Railway applications - Measurement of vertical forces on wheels and wheelsets - Part 1: On-track measurement sites for vehicles in service

The scope of this European Standard is restricted to the measurement of vertical wheel forces and calculation of derived quantities on vehicles in service. Measurements of a train in motion are used to estimate the static forces.
Derived quantities can be:
-   axle loads;
-   side to side load differences of a wheel set, bogie, vehicle;
-   overall mass of vehicle or train set;
-   mean axle load of a vehicle or train set.
This standard is not concerned with the evaluation of:
-   dynamic wheel force or derived quantities;
-   wheel condition (i.e. shape, profile, flats);
-   lateral wheel force;
-   combination of lateral and vertical wheel forces.
The standard defines accuracy classes for measurements to be made at any speed greater than 5 km/h within the calibrated range, which may be up to line speed.
The aim of this standard is to obtain measurement results that give representative values for the distribution of vertical wheel forces of a running vehicle, which under ideal conditions will be similar to those that can be obtained from a standing vehicle.
This standard does not impose any restrictions on the types of vehicles that can be monitored, or on which networks or lines the measuring system can be installed.
The standard lays down minimum technical requirements and the metrological characteristics of a system for measuring and evaluating a range of vehicle loading parameters. Also defined are accuracy classes for the parameters measured and the procedure for verifying the calibration.
The measuring system proposed in this standard should not be considered as safety critical. If the measuring system is connected to a train traffic command and control system then requirements that are not part of this standard may apply.
Measuring systems complying with this standard have the potential to enhance safety in the railway sector. However, the current operating and maintenance procedures rather than this standard are mandatory for ensuring safety levels in European rail networks.

Bahnanwendungen - Messung von vertikalen Rad- und Radsatzkräften - Teil 1: Gleisseitige Messeinrichtungen für fahrende Fahrzeuge

Der Anwendungsbereich dieser Europäischen Norm ist auf das Messen vertikaler Radkräfte und die Berechnung
davon abgeleiteter Größen für Fahrzeuge im betrieblichen Einsatz beschränkt. Messungen eines Zuges
in Bewegung werden verwendet, um die statischen Kräfte abzuschätzen.
Abgeleitete Größen können sein:
— Radsatzlasten;
— Lastunterschiede zwischen den beiden Seiten eines Radsatzes, Drehgestells oder Fahrzeugs;
— Gesamtmasse eines Fahrzeugs oder Zugverbandes;
— mittlere Radsatzlast eines Fahrzeugs oder Zugverbandes.
Diese Norm befasst sich nicht mit der Bewertung:
— der dynamischen Radkraft oder abgeleiteter Größen;
— des Zustandes der Räder (z. B. der Gestalt, des Profils, Flachstelle);
— der Querkraft am Rad;
— der Kombination aus vertikalen und Querkräften am Rad.
Diese Norm legt Genauigkeitsklassen für durchzuführende Messungen bei Geschwindigkeiten oberhalb von
5 km/h innerhalb des kalibrierten Bereichs bis zur Streckengeschwindigkeit fest.
Das Ziel dieser Norm besteht im Erreichen von Messergebnissen, die repräsentative Werte für die Verteilung
der vertikalen Radkräfte eines fahrenden Fahrzeugs erzeugen und die unter idealen Bedingungen denen gleich
sind, die bei einem stehenden Fahrzeug erhoben werden können.
Diese Norm erhebt keinerlei Beschränkungen dazu, welche Fahrzeugtypen überwacht werden können oder an
welchen Netzwerken oder Strecken das Messsystem installiert werden kann.
Die Norm legt technische Mindestanforderungen und messtechnische Merkmale für ein System zum
Messen und Bewerten zahlreicher Parameter zur Fahrzeugbeanspruchung fest. Ebenfalls definiert werden
Genauigkeitsklassen für die gemessenen Parameter und die Vorgehensweise zur Verifizierung der
Kalibrierung.
Das in dieser Norm vorgeschlagene Messsystem sollte nicht als sicherheitsentscheidend erachtet werden.
Falls das Messsystem mit einem Zugsicherungssystem verbunden ist, dann können Anforderungen, die nicht
Bestandteil dieser Norm sind, zur Anwendung kommen.
Messsysteme nach dieser Norm haben das Potential, die Sicherheit im Bereich der Eisenbahn zu verbessern.
Dennoch ist nicht diese Norm, sondern die Anwendung der gegenwärtigen betrieblichen und instandhaltungstechnischen
Verfahrensweisen obligatorisch, um das Sicherheitsniveau in den europäischen Eisenbahnnetzen
sicherzustellen.

