IEC TS 62607-6-27:2025, which is a Technical Specification, establishes a standardized method to determine the key control characteristic
• field-effect mobility
for semiconducting two-dimensional (2D) materials by the
• field-effect transistor (FET) method.
For two-dimensional semiconducting materials, the field-effect mobility is determined by fabricating a FET test structure and measuring the transconductance in a four-terminal configuration.
- This method can be applied to layers of semiconducting two-dimensional materials, such as graphene, black phosphorus (BP), molybdenum disulfide (MoS₂), molybdenum ditelluride (MoTe₂), tungsten disulfide (WS₂), and tungsten diselenide (WSe₂).
- The four-terminal configuration improves accuracy by eliminating parasitic effects from the probe contacts and cables

  • Technical specification
    19 pages
    English language
    sale 15% off

IEC TS 62607-6-26:2025, which is a Technical Specification, establishes a standardized method to determine the mechanical key control characteristics (KCCs)
• Young's modulus (or elastic modulus),
• residual strain,
• residual stress, and
• fracture stress
of 2D materials and nanoscale films using the
• bulge test.
The bulge test is a reliable method where a pressure differential is applied to a freestanding film, and the resulting deformation is measured to derive the mechanical properties.
• This method is applicable to a wide range of freestanding 2D materials, such as graphene, and nanometre-thick films with thicknesses typically ranging from 1 nm to several hundred nanometres.
• This document ensures the characterization of mechanical properties essential for assessing the structural integrity and performance of materials in applications such as composite additives, flexible electronics, and energy harvesting devices.

  • Technical specification
    26 pages
    English language
    sale 15% off

IEC TS 62607-6-23:2025, which is a Technical Specification, establishes a standardized method to determine the key control characteristic (KCC):
• carrier mobility and sheet resistance
for graphene thin films by:
• Hall measurement.
The carrier mobility is derived by the product of the Hall coefficient and the electric conductivity and the sheet resistance is derived by the product of the longitudinal resistance and the aspect ratio of a Hall device.
• The method is applicable for graphene thin film Hall devices with length and width greater than 100 micrometers.
The document is developed to complete the fabrication and measurement of devices using cost-effective processes and equipment. Due to the high cost and low cost-performance ratio of photolithography processes and equipment, this document does not utilize photolithography processes and equipment.

  • Technical specification
    20 pages
    English language
    sale 15% off

IEC TS 62607-6-33:2025, which is a Technical Specification, establishes a standardized method to determine the key control characteristic
• defect density (%, nm2)
of single layer graphene films by
• electron energy loss spectroscopy (EELS in transmission electron microscopy (TEM)).
This document outlines a method for quantitative measurement of defects in graphene at the nanoscale.
The method specified in this document is applicable to single layer graphene acquired via chemical vapour deposition (CVD), roll-to-roll production and exfoliated graphene flakes to estimate the defect density.
In order to obtain reliable data, it is essential that the procedure is consistent for each specified condition from the preparation of the TEM specimen to its observation. It is essential to maintain the spatial resolution below 1 nm by alignment of the beam. The dispersion value, which covers the entire energy loss near edge structure (ELNES) region of the carbon-K edge and maintains the highest energy resolution corresponds to 0,1 eV/ch. Defects in graphene are determined by measuring the spectral differences between sp2 hybridized and sp2/sp3 hybridized atoms, which are obtained by calculating the amplitude ratio of the π* and σ* orbital spectra.

