SIST EN IEC 62282-3-201:2026
(Main)Fuel cell technologies - Part 3-201: Stationary fuel cell power systems - Performance test methods for small fuel cell power systems (IEC 62282-3-201:2025)
Fuel cell technologies - Part 3-201: Stationary fuel cell power systems - Performance test methods for small fuel cell power systems (IEC 62282-3-201:2025)
IEC 62282-3-201:2025 provides test methods for the electrical, thermal, and environmental performance of small stationary fuel cell power systems that meet the following criteria:
- output: rated electric power output of less than 10 kW;
- output mode: grid-connected/independent operation or stand-alone operation with single-phase AC output or 3-phase AC output not exceeding 1 000 V, or DC output not exceeding 1 500 V;
- operating pressure: maximum allowable working pressure of 0,1 MPa (gauge) for the fuel and oxidant passages;
- fuel: gaseous fuel (natural gas, liquefied petroleum gas, propane, butane, hydrogen, etc.) or liquid fuel (kerosene, methanol, etc.);
- oxidant: air.
This document describes type tests and their test methods only. No routine tests are required or identified, and no performance targets are set in this document.
This document provides test methods to be carried out under laboratory conditions.
This document covers fuel cell power systems whose primary purpose is the production of electric power and whose secondary purpose can be the utilization of heat. Accordingly, fuel cell power systems for which the use of heat is primary, and the use of electric power is secondary are outside the scope of this document.
This third edition cancels and replaces the second edition published in 2017 and Amendment 1:2022. This edition includes the following significant technical changes with respect to the previous edition:
- revision of Introduction;
- revision of terms and definitions;
- revision of Table 1;
- revision of Figure 1, Figure 2, Figure 3 and Figure 4;
- revision of measurement instruments (10.2);
- revision of minimum required measurement systematic uncertainty (10.4);
- revision of test conditions (Clause 11);
- revision of operating process (Clause 12);
- revision of fuel consumption test (14.2);
- revision of heat recovery test (14.4);
- revision of Figure 13 and Figure 14;
- revision of calculation of results (14.14.4);
- revision of Annex A and Annex B.
Brennstoffzellentechnologien - Teil 3-201: Stationäre Brennstoffzellen-Energiesysteme - Leistungskennwerteprüfverfahren für kleine Brennstoffzellen-Energiesysteme (IEC 62282-3-201:2025)
Technologies des piles à combustible - Partie 3-201: Systèmes à piles à combustible stationnaires - Méthodes d'essai des performances pour petits systèmes à piles à combustible (IEC 62282-3-201:2025)
L'IEC 62282-3-201:2025 fournit des méthodes d’essai relatives aux performances électriques, thermiques et environnementales des petits systèmes à piles à combustible stationnaires qui satisfont aux critères suivants:
- puissance de sortie: la puissance électrique de sortie assignée est inférieure à 10 kW;
- mode de sortie: fonctionnement raccordé au réseau/indépendant ou fonctionnement autonome avec une sortie en courant alternatif monophasé ou une sortie en courant alternatif triphasé ne dépassant pas 1 000 V ou une sortie en courant continu ne dépassant pas 1 500 V;
- pression de fonctionnement: pression de fonctionnement admissible maximale 0,1 MPa (G) pour les passages du combustible et de l’agent oxydant;
- combustible: combustible gazeux (gaz naturel, gaz de pétrole liquéfié, propane, butane, hydrogène, etc.) ou combustible liquide (kérosène, méthanol, etc.);
- agent oxydant: air.
Le présent document décrit uniquement les essais de type et leurs méthodes d’essai. Aucun essai individuel de série n’est exigé ou identifié, et aucune cible de performance n’est définie dans le présent document.
Le présent document fournit des méthodes d’essai à appliquer dans des conditions de laboratoire.
Le présent document traite des systèmes à piles à combustible dont le but principal est de produire du courant électrique et dont le but secondaire peut être d’utiliser de la chaleur. Par conséquent, les systèmes à piles à combustible dont le but principal est l’utilisation de la chaleur et dont le but secondaire est l’utilisation du courant électrique ne relèvent pas du domaine d’application du présent document.
Cette troisième édition annule et remplace la deuxième édition parue en 2017 et son Amendement 1:2022. Cette édition constitue une révision technique. Cette édition inclut les modifications techniques majeures suivantes par rapport à l’édition précédente:
- révision de l’Introduction,
- révision des termes et définitions,
- révision du Tableau 1,
- révision de la Figure 1, Figure 2, Figure 3 et Figure 4;
- révision des appareils de mesure (10.2),
- révision de l’incertitude de mesure systématique minimale exigée (10.4),
- révision des conditions d’essai (Article 11),
- révision du processus de fonctionnement (Article 12),
- révision de l’essai de consommation de combustible (14.2),
- révision de l’essai d’énergie thermique récupérée (14.4),
- révision de la Figure 13 et de la Figure 14,
- révision du calcul des résultats (14.14.4),
- révision de l’Annexe A et de l’Annexe B.
Tehnologije gorivnih celic - 3-201. del: Nepremični elektroenergetski sistemi z gorivnimi celicami - Preskusne metode zmogljivosti majhnih elektroenergetskih sistemov z gorivnimi celicami (IEC 62282-3-201:2025)
General Information
Relations
Overview
EN IEC 62282-3-201:2025 (CLC/CENELEC adoption of IEC 62282-3-201:2025) specifies laboratory performance test methods for small stationary fuel cell power systems. It applies to systems with a rated electric output of less than 10 kW, grid‑connected or stand‑alone (single‑phase or 3‑phase ≤ 1 000 V, DC ≤ 1 500 V), using gaseous or liquid fuels and air as oxidant. This document defines type tests only (no routine tests or pass/fail performance targets) and is focused on electrical, thermal and environmental performance measured under controlled laboratory conditions.
