SIST EN 50549-1:2019
(Main)Requirements for generating plants to be connected in parallel with distribution networks - Part 1: Connection to a LV distribution network - Generating plants up to and including Type B
Requirements for generating plants to be connected in parallel with distribution networks - Part 1: Connection to a LV distribution network - Generating plants up to and including Type B
These standards provide technical requirements for the connection of generating plants up to and including Type A (-1-1)/ Type B (-1-2) which can be operated in parallel with a public LV distribution network. They are intended to be used as a technical reference for connection agreements between DNOs and electricity producers and to demonstrate compliance with COMMISSION REGULATION (EU) 2016/631 (Requirements for Generators).
Anforderungen für zum Parallelbetrieb mit einem Verteilnetz vorgesehene Erzeugungsanlagen - Teil 1: Anschluss an das Niederspannungsverteilnetz bis einschließlich Typ B
Exigences relatives aux centrales électriques destinées à être raccordées en parallèle à des réseaux de distribution - Partie 1: Raccordement à un réseau de distribution BT - Centrales électriques jusqu’au Type B inclus
Zahteve za vzporedno vezavo generatorskih postrojev z razdelilnim omrežjem - 1. del: Vezava z nizkonapetostnim razdelilnim omrežjem - Generatorski postroji do vključno tipa B
Ti standardi podajajo tehnične zahteve za povezovanje generatorskih postrojev do vključno tipa A (-1-1)/tipa B (-1-2), ki jih je mogoče upravljati vzporedno z javnim nizkonapetostnim razdelilnim omrežjem. Namen njihove uporabe je tehnična referenca za dogovore o priključku med upravljavci razdelilnih omrežij in proizvajalci električne energije ter izkazovanje skladnosti z UREDBO KOMISIJE (EU) 2016/631 (Zahteve za generatorje).
General Information
Relations
Standards Content (Sample)
SLOVENSKI STANDARD
01-april-2019
Nadomešča:
SIST EN 50438:2014
SIST EN 50438:2014/IS1:2015
SIST-TS CLC/TS 50549-1:2015
Zahteve za vzporedno vezavo generatorskih postrojev z razdelilnim omrežjem - 1.
del: Vezava z nizkonapetostnim razdelilnim omrežjem - Generatorski postroji do
vključno tipa B
Requirements for generating plants to be connected in parallel with distribution networks
- Part 1: Connection to a LV distribution network - Generating plants up to and including
Type B
Anforderungen für zum Parallelbetrieb mit einem Verteilnetz vorgesehene
Erzeugungsanlagen - Teil 1: Anschluss an das Niederspannungsverteilnetz bis
einschließlich Typ B
Exigences relatives aux centrales électriques destinées à être raccordées en parallèle à
des réseaux de distribution - Partie 1: Raccordement à un réseau de distribution BT -
Centrales électriques jusqu’au Type B inclus
Ta slovenski standard je istoveten z: EN 50549-1:2019
ICS:
29.160.20 Generatorji Generators
29.240.01 Omrežja za prenos in Power transmission and
distribucijo električne energije distribution networks in
na splošno general
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
EUROPEAN STANDARD EN 50549-1
NORME EUROPÉENNE
EUROPÄISCHE NORM
February 2019
ICS 29.160.20 Supersedes CLC/TS 50549-1:2015, EN 50438:2013, EN
50438:2013/IS1:2015
English Version
Requirements for generating plants to be connected in parallel
with distribution networks - Part 1: Connection to a LV
distribution network - Generating plants up to and including Type
B
Exigences relatives aux centrales électriques destinées à Anforderungen für zum Parallelbetrieb mit einem Verteilnetz
être raccordées en parallèle à des réseaux de distribution - vorgesehene Erzeugungsanlagen - Teil 1: Anschluss an
Partie 1: Raccordement à un réseau de distribution BT - das Niederspannungsverteilnetz bis einschließlich Typ B
Centrales électriques jusqu'au Type B inclus
This European Standard was approved by CENELEC on 2018-08-09. CENELEC members are bound to comply with the CEN/CENELEC
Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.
Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC
Management Centre or to any CENELEC member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation
under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the
same status as the official versions.
CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic,
Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia,
Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden,
Switzerland, Turkey and the United Kingdom.
European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2019 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.
Ref. No. EN 50549-1:2019 E
Contents Page
European foreword . 4
Introduction. 5
1 Scope . 8
2 Normative references . 9
3 Terms and definitions . 9
3.1 General . 9
3.2 Plant, module and unit . 11
3.3 Power . 14
3.4 Voltage . 15
3.5 Circuit theory . 16
3.6 Protection . 18
3.7 Control . 22
4 Requirements on generating plants . 23
4.1 General . 23
4.2 Connection scheme . 24
4.3 Choice of switchgear . 24
4.3.1 General . 24
4.3.2 Interface switch . 24
4.4 Normal operating range . 25
4.4.1 General . 25
4.4.2 Operating frequency range . 25
4.4.3 Minimal requirement for active power delivery at underfrequency . 26
4.4.4 Continuous operating voltage range . 27
4.5 Immunity to disturbances . 27
4.5.1 General . 27
4.5.2 Rate of change of frequency (ROCOF) immunity . 27
4.5.3 Under-voltage ride through (UVRT) . 28
4.5.4 Over-voltage ride through (OVRT) . 29
4.6 Active response to frequency deviation . 30
4.6.1 Power response to overfrequency . 30
4.6.2 Power response to underfrequency. 33
4.7 Power response to voltage changes . 36
4.7.1 General . 36
4.7.2 Voltage support by reactive power . 36
4.7.3 Voltage related active power reduction . 41
4.7.4 Short circuit current requirements on generating plants . 41
4.8 EMC and power quality . 42
4.9 Interface protection . 43
4.9.1 General . 43
4.9.2 Void . 44
4.9.3 Requirements on voltage and frequency protection . 45
4.9.4 Means to detect island situation . 47
4.9.5 Digital input to the interface protection . 48
4.10 Connection and starting to generate electrical power. 48
4.10.1 General . 48
4.10.2 Automatic reconnection after tripping . 48
4.10.3 Starting to generate electrical power . 48
4.10.4 Synchronization . 49
4.11 Ceasing and reduction of active power on set point . 49
4.11.1 Ceasing active power . 49
4.11.2 Reduction of active power on set point . 49
4.12 Remote information exchange . 49
4.13 Requirements regarding single fault tolerance of interface protection system
and interface switch . 50
Annex A (informative) Interconnection guidance . 51
A.1 General . 51
A.2 Network integration . 51
A.3 Clusters of single-phase generating units . 52
Annex B (informative) Void . 53
Annex C (informative) Parameter Table . 54
Annex D (informative) List of national requirements applicable for generating plants . 59
Annex E (informative) Loss of Mains and overall power system security . 61
Annex F (informative) Examples of protection strategies . 62
F.1 Introduction . 62
F.1.1 General . 62
F.1.2 Generalities . 62
F.1.3 Detection of unwanted islands . 62
F.1.4 Problems with uncontrolled islanding in MV networks . 63
F.1.4.1 Safety . 63
F.1.4.2 Grid parameters . 63
F.1.4.3 Reclosing operations . 63
F.1.4.4 Protection of islands against overcurrents . 63
F.1.4.5 Protection against phase to earth faults . 63
F.2 Example strategy 1 . 64
F.3 Example strategy 2 . 67
Annex G (normative) Abbreviations . 69
Annex H (informative) Relationship between this European standard and the
COMMISSION REGULATION (EU) 2016/631 . 70
Bibliography . 71
European foreword
This document (EN 50549-1:2019) has been prepared by CLC/TC 8X “System aspects of electrical
energy supply”.