  • Technical specification
    33 pages
    English language
    sale 15% off

IEC TS 62607-6-28:2025, which is a Technical Specification, establishes two standardized methods to determine the key control characteristic
• number of layers
for graphene layers by
• Raman spectroscopy.
This document presents two complementary methods for determining the number of layers in graphene-related products: Method A, which analyzes the lineshape of the 2D-peak in the Raman spectrum, and Method B, which measures the Raman intensity from the underlying silicon substrate. The two methods can be employed individually but combining both methods enhances accuracy and extends the detection range for the number of layers and stacking configurations.
- The method is intended to be used for graphene layers prepared by mechanical exfoliation, but also can be used with care for other high quality graphene layers, such as graphene layers prepared by chemical vapor deposition.
- The method can be used for graphene layers with AB and ABC stacking on a substrate. Its lateral size should be at least 2 µm.
- Method A is effective for AB stacked graphene up to 4 layers but becomes less reliable with more layers due to peak overlap.
- Method B can detect up to 10 layers in AB and ABC stacking but oxidized silicon substrate (SiO2 on silicon substrate) is required.
- The comparison of Method A and Method B can be found in Annex A.

  • Technical specification
    31 pages
    English language
    sale 15% off

IEC TS 62607-6-35:2025, which is a Technical Specification, establishes standardized methods to determine the structural key control characteristics
• apparent density (da),
• tap density (dt), and
• compressed density (dc)
for graphene in powder form by
• free-pouring, tapping and compressing method.

  • Technical specification
    28 pages
    English language
    sale 15% off

IEC TS 62607-11-1:2025, which is a Technical Specification, provides a standardized method for measuring shielding effectiveness on nanomaterials including carbon nanotubes (CNTs) in the near-field region. This document provides:
- recommendations for sample preparation,
- outlines of the experimental procedures to measure shielding effectiveness of CNTs in thin films,
- methods of interpretation of results and discussion of data analysis, and
- case studies.

  • Technical specification
    15 pages
    English language
    sale 15% off

IEC TS 62607-6-30:2024 establishes a standardized method to determine the chemical key control characteristic
- anion concentration
for powder of graphene-based material by
- ion chromatography.
In this document, the measured anions are fluoride, chloride, nitrite, bromide, nitrate, sulphate, and phosphate. These anions, present in the extraction solution of graphene-based materials, are separated into distinct elution bands on the ion chromatographic separation column and subsequently measured using a conductivity detector. Quantification of these anions is accomplished by establishing a proportional relationship between the measured signal (peak area or peak height) and the concentration of each anion. This is achieved by calibrating the system using a series of standards containing known amounts of each anion. Subsequently, unknown samples are analysed under the same conditions as the standards to determine their anion concentrations.
- Powder of graphene-based material addressed by this document includes graphene oxide, reduced graphene oxide and functionalized graphene, graphene, bilayer graphene, trilayer graphene and few-layer graphene.
Note: This document can also be used for other carbonaceous material such as graphite and graphite oxide.
- This document targets graphene-based material manufacturers and downstream users to guide their material design, production and quality control.

  • Technical specification
    25 pages
    English language
    sale 15% off

IEC TS 62607-2-6:2024 which is a technical specification, specifies a protocol for determining the key control characteristic
- thermal diffusivity
for vertically-aligned carbon nanotube (VACNT) films grown on solid substrates by
- flash method.
A light pulse from a flash lamp or a laser is irradiated onto the front surface (substrate side) of the VACNT film on solid substrates. Then, the temperature change of the other side of the specimen is monitored in real time after the pulse irradiation. The thermal diffusivity of the VACNT film can be analysed from the time variation of this temperature change.
- This method is applicable for evaluating the thermal transport properties of the VACNT films that can be used as thermal interface materials in electronics assembly.

  • Technical specification
    19 pages
    English language
    sale 15% off

IEC TS 62607-6-12:2024 establishes a standardized method to determine the key control characteristic
- number of layers
for films consisting of graphene by
- Raman spectroscopy and
- optical reflection.
Criteria for the determination of the number of layers are the G-peak integrated intensity and the optical contrast. Both methods enable to distinguish between graphene and multilayer graphene. However, neither method on its own nor the combination of the two enable a determination of the number of layers in all possible cases (especially regarding all possible stacking angles). But the comparison of the values deduced by each method allows to discriminate whether the determined number of layers is correct and can be specified or not.
- The method is applicable to exfoliated graphene and graphene grown on or transferred to a substrate with a small defect density, low surface contamination (e.g. transfer residue) and number of layers up to 5.
- The method is suitable for the following substrates:
a) glass (soda lime glass or similar with a refractive index between 1,45 and 1,55 at 532 nm);
b) oxidized silicon (SiO2 on silicon, with a SiO2 thickness of 90 nm ± 5 nm).
- The spatial resolution is in the order of 1 µm given by the spot size of the exciting laser.