Applications ferroviaires - Mesurage des forces verticales à la roue et à l'essieu - Partie 1 : Sites de mesure en voie des véhicules en service

Le présent document (EN 15654-1:2018+A1:2023) a été élaboré par le Comité Technique CEN/TC 256 « Applications ferroviaires », dont le secrétariat est tenu par DIN.
Cette Norme européenne devra recevoir le statut de norme nationale, soit par publication d'un texte identique, soit par entérinement, au plus tard en décembre 2023, et toutes les normes nationales en contradiction devront être retirées au plus tard en décembre 2023.
L'attention est appelée sur le fait que certains des éléments du présent document peuvent faire l'objet de droits de propriété intellectuelle ou de droits analogues. Le CEN ne saurait être tenu pour responsable de ne pas avoir identifié de tels droits de propriété et averti de leur existence.
Le présent document inclut l'Amendement 1 approuvé par le CEN le 21 mai 2023.
Le présent document remplace l’!EN 15654-1:2018".
Le début et la fin du texte ajouté ou modifié par l'amendement sont indiqués dans le texte par les repères !".
!Texte supprimé"
Le présent document est la première partie d'une série en trois parties intitulée « Applications ferroviaires — Mesurage des forces verticales à la roue et à l'essieu ». Cette série comprend les parties suivantes :
Partie 1 : Sites de mesure en voie des véhicules en service
Partie 2 : Essai en atelier des véhicules neufs, des véhicules modifiés et des véhicules maintenus
Partie 3 : Approbation et vérification des sites de mesure en voie des véhicules en service (CEN/TR)
Il convient que l’utilisateur adresse tout retour d’information et toute question concernant le présent document à l’organisme national de normalisation de son pays. Une liste exhaustive desdits organismes se trouve sur le site web du CEN.
Selon le Règlement Intérieur du CEN-CENELEC, les instituts de normalisation nationaux des pays suivants sont tenus de mettre cette Norme européenne en application : Allemagne, Autriche, Belgique, Bulgarie, Chypre, Croatie, Danemark, Espagne, Estonie, Finlande, France, Grèce, Hongrie, Irlande, Islande, Italie, Lettonie, Lituanie, Luxembourg, Malte, Norvège, Pays-Bas, Pologne, Portugal, République de Macédoine du Nord, République tchèque, Roumanie, Royaume-Uni, Serbie, Slovaquie, Slovénie, Suède, Suisse et Turquie.

Železniške naprave - Meritve vertikalnih kolesnih in osnih obremenitev - 1. del: Meritve na železniških vozilih med vožnjo (vključno z dopolnilom A1)

Področje uporabe tega evropskega standarda je omejeno na merjenje navpične kolesne sile in izračun izpeljanih količin pri vozilih v obratovanju. Meritve vlaka v gibanju se uporabljajo za ocenjevanje statičnih sil.
Izpeljane količine so lahko:
–   obremenitve osi;
–   razlike v obremenitvi na različnih straneh kolesne dvojice, podstavnega vozička, vozila;
–   skupna masa vozila ali vlakovne kompozicije;
–   povprečna obremenitev osi vozila ali vlakovne kompozicije;
Ta standard ne obravnava ocenjevanja:
–   dinamične kolesne sile ali izpeljanih količin;
–   stanja koles (tj. oblika, profil, sploščeni deli);
–   prečne kolesne sile;
–   kombinacije prečne in navpične kolesne sile.
Standard določa razrede natančnosti za meritve, ki bodo opravljene pri kakršni koli hitrosti, večji od 5 km/h v umerjenem razponu, ki lahko sega do hitrosti linije.
Namen tega standarda je pridobivanje rezultatov merjenja, ki omogočajo reprezentativne vrednosti za distribucijo navpičnih kolesnih sil vozila v obratovanju, in bodo pod idealnimi pogoji podobni tistim, ki jih je mogoče pridobiti pri stoječem vozilu.
Ta standard ne podaja nikakršnih omejitev glede vrst vozil, ki se jih lahko nadzira, ali glede tega, na katerih omrežjih ali linijah se lahko namesti merilni sistem.
Standard določa minimalne tehnične zahteve in meroslovne značilnosti sistema za merjenje in ocenjevanje niza parametrov v zvezi z obremenitvijo vozila. V njem so opredeljeni tudi razredi točnosti za izmerjene parametre in postopek za preverjanje kalibracije.
Merilni sistem, predlagan v tem standardu, naj se ne šteje kot varnostno kritičen. Če je merilni sistem povezan s sistemom za nadzor in kontrolo vlakov, lahko veljajo zahteve, ki niso del tega standarda.
Merilni sistemi, skladni s tem standardom, bi lahko izboljšali varnost v železniškem sektorju. Vendar so za zagotavljanje ravni varnosti v evropskih železniških omrežjih trenutno obvezni postopki obratovanja in vzdrževanja, in ne ta standard.