The following dates are fixed:
• latest date by which this document has to be (dop) 2019-08-01
implemented at national level by publication
of an identical national standard or by
endorsement
• latest date by which the national standards (dow) 2022-02-01
conflicting with this document have to
be withdrawn
This document supersedes EN 50438:2013 and CLC/TS 50549-1:2015.
This European Standard relates to both the RfG European Network Code and current technical market
needs. Its purpose is to give detailed description of functions to be implemented in products.
This European Standard is also intended to serve as a technical reference for the definition of national
requirements where the RfG European Network Code requirements allow flexible implementation. The
specified requirements are solely technical requirements; economic issues regarding, e.g. the bearing
of cost are not in the scope of this document.
CLC/TC 8X plans future standardization work in order to ensure the compatibility of this European
Standard (EN) with the evolution of the legal framework.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.
Introduction
Rationale for the content and structure of this document.
1. Foreword
This Explanatory Note explains the rationale behind the content and structure of prEN 50549-1 and
prEN 50549-2. Due to the unique relationship between COMMISSION REGULATION 2016/631 (RfG)
and the EN 50549 Series, and based on the comments received at the enquiry stage of prEN 50549-1
and prEN 50549-2, TC8X WG03 decided to draft this explanatory note in order to provide national
committees and the wider public with an understanding of these rationale.
2. Increased Scope of EN 50549 in relation to RfG
In the tradition of EN 50438, TC8X WG03 intended, in writing of prEN50549, to include all capabilities
of generating plants that are needed to operate these in parallel to distribution networks. This includes
issues necessary for a stable distribution network management as well as the management of the
interconnected system. As RfG is focused on the interconnected system, it is logical that, taking into
account further needs for distribution network management, further aspects are included.
3. Introduction of “Responsible party”
During the national implementation process of COMMISSION REGULATION (EU) 2016/631, different
types of responsible parties play a role in the refinement of the non-exhaustive requirements. In each
member country, the National Regulatory Authority approves this national implementation. Depending
on the national regulatory framework, this might result in a variety of documents: national laws,
decrees or regulations, technical specifications, or requirements of transmission and distribution
system operators. Therefore, as explained in the scope, EN 50549-1 and EN 50549-2 refer to the
“responsible party” where requirements have to be defined by an actor other than the DSO. However
when a generating plant is built and connected to the distribution network, typically the distribution
system operator provides the plant developer all the technical requirements to be fulfilled.
4. Use of terms
Terms and definitions are selected to achieve consistency with EN 60050, IEV (cf.
www.electropedia.org) and CENELEC terminology, recognizing that terms in COMMISSION
REGULATION (EU) 2016/631 may deviate.
5. Additional requirements for distribution system management
The following requirements are stated in EN 50549 for distribution system management reasons,
which might not be required in RfG or if required in RfG, are not required for type A. As Directive
714/2009 8(7) limits the scope of RfG to issues effecting the cross border trade of electricity,
requirements included solely for the need of distribution system management are considered beyond
the scope of RfG.
– Connection scheme and Coordination of switch gear,
– Voltage operating range,
– Reactive power capability and control modes,
– Voltage related active power reduction,
– Interface protection including the detection of island situations,
– Connection and reconnection to the grid,
– Generation curtailment,
– Remote information exchange,
6. Additional requirements for stability of the interconnected system
Additionally, requirements relevant for the stability of the interconnected systems are included in case
of over voltage ride through (OVRT) as this is not dealt with in RfG. Due to the long duration of RfG
development and the fast development of decentralised generation in Europe robustness to voltage
swells is considered to be of high importance, but apparently could not be included into RfG.
As electrical energy storage system (EESS), are excluded from the scope of RfG, but are included in
the scope of the EN 50549 Series, EN 50549 also includes the further requirement of active power
frequency response to under frequency (LFSM-U) to electrical energy storage systems. This
requirement is considered of great importance in view of the expected fast increase of electrical
energy storage for the next years and is considered not to affect the cost of electrical energy storage
systems if considered during their design.
7. Details on the operation of the LFSM-O
During the enquiry stage, some comments reported that certain details in the chapter regarding the
operation of the LFSM-O (e.g. intentional delay, operation with deactivation threshold) were violating
the RfG. These topics have been further evaluated consulting the European Stakeholder Committee
(ESC-GC) and TC8X WG03 could not conclude in the same way. The fact that these operations are
not foreseen in the RfG is considered not sufficient to state any violation. Therefore these details are
kept with additional information on their use.
8. Implementation of UVRT and LFSM-U to avoid legal conflict with RfG
Under Voltage Ride Through (UVRT) requirements are defined in RfG for modules type B, type C and
type D. There is no mentioning of this topic for type A modules.
Nevertheless UVRT is seen as an important requirement in some member states even for small
generation modules like type A.
From a legal point of view there are two contradicting opinions on whether it is allowed or forbidden to
require UVRT for type A modules.
– Opinion 1: It can be required because the topic is not dealt with for type A modules.
– Option 2: It cannot be required because the topic UVRT is dealt within the RfG. Not mentioning
UVRT for type A in RfG therefore means that it cannot be required for type A modules.
As long as there is no clarification on this legal issue Cenelec does not have the possibility to require
UVRT for type A modules. This is the reason why in EN 50549-1 and 50549-2 the UVRT
functionalities for type A generating plants are not defined as requirements (shall) but as a
recommendation (should).
