kSIST FprEN 17199-5:2025
(Main)Workplace exposure - Measurement of dustiness of bulk materials that contain or release respirable NOAA or other respirable particles - Part 5: Vortex shaker method
Workplace exposure - Measurement of dustiness of bulk materials that contain or release respirable NOAA or other respirable particles - Part 5: Vortex shaker method
This document describes the methodology for measuring and characterizing the dustiness of bulk materials that contain or release respirable NOAA or other respirable particles, under standard and reproducible conditions and specifies for that purpose the vortex shaker method.
This document specifies the selection of instruments and devices and the procedures for calculating and presenting the results. It also gives guidelines on the evaluation and reporting of the data.
The methodology described in this document enables:
a) the measurement of the respirable dustiness mass fraction;
b) the measurement of the number-based dustiness index of respirable particles in the particle size range from about 10 nm to about 1 µm;
c) the measurement of the number-based emission rate of respirable particles in the particle size range from about 10 nm to about 1 µm;
d) the measurement of the number-based particle size distribution of the released respirable aerosol in the particle size range from about 10 nm to 10 µm;
e) the collection of released airborne particles in the respirable fraction for subsequent observations and analysis by electron microscopy.
This document is applicable to the testing of a wide range of bulk materials including nanomaterials in powder form.
NOTE 1 With slightly different configurations of the method specified in this document, dustiness of a series of carbon nanotubes has been investigated ([5] to [10]). On the basis of this published work, the vortex shaker method is also applicable to nanofibres and nanoplates.
This document is not applicable to millimetre-sized granules or pellets containing nano-objects in either unbound, bound uncoated and coated forms.
NOTE 2 The restrictions with regard to the application of the vortex shaker method on different kinds of nanomaterials result from the configuration of the vortex shaker apparatus as well as from the small size of the test sample required. Eventually, if future work will be able to provide accurate and repeatable data demonstrating that an extension of the method applicability is possible, the intention is to revise this document and to introduce further cases of method application.
NOTE 3 As observed in the pre-normative research project [4], the vortex shaker method specified in this document provides a more energetic aerosolization than the rotating drum, the continuous drop and the small rotating drum methods specified in EN 17199 2 [1], EN 17199 3 [2] and EN 17199 4 [3], respectively. The vortex shaker method can better simulate high energy dust dispersion operations or processes where vibration or shaking is applied or even describe a worst case scenario in a workplace, including the (non-recommended) practice of cleaning contaminated worker coveralls and dry work surfaces with compressed air.
NOTE 4 Currently no classification scheme in terms of dustiness indices or emission rates has been established according to the vortex shaker method. Eventually, when a large number of measurement data has been obtained, the intention is to revise the document and to introduce such a classification scheme, if applicable.
Exposition am Arbeitsplatz - Messung des Staubungsverhaltens von Schüttgütern, die alveolengängige NOAA oder andere alveolengängige Partikel enthalten oder freisetzen - Teil 5: Verfahren mit Vortex-Schüttler
Dieses Dokument beschreibt die Methodik für die Messung und Charakterisierung des Staubungsverhaltens von Schüttgütern, die alveolengängige NOAA oder andere alveolengängige Partikel enthalten oder freisetzen, unter reproduzierbaren Normbedingungen und legt zu diesem Zweck das Verfahren mit Vortex-Schüttler fest.
Dieses Dokument legt die Auswahl der Messgeräte und Vorrichtungen sowie die Verfahren für die Berechnung und Darstellung der Ergebnisse fest. Des Weiteren enthält das Dokument eine Anleitung für die Auswertung und Angabe der Daten.
Die in diesem Dokument festgelegte Methodik ermöglicht
a) die Messung des Massenanteils an alveolengängigem Staub;
b) die Messung des anzahlbasierten Staubungsindexes alveolengängiger Partikel im Partikelgrößenbereich von etwa 10 nm bis etwa 1 µm;
c) die Messung der anzahlbasierten Emissionsrate alveolengängiger Partikel im Partikelgrößenbereich von etwa 10 nm bis etwa 1 µm;
d) die Messung der anzahlbasierten Partikelgrößenverteilung des freigesetzten alveolengängigen Aerosols im Partikelgrößenbereich von etwa 10 nm bis 10 µm;
e) die Sammlung freigesetzter luftgetragener Partikel in der alveolengängigen Fraktion für anschließende Beobachtungen und Analysen durch Elektronenmikroskopie.
Dieses Dokument gilt für die Prüfung einer Vielzahl unterschiedlicher Schüttgüter einschließlich Nanomaterialien in Pulverform.
ANMERKUNG 1 Das Staubungsverhalten einer Reihe von Kohlenstoff-Nanoröhrchen wurde mit einer von dem in diesem Dokument festgelegten Verfahren leicht abweichenden Konfiguration untersucht ([5] bis [10]). Auf der Grundlage dieser veröffentlichten Arbeiten ist das Verfahren mit Vortex-Schüttler auch bei Nanofasern und Nanoplättchen anwendbar.
Dieses Dokument gilt nicht für Granulate und Pellets im Millimeter-Größenbereich, die Nanoobjekte in ungebundener, in gebundener unbeschichteter oder in beschichteter Form enthalten.
ANMERKUNG 2 Die Einschränkungen im Hinblick auf die Anwendung des Verfahrens mit Vortex-Schüttler bei verschiedenen Arten von Nanomaterialien ergeben sich aus der Konfiguration der Vortex-Schüttler-Einrichtung sowie aus der geringen erforderlichen Menge der Prüfprobe. Sollten künftige Arbeiten in der Lage sein, genaue und wiederholbare Daten zu liefern, die zeigen, dass eine Erweiterung der Anwendbarkeit des Verfahrens möglich ist, dann sind eine Überarbeitung dieses Dokuments und die Festlegung weiterer Anwendungsfälle für das Verfahren vorgesehen.