General Information

Status
Published
Publication Date
16-Aug-2023
Technical Committee
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
06-Jul-2023
Due Date
10-Sep-2023
Completion Date
17-Aug-2023

Relations

Standard
SIST EN 15654-1:2018+A1:2023
English language
41 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)


SLOVENSKI STANDARD
01-september-2023
Železniške naprave - Meritve vertikalnih kolesnih in osnih obremenitev - 1. del:
Meritve na železniških vozilih med vožnjo (vključno z dopolnilom A1)
Railway applications - Measurement of vertical forces on wheels and wheelsets - Part 1:
On-track measurement sites for vehicles in service
Bahnanwendungen - Messung von vertikalen Rad- und Radsatzkräften - Teil 1:
Gleisseitige Messeinrichtungen für fahrende Fahrzeuge
Applications ferroviaires - Mesurage des forces verticales à la roue et à l'essieu - Partie 1
: Sites de mesure en voie des véhicules en service
Ta slovenski standard je istoveten z: EN 15654-1:2018+A1:2023
ICS:
45.060.01 Železniška vozila na splošno Railway rolling stock in
general
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

EN 15654-1:2018+A1
EUROPEAN STANDARD
NORME EUROPÉENNE
June 2023
EUROPÄISCHE NORM
ICS 45.060.01 Supersedes EN 15654-1:2018
English Version
Railway applications - Measurement of vertical forces on
wheels and wheelsets - Part 1: On-track measurement
sites for vehicles in service
Applications ferroviaires - Mesurage des forces Bahnanwendungen - Messung von vertikalen Rad- und
verticales à la roue et à l'essieu - Partie 1 : Sites de Radsatzkräften - Teil 1: Gleisseitige Messeinrichtungen
mesure en voie des véhicules en service für fahrende Fahrzeuge
This European Standard was approved by CEN on 29 October 2017 and includes Amendment approved by CEN on 21 May 2023.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and
United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION

EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2023 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN 15654-1:2018+A1:2023 E
worldwide for CEN national Members.

Contents Page
European foreword . 4
Introduction . 5
1 Scope . 6
2 Normative references . 7
3 Terms, definitions, symbols and abbreviations . 7
3.1 Terms and definitions . 7
3.2 Abbreviations . 10
3.3 Symbols, quantity and dimension . 10
4 Measured and derived quantities . 11
4.1 Measured quantities . 11
4.2 Mandatory derived quantities . 11
4.3 Optional derived quantities . 11
5 Metrological characteristics . 14
5.1 General . 14
5.2 Accuracy classes . 14
5.3 Measurement and calibration range . 16
5.4 Influence quantities . 17
5.5 Condition of use . 17
6 Technical requirements. 18
6.1 Train and vehicle related capability . 18
6.2 Environmental. 18
6.3 Inputs and Outputs . 19
6.4 Descriptive markings. 23
6.5 Measuring device specific . 24
6.6 Measuring site specific . 25
Annex A (informative)  Device assessment frame work . 26
A.1 Introduction . 26
A.2 Type approval test . 26
A.3 Initial verification . 26
A.4 In-service verification . 26
A.5 Adjustment and verification methods . 26
Annex B (informative) Measurement site selection criteria . 27
B.1 Introduction . 27
B.2 Measurement site . 27
B.2.1 General . 27
B.2.2 Approach track and/or leaving track . 27
B.2.3 Lead-on and/or lead-off track . 27
B.2.4 Instrumented track . 28
B.3 Criteria for site selection . 28
B.3.1 General . 28
B.3.2 Track structure . 28
B.3.3 Track substructure . 30
B.3.4 Surroundings . 30
B.3.5 Track geometry maintenance limits . 30
Annex C (informative) Data exchange format . 32
C.1 Introduction. 32
C.2 Example 1 . 32
C.3 Example 2: mandatory values . 36
Annex D (informative) Usage of data and accuracy classes . 38
D.1 Introduction. 38
D.2 Typical applications . 38
D.2.1 Monitoring vehicle loading . 38
D.2.2 Threshold/Compliance monitoring . 38
D.2.3 Track access charging . 40
D.2.4 Vehicle condition monitoring . 40
D.2.5 Track load monitoring (track maintenance/track renewal forecasting) . 40
Bibliography . 41

