vertical and lateral planes from the mean or designed geometrical characteristics of specified parameters which give rise to safety concerns or have a correlation with ride quality 3.2 gauge face inside face of the running rail head 3.3 running table upper surface of the head of the rail Note 1 to entry: See Figure 1. SIST EN 13848-1:2019
Key 1 running table Figure 1 — Running table 3.4 running surface curved surface defined by the longitudinal displacement of a straight line perpendicular to the centre-line of the track and tangential to both running tables Note 1 to entry: See Figure 2.
Figure 2 — Running surface 3.5 uncertainty quantity defining an interval about a result of a measurement expected to encompass a large fraction of the distribution of values that could reasonably be attributed to the measurand [refer to ISO 21748] Note 1 to entry: The coverage factor is equal to 2. The uncertainty as defined corresponds to a confidence interval of about 95 % of a normal distribution. Note 2 to entry: The value applicable for track recording vehicles is described in EN 13848-2. For other measurement devices specific values may apply according to EN 13848-3 and EN 13848-4. SIST EN 13848-1:2019
8 D0, D1, D2, D3 Wavelength ranges m 9
Wavelength m 10 V1 Amplitude from the zero line. Used in the measurement of Twist mm/m 11 V2 Amplitude from the mean value. Used in the measurement of Twist mm/m 12
º Twist base-length m 13 X, Y, Z Axes of a track coordinate system
5 Description of the track coordinate system The track geometry quality is described by means of a moving right-hand Cartesian coordinate system centred to the track with clockwise rotation (refer to Figure 3): — X-axis: axis represented as an extension of the track towards the direction of running; — Y-axis: axis parallel to the running surface; — Z-axis: axis perpendicular to the running surface and pointing downwards. NOTE This description is for the coordinate system of the measurement vehicle. It is up to the infrastructure manager to define a reference direction of the track. SIST EN 13848-1:2019
Key 1 running direction 2 intersection between considered cross section and running surface 3 track coordinate system Figure 3 — Relationship between the axes of the track coordinate system Rail identification (left or right rail) is not in the scope of the document, but is to be defined for the purpose of exchanging data. 6 Principal track geometric parameters 6.1 Track gauge 6.1.1 General Track gauge, G, is the smallest distance between lines perpendicular to the running surface intersecting each rail head profile at point P in a range from 0 to Zp below the running surface. In this standard Zp is always 14 mm. In the situation of new unworn rail head the point P will be at the limit Zp below the railhead, see Figure 4.
Key 1 running surface Figure 4 — Track gauge for new rail In the situation of worn rail head the height of point P for the left rail can be different from the right rail, see Figure 5. SIST EN 13848-1:2019
Key 1 running surface Figure 5 — Track gauge for worn rail 6.1.2 Measurement method Track gauge can be measured using a contact system or a non-contact system. 6.1.3 Wavelength range Not applicable. 6.1.4 Resolution The values of resolution depend on the type of measuring system and are given in the corresponding parts of the standard EN 13848-2, EN 13848-3 and EN 13848-4. 6.1.5 Measurement uncertainty The values of uncertainty depend on the type of measuring system and are given in the corresponding parts of the standard EN 13848-2, EN 13848-3 and EN 13848-4. 6.1.6 Range of measurement The range shall be the nominal gauge
« s w mm/+50 mm. 6.1.7 Analysis method Individual defects are represented by the amplitude from the nominal value to the peak value (minimum and maximum peak value). 6.2 Longitudinal level 6.2.1 General Longitudinal level is the deviation zll in z-direction of running table levels on any rail from the smoothed vertical position (reference line) expressed in defined wavelength ranges. The smoothing is applied over a length that covers the wavelength range of interest (minimum two times the upper limit of the wavelength range of interest). The reference line and the longitudinal level are calculated from successive measurements (refer to Figure 6). SIST EN 13848-1:2019
Key 1 running table 2 reference line Figure 6 — Longitudinal level 6.2.2 Measurement method Longitudinal level measurements shall be made with either an inertial system or a versine system (that should preferably be asymmetric) or by a combination of both methods. If the versine method of measurement is used, a decolouring of the measured signals is necessary in order to eliminate the influence of the transfer function of the versine system (see Annex A). NOTE In the case of limited analysis length, the longitudinal level can be evaluated also from geodetic measurements. 6.2.3 Wavelength range Three ranges expressed in wavelengths () shall be considered: — D1: 3 m <
¶ 25 m; — D2: 25 m <
¶ 70 m; — D3: 70 m <