  • Technical specification
    32 pages
    English language
    sale 15% off

IEC TS 62607-6-4:2024 has been prepared by IEC technical committee 113: Nanotechnology for electrotechnical products and systems. It is a Technical Specification.
This second edition cancels and replaces the first edition published in 2016. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) changed the document title to better reflect its purpose and application:
old title: Graphene – Surface conductance measurement using resonant cavity
new title: Graphene based materials – Surface conductance: non-contact microwave resonant cavity method.
b) replaced former Figure 1 with new Figure 1 and Figure 2, to better illustrate the method’s fundamentals and its implementation for a non-technical reader.
This part of IEC 62607 establishes a standardized method to determine the key control characteristic
a) surface conductance
for films of graphene and graphene-based materials by the
b) non-contact microwave resonant cavity method
The non-contact microwave resonant cavity method monitors the microwave resonant frequency shifts and changes in the cavity’s quality factor during the insertion of the specimen into the microwave cavity, as a function of the specimen surface area. The empty cavity is an air-filled standard R100 rectangular waveguide operated at one of the resonant frequency modes, typically at 7,5 GHz [4].
1) The method is applicable for graphene materials which are synthesized by chemical vapour deposition (CVD) on metal substrates, epitaxial growth on silicon carbide (SiC), obtained from reduced graphene oxide (rGO), or mechanically exfoliated from graphite [5].
2) This measurement does not explicitly depend on the thickness of the nano-carbon layer. The thickness of the specimen does not need to be known, but it is assumed that the lateral dimensions are uniform over the specimen area.
NOTE In some countries, the R100 standard waveguide is referenced as WR-90.

  • Technical specification
    18 pages
    English language
    sale 15% off

IEC TS 62607-6-8:2023 establishes a method to determine the key control characteristic sheet resistance RS [measured in ohm per square (Ω/sq)], by the in-line four-point probe method, 4PP.
The sheet resistance RS is derived by measurements of four-terminal electrical resistance performed on four electrodes placed on the surface of the planar sample.
The measurement range for RS of the graphene samples with the method described in this document goes from 10−2 Ω/sq to 104 Ω/sq.
The method is applicable for CVD graphene provided it is transferred to quartz substrates or other insulating materials (quartz, SiO2 on Si, as well as graphene grown from silicon carbide.
The method is complementary to the van der Pauw method (IEC 62607-6-7) for what concerns the measurement of the sheet resistance and can be useful when it is not possible to reliably place contacts on the sample boundary.

  • Technical specification
    22 pages
    English language
    sale 15% off

IEC TS 62607-6-7:2023 establishes a method to determine the key control characteristics sheet resistance RS [measured in ohm per square (Ω/sq)], by the van der Pauw method, vdP.
The sheet resistance RS is derived by measurements of four-terminal electrical resistance performed on four electrical contacts placed on the boundary of the planar sample and calculated with a mathematical expression involving the two resistance measurements.
The measurement range for RS of the graphene samples with the method described in this document goes from 10−2 Ω/sq to 104 Ω/sq.
The method is applicable for CVD graphene provided it is transferred to quartz substrates or other insulating materials (quartz, SiO2 on Si), as well as graphene grown from silicon carbide.
The method is complementary to the in-line four-point-probe method (4PP, IEC 62607-6-8) for what concerns the measurement of the sheet resistance and can be applied when it is possible to reliably place contacts on the sample boundary, avoiding the sample being scratched by the 4PP.
The outcome of the van der Pauw method is independent of the contact position provided the sample is uniform, which is typically not true for graphene at this stage. This document considers the case of samples with non-strictly uniform conductivity distribution and suggests a way to consider the sample inhomogeneity as a component of the uncertainty on RS.