European foreword
This document (EN 15654-1:2018+A1:2023) has been prepared by Technical Committee CEN/TC 256
“Railway applications”, the secretariat of which is held by DIN.
This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by December 2023, and conflicting national standards shall
be withdrawn at the latest by December 2023.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
This document includes Amendment 1 approved by CEN on 21 May 2023.
This document supersedes !EN 15654-1:2018".
The start and finish of text introduced or altered by amendment is indicated in the text by tags !".
!Deleted text"
This document is the first part of a three part series collectively referred to as “Railway applications —
Measurement of vertical forces on wheels and wheelsets”. The series consists of:
— Part 1: On-track measurement sites for vehicles in service
— Part 2: Test in workshop for new, modified and maintained vehicles
— Part 3: Approval and verification of on track measurement sites for vehicles in service (CEN/TR)
Any feedback and questions on this document should be directed to the users’ national standards body. A
complete listing of these bodies can be found on the CEN website.
According to the CEN-CENELEC Internal Regulations, the national standards organisations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia,
Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland,
Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North
Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and the United
Kingdom.
Introduction
This European Standard has been developed to provide a common procedure for determining the axle
load, wheel force and the mass of rail vehicles operating (in-service) in Europe.
This standard also details the evaluation of derived quantities such as asymmetric loading, overloading,
vehicle mass and train mass. These quantities are obtained while the train is in-service and in motion.
!The measuring systems according to this document are not considered to be essential for the safety
of the railway system. However, they have the potential to support the identified essential requirements
of Directive 2016/797/EU."
1 Scope
The scope of this European Standard is restricted to the measurement of vertical wheel forces and
calculation of derived quantities on vehicles in service. Measurements of a train in motion are used to
estimate the static forces.
Derived quantities can be:
— axle loads;
— side to side load differences of a wheel set, bogie, vehicle;
— overall mass of vehicle or train set;
— mean axle load of a vehicle or train set.
This standard is not concerned with the evaluation of:
— dynamic wheel force or derived quantities;
— wheel condition (i.e. shape, profile, flats);
— lateral wheel force;
— combination of lateral and vertical wheel forces.
The standard defines accuracy classes for measurements to be made at any speed greater than 5 km/h
within the calibrated range, which may be up to line speed.
The aim of this standard is to obtain measurement results that give representative values for the
distribution of vertical wheel forces of a running vehicle, which under ideal conditions will be similar to
those that can be obtained from a standing vehicle.
This standard does not impose any restrictions on the types of vehicles that can be monitored, or on
which networks or lines the measuring system can be installed.
The standard lays down minimum technical requirements and the metrological characteristics of a
system for measuring and evaluating a range of vehicle loading parameters. Also defined are accuracy
classes for the parameters measured and the procedure for verifying the calibration.
The measuring system proposed in this standard should not be considered as safety critical. If the
measuring system is connected to a train traffic command and control system then requirements that are
not part of this standard may apply.
Measuring systems complying with this standard have the potential to enhance safety in the railway
sector. However, the current operating and maintenance procedures rather than this standard are
mandatory for ensuring safety levels in European rail networks.
2 Normative references
The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.
EN 50121-4, Railway applications — Electromagnetic compatibility — Part 4: Emission and immunity of
the signalling and telecommunications apparatus
EN 50121-5, Railway applications — Electromagnetic compatibility — Part 5: Emission and immunity of
fixed power supply installations and apparatus
EN 50122-1, Railway applications — Fixed installations — Electrical safety, earthing and the return circuit
- Part 1: Protective provisions against electric shock
EN 50122-2, Railway applications — Fixed installations — Electrical safety, earthing and the return circuit
- Part 2: Provisions against the effects of stray currents caused by d.c. traction systems
EN 50124-1, Railway applications — Insulation coordination — Part 1: Basic requirements — Clearances
and creepage distances for all electrical and electronic equipment
EN 60529, Degrees of protection provided by enclosures (IP Code) (IEC 60529)
EN 15273-3, Railway applications - Gauges - Part 3: Infrastructure gauge
3 Terms, definitions, symbols and abbreviations
3.1 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
NOTE They are listed in the order in which they appear in the standard.
3.1.1
static vertical wheel force
Q
F0,j,k
representation of the vertical part of the static wheel force vector obtained from the dynamic
measurement process of a vehicle in motion
Note 1 to entry: Where the symbol Q is used, j is the axle number and k is the vehicle side, k = R denotes the
F0jk
right hand side in the direction of travel and k = L denotes the left hand side in the direction of travel.
3.1.2
axle load
sum of the static vertical wheel forces exerted on the track through a wheelset or a pair of independent
wheels divided by acceleration of gravity
3.1.3
quantity
property of a phenomenon, body, or substance, where the property has a magnitude that can be
expressed as a number and a reference
[SOURCE: ISO/IEC GUIDE 99]
3.1.4
derived quantity
quantity, in a system of quantities, that is calculated from one or more measured parameters
3.1.5
measuring system
aggregation of parts that serve to determine the wheel force and which may also be used to derive other
quantities
3.1.6
load sensor
element of a measuring system that is intended to receive the load and which realizes a change in the
output signal when a load is placed upon it
3.1.7
maximum permissible error
extreme value of measurement error, with respect to a known reference quantity value, permitted by
specifications or regulations for a given measurement, measuring instrument, or measuring system
[SOURCE: ISO/IEC GUIDE 99]
3.1.8
accuracy class
class of measuring instruments or measuring systems that meet stated metrological requirements that
are intended to keep measurement errors or instrumental measurement uncertainties within specified
limits under specified operation conditions
[SOURCE: ISO/IEC GUIDE 99]
Note 1 to entry: A measuring system can have different accuracy classes for different quantities and/or different
operation conditions.
3.1.9
running gear
bogie, or (on non-bogied vehicles) the wheelset including suspension
3.1.10
in service
in operation and not under maintenance or manufacture
3.1.11
line speed
maximum speed at which vehicles are allowed to run on a line or branch, or on sections of a line or
branch
3.1.12
speed band
range of speeds pertaining to a particular accuracy class
3.1.13
instrumented track
section of track where the wheel forces are measured
3.1.14
lead-on track
section of track that precedes the instrumented track
3.1.15
lead-off track
section of track that follows the instrumented track
3.1.16
approach track
section of track that precedes the lead-on track
3.1.17
exit track
section of track that follows the lead-off track
3.1.18
measurement site
section of track that contains the instrumented track, the lead-on/lead-off tracks and the approach/exit
tracks
Note 1 to entry: A measurement site is shown in Figure B.1.
3.1.19
cross level
difference in height of the adjacent running surfaces
Note 1 to entry: Refer to EN 13848-1.
3.1.20
gradient
ratio of the difference in height, of the running surface along the rail, at two successive points, to the
distance between the points
3.1.21
vertical track deflection
amount by which the track deflects under a defined axle load
3.1.22
track twist
algebraic difference between two cross levels divided by the distance between the two points of
measurement
Note 1 to entry: Refer to EN 13848-1.
Note 2 to entry: Twist is usually expressed as a ratio with the units ‰ or mm/m.
3.2 Abbreviations
For the purposes of this document, the following abbreviations apply.
CEN European Committee for Standardization
EN European Standard
ERA European Railway Agency
ISO International Organization for Standardization
TSI Technical Specification for Interoperability
UIC Harmonisation of Running Behaviour and noise measurement sites project from UIC
HRMS (Union internationale des chemins de fer)
3.3 Symbols, quantity and dimension
For the purposes of this document the following symbols apply.
QF vertical wheel force kN
Q wheel load t
P vertical wheelset force kN
F
P axle load t
m gross mass t
ϴ imbalance
Δ relative deviation
g acceleration due to gravity, minimum accuracy of 2 decimal (m/s )
places
j wheelset index (1, 2, 3, …)
i running gear index (1, 2, 3, …)
k vehicle side
R for the right hand side in the direction of travel
L for the left hand side in the direction of travel
n total number of vehicles in the train
n total number of wheelsets of the train
trn
n total number of wheelsets of individual vehicle
veh
n total number of running gear of individual vehicle
rg
z number of wheelsets per running gear i
x number of first wheelset in running gear i
4 Measured and derived quantities
4.1 Measured quantities
The static vertical wheel force Q is the basic measured quantity for all derived quantities.
F0,j,k
4.2 Mandatory derived quantities
The following Table 1 defines mandatory derived quantities.
Table 1 — Mandatory derived quantities
Quantity Dimension Formula Comment
Vertical static wheel load t
Q EN 15528 uses Q
F0, jk,
Q =
0, jk,
g
Individual wheelset force kN
EN 14363:2005
PQ + Q
F0, jjF0, ,L F0, j,R
uses
2Q
0 j
P
F0
Individual axle load t
QQ+ EN 15528 uses P
0, jj,L 0, ,R
P =
0, j
g
Train gross mass t
m = P
trn ∑ 0, j
j
where
j  addresses each wheelset of the train
4.3 Optional derived quantities
The following Table 2 defines optional derived quantities.
Similar formulae should be used for other axle configurations, where applicable.
=
Table 2 — Optional derived quantities
Quantity Dimension Formula Comment
Vehicle gross mass t
EN 14363:2005
m = P
veh 0, j