Key topics and technical requirements
- Test scope and configuration: Definitions for small stationary fuel cell power systems and reference conditions for repeatable laboratory testing.
- Measurement instruments & uncertainty: Requirements for instrumentation, measurement points and minimum systematic measurement uncertainty have been revised in this edition.
- Test conditions and operating procedures: Updated clauses on laboratory/test fuel, installation, operating processes and data acquisition planning.
- Type test methods (examples included in the standard):
- Fuel consumption tests (gaseous and liquid fuels)
- Electric power output and net power calculations
- Heat recovery and recovered thermal power measurements
- Start‑up, ramp‑up, storage‑state, power change and shutdown tests
- Computation of electrical, heat recovery and overall energy efficiency
- Electromagnetic compatibility (EMC) tests (emission and immunity)
- Estimation methods for electrical and heat efficiency over up to ten years of operation
- Electric demand‑following performance testing
- Documentation & data handling: Guidance on test planning, uncertainty analysis and reporting of results.
- Edition changes: This 3rd edition updates terms, figures, numerous test procedures, Annex A/B and calculation methods compared with the 2017 edition and 2022 amendment.
Applications and who uses this standard
- Manufacturers of small stationary fuel cell systems seeking standardized type test methods for product development and technical documentation.
- Independent test laboratories conducting laboratory performance characterization, efficiency measurement and EMC testing.
- System integrators and installers who need verified performance data for site planning and hybrid system design.
- Certification bodies and compliance assessors using harmonized test methods for technical evaluation (note: the document does not set pass/fail criteria).
- Researchers and policymakers studying small-scale fuel cell performance, lifetime efficiency and grid‑integration behavior.
Related standards
- IEC/EN series referenced for EMC and measurement: CISPR 11, IEC 61000‑4‑2/3/4/5/6/8/11, and other IEC 61000 parts (listed in the standard).
- Related fuel cell standards: IEC 62282‑3‑200 (other stationary fuel cell system requirements) and applicable ISO references noted in Annex ZA.
Keywords: fuel cell, stationary fuel cell power systems, EN IEC 62282-3-201:2025, performance test methods, small fuel cell, type tests, electrical efficiency, heat recovery, EMC.
Standards Content (Sample)
SLOVENSKI STANDARD
01-januar-2026
Nadomešča:
SIST EN 62282-3-201:2018
SIST EN 62282-3-201:2018/A1:2022
Tehnologije gorivnih celic - 3-201. del: Nepremični elektroenergetski sistemi z
gorivnimi celicami - Preskusne metode zmogljivosti majhnih elektroenergetskih
sistemov z gorivnimi celicami (IEC 62282-3-201:2025)
Fuel cell technologies - Part 3-201: Stationary fuel cell power systems - Performance test
methods for small fuel cell power systems (IEC 62282-3-201:2025)
Brennstoffzellentechnologien - Teil 3-201: Stationäre Brennstoffzellen-Energiesysteme -
Leistungskennwerteprüfverfahren für kleine Brennstoffzellen-Energiesysteme (IEC
62282-3-201:2025)
Technologies des piles à combustible - Partie 3-201: Systèmes à piles à combustible
stationnaires - Méthodes d'essai des performances pour petits systèmes à piles à
combustible (IEC 62282-3-201:2025)
Ta slovenski standard je istoveten z: EN IEC 62282-3-201:2025
ICS:
27.070 Gorilne celice Fuel cells
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
EUROPEAN STANDARD EN IEC 62282-3-201
NORME EUROPÉENNE
EUROPÄISCHE NORM November 2025
ICS 27.070 Supersedes EN 62282-3-201:2017; EN 62282-3-
201:2017/A1:2022
English Version
Fuel cell technologies - Part 3-201: Stationary fuel cell power
systems - Performance test methods for small fuel cell power
systems
(IEC 62282-3-201:2025)
Technologies des piles à combustible - Partie 3-201: Brennstoffzellentechnologien - Teil 3-201: Stationäre
Systèmes à piles à combustible stationnaires - Méthodes Brennstoffzellen-Energiesysteme -
d'essai des performances pour petits systèmes à piles à Leistungskennwerteprüfverfahren für kleine
combustible Brennstoffzellen-Energiesysteme
(IEC 62282-3-201:2025) (IEC 62282-3-201:2025)
This European Standard was approved by CENELEC on 2025-10-30. CENELEC members are bound to comply with the CEN/CENELEC
Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.
Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC
Management Centre or to any CENELEC member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation
under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the
same status as the official versions.
CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic,
Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the
Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Türkiye and the United Kingdom.
European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2025 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.
Ref. No. EN IEC 62282-3-201:2025 E
European foreword
The text of document 105/1114/FDIS, future edition 3 of IEC 62282-3-201, prepared by TC 105 "Fuel
cell technologies" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as
The following dates are fixed:
• latest date by which the document has to be implemented at national (dop) 2026-11-30
level by publication of an identical national standard or by endorsement
• latest date by which the national standards conflicting with the (dow) 2028-11-30
document have to be withdrawn
This document supersedes EN 62282-3-201:2017 and all of its amendments and corrigenda (if any).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.
Any feedback and questions on this document should be directed to the users’ national committee. A
complete listing of these bodies can be found on the CENELEC website.
Endorsement notice
The text of the International Standard IEC 62282-3-201:2025 was approved by CENELEC as a
European Standard without any modification.