This same explanation can be applied to the requirements regarding Limited Frequency Sensitive
Mode - Underfrequency (LFSM-U). In RfG, this LFSM-U is solely defined for type C and type D
modules. In EN50549 , LFSM-U is defined as a recommendation (should) for generating modules of
type A and type B. The sole exception is electrical energy storage systems having a requirement
(shall) but these systems are not within the scope of the RfG.
9. Annex H - Relationship between this European standard and the COMMISSION
REGULATION (EU) 2016/631.
Manufacturers of generating units and plants shall comply with all relevant EU Directives and
Regulations. For the specific function of connecting the generating plant with the electric system the
reference regulation is COMMISSION REGULATION (EU) 2016/631 (NC RfG).
Since the EN 50549-1 and -2 are covering all technical requirements for type A and type B generating
units, modules and plants, it is considered helpful to provide the information which clause of the
standard supports which article of the RfG in a structured informative annex within the standard.
For other EU Directives and Regulations (e.g. LVD, MD or GAR) it is a formal task given to CCMC to
include such an informative Annex ZZ based on a standardization request from the EU. It is finally
reviewed by the new approach consultant (NAC) for the relevant Directive or Regulation, prior to the
listing of the standard in the official journal of the EU (OJEU) providing then “presumption of
conformity”. This means that if a product is compliant with the standard, the Directive or Regulations is
fulfilled too.
CLC TC 8X is fully aware, that this official procedure is not included in the RfG. Therefore CLC TC 8X
WG3 drafted Annex H. In Annex H the relationship between the clauses and the articles is shown. It is
considered, that generating plants compliant with the clauses of the standards are also compliant with
the articles in the RfG. Of course, this does not provide “presumption of conformity” as a listed
standard in the OJEU would provide. Nevertheless it will be helpful for the industry when performing
the conformity assessment against RfG.
1 Scope
This document specifies the technical requirements for the protection functions and the operational
capabilities for generating plants, intended to operate in parallel with LV distribution networks.
For practical reasons this document refers to the responsible party where requirements have to be
defined by an actor other than the DSO e.g. TSO, member state, regulatory authorities according to
the legal framework. Typically the DSO will inform the producer about these requirements.
NOTE 1 This includes European network codes and their national implementation, as well as additional
national regulations.
NOTE 2 Additional national requirements especially for the connection to the distribution network and the
operation of the generating plant may apply.
The requirements of this European Standard apply, irrespective of the kind of energy source and
irrespective of the presence of loads in the producer’s network, to generating plants, generating
modules, electrical machinery and electronic equipment that meet all of the following conditions:
— converting any energy source into AC electricity;
— generating modules capacity of type B or smaller according to COMMISSION REGULATION (EU)
2016/631 while considering national implementation for the decision regarding power limits
between A and B types and B and C types;
— connected to and operated in parallel with an AC LV distribution network.
NOTE 3 Generating plants connected to a MV distribution network fall into the scope of EN 50549–2.
NOTE 4 Electrical energy storage systems (EESS) in meeting the conditions above are included
If generating modules of different type (A or B) are combined in one plant, different requirements apply
for the different modules based on the type of each module.
EXAMPLE: If a generating plant consists of multiple generating modules (see 3.2.1), according to
COMMISSION REGLUATION (EU) 2016/631 the situation might occur, that some generating modules
are of type A and some are of type B.
Unless specified otherwise by the DSO and the responsible party, generating plants connected to a
medium voltage distribution network with a maximum apparent power up to 150 kVA can comply with
this European Standard as alternative to the requirements of EN 50549-2. A different threshold may
be defined by the DSO and the responsible party.
This document recognizes the existence of specific technical requirements (e.g. grid codes) of the
DSO or another responsible party within a member state and these must be complied with.
Excluded from the scope are:
• the selection and evaluation of the point of connection;
• power system impact assessment e.g. assessment of effects on power quality, local voltage
increase, impact on line protections operation;
• connection assessment, the set of technical verifications made as part of the planning of the
connection;
• island operation of generating plants, both intentional and unintentional, where no part of the
distribution network is involved;
• four-quadrant rectifier of drives feeding breaking energy back into the distribution network for
limited duration with no internal source of primary energy;
• uninterruptible power supply with duration of parallel operation limited to 100 ms;
NOTE 5 Parallel operation due to maintenance of uninterruptible power supply units is not seen as part of
normal UPS operation and therefore not considered in this document.
• requirements for the safety of personnel as they are already adequately covered by existing
European Standards.
• the connection of a generating unit, module or plant into a DC network
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments)
applies.
EN 50549-2, Requirements for generating plants to be connected in parallel with distribution networks
- Part 2: Connection to a MV distribution network - Generating plants up to and including Type B
EN 60255-127, Measuring relays and protection equipment — Part 127: Functional requirements for
over/under voltage protection (IEC 60255-127)
EN 61000-4-30, Electromagnetic compatibility (EMC) — Part 4-30: Testing and measurement
techniques — Power quality measurement methods (IEC 61000-4-30)
HD 60364-1, Low-voltage electrical installations — Part 1: Fundamental principles, assessment of
general characteristics, definitions (IEC 60364-1)
HD 60364-5-551, Low-voltage electrical installations — Part 5-55: Selection and erection of electrical
equipment — Other equipment — Clause 551: Low-voltage generating sets (IEC 60364-5-551)
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
• IEC Electropedia: available at http://www.electropedia.org/
• ISO Online browsing platform: available at http://www.iso.org/obp
Note Terms and definitions are selected to achieve consistency with IEV (cf. www.electropedia.org) and
CENELEC terminology, recognizing that terms in COMMISSION REGULATION (EU) 2016/631 may deviate.
3.1 General
3.1.1
distribution network
AC electrical network, including closed distribution networks, for the distribution of electrical power
from and to third parties connected to it, to and from a transmission or another distribution network, for
which a DSO is responsible
Note 1 to entry: A distribution network does not include the producer’s network.
3.1.2
closed distribution network
system which distributes electricity within an industrial, commercial or shared services site, that is
geographically confined, and does not supply households customers (without excluding the option of a
small number of households served by the system that have an employment or similar associations
with the owner of the system)
Note 1 to entry: A closed distribution network will either be used to integrate the production processes of the
network users for specific or technical reasons or distribute electricity primarily to the operator of the closed
distribution network or his related undertakings.