  • Technical specification
    27 pages
    English language
    sale 15% off

IEC TS 62607-6-17:2023 establishes a standardized method to determine the key control characteristic order parameter for graphene-based material and layered carbon material by X-ray diffraction (XRD) and transmission electron microscopy.
The order parameter is analysed from two perspectives: z-axis and x-y-axis. In the z-axis the order parameter is derived from the full width at half maximum (FWHM) of peak (002) in the XRD spectrum. In the x-y-axis, it is derived from the FWHM of peak (100) corresponding to diffraction patterns obtained by SAED (selected area electron diffraction) technique, which is routinely performed on most transmission electron microscopes in the world.
The method is applicable for graphene-based material and layered carbon material including graphite, expanded graphite, amorphous carbon, vitreous carbon or glassy carbon, the structures of which are clarified by other characterization techniques.
The method is applicable for differentiating few-layer graphene or reduced graphene oxide from layered carbon material.
Typical application area is quality control in manufacturing to ensure batch-to-batch reproducibility.
NOTE Graphene oxide, one type of graphene-based material, is not within the scope of this document.

  • Technical specification
    24 pages
    English language
    sale 15% off

IEC TS 62607-6-18:2022(E) establishes a standardized method to determine the chemical key control characteristic
functional groups  for functionalized graphene-based material and graphene oxide by
thermogravimetry analysis (TGA) coupled with Fourier transform infrared spectroscopy (FTIR), referred to as TGA-FTIR.  The content of functional groups is derived by changes in mass of the sample as a function of temperature using TGA. Materials evolved during these mass changes are then analysed using coupled FTIR to identify functional groups.
The functional groups determined according to this document will be listed as a key control characteristic in the blank detail specification for graphene IEC 62565-3-1 for graphene powder.
The method is applicable for functionalized graphene powder and graphene oxide that can be pyrolysed and gasified with elevated temperature during TGA.
Typical application areas are quality control for graphene manufacturers, and product selection for downstream users.

  • Technical specification
    19 pages
    English language
    sale 15% off

IEC TS 62607:2022 establishes a standardized method to determine the key control characteristic
carrier concentration  for semiconducting two-dimensional materials by the
field effect transistor (FET) method.  For semiconducting two-dimensional materials, the carrier concentration is evaluated using a field effect transistor (FET) test by a measurement of the voltage shift obtained from transfer curve upon doping process. The FET test structure consists of three terminals of source, drain, and gate where voltage is applied to induce the transistor action. Transfer curves are obtained by measuring drain current while applying varied gate voltage and constant drain voltage with respect to the source which is grounded.

  • Technical specification
    23 pages
    English language
    sale 15% off

IEC TS 62607-2-5:2022 specifies the protocols for determining the mass density of vertically-aligned carbon nanotubes (VACNTs) by X-ray absorption method. This document outlines experimental procedures, data formats, and some case studies. These protocols are applicable to VACNT films with thickness larger than several tens of micrometres. There are no limitations in materials for substrate.

  • Technical specification
    20 pages
    English language
    sale 15% off

IEC TS 62607-6-22:2022 establishes a standardized method to determine the key control characteristic
ash content  of powder and dispersion of graphene-based material by
incineration.  The ash content is derived by residue obtained after incineration under the operating conditions specified in this document, being divided by the mass of the dried test portion.
The method is applicable for graphene, graphene oxide and reduced graphene oxide in forms of both dry powder and dispersion. This document can be used as reference for graphite oxide and other modified graphene.
Typical application areas of this method are research, manufacturer and downstream user to guide material processing and quality control.