In the official version, for Bibliography, the following notes have to be added for the standard indicated:
IEC 61672-1 NOTE Approved as EN 61672-1
IEC 61672-2 NOTE Approved as EN 61672-2
IEC 62282-3-200:2025 NOTE Approved as EN IEC 62282-3-200: — (not modified)
ISO 6974 (series) NOTE Approved as EN ISO 6974 (series)
ISO 6975 NOTE Approved as EN ISO 6975
ISO 7941 NOTE Approved as EN 27941
ISO 9000 NOTE Approved as EN ISO 9000
ISO 10523 NOTE Approved as EN ISO 10523
ISO 11541 NOTE Approved as EN ISO 11541
ISO 80000 (series) NOTE Approved as EN ISO 80000 (series)
Under preparation. Stage at the time of publication: EN IEC 62282-3-200:2025.
Annex ZA
(normative)
Normative references to international publications
with their corresponding European publications
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments)
applies.
NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod),
the relevant EN/HD applies.
NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available
here: www.cencenelec.eu.
Publication Year Title EN/HD Year
CISPR 11 - Industrial, scientific and medical equipment - EN IEC 55011 -
Radio-frequency disturbance characteristics -
Limits and methods of measurement
IEC 61000-3-2 - Electromagnetic compatibility (EMC) - Part 3-2: EN IEC 61000-3-2 -
Limits - Limits for harmonic current emissions
(equipment input current ≤ 16 A per phase)
IEC 61000-4-2 - Electromagnetic compatibility (EMC) - Part 4-2: EN IEC 61000-4-2 -
Testing and measurement techniques -
Electrostatic discharge immunity test
IEC 61000-4-3 - Electromagnetic compatibility (EMC) - Part 4-3 : EN IEC 61000-4-3 -
Testing and measurement techniques - Radiated,
radio-frequency, electromagnetic field immunity
test
IEC 61000-4-4 - Electromagnetic compatibility (EMC) - Part 4-4: EN 61000-4-4 -
Testing and measurement techniques - Electrical
fast transient/burst immunity test
IEC 61000-4-5 - Electromagnetic compatibility (EMC) - Part 4-5: EN 61000-4-5 -
Testing and measurement techniques - Surge
immunity test
IEC 61000-4-6 - Electromagnetic compatibility (EMC) - Part 4-6: EN IEC 61000-4-6 -
Testing and measurement techniques - Immunity
to conducted disturbances, induced by radio-
frequency fields
IEC 61000-4-8 - Electromagnetic compatibility (EMC) - Part 4-8: EN 61000-4-8 -
Testing and measurement techniques - Power
frequency magnetic field immunity test
IEC 61000-4-11 - Electromagnetic compatibility (EMC) - Part 4-11: EN IEC 61000-4-11 -
Testing and measurement techniques - Voltage
dips, short interruptions and voltage variations
immunity tests for equipment with input current
up to 16 A per phase
IEC 61000-6-1 2016 Electromagnetic compatibility (EMC) - Part 6-1: EN IEC 61000-6-1 2019
Generic standards - Immunity standard for
residential, commercial and light-industrial
environments
IEC 62282-3-201 ®
Edition 3.0 2025-09
INTERNATIONAL
STANDARD
Fuel cell technologies -
Part 3-201: Stationary fuel cell power systems - Performance test methods for
small fuel cell power systems
ICS 27.070 ISBN 978-2-8327-0637-4
IEC 62282-3-201:2025-09(en)
IEC 62282-3-201:2025 © IEC 2025
CONTENTS
FOREWORD . 5
INTRODUCTION . 7
1 Scope . 8
2 Normative references . 8
3 Terms and definitions . 9
4 Symbols . 15
5 Configuration of small stationary fuel cell power system . 20
6 Reference conditions . 20
7 Heating value base . 20
8 Test preparation . 21
8.1 General . 21
8.2 Uncertainty analysis . 21
8.3 Data acquisition plan . 21
9 Test set-up . 22
10 Instruments and measurement methods . 24
10.1 General . 24
10.2 Measurement instruments . 24
10.3 Measurement points. 25
10.4 Minimum required measurement systematic uncertainty . 27
11 Test conditions . 27
11.1 Laboratory conditions. 27
11.2 Installation and operating conditions of the system . 28
11.3 Power source conditions . 28
11.4 Test fuel . 28
12 Operating process . 28
13 Test plan . 30
14 Type tests on electric and thermal performance . 31
14.1 General . 31
14.2 Fuel consumption test . 31
14.2.1 Gaseous fuel consumption test . 31
14.2.2 Liquid fuel consumption test . 34
14.3 Electric power output test . 36
14.3.1 General . 36
14.3.2 Test method . 36
14.3.3 Calculation of average net electric power output . 36
14.4 Heat recovery test . 37
14.4.1 General . 37
14.4.2 Test method . 37
14.4.3 Calculation of average recovered thermal power . 37
14.5 Start-up test . 39
14.5.1 General . 39
14.5.2 Determination of nominal state of charge of the battery . 39
14.5.3 Test method . 39
14.5.4 Calculation of results . 42
14.6 Ramp-up test . 44
IEC 62282-3-201:2025 © IEC 2025
14.6.1 General . 44
14.6.2 Test method . 44
14.6.3 Calculation of results . 45
14.7 Storage state test . 45
14.7.1 General . 45
14.7.2 Test method . 45
14.7.3 Calculation of average electric power input in storage state . 46
14.8 Electric power output change test . 46
14.8.1 General . 46
14.8.2 Test method . 46
14.8.3 Calculation of electric power output change rate . 48
14.9 Shutdown test . 49
14.9.1 General . 49
14.9.2 Test method . 49
14.9.3 Calculation of results . 50
14.10 Computation of efficiency . 51
14.10.1 General . 51
14.10.2 Electrical efficiency . 51
14.10.3 Heat recovery efficiency . 52
14.10.4 Overall energy efficiency . 52
14.11 Rated operation cycle efficiency. 52
14.11.1 General . 52
14.11.2 Calculation of the operation cycle fuel energy input . 53
14.11.3 Calculation of the operation cycle net electric energy output . 54
14.11.4 Calculation of the operation cycle electrical efficiency . 55
14.12 Electromagnetic compatibility (EMC) test . 55
14.12.1 General requirement . 55
14.12.2 Electrostatic discharge immunity test . 56
14.12.3 Radiated, radio-frequency, electromagnetic field immunity test . 56
14.12.4 Electrical fast transient/burst immunity test . 56
14.12.5 Surge immunity test . 56
14.12.6 Immunity test of conducted disturbances induced by radio-frequency
fields . 56
14.12.7 Power frequency magnetic field immunity test . 56
14.12.8 Voltage dips and voltage interruptions . 56
14.12.9 Radiated disturbance (emission) measurement test . 56