ANMERKUNG 3 Das vornormative Forschungsprojekt [4] hat gezeigt, dass das in diesem Dokument festgelegte Verfahren mit Vortex-Schüttler eine energetischere Zerstäubung ermöglicht als die Verfahren mit rotierender Trommel nach EN 17199-2 [1], mit kontinuierlichem Fall nach EN 17199-3 [2]und mit kleiner rotierender Trommel nach EN 17199-4 [3]. Das Verfahren mit Vortex-Schüttler kann Arbeiten oder Prozesse mit hochenergetischer Staubdispersion durch Vibration oder Schütteln besser simulieren oder sogar ein Worst-Case-Szenario am Arbeitsplatz beschreiben, einschließlich der (nicht empfohlenen) Praxis, kontaminierte Arbeitsoveralls und trockene Arbeitsoberflächen mit Druckluft zu reinigen.
ANMERKUNG 4 Bisher wurde noch kein Klassifizierungsschema im Hinblick auf Staubungsindizes oder Emissionsraten nach dem Verfahren mit Vortex-Schüttler erstellt. Liegt künftig erst einmal eine große Anzahl an Messdaten vor, sind eine Überarbeitung dieses Dokuments und, sofern zutreffend, die Einführung eines solchen Klassifizierungsschemas vorgesehen.
Exposition sur les lieux de travail - Mesurage du pouvoir de resuspension des matériaux en vrac contenant ou émettant des nano-objets et leurs agrégats et agglomérats (NOAA) ou autres particules en fraction alvéolaire - Partie 5: Méthode impliquant l'util
Le présent document décrit la méthodologie permettant de mesurer et de caractériser le pouvoir de resuspension de matériaux en vrac contenant ou émettant des NOAA ou autres particules en fraction alvéolaire dans des conditions normalisées et reproductibles et spécifie, à cette fin, le but de la méthode de l’agitateur vortex.
Le présent document spécifie le choix des instruments et dispositifs ainsi que les méthodes de calcul et d’expression des résultats. Il fournit également des lignes directrices concernant l’évaluation et la consignation des données.
La méthodologie décrite dans le présent document permet :
a) le mesurage de la fraction massique des poussières alvéolaires ;
b) le mesurage de l’indice du pouvoir de resuspension en nombre de particules alvéolaires dans la plage granulométrique comprise entre environ 10 nm et 1 µm ;
c) le mesurage du taux d’émission en nombre de particules alvéolaires dans la plage granulométrique comprise entre environ 10 nm et 1 µm ;
d) le mesurage de la distribution granulométrique en nombre de particules alvéolaires d’aérosol libérées dans la plage granulométrique comprise entre environ 10 nm et 10 µm ;
e) la collecte des particules en suspension dans l’air dans la fraction alvéolaire pour des observations et une analyse supplémentaires par microscopie électronique.
Le présent document s’applique aux essais d’une vaste gamme de matériaux en vrac, y compris des nanomatériaux sous forme de poudre.
NOTE 1 Avec des configurations légèrement différentes de la méthode spécifiée dans le présent document, le pouvoir de resuspension d’une série de nanotubes de carbone a été étudié ([5] à [10]). Sur la base de ces travaux publiés, la méthode de l’agitateur vortex est également applicable aux nanofibres et aux nanofeuillets.
Le présent document n’est pas applicable aux matériaux granulaires ou en forme de pastilles de taille millimétrique, contenant des nano-objets sous forme revêtue, non revêtue, liée et non liée.
NOTE 2 Les restrictions concernant l’application de la méthode de l’agitateur vortex à différents types de nanomatériaux découlent de la configuration de l’appareillage à agitateur vortex, ainsi que de la petite taille de l’échantillon pour essai requis. À terme, si des travaux ultérieurs permettent d’obtenir des données exactes et répétables démontrant qu’une extension de l’applicabilité de la méthode est possible, il est prévu de réviser le présent document et d’y introduire d’autres cas d’application de la méthode.
NOTE 3 Comme observé dans le projet de recherche prénormative [4], la méthode de l’agitateur vortex, spécifiée dans le présent document assure une aérosolisation impliquant plus d’énergie que la méthode du tambour rotatif, la méthode de la chute continue et la méthode du petit tambour rotatif respectivement spécifiées dans l’EN 17199-2 [1], l’EN 17199-3 [2] et l’EN 17199-4 [3]. La méthode de l’agitateur vortex est capable de mieux simuler des opérations ou des processus de dispersion de poussières de haute énergie impliquant un mouvement de vibration ou d’agitation, ou même de décrire un scénario de cas le plus défavorable sur un lieu de travail, y compris la pratique (non recommandée) de nettoyage des combinaisons contaminées des travailleurs et de séchage des surfaces de travail avec de l’air comprimé.
NOTE 4 Aucun schéma de classification en termes d’indices de pouvoir de resuspension ou de taux d’émission n’a encore été établi selon la méthode de l’agitateur vortex. Dès lors que des données de mesure seront disponibles en grand nombre, il est prévu, à terme, de réviser le présent document et d’introduire un tel schéma de classification, le cas échéant.