  • Technical specification
    22 pages
    English language
    sale 15% off

IEC TS 62607-6-20:2022 (EN) IEC TS 62607 establishes a standardized method to determine the chemical key control characteristic
- metallic impurity content
for powders of graphene-based materials by
- inductively coupled plasma mass spectrometry (ICP-MS).
The metallic impurity content is derived by the signal intensity of measured elements through MS spectrum of ICP-MS.
- The method is applicable for powder of graphene and related materials, including bilayer graphene (2LG), trilayer graphene (3LG), few-layer graphene (FLG), reduced graphene oxide (rGO) and graphene oxide (GO).
– The typical application area is in the microelectronics industry, e.g. conductive pastes, displays, etc., for manufacturers to guide material design, and for downstream users to select suitable products.

  • Technical specification
    28 pages
    English language
    sale 15% off

IEC TS 62607-6-21:2022 establishes a standardized method to determine the chemical key control characteristics
- elemental composition, and
- C/O ratio
for powders of graphene-based materials by
- X-ray photoelectron spectroscopy (XPS).
The elemental composition (species and relative abundance) is derived by the elemental binding energy and integral peak area at corresponding portion of XPS spectrum.
- The elemental composition refers to main elements in graphene powders, typically including carbon (C), oxygen (O), nitrogen (N), sulfur (S) , chloride (Cl) and silicon (Si).
- This document is applicable to graphene powders consisting of graphene, bilayer graphene (2LG), trilayer graphene (3LG), few-layer graphene (FLG), graphene nanoplate (GNP), reduced graphene oxide (rGO), graphene oxide (GO), and functionalized graphene powders.
- Typical application areas are the microelectronics and thermal management industries, e.g. batteries, integrated circuits, high-frequency electronics. This document can be used by manufacturers in research and development and by downstream users for product selection.

  • Technical specification
    27 pages
    English language
    sale 15% off

IEC TS 62607-6-10:2021(E) establishes a standardized method to determine the electrical key control characteristic
– sheet resistance (Rs)
for films of graphene-based materials by
– terahertz time domain spectroscopy (THz-TDS).
In this technique, a THz pulse is sent to the graphene-based material. The transmitted or reflected THz waveform is measured in the time domain and transformed to the frequency domain by the fast Fourier transform (FFT). Finally, the spectrum is fitted to the Drude model (or another comparable model) to obtain the sheet resistance.
• This non-contact inspection method is non-destructive, fast and robust for the mapping of large areas of graphene films, with no upper sample size limit.
• The method is applicable for statistical process control, comparison of graphene films produced by different vendors, or to obtain information about imperfections on the microscale such as grain boundaries and defects, etc.
• The method is applicable for graphene grown by chemical vapour deposition (CVD) or other methods on or transferred to dielectric substrates, including but not limited to quartz, silica (SiO2), silicon (Si), sapphire, silicon carbide (SiC) and polymers.
• The minimum spatial resolution is in the order of 300 µm (at 1 THz) given by the diffraction limited spot size of the THz pulse.

  • Technical specification
    44 pages
    English language
    sale 15% off

IEC TS 62607-6-19:2021(E) establishes a standardized method to determine the chemical key control characteristic
• elemental composition
for powder consisting of graphene-based material by
• CS analyser and ONH analyser.
The method as described in this document determines the content of carbon (C), sulfur (S), oxygen (O), nitrogen (N) and hydrogen (H).
The carbon (C) and sulfur (S) content in graphene powder is derived by the content of converted CO, CO2 and SO2, which is determined by infrared gas detector (IGD) using a non-dispersive infrared adsorption method in CS analyser.
The content of oxygen (O), nitrogen (N) and hydrogen (H) in graphene powder is derived by ONH analyser using pyrolysis method. The O content is obtained according to the content of converted CO and CO2, which is determined by IGD using a non-dispersive infrared adsorption method. The N content is obtained according to the content of converted N2, which is determined by a thermal conductivity detector (TCD) method. The H content is obtained by measuring converted H2 or H2O, corresponding to TCD or IGD method.
• The method is applicable for graphene, graphene oxide (GO) and reduced graphene oxide (rGO) in powder form.

  • Technical specification
    23 pages
    English language
    sale 15% off