uses m
j veh
where
j  addresses each wheelset of the vehicle
NOTE 1   j: wheelset indices of the vehicle
NOTE 2  Optional quantity, because there is no
exact definition for a vehicle (e.g. articulated
train/vehicle).
Sum of wheel forces kN
QQ=
Frg,k ∑ F0, j,k
per running gear side
j
where
j  addresses each wheelset of the running gear
Sum of axle loads per t
PP=
rg 0, j

running gear
j
where
j  addresses each wheelset of the running gear
Maximum axle load of t
PP= max( )
max,veh 0, j EN 14363:2005
the vehicle
uses 2Q
0,max
where
(in kN)
j  addresses each wheelset of the vehicle
Mean axle load of t
Σ P EN 14363:2005
jj0,
P =
vehicle veh
uses 2Q
0,mean
n
veh
(in kN)
where
j  addresses each wheelset of the train
or by
m
veh
P =
veh
n
veh
Mean axle load of t
Σ P
jj0,
P =
running gear rg
z
where
j  addresses each wheelset of the running gear
Diagonal imbalance -  
QQ++Q Q
HRMS uses I
rg,,iiL rg,+1,R rg,,i R rg,i+1,L
d
 
θ = max ,
ratio of adjacent
diag,veh,i
 
Q ++Q QQ
rg,,i R rg,i+1,L rg,,iiL rg,+1,R
 
running gears of the
vehicle
Quantity Dimension Formula Comment
Diagonal imbalance -
 
Q ++Q Q Q
0,,jjL 0, ++1R, 0,,j R 0, j 1L,
 
θ = max ,
ratio of adjacent axles
diag,rg, j
 
Q ++Q Q Q
0,,j R 0, j++1L, 0,,jjL 0, 1R,
of the running gear
 
Diagonal imbalance -
Σ Q Σ Q  HRMS uses I
la
jj0,j,L 0,j,R
ratio of the vehicle  
θ = max ,
lat,veh
 
ΣΣQ Q
(side-to-side ratio)
jj0,j,R 0,j,L
 
where
j  addresses each wheelset of the vehicle

Diagonal imbalance -
 
QQ HRMS uses I
a
0,j,L 0,j,R
 
ratio of the wheelset
θ = max ,
lat,j
 
QQ
(side-to-side ratio)
0,j,R 0,j,L
 
Maximum - n −1
rg HRMS uses I
 lo
 
PP
longitudinal rg, i rg, i+1

 
θ = max max,
long,veh
imbalance ratio of  
PP
rg, i+1 rg, i
 

i=1
adjacent running
gears in a vehicle
NOTE  General formula (e.g. if you have two
(front-to rear ratio)
running gears it gives the front-rear ratio).