[SOURCE: Directive 2009/72/EC, article 28, modified]
3.1.3
distribution system operator
DSO
natural or legal person responsible for the distribution of electrical power to final customers and for
operating, ensuring the maintenance of and, if necessary, developing the distribution network in a
given area
Note 1 to entry: As this document is applicable to distribution grids, DSO is used for relevant system operator
according to article 2 (13) of COMMISSION REGULATION 2016/631.
Note 2 to entry: In some countries, the distribution network operator (DNO) fulfils the role of the DSO.
3.1.4
transmission system operator
natural or legal person responsible for operating, ensuring the maintenance of and, if necessary,
developing the transmission system in a given area and, where applicable, its interconnections with
other power systems, and for ensuring the long-term ability of the power system to meet reasonable
demands for the transmission of electricity
3.1.5
responsible party
party, that according to the legal framework is responsible to define requirements or parameters
according to COMMISSION REGLUALTION 2016/631 e.g. TSO, member state, regulatory authority
3.1.6
low voltage (LV) distribution network
electric distribution network with a voltage whose nominal r.m.s. value is Un ≤ 1 kV
3.1.7
medium voltage (MV) distribution network
electric distribution network with a voltage whose nominal r.m.s. value is 1 kV < U ≤ 36 kV
n
Note 1 to entry: Because of existing network structures, the upper boundary of MV can be different in some
countries.
3.1.8
power system stability
capability of a power system to regain a steady state, characterized by the synchronous operation of
the generating plants after a disturbance
[SOURCE: IEV 603-03-01]
3.1.9
producer
natural or legal person who already has connected or is planning to connect an electricity generating
plant to a distribution network
3.1.10
producer’s network
AC electrical installations downstream from the point of connection operated by the producer for
internal distribution of electricity
Note 1 to entry: When the internal distribution network is identical to an electrical network of a customer having
his own generating plant, where one or more generating units are connected to this internal distribution network
behind a point of connection, then this network may be also referred as prosumer’s network.
3.1.11
downstream
direction in which the active power would flow if no generating units, connected to the distribution
network, were running
3.1.12
point of connection
POC
reference point on the electric power system where the user’s electrical facility is connected
Note 1 to entry: For the purpose of this standard, the electric power system is the distribution network.
[SOURCE: IEV 617-04-01 modified]
3.1.13
operating in parallel with the distribution network
situation where the generating plant is connected to a distribution network and operating
3.1.14
temporary operation in parallel with the distribution network
conditions in which the generating plant is connected during defined short periods to a distribution
network to maintain the continuity of the supply and to facilitate testing
3.1.15
nominal value
value of a quantity used to designate and identify a component, device, equipment, or system
Note to entry: The nominal value is generally a rounded value.
[SOURCE: IEV 151-16-09]
3.2 Plant, module and unit
3.2.1
generating module
either a generating unit of synchronous generating technology or the sum of all generating units of
non-synchronous generating technology connected to a common point of connection including all
elements needed to feed electric power to the distribution grid
Note 1 to entry: In some documents this can mean a power-generating module.
Note 2 to entry: Generating modules in the context of this document can be of type A or type B according to the
definition of COMMISSION REGULATION 2016/631, article 5.
NSGT: non-synchronous generating technology
NSGT NSGT SGT SGT
Unit Unit Unit Unit
SGT: synchronous generating technology
NSGT SGT
SGT
Module Module
Module
Plant
POC
Distribution Network
Figure 1 — Generating module at a common POC
3.2.2
generating plant
sum of generating modules connected at one point of connection, including auxiliaries and all
connection equipment
Note 1 to entry: In some documents this can mean a power-generating plant.
Note 2 to entry: This definition is intended to be used for verification of compliance to the technical requirements
of this standard. It may be different to the legal definition of a plant.
3.2.3
generating unit
smallest set of installations which can generate electrical energy running independently and which can
feed this energy into a distribution network
Note 1 to entry: In some documents this can mean a power-generating unit.
Note 2 to entry: For example, a combined cycle gas turbine (CCGT) consisting of a gas turbine and a steam
turbine or an installation of an internal combustion engine (ICE) followed by an organic rankine cycle (ORC)
machine are considered both as a single generating unit.
Note 3 to entry: If a generating unit is a combination of technologies leading to different requirements, this has to
be resolved case by case.
Note 4 to entry: A electrical energy storage EES operating in electricity generation mode and AC connected to the
distribution network is considered to be a generating unit.
3.2.4
micro-generating plant
generating plant with generating units having nominal currents in sum not exceeding 16 A per phase
3.2.5
micro-generating unit
generating unit with nominal currents up to and including 16 A per phase
3.2.6
synchronous generating technology
technology where a generating unit is based on a synchronous machine which is directly coupled to
an electric power system
3.2.7
non-synchronous generating technology
technology where a generating unit is connected non-synchronously to an electric power system
EXAMPLE induction machine (non-synchronously connected in COMMISSION REGULATION 2016/631),
converter based technology (connected through power electronics in COMMISSION REGULATION 2016/631)
3.2.8
cogeneration
combined heat and power
CHP
combined generation of electricity and heat by an energy conversion system and the concurrent use of
the electric and thermal energy from the conversion system
3.2.9
Linear Stirling engines
a Stirling engine whose prime mover performs a cyclic linear up and down movement through a
magnetic field to generate AC electric power
3.2.10
electrical energy storage system
EES system
EESS
grid-integrated installation with defined electrical boundaries, comprising of at least one EES, whose
purpose is to extract electrical energy from an electric power system, store this energy internally in
some manner and inject electrical energy into an electrical power system and which includes civil
engineering works, energy conversion equipment and related ancillary equipment.
Note 1 to entry: The EES system is controlled and coordinated to provide services to the electric power system
operators or to the electric power system users.
Note 2 to entry: In some cases, an EES system may require an additional energy source during its discharge,
providing more energy to the electric power system than the energy it stored.
[SOURCE: IEC 62933-1 ED1]
3.2.11
electrical energy storage
EES
installation able to absorb electrical energy, to store it for a certain amount of time and to release
electrical energy during which energy conversion processes may be included
EXAMPLE A device that absorbs AC electrical energy to produce hydrogen by electrolysis, stores the hydrogen,
and uses that gas to produce AC electrical energy is an EES.
Note 1 to entry: EES may be used also to indicate the activity of an apparatus described in the definition during
performing its own functionality.
[SOURCE: IEC 62933-1 ED1]
3.3 Power
3.3.1
P
active power
under periodic conditions, mean value, taken over one period T, of the instantaneous power p
T
P= ptd
∫
T
Note 1 to entry: Under sinusoidal conditions, the active power is the real part of the complex power S, thus P = Re
S.