Izpostavljenost na delovnem mestu - Meritve prašnosti razsutih materialov, ki vsebujejo ali sproščajo respirabilne nanopredmete, njihove agregate in aglomerate (NOAA) ter druge respirabilne delce - 5. del: Metoda s krožnim mešalnikom
General Information
Relations
Standards Content (Sample)
SLOVENSKI STANDARD
oSIST prEN 17199-5:2024
01-julij-2024
Izpostavljenost na delovnem mestu - Meritve prašnosti razsutih materialov, ki
vsebujejo ali sproščajo respirabilne nanopredmete ter njihove agregate in
aglomerate (NOAA) in druge respirabilne delce - 5. del: Metoda s krožnim
mešalnikom
Workplace exposure - Measurement of dustiness of bulk materials that contain or
release respirable NOAA or other respirable particles - Part 5: Vortex shaker method
Exposition am Arbeitsplatz - Messung des Staubungsverhaltens von Schüttgütern, die
alveolengängige NOAA oder andere alveolengängige Partikel enthalten oder freisetzen -
Teil 5: Verfahren mit Vortex-Schüttler
Exposition sur les lieux de travail - Mesurage du pouvoir de resuspension des matériaux
en vrac contenant ou émettant des nano-objets et leurs agrégats et agglomérats (NOAA)
ou autres particules en fraction alvéolaire - Partie 5: Méthode impliquant l'util
Ta slovenski standard je istoveten z: prEN 17199-5
ICS:
13.040.30 Kakovost zraka na delovnem Workplace atmospheres
mestu
oSIST prEN 17199-5:2024 en,fr,de
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
oSIST prEN 17199-5:2024
oSIST prEN 17199-5:2024
DRAFT
EUROPEAN STANDARD
prEN 17199-5
NORME EUROPÉENNE
EUROPÄISCHE NORM
June 2024
ICS 13.040.30 Will supersede EN 17199-5:2019
English Version
Workplace exposure - Measurement of dustiness of bulk
materials that contain or release respirable NOAA or other
respirable particles - Part 5: Vortex shaker method
Exposition sur les lieux de travail - Mesurage du Exposition am Arbeitsplatz - Messung des
pouvoir de resuspension des matériaux en vrac Staubungsverhaltens von Schüttgütern, die
contenant ou émettant des nano-objets et leurs alveolengängige NOAA oder andere alveolengängige
agrégats et agglomérats (NOAA) ou autres particules Partikel enthalten oder freisetzen - Teil 5: Verfahren
en fraction alvéolaire - Partie 5: Méthode impliquant mit Vortex-Schüttler
l'util
This draft European Standard is submitted to CEN members for enquiry. It has been drawn up by the Technical Committee
CEN/TC 137.
If this draft becomes a European Standard, CEN members are bound to comply with the CEN/CENELEC Internal Regulations
which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.
This draft European Standard was established by CEN in three official versions (English, French, German). A version in any other
language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC
Management Centre has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and
United Kingdom.
Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are
aware and to provide supporting documentation.
Warning : This document is not a European Standard. It is distributed for review and comments. It is subject to change without
notice and shall not be referred to as a European Standard.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2024 CEN All rights of exploitation in any form and by any means reserved Ref. No. prEN 17199-5:2024 E
worldwide for CEN national Members.
oSIST prEN 17199-5:2024
prEN 17199-5:2024 (E)
Contents Page
European foreword . 4
Introduction . 5
1 Scope . 6
2 Normative references . 7
3 Terms and definitions . 7
4 Symbols and abbreviations . 8
5 Principle . 8
6 Equipment . 10
6.1 General . 10
6.2 Test apparatus. 12
6.2.1 Vortex shaker apparatus . 12
6.2.2 Cylindrical container . 12
6.2.3 Humidification system of incoming and dilution air. 15
6.2.4 Sampling line for the measurement of the respirable dustiness mass fraction . 16
6.2.5 Sampling line for other measurements . 18
6.2.6 Conductive flexible tubing, carbon impregnated. . 20
6.2.7 Respirable cyclone, made of stainless steel. . 20
6.2.8 Air sampling cassette . 20
6.2.9 Condensation particle counter (CPC), with alcohol as working fluid. 21
6.2.10 Time- and size-resolving aerosol instrument . 21
6.2.11 Aerosol sampler for analytical electron microscopy analysis . 21
6.2.12 Analytical balance, capable of weighing to a resolution of 10 µg . 22
6.2.13 Microbalance, capable of weighing to a resolution of 1 µg . 22
6.2.14 Filters for gravimetric analysis . 22
6.2.15 Micro-centrifuge tubes . 22
7 Requirements . 22
7.1 General . 22
7.2 Engineering control measures . 22
7.3 Conditioning of the test material . 23
7.3.1 General . 23
7.3.2 Specified conditions . 23
7.3.3 As-received conditions . 23
7.4 Conditioning of the test equipment . 23
8 Preparation . 23
8.1 Test sample . 23
8.2 Moisture content of the test material . 24
8.3 Bulk density of the test material . 24
8.4 Preparation of test apparatus . 24
8.5 Aerosol instruments and aerosol samplers. 24
9 Test procedure . 25
10 Evaluation of data . 28
10.1 Respirable dustiness mass fraction . 28
oSIST prEN 17199-5:2024
prEN 17199-5:2024 (E)
10.2 Number-based dustiness index, number-based emission rate and modal
aerodynamic equivalent diameters of the particle size distribution . 28
10.2.1 General . 28
10.2.2 Number-based dustiness index . 29
10.2.3 Number-based emission rate . 29
10.2.4 Modal aerodynamic equivalent diameters of the number-based particle size
distribution . 29
10.3 Morphological and chemical characterization of the particles. 30
11 Test report . 30
Annex A (informative) Pictures illustrating some of the equipment of the method . 32
Annex B (informative) Examples of TEM images obtained with the vortex shaker method . 34
Annex C (informative) Motivation for development of the vortex shaker method . 35
Bibliography . 36
oSIST prEN 17199-5:2024
prEN 17199-5:2024 (E)
European foreword
This document (prEN 17199-5:2024) has been prepared by Technical Committee CEN/TC 137
“Assessment of workplace exposure to chemical and biological agents”, the secretariat of which is held
by DIN.