Longitudinal - n −1
rg
 
PP
imbalance ratio of rg, i rg, i+1
θ max=  , 
long,rg
adjacent running
 
PP
rg, i+1 rg, i
 
i=1
gears in a vehicle
Relative side-to-side -
EN 14363:2005
Σ−QQ
( )
j Fj0, ,R Fj0, ,L
wheel force deviation
Δq =
uses Δq
side,veh
side
of vehicle
Σ+Q Q
( )
j Fj0, ,R Fj0, ,L
where
j  addresses each wheelset of the vehicle
Relative wheel force -
Q − Q
Fj0, ,R Fj0, ,L
Δq =
deviation per
j
QQ+
Fj0, ,R Fj0, ,L
wheelset
Relative deviation of -
EN 14363:2005
max(PP)−
veh
0, j
difference between
Δp =
veh
uses Δ2q
0,max
P
maximum axle load veh
and mean axle load,
and all derived by the
mean axle load
Relative deviation of -
PP−
rg,iirg ,+1
Δp =
mean axle loads
rg,i
PP+
rg,iirg ,+1
between two running
gears of a vehicle
Quantity Dimension Formula Comment
Relative wheel force -
2⋅Q
F0, jk,
Δq =
deviation inside
rg, jk,
Pg⋅
rg,i
running gear
Relative axle load -
PP−
rg ,i
0, j
deviation inside Δp =
rg, j
P
running gear rg ,i
5 Metrological characteristics
5.1 General
In this clause of the standard, the minimum technical metrological characteristics, operational features
and performance criteria are listed.
5.2 Accuracy classes
The accuracy of a measurement system is defined in terms of ‘accuracy class’. The accuracy classes are
based on the maximum permissible errors of the measurements and are specified in Table 3.
In order to meet an accuracy class on initial verification, 90 % of the measurements shall not exceed the
maximum permissible error specified for ‘initial verification’. The remaining 10 % shall not exceed the
maximum permissible error specified for ‘in-service inspection’.
In order to meet an accuracy class on in-service inspection, 100 % of the measurements shall not exceed
the maximum permissible error specified for ‘in-service inspection’.
A system may have different accuracy classes and shall be defined for one or more of the following
quantities:
a) train gross mass;
b) vehicle gross mass;
c) sum of axle loads on a running gear (bogie);
d) axle load;
e) wheel force.
The accuracy classes may vary according to the direction of travel and whether the system is being
operated in either the ‘pull mode’ or the ‘push mode’.
To determine the accuracy classes of a measurement system, it is necessary to conduct verification tests
with vehicles in motion. Verification of the accuracy classes of the quantities a) to e) shall be based on
known values (measured by a system or several systems providing less uncertainty).
Table 3 lists the available accuracy classes. These apply to the quantities a) to e) and can also be applied
to quantities in Clause 4. The table specifies the accuracy per class for both initial and in-service
verification. The range of full scale accuracy of measured values shall be defined.
Table 3 — Accuracy classes
Accuracy class Initial verification In-service inspection
0,5 ±0,25 % ±0,5 %
1,0 ±0,50 % ±1,0 %
2,0 ±1,00 % ±2,0 %
3,0 ±1,50 % ±3,0 %
5,0 ±2,50 % ±5,0 %
10,0 ±5,00 % ±10,0 %
20,0 ±10,00 % ±20,0 %
NOTE 1 Initial verification is performed when a new system has been installed or when an old system has
undergone a major repair, refurbishment or modification.
NOTE 2 In-service inspection is carried out according to part 3 of this standard to validate system performance
in intervals.
The maximum permissible error of the quantity shall be one of the following values, whichever is
greater:
a) the value calculated according to the appropriate accuracy class in Table 3,
b) the value calculated according to the appropriate accuracy class in Table 3, equal to 35 % of the
maximum value as inscribed on the descriptive markings.
For a device with a maximum load (inscribed on the descriptive markings) of 100 t, Figure 1 illustrates
the maximum permissible error.
Key
X vehicle mass 10 % in-service inspection (Class 10)

10 % of all measurements
Y absolute error 5 % initial verification (Class 10)

90 % of all measurements
Figure 1 — Illustration of accuracy classes and maximum permissible error for a class 10 device
5.3 Measurement and calibration range
This measurement range is the range of wheel forces that the device shall measure.
NOTE 1 This measurement range is related to the calculation of quasi-static quantities and may not be sufficient
to measure peak dynamic forces generated by deficiencies (e.g. wheel defects, running instability, etc.).
The measurement range is derived according to the following formulae which are based on the minimum
defined axle load of the vehicles to be measured (P ) and the maximum permitted axle load of the
0,min
track (P .). See Figure 2.
0,max
Pg⋅
0,min
Q ⋅⋅ 0,35
0,min
2 ∆q
lim
or by
Pg⋅
0,max
Qq∆⋅ 1,70
0,max lim
where
Δq is the limit value for lateral imbalance per axle Δq and is for this calculation 1,25.
lim j
=
=
NOTE 2 To ensure that the minimum expected wheel force falls within the measurement range, the wheel force
is multiplied by 0,35 to account for a lighter than expected wheel force.
NOTE 3 To ensure that the maximum expected wheel force falls within the measurement range, the wheel force
is multiplied by 1,70 to account for a heavier than expected wheel force.