14.12.10 Conducted disturbance (emission) measurement test . 56
14.12.11 Power line harmonics emission measurement test . 57
14.13 Estimation of electric and heat recovery efficiency up to ten years of
operation . 57
14.13.1 General . 57
14.13.2 Test method . 59
14.13.3 Calculation of estimated electrical efficiency . 60
14.13.4 Calculation of estimated heat recovery efficiency . 61
14.14 Electric demand-following test . 62
14.14.1 General . 62
14.14.2 Electric demand profile . 62
14.14.3 Test method . 63
14.14.4 Calculation of results . 63
IEC 62282-3-201:2025 © IEC 2025
14.14.5 Calculation of efficiencies . 65
15 Type tests on environmental performance . 65
15.1 General . 65
15.2 Noise test . 65
15.2.1 General . 65
15.2.2 Test conditions . 65
15.2.3 Test method . 66
15.2.4 Processing of data . 67
15.3 Exhaust gas test . 67
15.3.1 General . 67
15.3.2 Components to be measured . 67
15.3.3 Test method . 68
15.3.4 Processing of data . 70
15.4 Discharge water test . 81
15.4.1 General . 81
15.4.2 Test method . 81
16 Test reports . 82
16.1 General . 82
16.2 Title page. 82
16.3 Table of contents . 82
16.4 Summary report . 82
Annex A (normative) Heating values for components of natural gas . 83
Annex B (informative) Examples of compositions for natural gas and propane gas . 85
Annex C (informative) Example of a test operation schedule . 87
Annex D (informative) Typical exhaust gas components . 88
Annex E (informative) Guidelines for the contents of detailed and full reports . 89
E.1 General . 89
E.2 Detailed report . 89
E.3 Full report . 89
Annex F (informative) Selected duration of rated power operation . 90
Bibliography . 91
Figure 1 – Symbol diagram . 18
Figure 2 – General configuration of small stationary fuel cell power system . 20
Figure 3 – Test set-up for small stationary fuel cell power system fed with gaseous fuel
which supplies electricity and useful heat. 23
Figure 4 – Test set-up for small stationary fuel cell power system fed with gaseous fuel
which supplies only electricity . 24
Figure 5 – Operating states of stationary fuel cell power system without battery . 29
Figure 6 – Operating states of stationary fuel cell power system with battery . 30
Figure 7 – Example of electric power chart during start-up time for system without
battery . 40
Figure 8 – Example of electric power chart during start-up time for system with battery . 41
Figure 9 – Example of liquid fuel supply systems . 42
Figure 10 – Example of electric power chart during ramp-up for system without battery . 44
Figure 11 – Electric power output change pattern for system without battery . 47
Figure 12 – Electric power output change pattern for system with battery . 47
IEC 62282-3-201:2025 © IEC 2025
Figure 13 – Guideline to attain steady state . 48
Figure 14 – Electric power chart during shutdown time . 50
Figure 15 – Example of electrical efficiency during ten years of operation . 58
Figure 16 – Example of the electric demand of a residential application . 62
Figure 17 – Noise measurement points for small stationary fuel cell power systems . 66
Figure 18 – Example of combustion exhaust gas collectors and collection locations . 69
Table 1 – Symbols and their meanings for electric and thermal performance . 15
Table 2 – Additional symbols and their meanings for environmental performance . 18
Table 3 – Compensation of readings against the effect of background noise . 66
Table A.1 – Heating values for components of natural gas at reference temperature
(288,15 K) on molar and mass basis for ideal gas . 83
Table B.1 – Example of compositions for natural gas (%) . 85
Table B.2 – Example of compositions for propane gas (%) . 86
Table C.1 – Example of a test operation schedule . 87
Table D.1 – Typical exhaust gas components to be expected for typical fuels . 88
Table F.1 – Selected duration of rated power operation . 90
IEC 62282-3-201:2025 © IEC 2025
INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
Fuel cell technologies -
Part 3-201: Stationary fuel cell power systems -
Performance test methods for small fuel cell power systems
FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international
co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and
in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports,
Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their
preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with
may participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for
Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence between
any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in
respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which
may be required to implement this document. However, implementers are cautioned that this may not represent
the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC
shall not be held responsible for identifying any or all such patent rights.
IEC 62282-3-201 has been prepared by IEC technical committee 105: Fuel cell technologies. It
is an International Standard.
This third edition cancels and replaces the second edition published in 2017 and
Amendment 1:2022. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous
edition:
a) revision of Introduction;
b) revision of terms and definitions;
c) revision of Table 1;
d) revision of Figure 1, Figure 2, Figure 3 and Figure 4;
e) revision of measurement instruments (10.2);
IEC 62282-3-201:2025 © IEC 2025
f) revision of minimum required measurement systematic uncertainty (10.4);
g) revision of test conditions (Clause 11);
h) revision of operating process (Clause 12);
i) revision of fuel consumption test (14.2);
j) revision of heat recovery test (14.4);
k) revision of Figure 13 and Figure 14;
l) revision of calculation of results (14.14.4);
m) revision of Annex A and Annex B.
The text of this International Standard is based on the following documents:
Draft Report on voting
105/1114/FDIS 105/1128/RVD
Full information on the voting for its approval can be found in the report on voting indicated in
the above table.