¶ 150 m, used for measuring long wavelength defects. Generally this range should only be considered for line speeds greater than 230 km/h. NOTE Other wavelengths longer than 70 m can also be taken into consideration by the vertical curvature parameter (refer to Annex B); however, this does not give an equivalent assessment of D3 domain. In order to detect short wavelength defects, which can generate high dynamic forces, an optional wavelength range can be considered: D0: 1 m <
¶
w m (1) SIST EN 13848-1:2019
Key 1 cross level 2 running surface 3 horizontal reference plane 4 hypotenuse Figure 7 — Cross level 6.3.2 Measurement method Cross level is determined by measuring either the angle between the running surface and the horizontal reference plane or the difference in height between the two running tables. 6.3.3 Wavelength range Not applicable. 6.3.4 Resolution The values of resolution depend on the type of measuring system and are given in the corresponding parts of the standard EN 13848-2, EN 13848-3 and EN 13848-4. 6.3.5 Measurement uncertainty The values of uncertainty depend on the type of measuring system and are given in the corresponding parts of the standard EN 13848-2, EN 13848-3 and EN 13848-4. 6.3.6 Range of measurement The range of measurements shall be ± 225 mm. 6.3.7 Analysis method Individual defects are represented by the amplitude from the low pass filtered value to the peak value. NOTE Usually a sliding mean over 40 m is used as a low pass filter. In addition, the measured values (defined as amplitude between zero and peak values) may be compared with the design values. SIST EN 13848-1:2019
Key P point P according to 6.1.1 2 reference line Figure 8 — Alignment 6.4.2 Measurement method Alignment measurements shall be made with either an inertial system or a versine system (that should preferably be asymmetric) or by a combination of both methods. If the versine method of measurement is used, a decolouring of the measured signals is necessary in order to eliminate the influence of the transfer function of the versine system. 6.4.3 Wavelength range Three ranges expressed in wavelengths () shall be considered: — D1: 3 m <
¶ 25 m; — D2: 25 m <
¶ 70 m; — D3: 70 m <
¶ 200 m, used for measuring long wavelength defects. Generally this range should only be considered for line speeds greater than 230 km/h. In order to detect short wavelength defects, which can generate high dynamic forces, an optional wavelength range can be considered: — D0: 1 m <
¶ 5 m. When measuring in the domain D0, the sampling distance should be reduced to 0,1 m. Due to the lack of experience in this domain no additional requirements are given presently. SIST EN 13848-1:2019
Key 1 low pass filtered value (mean) 2 twist 3 zero line Figure 9 — Twist – Analysis method 7 Measurement conditions In order to reproduce the dynamic effects of vehicles, all of the geometric parameters should preferably be measured on a loaded track, in which case, the applied loading at the measuring point of the rail shall be equivalent to a minimum vertical wheel load of 25 kN when considering a mean track stiffness of 90 kN/mm per rail (wheel load divided by rail deflection) and a rail profile 60E1. There can be differences in all track geometry parameter values according to whether they are measured in loaded or unloaded, or static or dynamic conditions. These differences should be taken into account when comparing measurements made under different conditions. In case of unloaded or static measurement conditions, such conditions shall be documented. The results of measurements shall be within the specified measurement precision for different speeds and for each direction of recording. If this is not the case, the domain of validity and/or the direction of travel shall be specified. All parameters shall be measured at the same location within the sampling distance specified. All principal parameters shall be measured at the same sampling distance. For signal processing and signal analysis reasons this sampling distance should not exceed 0,25 m. The localization uncertainty of all discrete measurements shall be within ± 10 m. The uncertainty of the sampling distance shall be within 1 ‰. SIST EN 13848-1:2019
Decolouring process A.1 Definition of decolouring If track geometry is recorded with a chord measurement system, the measured signals (versine) of longitudinal level and alignment are distorted in magnitude and phase. The process of compensating these distortions of the signals is called “decolouring”, i.e. removing the “colour” due to the chord measurement. For example, decolouring of a chord measurement is required if the track geometry is assessed according to the EN 13848 series or if used for simulation purposes. The distortion depends on the chord length and on the chord division. In the case of an asymmetric chord division, it also depends on the running direction of the measurement car. As an example for the distortion, Figure A.1 shows a comparison between chord measurement and the corresponding decoloured signal along a short track section.