This document is currently submitted to the CEN Enquiry.
This document will supersede EN 17199-5:2019.
prEN 17199-5:2024 includes the following significant technical changes with respect to
EN 17199-5:2019.
— Clause 6.2.1: rotation speed of 1 850 ± 100 rotations/min changed to 1 800 ± 100 rotations/min;
— Clause 6.2.2: outside diameter of 10 mm changed to 8 mm, inside diameter of 8 mm changed to 6 mm;
— Clause 6.2.2: injection and aspiration velocity of 1,4 m/s changed to 2,48 m/s;
— Clause 6.2.2: Reynolds number Re = 714 changed to Re = 990 ;
— Clause 6.2.2: Figure 4: ∅8 changed to ∅8 OD; added: ∅6 ID;
3 3
— Clause 6.2.9: concentration range 10 000 particles/cm changed to 100 000 particles/cm .
This document has been prepared under a standardization request addressed to CEN by the European
Commission. The Standing Committee of the EFTA States subsequently approves these requests for its
Member States.
oSIST prEN 17199-5:2024
prEN 17199-5:2024 (E)
Introduction
Dustiness measurement and characterization provide users (e.g. manufacturers, producers, occupational
hygienists and workers) with information on the potential for dust emissions when bulk material is
handled or processed in workplaces. They provide the manufactures of bulk materials containing NOAA
with information that can help to improve their products and reduce their dustiness. It allows the users
of the bulk materials containing NOAA to assess the controls and precautions required for handling and
working with the material and the effects of pre-treatments (e.g. modify surface properties or chemistry).
It also allows the users to select less dusty products, if available. The particle size distribution of the
aerosol and the morphology and chemical composition of its particles can be used by occupational
hygienists, scientists and regulators to further characterize the aerosol in terms of particle size
distribution and chemical composition and to thus aid users to evaluate and control the health risk of
airborne dust.
This document gives details on the design and operation of the vortex shaker test method that measures
the dustiness of bulk materials that contain or release respirable NOAA or other respirable particles in
terms of dustiness indices or emission rates. Dustiness indices as well as emission rates can be
determined number- or mass-based. In addition, the test method characterizes the released aerosol by
measuring the particle size distribution using direct-reading aerosol instruments and collects samples
for off-line analysis (as required) for their morphology and their chemical composition.
The vortex shaker method is useful for addressing the ability of bulk materials including nanomaterials
(in powder form), to release airborne particles (aerosol) during agitation, the so-called dustiness.
The vortex shaker method provides a simulation of operation or processes where the agitation
mechanism delivering energy to the powder to release airborne particles is the vibration or shaking
mechanism. Vibration and shaking are mechanisms that are often found in industry, either voluntarily or
involuntarily. Many surfaces receiving powders are vibrating or shaking, as for example during powder
transportation by belt feeder or vibrating conveyor. Moreover, by providing an energetic aerosolization,
the vortex shaker method provides even a simulation of the worst-case scenario in a workplace, as for
example the (non-recommended) practice of cleaning contaminated worker coveralls and dry work
surfaces with compressed air.
The vortex shaker method presented here differs from the rotating drum, the continuous drop and the
small rotating drum methods presented in EN 17199-2 [1], EN 17199-3 [2] and EN 17199-4 [3]
respectively. The rotating drum and small rotating drum methods perform, both, repeated agitation of
the same sample nanomaterial while the continuous drop method simulates continuous feed of a
nanomaterial. The method described in this document, in turn, provides an agitation to a small test
sample of powder.
This document was developed based on the results of pre-normative research [4]. This project
investigated the dustiness of ten bulk materials (including nine bulk nanomaterials) with the intention to
test as wide a range of bulk materials as possible in terms of magnitude of dustiness, chemical
composition and primary particle size distribution as indicated by a large range in specific surface area.
oSIST prEN 17199-5:2024
prEN 17199-5:2024 (E)
1 Scope
This document describes the methodology for measuring and characterizing the dustiness of bulk
materials that contain or release respirable NOAA or other respirable particles, under standard and
reproducible conditions and specifies for that purpose the vortex shaker method.
This document specifies the selection of instruments and devices and the procedures for calculating and
presenting the results. It also gives guidelines on the evaluation and reporting of the data.
The methodology described in this document enables:
a) the measurement of the respirable dustiness mass fraction;
b) the measurement of the number-based dustiness index of respirable particles in the particle size
range from about 10 nm to about 1 µm;
c) the measurement of the number-based emission rate of respirable particles in the particle size range
from about 10 nm to about 1 µm;
d) the measurement of the number-based particle size distribution of the released respirable aerosol in
the particle size range from about 10 nm to 10 µm;
e) the collection of released airborne particles in the respirable fraction for subsequent observations
and analysis by electron microscopy.
This document is applicable to the testing of a wide range of bulk materials including nanomaterials in
powder form.
NOTE 1 With slightly different configurations of the method specified in this document, dustiness of a series of
carbon nanotubes has been investigated ([5] to [10]). On the basis of this published work, the vortex shaker method
is also applicable to nanofibres and nanoplates.
This document is not applicable to millimetre-sized granules or pellets containing nano-objects in either
unbound, bound uncoated and coated forms.