The language used for the development of this International Standard is English.
This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in
accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available
at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are
described in greater detail at www.iec.ch/publications.
A list of all parts in the IEC 62282 series, published under the general title Fuel cell technologies,
can be found on the IEC website.
The committee has decided that the contents of this document will remain unchanged until the
stability date indicated on the IEC website under webstore.iec.ch in the data related to the
specific document. At this date, the document will be
• reconfirmed,
• withdrawn, or
• revised.
IEC 62282-3-201:2025 © IEC 2025
INTRODUCTION
This part of IEC 62282 provides consistent and repeatable test methods for the electrical,
thermal and environmental performance of small stationary fuel cell power systems.
This document limits its scope to small stationary fuel cell power systems (electrical power
output below 10 kW, which is typical for residential, small commercial and off-grid applications)
and provides test methods specifically designed for them in detail. It is based on the latest
edition of IEC 62282-3-200, which generally describes performance test methods that are
common to all types of fuel cells.
This document is intended for manufacturers of small stationary fuel cell power systems or
those who evaluate the performance of their systems for certification purposes, or both.
Users of this document can selectively execute test items that are suitable for their purposes
from those described in this document. This document is not intended to exclude any other
methods.
IEC 62282-3-201:2025 © IEC 2025
1 Scope
This part of IEC 62282 provides test methods for the electrical, thermal, and environmental
performance of small stationary fuel cell power systems that meet the following criteria:
• output: rated electric power output of less than 10 kW;
• output mode: grid-connected/independent operation or stand-alone operation with single-
phase AC output or 3-phase AC output not exceeding 1 000 V, or DC output not exceeding
1 500 V;
NOTE The limit of 1 000 V for alternating current comes from the definition for "low voltage" given in
IEC 60050-601:1985, 601-01-26.
• operating pressure: maximum allowable working pressure of 0,1 MPa (gauge) for the fuel
and oxidant passages;
• fuel: gaseous fuel (natural gas, liquefied petroleum gas, propane, butane, hydrogen, etc.)
or liquid fuel (kerosene, methanol, etc.);
• oxidant: air.
This document describes type tests and their test methods only. No routine tests are required
or identified, and no performance targets are set in this document.
This document provides test methods to be carried out under laboratory conditions.
This document covers fuel cell power systems whose primary purpose is the production of
electric power and whose secondary purpose can be the utilization of heat. Accordingly, fuel
cell power systems for which the use of heat is primary, and the use of electric power is
secondary are outside the scope of this document.
All systems with integrated batteries are covered by this document. This includes systems
where batteries are recharged internally or recharged from an external source.
This document does not cover additional auxiliary heat generators that produce thermal energy.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies.
For undated references, the latest edition of the referenced document (including any
amendments) applies.
CISPR 11, Industrial, scientific, and medical equipment - Radio-frequency disturbance
characteristics - Limits and methods of measurement
IEC 61000-3-2, Electromagnetic compatibility (EMC) - Part 3-2: Limits - Limits for harmonic
current emissions (equipment input current ≤ 16 A per phase)
IEC 61000-4-2, Electromagnetic compatibility (EMC) - Part 4-2: Testing and measurement
techniques - Electrostatic discharge immunity test
IEC 61000-4-3, Electromagnetic compatibility (EMC) - Part 4-3: Testing and measurement
techniques - Radiated, radio-frequency, electromagnetic field immunity test
IEC 61000-4-4, Electromagnetic compatibility (EMC) - Part 4-4: Testing and measurement
techniques - Electrical fast transient/burst immunity test
IEC 62282-3-201:2025 © IEC 2025
IEC 61000-4-5, Electromagnetic compatibility (EMC) - Part 4-5: Testing and measurement
techniques - Surge immunity test
IEC 61000-4-6, Electromagnetic compatibility (EMC) - Part 4-6: Testing and measurement
techniques - Immunity to conducted disturbances, induced by radio-frequency fields
IEC 61000-4-8, Electromagnetic compatibility (EMC) - Part 4-8: Testing and measurement
techniques - Power frequency magnetic field immunity test
IEC 61000-4-11, Electromagnetic compatibility (EMC) - Part 4-11: Testing and measurement
techniques - Voltage dips, short interruptions and voltage variations immunity tests for
equipment with input current up to 16 A per phase
IEC 61000-6-1:2016, Electromagnetic compatibility (EMC) - Part 6-1: Generic standards -
Immunity for residential, commercial and light-industrial environments
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminology databases for use in standardization at the following
addresses:
• IEC Electropedia: available at https://www.electropedia.org/
• ISO Online browsing platform: available at https://www.iso.org/obp
3.1
background noise level
sound pressure level of ambient noise at the measurement point
Note 1 to entry: This measurement is taken as described in 15.2 with the fuel cell power system in the cold state.
3.2
battery
electrochemical energy storage device that provides energy input to auxiliary machines and
equipment necessary to operate the fuel cell power system and/or provides electric energy
output
Note 1 to entry: Back-up batteries for control software memory and similar applications are not included.
3.3
cold state
state of a fuel cell power system, which is entirely at ambient temperature with no power input
or output, ready for start-up
Note 1 to entry: Power input to a control device for monitoring the fuel cell power system during cold state is not
considered.
[SOURCE: IEC 60050-485:2020, 485-21-01, modified – "which is entirely" and "ready for start-
up" added; Note 1 to entry added.]
3.4
degradation rate
reduction of the electrical efficiency of a stationary fuel cell power system per time of operation
Note 1 to entry: The degradation rate is expressed in efficiency per cent points per time (%/h).
IEC 62282-3-201:2025 © IEC 2025
3.5
discharge water
water that is discharged from the fuel cell power system including waste water and condensate
Note 1 to entry: Discharge water does not constitute part of a thermal recovery system.