Key
0 zero point
1 Q
0,min
2 nominal minimum wheel force derived from the minimum defined axle load P
0,min
3 nominal maximum wheel force derived from the maximum permitted axle load on the line P
0,max
4 Q
0,max
5 measurement range and the minimum calibrated range for laboratory test
6 minimum calibrated range field test
Figure 2 — Metrological characteristics
NOTE 4 In cases where the scope of the intended measurements is restricted to detection of overloads, the
minimum defined axle load and the maximum permitted axle load are the same.
5.4 Influence quantities
An influence quantity is not the quantity being measured but affects the result of the measurement.
Examples of influence quantities are track quality and geometry, speed of travel and speed change,
running behaviour, vehicle condition and suspension, wheel quality, temperature, snow, wind and power
supply. These influences should be taken into account in system and site selection. Recommendations for
device assessment are shown in Annex A.
5.5 Condition of use
The system shall only be used within its measurement range. The measuring system proposed in this
standard is not considered to be essential for the safety of the railway system. If the measuring system is
connected to a train traffic command and control system then requirements that are not part of this
standard may apply.
6 Technical requirements
6.1 Train and vehicle related capability
The system shall be designed to be capable of determining at least the mandatory quantities defined in
Table 5 (Reported data) covering at least the ranges contained in Table 4.
Table 4 — System capability in relation to vehicle and train characteristics
Characteristic Unit Minimum range
Number of axles - 2 to 300
Distance between axles mm 700 to 30 000
Wheel diameter mm 200 to 1 600
Distance between first and last wheelset m 5 to 750

The measurement system shall be able to measure –static vertical wheel forces for train speeds greater
than 5 km/h within the calibrated range.
For vehicles having characteristics outside the ranges given in this table refer to the manufacturer’s
specifications for the system performance.
6.2 Environmental
Instruments shall comply with the appropriate metrological and technical requirements at ambient
temperatures from −10 °C to +40 °C.
For special applications, however, the limits of the temperature range may differ provided that this range
is not less than 30 K and is specified in the descriptive markings.
The equipment should comply with the minimum environmental requirements specified by the
infrastructure operator according to EN 50125-2.
Externally track mounted equipment shall have a minimum environmental rating of IP65 in accordance
with EN 60529.
When designing the measuring system, the following relevant parts of the prevailing standards related to
the use of electrical and electronic equipment in railway applications shall be applied: EN 50121-4,
EN 50121-5, EN 50122-1, EN 50122-2, EN 50124-1.
In addition to complying with the applicable mandatory railway standards it is recommended that due
consideration is given in the overall design of the measuring system to the environment in which it will
be operated. Consideration should be given to the local conditions including weather conditions,
vibration, electrical discharges, rodents and any special conditions prevailing at the site of the
installation.
6.3 Inputs and Outputs
For the specification of a measuring system according to the standard the following parameters shall be
defined:
— interface and communication means;
— transmission protocol, message format;
— Table 5 contains mandatory and optional requirements for the outputs of the measurement system.
!Table 5 — Reported data
Reporting XML- Unit
Reported data Symbols XML-element
status attribute (remark)
Measurement   Location
id -
a
Location identification code M
(text or
number)
GPSLocatio DDD
Location of the site Latitude, longitude M   n (decimal
degrees)
-
b
Measurement validity (0/1) M  DataValid

Date and time of first axle passing the
ISO 8601-
reference cross section (e.g. the first M  started
Format
sensor)
ErrorCode
Reason for measurement failure O   Text
Message
Train   Train
-
Direction of travel M  Direction
(−1/1)
m
Train gross mass M Mass t
trn
l
Distance between first and last wheelset M Length m
trn
n
Number of axles M nAxles -
trn
nRunningGear
Number of running gears O  -
s
Number of vehicles O  nVehicles  -
Mean train speed M  Speed  km/h
Vehicle   Vehicle
d
Vehicle sequential number O   iVehicle -

m
Vehicle gross mass O Mass t
veh
Axle sequential number (first axle of the iAxle
O   -
e
vehicle)
n
Number of axles in the vehicle O nAxles -
veh
Vehicle type O  VehicleType  text
Mean speed of vehicle O  Speed  km/h
Speed change per vehicle O  AccelerationX  m/s
meanAxleLoa
Mean axle load of vehicle O P t
veh
d
Reporting XML- Unit
Reported data Symbols XML-element
status attribute (remark)
Diagonal imbalance ratio of adjacent
θ
O RatioDiagonal -
diag,veh,i
running gears of the vehicle
Lateral imbalance ratio of the vehicle
θ
O RatioLateral -
lat,veh
(side-to-side ratio)
Relative side-to-side wheel force deviation
O Δq dMeanLR -
side,veh
of vehicle
P
Maximum axle load of the vehicle O maxMass
max,veh
Relative deviation of difference between
Δp
maximum axle load and mean axle load, O dMaxMean -
veh
and all divided by the mean axle load
Maximum longitudinal imbalance ratio of
RatioLongitud
θ
adjacent running gears in a vehicle (front- O -
long,veh
ional
to rear ratio)
Relative deviation of mean axle
loads/mean wheelset forces between two O Δp dMean -
rg,i
running gear of a vehicle
European vehicle number O  EVN