Note 2 to entry: The coherent SI unit for active power is watt, W.
[SOURCE: IEV 131-11-42]
3.3.2
P
D
design active power
maximum AC active power output at an active factor of 0,9 or the active factor specified by the DSO or
the responsible party for a certain generating plant or generating technology
3.3.3
P
max
maximum active power
maximum continuous active power, measured in a 10 min average, which a generating unit or the sum
of all the generating units in a generating plant can produce, minus any loads associated solely with
facilitating the operation of that generating plant and not fed into the network as specified in the
connection agreement or as agreed between the DSO and the generating plant operator
3.3.5
P
M
momentary active power
actual AC active power output at a certain instant
3.3.6
P
A
available active power
maximum AC active power available from the primary energy source after power conversion subject to
the availability and magnitude of that primary energy source at the relevant time
Note 1 to entry: The available active power considers all constraints regarding e.g. the primary energy source or
the availability of a heat sink for CHP.
3.3.7
rated current
maximum continuous AC output current which a generating unit or generating plant is designed to
achieve under normal operating conditions
3.3.8
S
max
maximum apparent power
maximum AC apparent power output, measured in a 10 min average, that the generating unit or the
sum of all the generating units in a generating plant is designed to achieve under normal operating
conditions
3.3.9
primary energy source
non-electric energy source supplying an electric generating unit
Note 1 to entry: Examples of primary energy sources include natural gas, wind and solar energy. These sources
can be utilized, e.g. by gas turbines, wind turbines and photovoltaic cells.
3.4 Voltage
3.4.1
U
n
nominal voltage
voltage by which a supply network is designated or identified and to which certain operating
characteristics are referred
3.4.2
f
n
nominal frequency
frequency used to designate and identify equipment or a power system
Note 1 to entry: For the purpose of this standard, the nominal frequency f is 50 Hz.
n
[SOURCE: IEV 151-16-09, modified]
3.4.3
(Void)
3.4.4
reference voltage
value specified as the base on which residual voltage, thresholds and other values are expressed in
per unit or percentage terms
Note 1 to entry: For the purpose of this standard, the reference voltage is the nominal voltage of the distribution
network.
[SOURCE: EN 50160:2010, 3.18, modified]
3.4.5
voltage change
variation of the r.m.s. value of a voltage between two consecutive levels sustained for definite but
unspecified durations
[SOURCE: IEV 161-08-01, modified]
3.4.6
under-voltage ride through
UVRT
ability of a generating unit or generating plant to stay connected during voltage dips
Note 1 to entry: In some documents the expression low voltage ride through (LVRT) is used for the same concept.
3.4.7
over-voltage ride through
OVRT
ability of a generating unit or generating plant to stay connected during voltage swells
Note 1 to entry: In some documents the expression high voltage ride through (HVRT) is used for the same
concept.
3.5 Circuit theory
3.5.1
active factor
ratio of the active power to the apparent power for a two-terminal element or a two-terminal circuit
under sinusoidal conditions
Note 1 to entry: In a three phase system, this is referring to the positive sequence component of the fundamental.
Note 2 to entry: The active factor is equal to the cosine of the displacement angle.
[SOURCE: IEV 131-11-49, modified]
3.5.2
displacement angle
φ
under sinusoidal conditions, phase difference between the voltage applied to a linear two-terminal
element or two-terminal circuit and the electric current in the element or circuit
Note 1 to entry: In a three phase system, this is referring to the positive sequence component of the fundamental.
Note 2 to entry: The cosine of the displacement angle is the active factor.
[SOURCE: IEV 131-11-48, modified]
3.5.3
power factor
under periodic conditions, ratio of the absolute value of the active power P to the apparent power S:
P
λ=
S
Note 1 to entry: Under sinusoidal conditions, the power factor is the absolute value of the active factor.
[SOURCE: IEV 131-11-46]
3.5.4
fundamental components of a three-phase system
3.5.4.1
phasor
representation of a sinusoidal integral quantity by a complex quantity whose argument is equal to the
initial phase and whose modulus is equal to the root-mean-square value
Note 1 to entry: For a quantity a(t) = A √2 cos(ωt +Ө ) the phasor is A exp jӨ .
0 0
Note 2 to entry: The similar representation with the modulus equal to the amplitude is called “amplitude phasor”.
Note 3 to entry: A phasor can also be represented graphically.
[SOURCE: IEV 131-11-26, modified]
3.5.4.2
positive sequence component of the fundamental
for a three-phase system with phases L1, L2 and L3, the symmetrical sinusoidal three-phase set of
voltages or currents having frequency equal to the fundamental frequency and which is defined by the
following complex mathematical expression:
X X++aaX X
1 ( L1 L2 L3)
where
j2π/3
a = e is the 120 degree operator,
X , X and X are the complex expressions of the fundamental frequency phase quantities
L1 L2 L3
concerned, that is, current or voltage phasors
Note 1 to entry: In a balanced harmonic-free system, only positive sequence component of the fundamental
jθ j(θ+4 /3) j(θ+2 /3)
exists. For example, if phase voltage phasors are symmetrical UL1 = Ue , UL2 = Ue π and UL3 = Ue π
jθ j2 /3 j(θ+4 /3) j4 /3 j(θ+2 /3) jθ jθ jθ jθ
then U1 = (Ue + e π Ue π + e π Ue π )/3 = (Ue + Ue + Ue )/3 = Ue
[SOURCE: IEV 448-11-27]
3.5.4.3
negative sequence component of the fundamental
for a three-phase system with phases L1, L2 and L3, the symmetrical sinusoidal three-phase set of
voltages or currents having frequency equal to the fundamental frequency and which is defined by the
following complex mathematical expression:
X= X++aaXX
2 ( L1
...