Key 1 decoloured signal 2 chord measurement X distance [m] Y amplitude [mm] Figure A.1 — Example of distortion due to chord measurement The distortion can be described with the help of the transfer function. The magnitude of the transfer function represents the amplification factor as a function of the wavelength. The magnitude lies SIST EN 13848-1:2019
Key X wavelength |m] Y magnitude [-] and phase [°] Figure A.2 — Example of transfer function of chord measurement (chord division: 4 m/6 m) A.2 Decolouring method There are a number of methods for decolouring. A selection of references to literature is given below. — Haigermoser A. Dynotrain Deliverable D2.6 — Final report on track geometry. Tech. rep. Dynotrain Consortium, 2013 — Wolter, Klaus Ulrich: European Patent: Reconstruction of original signals from relative measurements, EP 1543439 A1, DB Netz AG, June 2005 — Aknin, Patrice; Chollet, Hugues: A new approach for the modelling of track geometry recording vehicles and the deconvolution of versine measurements. Vehicle System Dynamics Supplement 33 (1999), pp. 59-70 — Mauer, Lutz: Determination of Track Irregularities and Stiffness Parameters with Inverse Transfer Functions of Track Recording Vehicles. Vehicle System Dynamics Supplement 24 (1995), pp. 117-132 SIST EN 13848-1:2019
Key 1 test signal 2 decolouring 3 decolouring error 4 bandpass filter with zero phase 5 application of versine Figure A.3 — Verification of decolouring with a test signal The comparison of signals at point 4 can be done in the space domain and in the frequency domain by computing the transfer function and coherence function between the output signals of points 1 and 3. For other wavelength ranges a similar process can be applied. SIST EN 13848-1:2019
Key 1 left alignment D1 2 right alignment D1 3 cross check 4 zero phase 5 track gauge Figure A.4 —Verification of decolouring with recorded data SIST EN 13848-1:2019
Other parameters B.1 Introduction The principal track geometric parameters are described in the relevant part of this standard. However, other parameters contribute to an understanding of vehicle track interaction and ride quality. These other parameters can be obtained by direct measurement or by derived measurement. Other supportive data may be necessary in order to facilitate calculation of the derived measurements. A representative list of other parameters is shown in the following. B.2 Parameters obtained by direct measurement The following parameters can be measured directly: — Horizontal curvature (1/m); — Vertical curvature (1/m); — Gradient (mm/m); — Acceleration (m/s2) (refer to Annex E). B.3 Parameters obtained by derived measurement to establish in-service values B.3.1 Cyclic irregularities Cyclic irregularities are a derailment risk that involves a harmonic response by specific types of railway vehicles. Such vehicles are built with a suspension system that is vulnerable to this phenomenon. A cyclic isolated defect occurs when a measured parameter (e.g. longitudinal level at D1) has a value that repeats
...
Frequently Asked Questions
EN 13848-1:2019 is a standard published by the European Committee for Standardization (CEN). Its full title is "Railway applications - Track - Track geometry quality - Part 1: Characterization of track geometry". This standard covers: This document gives definitions for the principal track geometry parameters and specifies minimum requirements for measurement and the analysis methods. The aim is to allow the comparability of the output of different measuring systems. This document does not apply to Urban Rail Systems.
This document gives definitions for the principal track geometry parameters and specifies minimum requirements for measurement and the analysis methods. The aim is to allow the comparability of the output of different measuring systems. This document does not apply to Urban Rail Systems.
EN 13848-1:2019 is classified under the following ICS (International Classification for Standards) categories: 93.100 - Construction of railways. The ICS classification helps identify the subject area and facilitates finding related standards.
EN 13848-1:2019 has the following relationships with other standards: It is inter standard links to EN 13848-1:2003+A1:2008. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.
EN 13848-1:2019 is associated with the following European legislation: EU Directives/Regulations: 2008/57/EC, 2016/797/EU; Standardization Mandates: M/024, M/483. When a standard is cited in the Official Journal of the European Union, products manufactured in conformity with it benefit from a presumption of conformity with the essential requirements of the corresponding EU directive or regulation.