Vehicle based orientation O  vehicleOrient 1/2

Running gear   RunningGear
iRunningG
f
i
Running gear sequential number O  -
rg
ear
Relative axle load deviation inside running
Δp
O dMaxMean -
rg, j
gear
P
Sum of axle loads per running gear O Mass t
rg,i
Q
Sum of wheel forces per running gear side O VerticalForce kN
rg,ik,
Mean axle load of running gear O P meanMass t
rg
Diagonal imbalance ratio of adjacent axles

θ
O RatioDiagonal
diag,rg,j
of the running gear
Longitudinal imbalance ratio of adjacent RatioLongitud
θ
O -
long,rg
running gears in a vehicle
ional
Axle   axle
c
Axle sequential number train M j  jAxle -
e
Axle sequential number vehicle O i  iAxle -

P
Individual axle load M Mass t
0, j
Distance between adjacent axles M  Distance  mm
Speed per axle M  Speed  km/h
Relative wheel force deviation per
O Δq dLR -
j
wheelset
Reporting XML- Unit
Reported data Symbols XML-element
status attribute (remark)
Lateral imbalance ratio of the wheelset
θ
O RatioLateral
lat , j
(side-to-side ratio)
Speed change per axle O  AccelerationX  m/s
Wheel   wheel
side -
Wheel side M k
(R/L)
Q
Static vertical wheel load O VerticalLoad t
0,j,k
Q
Static vertical wheel force M VerticalForce kN
F0,j,k
Reporting status:
M: Mandatory – this data shall be reported
O: Optional – reporting this data are discretionary
If it is not possible to determine the division of a train into vehicles without additional information, then, to
provide the additional information, systems may consist of elements that are either at the track side and at a
remote location or solely at the track side.
NOTE 1 The train is divided into different vehicles based on its physical layout (operational layout may differ).
NOTE 2 Unless otherwise defined a vehicle is the smallest unit that can stand or roll completely on its own
wheels when being uncoupled.
NOTE 3 European vehicle number and vehicle based orientation information is provided by additional devices.
Orientation 1 means vehicle axle 1 comes first.
NOTE 4 Accuracy class needs to be added to all quantities with defined accuracy classes.
a
Identification code: The geographical name or the number of the measuring system.
b
Successful operation or reason for failure: The system’s automatic health checking function will tag a measurement
process as being a success or a failure. Invalid measurements are marked with 0.
c
Axle sequential number train: The axle number counting, starting from 1, from the front of the train in the direction of
travel.
d
Vehicle sequential number: The vehicle number counting, starting from 1, from the front of the train including locomotives
in the direction of travel.
e
Axle sequential number vehicle: The axle number counting, starting from 1, from the front of the vehicle in the direction of
travel.
f
Running gear sequential number vehicle: The running gear number counting, starting from 1, from the front of the vehicle
in the direction of travel.
"
6.4 Descriptive markings
Instruments shall bear the following basic markings at each location and accessible digitally wherever
the data are used:
— identification mark of the manufacturer;
— serial number of the instrument;
— location of the instrument (Decimal degrees DDD);
— maximum measuring speed (km/h);
— minimum measuring speed (km/h);
— accuracy class (for each quantity, if applicable);
— maximum axle load for which the accuracy classes are valid (t);
— minimum axle load for which the accuracy classes are valid (t).
The accuracy class for each quantity measured (and evaluated) shall be recorded on the instrument in a
manner that can be easily accessed. If the measurement data are transmitted to a remote location the
descriptive marking information shall also be available at that location.
An example of the descriptive markings is illustrated in Table 6.
Table 6 — Example of descriptive markings

identification mark of the manufacturer ABCD Model 123
serial number of the instrument 123456789
location of the instrument (Decimal degrees DDD) 52.034295, −0.774137
maximum measuring speed (km/h) 160
minimum measuring speed (km/h) 30
maximum axle load for which the accuracy classes are
22,5
valid (t)
minimum axle load for which the accuracy classes are
valid (t)
Accuracy Speed band
class (km/h)
train gross mass 1 30 to < 80
3 80 to 160
vehicle gross mass 3 30 to < 80
5 80 to 160
axle load 5 30 to < 80
10 80 to 160
wheel force 5 30 to < 80
10 80 to 160
6.5 Measuring device specific
Instruments shall include the following:
— one or more load sensors;
— computing device;
— indicating device (local or remote);
— a data exchange interface.
Instruments
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...