NOTE 2 The restrictions with regard to the application of the vortex shaker method on different kinds of
nanomaterials result from the configuration of the vortex shaker apparatus as well as from the small size of the test
sample required. Eventually, if future work will be able to provide accurate and repeatable data demonstrating that
an extension of the method applicability is possible, the intention is to revise this document and to introduce further
cases of method application.
NOTE 3 As observed in the pre-normative research project [4], the vortex shaker method specified in this
document provides a more energetic aerosolization than the rotating drum, the continuous drop and the small
rotating drum methods specified in EN 17199-2 [1], EN 17199-3 [2] and EN 17199-4 [3], respectively. The vortex
shaker method can better simulate high energy dust dispersion operations or processes where vibration or shaking
is applied or even describe a worst case scenario in a workplace, including the (non-recommended) practice of
cleaning contaminated worker coveralls and dry work surfaces with compressed air.
NOTE 4 Currently no classification scheme in terms of dustiness indices or emission rates has been established
according to the vortex shaker method. Eventually, when a large number of measurement data has been obtained,
the intention is to revise the document and to introduce such a classification scheme, if applicable.
oSIST prEN 17199-5:2024
prEN 17199-5:2024 (E)
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
EN ISO 80004-1, Nanotechnologies — Vocabulary — Part 1: Core vocabulary (ISO 80004-1)
EN 481, Workplace atmospheres — Size fraction definitions for measurement of airborne particles
EN 1540, Workplace exposure — Terminology
EN 13205-2, Workplace exposure — Assessment of sampler performance for measurement of airborne
particle concentrations — Part 2: Laboratory performance test based on determination of sampling
efficiency
EN 15051-1, Workplace exposure — Measurement of the dustiness of bulk materials — Part 1:
Requirements and choice of test methods
EN 17199-1, Workplace exposure — Measurement of dustiness of bulk materials that contain or release
respirable NOAA and other respirable particles — Part 1: Requirements and choice of test methods
EN 16897, Workplace exposure — Characterization of ultrafine aerosols/nanoaerosols — Determination
of number concentration using condensation particle counters
ISO 15767, Workplace atmospheres — Controlling and characterizing uncertainty in weighing collected
aerosols
ISO 27891, Aerosol particle number concentration — Calibration of condensation particle counters
3 Terms and definitions
For the purposes of this document, the terms and definitions given in EN 1540, EN 15051-1,
EN ISO 80004-1 and EN 17199-1 apply.
ISO and IEC maintain terminology databases for use in standardization at the following addresses:
— IEC Electropedia: available at https://www.electropedia.org/
— ISO Online browsing platform: available at https://www.iso.org/obp
oSIST prEN 17199-5:2024
prEN 17199-5:2024 (E)
4 Symbols and abbreviations
AES Atomic Emission Spectroscopy
CPC Condensation Particle Counter
)
®1
Electrical Low Pressure Impactor
ELPI
EM Electron Microscopy
HEPA High Efficiency Particulate Arrestance
ICP Inductively coupled plasma
MFC Mass flow controller
MS Mass Spectrometry
NOAA Nano-objects, and their aggregates and agglomerates > 100 nm
RH Relative Humidity
TEM Transmission Electron Microscopy
VS Vortex Shaker
XRF X-ray Fluorescence
5 Principle
The vortex shaker method (see Annex A and Annex C) specified in this document measures the dustiness
of bulk materials in terms of:
— the respirable dustiness mass fraction;
— the number-based dustiness index;
— the number-based emission rate.
In addition, this document describes the procedures by which the aerosols can be further characterized
in terms of their particle size distributions and the morphology and chemical composition of their
airborne particles.
The sampling for the purpose of and the execution of qualitative or quantitative analysis of the
morphology and chemical composition of the collected airborne nanostructured particles are described.
Performing these analyses is optional but can provide confirmation of the sizes of the particles generated
and complementary information to the time- and size-resolving instruments.
Table 1 provides:
— an overview of the different measurands, their symbols and units;
— information on whether determining these measurands is mandatory or not;
— the aerosol instruments and sampling devices needed to determine a measurand.
®
1) ELPI is the trade name or trademark of a product supplied by Dekati. This information is given for the
convenience of users of this document and does not constitute an endorsement by CEN of the product named.
Equivalent products may be used if they can be shown to lead to the same results.
oSIST prEN 17199-5:2024
prEN 17199-5:2024 (E)
Table 1 — Measurands, aerosol instruments/sampling devices and associated recommendations
for the vortex shaker method
Measurand (unit) Method/ device Mandatory/Optional
specific to measurand
Respirable dustiness mass fraction (mg/kg) 25 mm- or 37 mm- air Mandatory
sampling cassette (see
6.2.8) mounted on a
respirable cyclone (see
6.2.7)
Number-based dustiness index of respirable Condensation Particle Mandatory
particles in the particle size range from about Counter (CPC) (see
10 nm to about 6.2.9)
1 µm (1/mg)
Number-based average emission rate of Mandatory
respirable particles in the particle size range from
about 10 nm to about
1 µm (1/mg·s)
Number of modes of the time-averaged number- Time- and size- Mandatory
based particle size distribution as dN/dlogD (-) resolving instrument
i
covering the particle
Modal aerodynamic equivalent diameters Mandatory
size range from about
corresponding to the highest mode M1 ) and to
N
10 nm up to about
the second highest mode (M2 ) of the time-
N
10 µm (see 6.2.10)
averaged number-based particle size distribution
as dN/dlogD (µm)
i
Number of modes of the time-averaged mass- Cascade impactor Optional
based particle size distribution as dM/dlogD (-) covering the particle
i
size range from about
Modal aerodynamic equivalent diameters Optional
10 nm up to about
corresponding to the highest mode (M1 ) and to
M
10 µm (see 6.2.10)
the second highest mode (M2 ) of the time-
M
averaged mass-based particle size distribution as
dM/dlogD (µm)
i
Morphological and chemical characterization of TEM-grid holder Optional
the particles including NOAA (-) equipped with porous
Carbon film may be
carbon film TEM-grid
analysed by
(see 6.2.11)
transmission electron
microscopy (TEM)
Chemical characterization of the particles 25 mm- or 37 mm- air Optional
including NOAA (-) sampling cassette
Filters may be
made from conductive
quantitatively
material (see 6.2.8)
analysed by XRF, ICP-
mounted on a
AES or ICP-MS.