3.6
electrical efficiency
ratio of the average net electric power output produced by a fuel cell power system to the
average fuel power input supplied to the fuel cell power system
Note 1 to entry: Lower heating value (LHV) is assumed unless otherwise stated.
Note 2 to entry: Only the fuel energy is considered as input power to small fuel cell power systems.
[SOURCE: IEC 60050-485:2020, 485-10-02, modified – "electrical" instead of "electric" in the
term;" average net electric power output" instead of "net electric power"; "average fuel power
input" instead of "total enthalpy flow" and Note 2 to entry added.]
3.7
electric energy input
integrated value of electric power input at the electric input terminal
3.8
electric energy output
integrated value of electric power output at the electric output terminal
3.9
electric power input
electric power input at the electric input terminal of the fuel cell power system
3.10
electric power output
electric power output at the electric output terminal of the fuel cell power system
3.11
fuel cell power system
generator system that uses one or more fuel cell modules to generate electric power and heat
[SOURCE: IEC 60050-485:2020, 485-09-01]
3.12
fuel energy input
amount of chemical energy which is supplied to the fuel cell power system by the fuel
3.13
fuel input
amount of natural gas, hydrogen, methanol, liquid petroleum gas, propane, butane, or other
material containing chemical energy entering the fuel cell power system while it is working at
the specified operating conditions
3.14
fuel power input
fuel energy input per unit of time
IEC 62282-3-201:2025 © IEC 2025
3.15
heat recovery efficiency
ratio of the average recovered thermal power output of a fuel cell power system to the average
fuel power input supplied to the fuel cell power system
Note 1 to entry: Lower heating value (LHV) is assumed unless otherwise stated.
Note 2 to entry: Only the fuel energy is considered as input power to small fuel cell power systems.
[SOURCE: IEC 60050-485:2020, 485-10-04, modified – "average recovered thermal power
output" instead of "recovered heat flow"; "average total power input" instead of "total enthalpy
flow"; Note 1 to entry deleted, new Note 1 to entry and Note 2 to entry added.]
3.16
heat recovery fluid
fluid circulating between the fuel cell power system and a heat sink for recovering the thermal
energy output
3.17
inert purge gas
inert gas or dilution gas, not containing chemical energy, supplied to the fuel cell power system
during specific conditions to make it ready for operation or shutdown
Note 1 to entry: Dilution gas containing chemical energy shall be considered as fuel.
3.18
integrated fuel input
volume or mass of fuel consumed by the fuel cell power system under specified operating
conditions
3.19
interface point
measurement point at the boundary of a fuel cell power system at which material or energy, or
both, either enters or leaves
Note 1 to entry: This boundary is intentionally selected to accurately measure the performance of the system,
including all normal operation, both steady state and transient. If necessary, the boundary or the interface points of
the fuel cell power system (Figure 2) to be assessed should be determined by agreement between the parties.
[SOURCE: IEC 60050-485:2020, 485-09-12, modified – Note 2 to entry deleted.]
3.20
mass concentration
concentration of mass of exhaust gas component per unit of volume
3.21
mass discharge rate
mass of discharged exhaust gas component per unit of time
3.22
minimum electric power output
minimum net power output, at which a fuel cell power system is able to operate continuously at
a steady state
IEC 62282-3-201:2025 © IEC 2025
3.23
net electric power output
power generated by the fuel cell power system and available for external use
Note 1 to entry: The net electric power output can be negative during start-up, shutdown and storage state, which
means actually an electric power input during these phases / state, to be provided externally and not generated by
the fuel cell power system.
[SOURCE: IEC 60050-485:2020, 485-14-03, modified – "output" added to the term, Notes 1
and 2 to entry deleted, and new Note 1 to entry ad
...
Frequently Asked Questions
SIST EN IEC 62282-3-201:2026 is a standard published by the Slovenian Institute for Standardization (SIST). Its full title is "Fuel cell technologies - Part 3-201: Stationary fuel cell power systems - Performance test methods for small fuel cell power systems (IEC 62282-3-201:2025)". This standard covers: IEC 62282-3-201:2025 provides test methods for the electrical, thermal, and environmental performance of small stationary fuel cell power systems that meet the following criteria: - output: rated electric power output of less than 10 kW; - output mode: grid-connected/independent operation or stand-alone operation with single-phase AC output or 3-phase AC output not exceeding 1 000 V, or DC output not exceeding 1 500 V; - operating pressure: maximum allowable working pressure of 0,1 MPa (gauge) for the fuel and oxidant passages; - fuel: gaseous fuel (natural gas, liquefied petroleum gas, propane, butane, hydrogen, etc.) or liquid fuel (kerosene, methanol, etc.); - oxidant: air. This document describes type tests and their test methods only. No routine tests are required or identified, and no performance targets are set in this document. This document provides test methods to be carried out under laboratory conditions. This document covers fuel cell power systems whose primary purpose is the production of electric power and whose secondary purpose can be the utilization of heat. Accordingly, fuel cell power systems for which the use of heat is primary, and the use of electric power is secondary are outside the scope of this document. This third edition cancels and replaces the second edition published in 2017 and Amendment 1:2022. This edition includes the following significant technical changes with respect to the previous edition: - revision of Introduction; - revision of terms and definitions; - revision of Table 1; - revision of Figure 1, Figure 2, Figure 3 and Figure 4; - revision of measurement instruments (10.2); - revision of minimum required measurement systematic uncertainty (10.4); - revision of test conditions (Clause 11); - revision of operating process (Clause 12); - revision of fuel consumption test (14.2); - revision of heat recovery test (14.4); - revision of Figure 13 and Figure 14; - revision of calculation of results (14.14.4); - revision of Annex A and Annex B.