You can purchase EN 13848-1:2019 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of CEN standards.
La norme EN 13848-1:2019, intitulée "Applications ferroviaires - Voie - Qualité de la géométrie de la voie - Partie 1 : Caractérisation de la géométrie de la voie", établit des définitions claires pour les principaux paramètres de la géométrie de la voie. Son champ d'application est essentiel pour garantir que les mesures et les méthodes d'analyse respectent des exigences minimales, ce qui est crucial pour assurer la sécurité et la performance des infrastructures ferroviaires. Cette norme se distingue par sa capacité à permettre la comparabilité entre les sorties de différents systèmes de mesure. En établissant des critères standardisés, EN 13848-1:2019 favorise l'harmonisation des pratiques de mesure au sein de l'industrie ferroviaire. Cela revêt une importance particulière, car la qualité de la géométrie de la voie a un impact direct sur le confort des passagers et la sécurité des opérations ferroviaires. Un autre point fort de cette norme est sa clarté dans la définition des paramètres de géométrie de la voie. Cela facilite non seulement la compréhension par les professionnel·les du secteur, mais permet également une mise en œuvre efficace sur le terrain. En outre, bien que la norme ne soit pas applicable aux systèmes ferroviaires urbains, son application dans le domaine des chemins de fer traditionnels et de grande ligne reste cruciale. Ainsi, la norme SIST EN 13848-1:2019 s'affirme comme un document de référence pour l'évaluation de la qualité de la géométrie de la voie, soutenant le développement de systèmes de mesure et d’analyse fiables et efficaces à travers l'Europe. Sa pertinence est indéniable, surtout à une époque où la fiabilité et la sécurité des systèmes ferroviaires sont prioritaires.
EN 13848-1:2019의 표준 문서는 철도 응용 분야에서의 트랙 기하학 품질에 대한 중요한 지침을 제공합니다. 이 문서는 주요 트랙 기하학 매개변수를 정의하고 측정 및 분석 방법에 대한 최소 요구 사항을 명시하여 다양한 측정 시스템의 결과를 비교 가능하게 만드는 것을 목표로 하고 있습니다. 이러한 표준화는 철도 운영의 안전성과 효율성을 높이는 데 기여할 수 있습니다. 이 표준의 강점 중 하나는 명확한 정의와 기준을 제공하여 서로 다른 측정 장치 간의 결과 일관성을 보장한다는 점입니다. 이는 철도 트랙의 품질 평가를 위한 신뢰할 수 있는 기초를 형성하며, 품질 관리 및 유지보수를 위한 필수적인 정보를 제공합니다. 또한, 이는 철도 분야의 연구 및 개발에 있어 중요한 참고 자료가 됩니다. 그러나 EN 13848-1:2019는 도시 철도 시스템에는 적용되지 않는 점을 명시하고 있습니다. 따라서 이 문서는 주로 장거리 철도 시스템에 중점을 두고 있으며, 도시 환경에서는 별도의 표준이 필요함을 암시합니다. 이는 특정 분야에 대한 맞춤형 접근 방식을 가능하게 하여 각종 철도 시스템의 복잡성과 요구 사항에 더욱 적합한 규정을 제정할 수 있는 장점이 있습니다. 전반적으로 EN 13848-1:2019 표준 문서는 철도 트랙의 기하학 품질 평가에 있어 필수적인 기준을 마련하고 있으며, 철도의 안전성과 효율성을 향상시키기 위한 중요한 역할을 수행합니다. 이러한 표준은 철도 산업의 역동적인 발전을 뒷받침하는 중요한 요소로 작용할 것입니다.