SLOVENSKI STANDARD
01-april-2019
1DGRPHãþD
SIST EN 50438:2014
SIST EN 50438:2014/IS1:2015
SIST-TS CLC/TS 50549-1:2015
=DKWHYH]DY]SRUHGQRYH]DYRJHQHUDWRUVNLKSRVWURMHY]UD]GHOLOQLPRPUHåMHP
GHO9H]DYD]QL]NRQDSHWRVWQLPUD]GHOLOQLPRPUHåMHP*HQHUDWRUVNLSRVWURMLGR
YNOMXþQRWLSD$
Requirements for generating plants to be connected in parallel with distribution networks
- Part 1-1: Connection to a LV distribution network – Generating plants up to and
including Type A
Anforderungen für zum Parallelbetrieb mit einem Verteilnetz vorgesehene
Erzeugungsanlagen - Teil 1: Anschluss an das Niederspannungsverteilnetz bis
einschließlich Typ B
Exigences relatives aux centrales électriques destinées à être raccordées en parallèle à
des réseaux de distribution - Partie 1: Raccordement à un réseau de distribution BT -
Centrales électriques jusqu’au Type B inclus
Ta slovenski standard je istoveten z: EN 50549-1:2019
ICS:
29.160.20 Generatorji Generators
29.240.01 2PUHåMD]DSUHQRVLQ Power transmission and
GLVWULEXFLMRHOHNWULþQHHQHUJLMH distribution networks in
QDVSORãQR general
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
EUROPEAN STANDARD EN 50549-1
NORME EUROPÉENNE
EUROPÄISCHE NORM
February 2019
ICS 29.160.20 Supersedes CLC/TS 50549-1:2015, EN 50438:2013, EN
50438:2013/IS1:2015
English Version
Requirements for generating plants to be connected in parallel
with distribution networks - Part 1: Connection to a LV
distribution network - Generating plants up to and including Type
B
Exigences relatives aux centrales électriques destinées à Anforderungen für zum Parallelbetrieb mit einem Verteilnetz
être raccordées en parallèle à des réseaux de distribution - vorgesehene Erzeugungsanlagen - Teil 1: Anschluss an
Partie 1: Raccordement à un réseau de distribution BT - das Niederspannungsverteilnetz bis einschließlich Typ B
Centrales électriques jusqu'au Type B inclus
This European Standard was approved by CENELEC on 2018-08-09. CENELEC members are bound to comply with the CEN/CENELEC
Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.
Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC
Management Centre or to any CENELEC member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation
under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the
same status as the official versions.
CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic,
Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia,
Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden,
Switzerland, Turkey and the United Kingdom.
European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2019 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.
Ref. No. EN 50549-1:2019 E
Contents Page
European foreword . 4
Introduction. 5
1 Scope . 8
2 Normative references . 9
3 Terms and definitions . 9
3.1 General . 9
3.2 Plant, module and unit . 11
3.3 Power . 14
3.4 Voltage . 15
3.5 Circuit theory . 16
3.6 Protection . 18
3.7 Control . 22
4 Requirements on generating plants . 23
4.1 General . 23
4.2 Connection scheme . 24
4.3 Choice of switchgear . 24
4.3.1 General . 24
4.3.2 Interface switch . 24
4.4 Normal operating range . 25
4.4.1 General . 25
4.4.2 Operating frequency range . 25
4.4.3 Minimal requirement for active power delivery at underfrequency . 26
4.4.4 Continuous operating voltage range . 27
4.5 Immunity to disturbances . 27
4.5.1 General . 27
4.5.2 Rate of change of frequency (ROCOF) immunity . 27
4.5.3 Under-voltage ride through (UVRT) . 28
4.5.4 Over-voltage ride through (OVRT) . 29
4.6 Active response to frequency deviation . 30
4.6.1 Power response to overfrequency . 30
4.6.2 Power response to underfrequency. 33
4.7 Power response to voltage changes . 36
4.7.1 General . 36
4.7.2 Voltage support by reactive power . 36
4.7.3 Voltage related active power reduction . 41
4.7.4 Short circuit current requirements on generating plants . 41
4.8 EMC and power quality . 42
4.9 Interface protection . 43
4.9.1 General . 43
4.9.2 Void . 44
4.9.3 Requirements on voltage and frequency protection . 45
4.9.4 Means to detect island situation . 47
4.9.5 Digital input to the interface protection . 48
4.10 Connection and starting to generate electrical power. 48
4.10.1 General . 48
4.10.2 Automatic reconnection after tripping . 48
4.10.3 Starting to generate electrical power . 48
4.10.4 Synchronization . 49
4.11 Ceasing and reduction of active power on set point . 49
4.11.1 Ceasing active power . 49
4.11.2 Reduction of active power on set point . 49
4.12 Remote information exchange . 49
4.13 Requirements regarding single fault tolerance of interface protection system
and interface switch . 50
Annex A (informative) Interconnection guidance . 51
A.1 General . 51
A.2 Network integration . 51
A.3 Clusters of single-phase generating units . 52
Annex B (informative) Void . 53
Annex C (informative) Parameter Table . 54
Annex D (informative) List of national requirements applicable for generating plants . 59
Annex E (informative) Loss of Mains and overall power system security . 61
Annex F (informative) Examples of protection strategies . 62
F.1 Introduction . 62
F.1.1 General . 62
F.1.2 Generalities . 62
F.1.3 Detection of unwanted islands . 62
F.1.4 Problems with uncontrolled islanding in MV networks . 63
F.1.4.1 Safety . 63
F.1.4.2 Grid parameters . 63
F.1.4.3 Reclosing operations . 63
F.1.4.4 Protection of islands against overcurrents . 63
F.1.4.5 Protection against phase to earth faults . 63
F.2 Example strategy 1 . 64
F.3 Example strategy 2 . 67
Annex G (normative) Abbreviations . 69
Annex H (informative) Relationship between this European standard and the
COMMISSION REGULATION (EU) 2016/631 . 70
Bibliography . 71
European foreword
This document (EN 50549-1:2019) has been prepared by CLC/TC 8X “System aspects of electrical
energy supply”.
The following dates are fixed:
• latest date by which this document has to be (dop) 2019-08-01
implemented at national level by publication
of an identical national standard or by
endorsement
• latest date by which the national standards (dow) 2022-02-01
conflicting with this document have to
be withdrawn
This document supersedes EN 50438:2013 and CLC/TS 50549-1:2015.
This European Standard relates to both the RfG European Network Code and current technical market
needs. Its purpose is to give detailed description of functions to be implemented in products.
This European Standard is also intended to serve as a technical reference for the definition of national
requirements where the RfG European Network Code requirements allow flexible implementation. The
specified requirements are solely technical requirements; economic issues regarding, e.g. the bearing
of cost are not in the scope of this document.
CLC/TC 8X plans future standardization work in order to ensure the compatibility of this European
Standard (EN) with the evolution of the legal framework.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.
Introduction
Rationale for the content and structure of this document.