IEC 62282-3-201:2025 provides test methods for the electrical, thermal, and environmental performance of small stationary fuel cell power systems that meet the following criteria: - output: rated electric power output of less than 10 kW; - output mode: grid-connected/independent operation or stand-alone operation with single-phase AC output or 3-phase AC output not exceeding 1 000 V, or DC output not exceeding 1 500 V; - operating pressure: maximum allowable working pressure of 0,1 MPa (gauge) for the fuel and oxidant passages; - fuel: gaseous fuel (natural gas, liquefied petroleum gas, propane, butane, hydrogen, etc.) or liquid fuel (kerosene, methanol, etc.); - oxidant: air. This document describes type tests and their test methods only. No routine tests are required or identified, and no performance targets are set in this document. This document provides test methods to be carried out under laboratory conditions. This document covers fuel cell power systems whose primary purpose is the production of electric power and whose secondary purpose can be the utilization of heat. Accordingly, fuel cell power systems for which the use of heat is primary, and the use of electric power is secondary are outside the scope of this document. This third edition cancels and replaces the second edition published in 2017 and Amendment 1:2022. This edition includes the following significant technical changes with respect to the previous edition: - revision of Introduction; - revision of terms and definitions; - revision of Table 1; - revision of Figure 1, Figure 2, Figure 3 and Figure 4; - revision of measurement instruments (10.2); - revision of minimum required measurement systematic uncertainty (10.4); - revision of test conditions (Clause 11); - revision of operating process (Clause 12); - revision of fuel consumption test (14.2); - revision of heat recovery test (14.4); - revision of Figure 13 and Figure 14; - revision of calculation of results (14.14.4); - revision of Annex A and Annex B.
SIST EN IEC 62282-3-201:2026 is classified under the following ICS (International Classification for Standards) categories: 27.070 - Fuel cells. The ICS classification helps identify the subject area and facilitates finding related standards.
SIST EN IEC 62282-3-201:2026 has the following relationships with other standards: It is inter standard links to SIST EN 62282-3-201:2018/A1:2022, SIST EN 62282-3-201:2018. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.
You can purchase SIST EN IEC 62282-3-201:2026 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of SIST standards.
The SIST EN IEC 62282-3-201:2026 standard provides a comprehensive framework for assessing the performance of small stationary fuel cell power systems with a rated electric power output of under 10 kW. Its scope is well-defined, specifically addressing fuel cell systems that can operate in various modes, including grid-connected and stand-alone operations, while also accommodating different types of fuel (gaseous and liquid) and air as the oxidant. One of the key strengths of this standard lies in its detailed methodology for conducting performance tests under controlled laboratory conditions, ensuring that the results are reliable and reproducible. The focus on type tests rather than routine tests allows for a concentrated evaluation of system performance without imposing ongoing verification burdens on manufacturers. Additionally, the standard does not set performance targets but provides a clear set of procedures for evaluating electrical, thermal, and environmental outputs. This flexibility can be particularly beneficial for developers and researchers in the fuel cell technology sector. Significant technical revisions in this third edition enhance clarity and usability for end-users. Changes to sections related to terms and definitions, measurement instruments, and testing conditions reflect evolving best practices in the industry. The modifications to the test conditions and operating processes are particularly pertinent, offering updated guidance that responds to advancements in fuel cell technology and testing methodologies. Furthermore, the incorporation of revised figures and tables improves the visual representation of data, supporting clearer understanding and application of the tests. The inclusion of detailed references to calculation methods and systematic uncertainty in measurements emphasizes the standard's commitment to precision and reliability. Overall, the SIST EN IEC 62282-3-201:2026 standard is highly relevant for stakeholders in the fuel cell industry, serving as an essential tool for the performance evaluation of small fuel cell power systems. Its comprehensive updates and clearly delineated scope solidify its position as a pivotal reference for ensuring that small fuel cell technologies are effectively tested and validated under uniform methodologies.
Die Norm SIST EN IEC 62282-3-201:2026 befasst sich mit den Testmethoden für die elektrische, thermische und umwelttechnische Leistung von kleinen stationären Brennstoffzellensystemen. Der Geltungsbereich umfasst Systeme mit einer Nennleistung von weniger als 10 kW, die entweder netzgebunden oder als eigenständige Anlagen betrieben werden können. Diese Norm stellt sicher, dass die getesteten Systeme einen einheitlichen Standard in Bezug auf Leistung und Sicherheit aufweisen. Ein herausragendes Merkmal dieser Norm ist die detaillierte Beschreibung der Typprüfungen und der dazugehörigen Testmethoden. Besonders wichtig ist, dass sie klare Vorgaben für Laborbedingungen enthält, unter denen die Prüfungen durchgeführt werden müssen. Dies hebt die Relevanz der Norm für Hersteller hervor, die sicherstellen möchten, dass ihre Produkte den erforderlichen Leistungsstandards entsprechen. Die Norm legt den Fokus auf die Erhebung und Überprüfung von Daten, die für kleine Brennstoffzellensysteme von entscheidender Bedeutung sind, insbesondere in Bezug auf die Art der verwendeten Brennstoffe – seien es gasförmige oder flüssige Brennstoffe – sowie die Verwendung von Luft als Oxidationsmittel. Der klar definierte Rahmen bietet den Herstellern die Möglichkeit, ihre Systeme entsprechend den vorgestellten Testmethoden zu entwickeln und zu optimieren. Die dritte Ausgabe dieser Norm bringt signifikante technische Änderungen mit sich, die die vorherige Ausgabe von 2017 ersetzen. Diese Änderungen, wie die Revision wichtiger Tabellen und Abbildungen sowie Anpassungen an den Messinstrumenten und den Prüfbedingungen, stellen sicher, dass die Norm stets aktuell bleibt und den neuesten technologischen Entwicklungen Rechnung trägt. Zusammenfassend lässt sich sagen, dass die SIST EN IEC 62282-3-201:2026 durch ihre umfassenden Testmethoden, die klare Abgrenzung des Geltungsbereichs und die fortlaufende Anpassung an neue technische Anforderungen eine wesentliche Rolle im Bereich der Brennstoffzellentechnologien spielt. Sie ist nicht nur für Hersteller, sondern auch für Prüfinstitute und Forschungsinstitute von herausragender Bedeutung. Die Norm fördert die Standardisierung in der Branche, was letztlich zu einer höheren Effizienz und Sicherheit von Brennstoffzellensystemen beiträgt.