respirable cyclone (see
6.2.7)
NOTE The particle size range described above is based on the equipment used during the prenormative
research.
oSIST prEN 17199-5:2024
prEN 17199-5:2024 (E)
6 Equipment
6.1 General
The test apparatus consists of an especially designed cylindrical container (see 6.2.2), in which a small
volume (0,5 cm ) of the test sample is placed that is continuously shook according a circular orbital
motion generated by the vortex shaker apparatus (see 6.2.1).
HEPA filtered air, controlled at (50 ± 5) % RH, passes through the cylindrical container at a flow rate
Q = 4,2 l/min in order to transfer the released aerosol inside the container to the sampling or
VS
measurement section.
An overview of the experimental set-up of the vortex shaker test bench is given in Figure 1.
oSIST prEN 17199-5:2024
prEN 17199-5:2024 (E)
Key
1 compressed dry air
2 mass flow controller (MFC)
3 humidification system (6.2.3) to deliver 4,2 l/min at (50 ± 5) % RH
4 high-efficiency particle arrestance (HEPA) filter cartridge
5 valve to direct incoming air flow through the cylindrical tube
6 cylindrical container (6.2.2), in which the test sample is poured
7 attachment rubber piece adapted to the design of the bottom of the container
8 vortex shaker apparatus (6.2.1) producing a circular orbital motion
oSIST prEN 17199-5:2024
prEN 17199-5:2024 (E)
9 valve to direct incoming airflow bypass the cylindrical tube
10 valve to direct outflow to the sampling and measurement section
11 tube to the sampling and measurement section (6.2.6)
Q flow rate in the vortex shaker
VS
NOTE The test bench external dimensions are about 0,6 m × 0,6 m × 0,6 m.
Figure 1 — Overview of the experimental set-up of the vortex shaker test bench
6.2 Test apparatus
6.2.1 Vortex shaker apparatus
The vortex shaker is composed of a central unit, in which an eccentric motor is located, and an attachment
rubber piece at the top to maintain the bottom of the cylindrical container (6.2.2).
As shown in Figure 1, the vertical axes of the cylindrical container, the attachment rubber piece and the
central unit shall be coaxial before starting the motor of the vortex shaker.
The vortex shaker apparatus shall produce a circular orbital motion in the horizontal plane. The motion
shall be characterized by displacement amplitude of 4 mm and a rotation speed of 1 800 ± 100
rotations/min (30 Hz).
The rotation speed shall be validated by using a calibrated digital stroboscope tachometer that emits
1800 light pulses per minute on the rotating vortex shaker. The rotating vortex shaker shall then appear
as immobile as possible. If it is not the case, the rotation speed of the vortex shaker shall be adapted
accordingly.
The agitation motion is created by holding the top of the container in place while allowing the bottom to
move in its circular orbital motion. Thus, the container shall be held in position by a ring located just
below the cap. The ring shall have an inner diameter of 34 mm and be made of rubber to limit the transfer
of vibrations to the rest of the test bench. It shall be held in place by an attachment piece to the test bench.
Due the vibrations while motor running, central unit shall have resilient rubber pads. Moreover, extra
rubber elements shall be used to limit the lateral and longitudinal displacements of the central unit.
6.2.2 Cylindrical container
The characteristics of a cylindrical container are shown in Figure 2.
The cylindrical container is obtained by assembling three elements made of stainless steel material and
shown in Figure 3.
oSIST prEN 17199-5:2024
prEN 17199-5:2024 (E)
Dimensions are given in mm
Figure 2 — Characteristics of the cylindrical container used for the vortex shaker method
oSIST prEN 17199-5:2024
prEN 17199-5:2024 (E)
Dimensions are given in mm
Figure 3 — Characteristics of the three elements to be realized for the assembly of the
cylindrical container
As shown in Figure 4 a cup is screwed onto the cylindrical container. It has an inlet for incoming
particulate-free air and an outlet port through which the released aerosol escapes, which leads to the
sampling or measurement section. The tubing for the inlet and the outlet is made of stainless steel
material and has an outside diameter of 8 mm and inside diameter of 6 mm.
oSIST prEN 17199-5:2024
prEN 17199-5:2024 (E)
Dimensions are given in mm
Figure 4 — Characteristics of the inlet/outlet tubes screwed on the cylindrical container
The flow of air drawn through the cylindrical container is Q = 4,2 l/min. It ensures an injection and
VS
aspiration velocity of 2,48 m/s at the inlet and outlet respectively. The air exchange rate inside the
−1
cylindrical container is about 41 min . The Reynolds number in the inlet and outlet tubes is Re = 990,
which indicates that the flow is laminar.
6.2.3 Humidification system of incoming and dilution air
The system shall be capable of delivering 4,2 l/min of particulate-free air with controlled temperature at
(21 ± 3) °C and (50 ± 5) % RH for the incoming air in the cylindrical container (see 6.2.2). See Figure 1.
oSIST prEN 17199-5:2024
prEN 17199-5:2024 (E)
As second humidification system capable of delivering up to 7,5 l/min of particulate-free air in the same
conditions shall be used for the dilution air prior to the time- and size-resolving instrument used for the
measurement of the number-based particle size distribution (see Figure 5).