1. Foreword
This Explanatory Note explains the rationale behind the content and structure of prEN 50549-1 and
prEN 50549-2. Due to the unique relationship between COMMISSION REGULATION 2016/631 (RfG)
and the EN 50549 Series, and based on the comments received at the enquiry stage of prEN 50549-1
and prEN 50549-2, TC8X WG03 decided to draft this explanatory note in order to provide national
committees and the wider public with an understanding of these rationale.
2. Increased Scope of EN 50549 in relation to RfG
In the tradition of EN 50438, TC8X WG03 intended, in writing of prEN50549, to include all capabilities
of generating plants that are needed to operate these in parallel to distribution networks. This includes
issues necessary for a stable distribution network management as well as the management of the
interconnected system. As RfG is focused on the interconnected system, it is logical that, taking into
account further needs for distribution network management, further aspects are included.
3. Introduction of “Responsible party”
During the national implementation process of COMMISSION REGULATION (EU) 2016/631, different
types of responsible parties play a role in the refinement of the non-exhaustive requirements. In each
member country, the National Regulatory Authority approves this national implementation. Depending
on the national regulatory framework, this might result in a variety of documents: national laws,
decrees or regulations, technical specifications, or requirements of transmission and distribution
system operators. Therefore, as explained in the scope, EN 50549-1 and EN 50549-2 refer to the
“responsible party” where requirements have to be defined by an actor other than the DSO. However
when a generating plant is built and connected to the distribution network, typically the distribution
system operator provides the plant developer all the technical requirements to be fulfilled.
4. Use of terms
Terms and definitions are selected to achieve consistency with EN 60050, IEV (cf.
www.electropedia.org) and CENELEC terminology, recognizing that terms in COMMISSION
REGULATION (EU) 2016/631 may deviate.
5. Additional requirements for distribution system management
The following requirements are stated in EN 50549 for distribution system management reasons,
which might not be required in RfG or if required in RfG, are not required for type A. As Directive
714/2009 8(7) limits the scope of RfG to issues effecting the cross border trade of electricity,
requirements included solely for the need of distribution system management are considered beyond
the scope of RfG.
– Connection scheme and Coordination of switch gear,
– Voltage operating range,
– Reactive power capability and control modes,
– Voltage related active power reduction,
– Interface protection including the detection of island situations,
– Connection and reconnection to the grid,
– Generation curtailment,
– Remote information exchange,
6. Additional requirements for stability of the interconnected system
Additionally, requirements relevant for the stability of the interconnected systems are included in case
of over voltage ride through (OVRT) as this is not dealt with in RfG. Due to the long duration of RfG
development and the fast development of decentralised generation in Europe robustness to voltage
swells is considered to be of high importance, but apparently could not be included into RfG.
As electrical energy storage system (EESS), are excluded from the scope of RfG, but are included in
the scope of the EN 50549 Series, EN 50549 also includes the further requirement of active power
frequency response to under frequency (LFSM-U) to electrical energy storage systems. This
requirement is considered of great importance in view of the expected fast increase of electrical
energy storage for the next years and is considered not to affect the cost of electrical energy storage
systems if considered during their design.
7. Details on the operation of the LFSM-O
During the enquiry stage, some comments reported that certain details in the chapter regarding the
operation of the LFSM-O (e.g. intentional delay, operation with deactivation threshold) were violating
the RfG. These topics have been further evaluated consulting the European Stakeholder Committee
(ESC-GC) and TC8X WG03 could not conclude in the same way. The fact that these operations are
not foreseen in the RfG is considered not sufficient to state any violation. Therefore these details are
kept with additional information on their use.
8. Implementation of UVRT and LFSM-U to avoid legal conflict with RfG
Under Voltage Ride Through (UVRT) requirements are defined in RfG for modules type B, type C and
type D. There is no mentioning of this topic for type A modules.
Nevertheless UVRT is seen as an important requirement in some member states even for small
generation modules like type A.
From a legal point of view there are two contradicting opinions on whether it is allowed or forbidden to
require UVRT for type A modules.
– Opinion 1: It can be required because the topic is not dealt with for type A modules.
– Option 2: It cannot be required because the topic UVRT is dealt within the RfG. Not mentioning
UVRT for type A in RfG therefore means that it cannot be required for type A modules.
As long as there is no clarification on this legal issue Cenelec does not have the possibility to require
UVRT for type A modules. This is the reason why in EN 50549-1 and 50549-2 the UVRT
functionalities for type A generating plants are not defined as requirements (shall) but as a
recommendation (should).
This same explanation can be applied to the requirements regarding Limited Frequency Sensitive
Mode - Underfrequency (LFSM-U). In RfG, this LFSM-U is solely defined for type C and type D
modules. In EN50549 , LFSM-U is defined as a recommendation (should) for generating modules of
type A and type B. The sole exception is electrical energy storage systems having a requirement
(shall) but these systems are not within the scope of the RfG.
9. Annex H - Relationship between this European standard and the COMMISSION
REGULATION (EU) 2016/631.
Manufacturers of generating units and plants shall comply with all relevant EU Directives and
Regulations. For the specific function of connecting the generating plant with the electric system the
reference regulation is COMMISSION REGULATION (EU) 2016/631 (NC RfG).
Since the EN 50549-1 and -2 are covering all technical requirements for type A and type B generating
units, modules and plants, it is considered helpful to provide the information which clause of the
standard supports which article of the RfG in a structured informative annex within the standard.
For other EU Directives and Regulations (e.g. LVD, MD or GAR) it is a formal task given to CCMC to
include such an informative Annex ZZ based on a standardization request from the EU. It is finally
reviewed by the new approach consultant (NAC) for the relevant Directive or Regulation, prior to the
listing of the standard in the official journal of the EU (OJEU) providing then “presumption of
conformity”. This means that if a product is compliant with the standard, the Directive or Regulations is
fulfilled too.
CLC TC 8X is fully aware, that this official procedure is not included in the RfG. Therefore CLC TC 8X
WG3 drafted Annex H. In Annex H the relationship between the clauses and the articles is shown. It is
considered, that generating plants compliant with the clauses of the standards are also compliant with
the articles in the RfG. Of course, this does not provide “presumption of conformity” as a listed
standard in the OJEU would provide. Nevertheless it will be helpful for the industry when performing
the conformity assessment against RfG.
1 Scope
This document specifies the technical requirements for the protection functions and the operational
capabilities for generating plants, intended to operate in parallel with LV distribution networks.
For practical reasons this document refers to the responsible party where requirements have to be
defined by an actor other than the DSO e.g. TSO, member state, regulatory authorities according to
the legal framework. Typically the DSO will inform the producer about these requirements.