SIST EN 13848-1:2019は、鉄道用途における軌道の幾何学的品質を評価するための重要な標準です。この文書は、主要な軌道幾何学のパラメータの定義を提供し、測定及び分析手法に関する最低限の要件を明確にしています。その目的は、異なる測定システムの出力の比較可能性を確保することです。 この標準の強みは、軌道幾何学の品質を評価するための明確な基準を設定している点です。具体的な数値基準を提供することで、技術者が測定結果を一貫して解釈しやすくなり、鉄道インフラのメンテナンスや改善に役立ちます。また、異なる測定機器が採取したデータを比較する際の信頼性が高まることで、業界全体の効率性を向上させることが期待できます。 この標準は、都市鉄道システムには適用されないため、主に長距離および貨物輸送に従事する鉄道事業者に特化しており、広範囲な用途で機能します。規格は、鉄道の安全性と性能の改善を目指し、鉄道ネットワークの効率的な運営を促進するために不可欠です。 全体として、EN 13848-1:2019は、鉄道の軌道幾何学の質を保証するために必要な明確で実用的な指針を提供し、業界における測定と分析の基準設定に寄与しています。この標準を活用することで、鉄道事業者はより安全で効率的な運行を実現できるでしょう。
Die Norm SIST EN 13848-1:2019 behandelt die Qualität der Gleisgeometrie im Bereich der Bahnanwendungen. Dabei werden die wesentlichen Parameter der Gleisgeometrie definiert und Mindestanforderungen für die Messung sowie die Analysemethoden spezifiziert. Ein zentrales Ziel dieser Norm ist es, die Vergleichbarkeit der Ergebnisse verschiedener Messsysteme zu gewährleisten, was für die Qualitätssicherung und die sichere Betriebsführung im Schienenverkehr von großer Bedeutung ist. Ein herausragendes Merkmal dieser Norm ist ihre umfassende Definition der Gleisgeometrieparameter, die es Fachleuten ermöglicht, ein gemeinsames Verständnis für die Anforderungen an die Gleisgeometrie zu entwickeln. Dies verbessert nicht nur die Qualität der Schieneninfrastruktur, sondern fördert auch die Effizienz der Instandhaltungsmaßnahmen. Die Norm richtet sich dabei an alle Akteure im Bahnbereich, die mit der Qualitätssicherung und der Überwachung der Gleisgeometrie befasst sind. Die spezifischen Mindestanforderungen an die Messsysteme und Analysemethoden stellen sicher, dass die Erhebungen standardisiert und reproduzierbar sind. Dies trägt zur Konsistenz und Zuverlässigkeit der Daten bei, die für die Entscheidungsfindung und die Optimierung der Gleisinfrastruktur unerlässlich sind. Darüber hinaus ist die Norm Teil eines größeren Rahmens von Standards, die zusammen eine einheitliche Grundlage für die Qualitätssicherung im Schienenverkehr bieten. Es ist jedoch zu beachten, dass die Norm nicht für städtische Verkehrssysteme gilt. Dies schränkt den Anwendungsbereich etwas ein, verstärkt jedoch den Fokus auf Langstreckensysteme und hochfrequentierte Bahnlinien, wo die Anforderungen an die Gleisgeometrie besonders hoch sind. Insgesamt ist die Norm SIST EN 13848-1:2019 von großer Relevanz für alle, die sich mit der Qualität und Sicherheit der Schieneninfrastruktur auseinandersetzen.
The standard EN 13848-1:2019, titled "Railway applications - Track - Track geometry quality - Part 1: Characterization of track geometry," provides a critical framework for understanding and ensuring the quality of railway track geometry. Its primary scope is to establish clear definitions for key track geometry parameters and to outline minimum measurement requirements as well as methods for analysis. This clarity is essential for ensuring that different measuring systems produce comparable results, which is a vital aspect of maintaining safety and efficiency within railway operations. One of the strengths of this standard is its comprehensive approach to defining track geometry parameters. By clearly stating the key variables involved in track geometry assessments, it aids engineers and maintenance personnel in establishing a consistent methodology for evaluating track quality. This standardization is crucial in facilitating communication and understanding among various stakeholders involved in railway infrastructure, thus promoting industry-wide best practices. Additionally, EN 13848-1:2019 emphasizes measurement and analysis rigor, ensuring that the track geometry assessments adhere to minimum requirements. This focus on methodological rigor not only enhances the reliability of the measurements but also provides a solid foundation for ongoing improvements in railway safety and performance. By establishing benchmarks for measurement techniques, the standard fosters an environment where continuous enhancement of track quality can be pursued. While the document excludes urban rail systems from its applicability, its relevance remains significant for mainline railway operations. The insights provided by this standard serve as crucial guidelines that help rail operators and infrastructure managers maintain optimal track conditions, which are critical for operational safety and efficiency. Overall, EN 13848-1:2019 stands out as a vital resource within the railway sector, driving improvements in track geometry quality assessment and ensuring that different measuring systems yield comparable outputs.








Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...