NOTE 1 It is possible to use only one system to supply the two lines needed for the set-up described in Figure 6
in so far as the conditions of air flow, relative humidity and temperature are respected.
NOTE 2 It is suggested to have a humidification system capable of delivering particulate-free air controlled at
relative humidity within the range from 20 % RH to 90 % RH in order to be able to perform measurement under
variable relative humidity.
6.2.4 Sampling line for the measurement of the respirable dustiness mass fraction
For the determination of the respirable dustiness mass fraction configuration A of the experimental set-
up of the vortex shaker method, as shown in Figure 5, is used.
oSIST prEN 17199-5:2024
prEN 17199-5:2024 (E)
oSIST prEN 17199-5:2024
prEN 17199-5:2024 (E)
Key
1 compressed dry air
2 mass flow controller (MFC)
3 humidification system (6.2.3) to deliver QVS = 4,2 l/min at (50 ± 5) % RH
4 high-efficiency particle arrestance (HEPA) filter cartridge
5 valve to direct incoming air flow through the cylindrical tube
6 cylindrical container (6.2.2), in which the test sample is poured
7 attachment rubber piece adapted to the design of the bottom of the container
8 vortex shaker apparatus (6.2.1) producing a circular orbital motion
9 valve to direct incoming air flow bypass the cylindrical tube
10 valve to direct outflow to the sampling and measurement section
11 tube to the sampling and measurement section (6.2.6)
12 stainless steel cyclone (6.2.7) that collects the respirable aerosol fraction at 4,2 l/min
13 37 mm or 25 mm (two-piece open-faced configuration) air sampling cassette (6.2.8) containing a pre-weighed
filter for gravimetric analysis (6.2.14)
14 sampling pump
QVS flow rate in the vortex shaker
Figure 5 — Configuration A of the experimental set-up of the vortex shaker method
6.2.5 Sampling line for other measurements
For the determination of the number-based dustiness index, the number-based emission rate, the
number-based particle size distribution of the released respirable aerosol and for the collection of
released airborne particles in the respirable fraction for subsequent observations and analysis by
electron microscopy configuration B of the experimental set-up of the vortex shaker method, as shown
in Figure 6, is used.
oSIST prEN 17199-5:2024
prEN 17199-5:2024 (E)
Key
1 compressed dry air
2 mass flow controller (MFC)
3 humidification system (6.2.3) to deliver Q = 4,2 l/min at (50 ± 5) % RH
VS
4 high-efficiency particle arrestance (HEPA) filter cartridge
5 valve to direct incoming air flow through the cylindrical tube
6 cylindrical container (6.2.2), in which the test sample is poured
oSIST prEN 17199-5:2024
prEN 17199-5:2024 (E)
7 attachment rubber piece adapted to the design of the bottom of the container
8 vortex-shaker apparatus (6.2.1) producing a circular orbital motion
9 valve to direct incoming air flow bypass the cylindrical tube
10 valve to direct outflow to the sampling and measurement section
11 tube to the sampling and measurement section (6.2.6)
12 cyclone
13 aerosol flow splitter
14 time- and size-resolving aerosol instrument (6.2.10)
15 condensation particle counter (CPC) (6.2.9)
16 sampling pump
17 TEM-grid holder (6.2.11)
18 37 mm or 25 mm- (two-piece open-faced configuration) air sampling cassette (6.2.8)
containing a filter
QCPC flow rate in the condensed particle counter, 0,7 l/min
Q flow rate in the vortex shaker
VS
Q flow rate, 2,5 l/min
A
QB flowrate through the TEM-grid holder (17) or 25 ùmm-air sampling cassette (18)
QDIL dilution flow rate, 7,5 l/min
Figure 6 — Configuration B of the experimental set-up of the vortex shaker method
6.2.6 Conductive flexible tubing, carbon impregnated.
To minimize particle losses due to electrostatic effect in sampling lines that convey the released aerosol
to the measuring instruments and sampling devices, carbon impregnated conductive flexible tubing shall
be employed.
To minimize particles losses in sampling lines in which the released aerosol is transported to the
measuring instruments and sampling devices, tube lengths and bends in the conductive flexible tubing
shall be kept to a minimum.
6.2.7 Respirable cyclone, made of stainless steel.
A respirable cyclone is used as a sampler for sampling the respirable aerosol fraction in configuration A
(see Figure 5) and which acts as a particle size pre-separator in configuration B (see Figure 6).
The cyclone shall collect the respirable fraction, as defined in EN 481, at 4,2 l/min with a performance as
stipulated in EN 13205-2.
For configuration A (see Figure 5), the cyclone is equipped with two-piece air sampling cassettes (see
6.2.8). The assembly is then connected to a sampling pump that operates at 4,2 l/min.
For configuration B (see Figure 6), conductive flexible tubing (see 6.2.6) shall be used to connect all parts
of the instrument.
The axis of the cyclone shall be kept vertical.
6.2.8 Air sampling cassette
25 mm- or 37 mm-air sampling cassettes (two-piece open-faced configuration) containing a pre-
weighted filter for gravimetric analysis shall be used to collect particles in the respirable cyclone in
configuration A of the dustiness test (see 6.2.4 and Figure 5).