La norme SIST EN IEC 62282-3-201:2026, relative aux systèmes de puissance à hydrogène stationnaires, offre une approche complète pour tester la performance des petites installations de piles à hydrogène. Son champ d'application est bien défini, se concentrant sur les systèmes ayant une puissance électrique nominale inférieure à 10 kW et incluant des modes de fonctionnement variés (connexion au réseau, indépendance, ou autonomie). Cette spécification est cruciale pour le développement de systèmes énergétiques durables. Parmi ses forces, la norme propose des méthodes de tests robustes pour évaluer les performances électriques, thermiques et environnementales en conditions de laboratoire. Cela garantit que les systèmes de piles à hydrogène non seulement répondent aux exigences de sécurité, mais aussi aux attentes de performance dans des applications pratiques. La précision des méthodes de tests, notamment les révisions des instruments de mesure et de l'incertitude systématique requise, renforce la fiabilité des résultats. La mise à jour significative de cette troisième édition par rapport à la précédente, notamment la révision des définitions, des tableaux et des figures, témoigne d'un engagement envers l'amélioration continue et l'adaptation aux évolutions technologiques du secteur. De plus, le développement de tests concernant la consommation de carburant et la récupération de chaleur démontre une vision intégrée de l'utilisation de l'énergie produite. L'actualisation de la norme en 2026 est non seulement pertinente pour les chercheurs et les fabricants, mais elle établit également des références claires pour l'évaluation des systèmes de piles à hydrogène. Son orientation vers la production d'électricité, tout en reconnaissant l'importance de la chaleur comme sous-produit, soutient les initiatives de transition énergétique en favorisant l'innovation dans le domaine des technologies de pile à hydrogène.
SIST EN IEC 62282-3-201:2026は、コンパクトな stationary fuel cell power systems に関するパフォーマンステスト方法を提供する重要な標準です。この文書は、出力が10kW未満の小規模な燃料電池システムの電気的、熱的、環境的性能を評価するための試験方法を詳細に規定しています。この標準の範囲は、単相および三相のAC出力、またはDC出力のように、異なる運転モードに適応されることを強調しています。 この標準の強みは、実験室条件下で実施されるタイプテストに特化している点です。これは、試験に必要な手順とその方法を明確に定義しており、業界における一貫性と信頼性を確保する助けとなります。特に、ガス燃料や液体燃料が使用される際の最大許容動作圧力や酸化剤としての空気の使用など、技術的な要件が詳細にまとめられています。 また、この最終版では、2017年に公開された第二版と2022年の改訂版を取り消し、さらなる技術的な改訂がなされています。たとえば、導入部、用語の定義、測定機器や試験条件の見直しが含まれており、標準が最新の技術的要件を反映していることを示しています。 この標準は、電力生成を主目的とする燃料電池システムに関連しており、熱回収テストや燃料消費テストの詳細な方法が記載されています。エネルギー効率と持続可能性を重視する現代のエネルギー市場において、この標準の関連性はますます高まっています。燃料電池技術が進化する中で、この標準は研究者や工業界において基準を設定し、品質向上に寄与する重要な役割を果たします。
SIST EN IEC 62282-3-201:2026 표준은 소형 고정 연료 전지 전력 시스템의 전기적, 열적 및 환경적 성능을 평가하기 위한 테스트 방법을 규정하고 있습니다. 이 표준은 10 kW 미만의 정격 전력 출력을 가진 시스템을 대상으로 하며, 그리드 연결 또는 독립 운전 모드에서 작동하는 시스템도 포함됩니다. 이러한 구체적인 범위를 통해 표준의 적용성이 명확히 정의되고 있습니다. 이 표준의 강점 중 하나는 다양한 연료 및 산화제를 사용할 수 있다는 점입니다. 가스 연료(천연가스, 액화 석유가스, 수소 등)와 액체 연료(항공유, 메탄올 등)를 모두 포용함으로써, 다양한 연료 전지 기술 및 응용 분야에의 유연성을 제공합니다. 또한, 실험실 조건에서 수행되는 테스트 방법을 제시하여, 결과의 재현성과 신뢰성을 높이는 데 기여합니다. 중요하게도, 이 문서는 시스템이 주로 전력을 생산하고 열을 활용할 수 있는 경우에만 적용됩니다. 따라서 열을 주된 목적에 두는 시스템은 이 표준의 범위를 벗어나, 연료 전지 기술에 대한 평가에서 보다 명확한 기준을 제공합니다. 2025년 개정판에 비해 본판에서는 여러 주요 기술적 변경 사항이 포함되어 있으며, 이는 준수해야 할 절차와 기준의 일관성을 강화하고, 기술적 진전을 반영합니다. 예를 들어, 측정 기구 및 최소한의 측정 체계 불확실성에 대한 수정은 보다 정확한 테스트 환경을 조성하기 위해 필요합니다. 결론적으로, SIST EN IEC 62282-3-201:2026 표준은 소형 연료 전지 전력 시스템에 대한 포괄적이고 체계적인 테스트 방안을 제공합니다. 이를 통해 업계 전반에 걸쳐 기술의 표준화와 신뢰성을 높이고, 지속 가능한 에너지 솔루션에의 기여를 가능하게 합니다.








Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...