Air sampling cassettes commonly used for collection of airborne particles are prone to bypass leakage if
the cassettes are not properly assembled. Leakage around the filter will result in a loss of particles that
oSIST prEN 17199-5:2024
prEN 17199-5:2024 (E)
should have been collected onto the filter, resulting in a measurement that underestimates the mass of
released particles. Therefore, assembly of sampling cassettes shall be performed using a press. A leak
testing shall be performed in ensure proper cassette assembly.
Sampling cassettes composed of conductive materials can be used to minimize the internal deposits that
occur through static attraction.
6.2.9 Condensation particle counter (CPC), with alcohol as working fluid
A Condensation Particle Counter (CPC) shall be used for counting released airborne particles at an aerosol
flow rate Q of 0,7 l/min. The CPC shall detect airborne particles over the particle size range from about
CPC
10 nm to greater than 1 µm and over a concentration range from 0 particles/cm to 100 000
particles/cm in single count mode.
The CPC shall be calibrated in accordance to ISO 27891 and its response checked according to EN 16897.
6.2.10 Time- and size-resolving aerosol instrument
For the measurement of the number-based particle size distribution of the airborne particles, one time-
and size-resolving aerosol instrument covering the particle size range from about 10 nm up to about
10 µm shall be preferred over the use of two instruments, except if the two instruments measured the
same equivalent diameter (i.e. aerodynamic diameter).
The measurement of the number-based particle size distribution in aerodynamic equivalent diameter
shall be preferred and shall be performed with a time step of 1 s.
The aerosol flowrate should be 2,5 l/min.
Q
A
The dilution flowrate Q should be 7,5 l/min.
DIL
NOTE 1 So far, the only instrument that can respond to these requests is the Electrical Low Pressure Impactor ®
(ELPI ). This time-resolved low pressure cascade impactor operates at 10 l/min. To prevent overloading and ®
bounce of sampled particles it is advised to use sintered oiled collection plates with the ELPI . ®
NOTE 2 In the ELPI , the number concentration in each channel is calculated from the measured current by
applying the charger efficiency curve which is dependent on mobility-equivalent diameter, itself related to the
aerodynamic diameter. Therefore, the density which relates these two equivalent diameters needs to be known to
calculate the number concentration in each channel. The density mentioned here corresponds to the effective
density of airborne particles, which is theoretically dependent on particle diameter (the larger the agglomerates
and aggregates, the smaller their effective density; the closer to the primary particle diameter, the closer to the ®
material density of the compound), see [5] and [6]. Concerning the ELPI , the value considered for the density can ®
have a strong impact on the number concentration. Over the particle size range covered by the ELPI and a range
3 3
of density from 0,1 g/cm to 10 g/cm , the under estimation or overestimation can reach up to a factor of 25. Despite
this, the effect on relative particle size distributions is limited and the modal aerodynamic equivalent diameters are
therefore less affected.
The measurement of the mass-based particle size distribution using low pressure cascade impactors is
not compulsory but can provide complementary information to the number-based particle size
distribution. Low pressure cascade impactors with at least five stages below 1 µm and three stages above
1 µm shall be preferred in order to have a good description of the particle size distribution of the released
aerosol.
6.2.11 Aerosol sampler for analytical electron microscopy analysis
For the collection of airborne particles for subsequent observations and analysis by analytical electron
microscopy, a TEM-grid holder operating at 1 l/min can be used (see Annex B). If this collection is not
carried out (as it is optional), an air sampling cassette (see 6.2.8), 25 or 37 mm, equipped with a filter
shall be used instead in order to have the same flow rates in the test apparatus. Given the generally short
sampling time (about 10 s), the use of a TEM-grid holder necessarily requires a by-pass system, equipped
oSIST prEN 17199-5:2024
prEN 17199-5:2024 (E)
with an air sampling cassette (6.2.8) in order to keep a constant flow through the respirable selector, as
shown in Figure 4.
NOTE A TEM-grid holder like the one developed by [11], and operating at 1 l/min can be used.
6.2.12 Analytical balance, capable of weighing to a resolution of 10 µg
Weighing shall be carried out according to ISO 15767.
The analytical balance shall be checked against a calibrated standard weight traceable to International
Standards at the intervals recommended by the manufacturer and immediately before weighing sampling
filter. The analytical balance shall be placed on an anti-vibration worktop. In the case where dustiness
tests are scheduled with toxic nanomaterials, the weighing operations shall be carried out in accordance
with the ad hoc prevention rules.
6.2.13 Microbalance, capable of weighing to a resolution of 1 µg
The microbalance and the sampling filters to be weighed should be placed in a room with temperature
and humidity controls within the range specified by the balance manufacturer.
Weighing shall be carried out according to ISO 15767.
The microbalance shall be checked against a calibrated standard weight at the intervals recommended
by the manufacturer and immediately before weighing sampling filter. The microbalance shall be placed
on an anti-vibration worktop. In the case where dustiness tests are scheduled with toxic nanomaterials,
the weighing operations shall be carried out in accordance with the ad hoc prevention rules.
6.2.14 Filters for gravimetric analysis
For the determination of the mass-based respirable dustiness index (see Figure 5) a filter type with a low
limit of quantification for the gravimetric analysis, typically below 15 µg, should be selected.
To obtain the limit of detection for the gravimetric analysis the procedure specified in ISO 15767 should
be applied, using a microbalance (see 6.2.13).
6.2.15 Micro-centrifuge tubes
Made of polypropylene, 1,5 ml, graduated, for preparing the test samples.
7 Requirements
7.1 General
The general procedures specified in EN 17199-1 shall be applied.
7.2 Engineering control measures
Appropriate engineering control measures (e.g. enclosure, use of local exhaust ventilation) shall be
implemented to prevent exposure of
...








Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.