NOTE 1 This includes European network codes and their national implementation, as well as additional
national regulations.
NOTE 2 Additional national requirements especially for the connection to the distribution network and the
operation of the generating plant may apply.
The requirements of this European Standard apply, irrespective of the kind of energy source and
irrespective of the presence of loads in the producer’s network, to generating plants, generating
modules, electrical machinery and electronic equipment that meet all of the following conditions:
— converting any energy source into AC electricity;
— generating modules capacity of type B or smaller according to COMMISSION REGULATION (EU)
2016/631 while considering national implementation for the decision regarding power limits
between A and B types and B and C types;
— connected to and operated in parallel with an AC LV distribution network.
NOTE 3 Generating plants connected to a MV distribution network fall into the scope of EN 50549–2.
NOTE 4 Electrical energy storage systems (EESS) in meeting the conditions above are included
If generating modules of different type (A or B) are combined in one plant, different requirements apply
for the different modules based on the type of each module.
EXAMPLE: If a generating plant consists of multiple generating modules (see 3.2.1), according to
COMMISSION REGLUATION (EU) 2016/631 the situation might occur, that some generating modules
are of type A and some are of type B.
Unless specified otherwise by the DSO and the responsible party, generating plants connected to a
medium voltage distribution network with a maximum apparent power up to 150 kVA can comply with
this European Standard as alternative to the requirements of EN 50549-2. A different threshold may
be defined by the DSO and the responsible party.
This document recognizes the existence of specific technical requirements (e.g. grid codes) of the
DSO or another responsible party within a member state and these must be complied with.
Excluded from the scope are:
• the selection and evaluation of the point of connection;
• power system impact assessment e.g. assessment of effects on power quality, local voltage
increase, impact on line protections operation;
• connection assessment, the set of technical verifications made as part of the planning of the
connection;
• island operation of generating plants, both intentional and unintentional, where no part of the
distribution network is involved;
• four-quadrant rectifier of drives feeding breaking energy back into the distribution network for
limited duration with no internal source of primary energy;
• uninterruptible power supply with duration of parallel operation limited to 100 ms;
NOTE 5 Parallel operation due to maintenance of uninterruptible power supply units is not seen as part of
normal UPS operation and therefore not considered in this document.
• requirements for the safety of personnel as they are already adequately covered by existing
European Standards.
• the connection of a generating unit, module or plant into a DC network
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments)
applies.
EN 50549-2, Requirements for generating plants to be connected in parallel with distribution networks
- Part 2: Connection to a MV distribution network - Generating plants up to and including Type B
EN 60255-127, Measuring relays and protection equipment — Part 127: Functional requirements for
over/under voltage protection (IEC 60255-127)
EN 61000-4-30, Electromagnetic compatibility (EMC) — Part 4-30: Testing and measurement
techniques — Power quality measurement methods (IEC 61000-4-30)
HD 60364-1, Low-voltage electrical installations — Part 1: Fundamental principles, assessment of
general characteristics, definitions (IEC 60364-1)
HD 60364-5-551, Low-voltage electrical installations — Part 5-55: Selection and erection of electrical
equipment — Other equipment — Clause 551: Low-voltage generating sets (IEC 60364-5-551)
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
• IEC Electropedia: available at http://www.electropedia.org/
• ISO Online browsing platform: available at http://www.iso.org/obp
Note Terms and definitions are selected to achieve consistency with IEV (cf. www.electropedia.org) and
CENELEC terminology, recognizing that terms in COMMISSION REGULATION (EU) 2016/631 may deviate.
3.1 General
3.1.1
distribution network
AC electrical network, including closed distribution networks, for the distribution of electrical power
from and to third parties connected to it, to and from a transmission or another distribution network, for
which a DSO is responsible
Note 1 to entry: A distribution network does not include the producer’s network.
3.1.2
closed distribution network
system which distributes electricity within an industrial, commercial or shared services site, that is
geographically confined, and does not supply households customers (without excluding the option of a
small number of households served by the system that have an employment or similar associations
with the owner of the system)
Note 1 to entry: A closed distribution network will either be used to integrate the production processes of the
network users for specific or technical reasons or distribute electricity primarily to the operator of the closed
distribution network or his related undertakings.
[SOURCE: Directive 2009/72/EC, article 28, modified]
3.1.3
distribution system operator
DSO
natural or legal person responsible for the distribution of electrical power to final customers and for
operating, ensuring the maintenance of and, if necessary, developing the distribution network in a
given area
Note 1 to entry: As this document is applicable to distribution grids, DSO is used for relevant system operator
according to article 2 (13) of COMMISSION REGULATION 2016/631.
Note 2 to entry: In some countries, the distribution network operator (DNO) fulfils the role of the DSO.
3.1.4
transmission system operator
natural or legal person responsible for operating, ensuring the maintenance of and, if necessary,
developing the transmission system in a given area and, where applicable, its interconnections with
other power systems, and for ensuring the long-term ability of the power system to meet reasonable
demands for the transmission of electricity
3.1.5
responsible party
party, that according to the legal framework is responsible to define requirements or parameters
according to COMMISSION REGLUALTION 2016/631 e.g. TSO, member state, regulatory authority
3.1.6
low voltage (LV) distribution network
electric distribution network with a voltage whose nominal r.m.s. value is Un ≤ 1 kV
3.1.7
medium voltage (MV) distribution network
electric distribution network with a voltage whose nominal r.m.s. value is 1 kV < U ≤ 36 kV
n
Note 1 to entry: Because of existing network structures, the upper boundary of MV can be different in some
countries.
3.1.8
power system stability
capability of a power system to regain a steady state, characterized by the synchronous operation of
the generating plants after a disturbance
[SOURCE: IEV 603-03-01]
3.1.9
producer
natural or legal person who already has connected or is planning to connect an electricity generating
plant to a distribution network
3.1.10
producer’s network
AC electrical installations downstream from the point of connection operated by the producer for
internal distribution of electricity
Note 1 to entry: When the internal distribution network is identical to an electrical network of a customer having
his own generating plant, where one or more generating units are connected to this internal distribution network
behind a point of connection, then this network may be also referred as prosumer’s network.
3.1.11
downstream
direction in which the active power would flow if no generating units, connected to the distribution
network, were running
3.1.12
point of connection
POC
reference point on the electric power system where the user’s electrical facility is connected
Note 1 to entry: For the purpose of this standard, the electric power system is the distribution network.
[SOURCE: IEV 617-04-01 modified]
3.1.13
operating in parallel with the distribution network
situation where the generating plant is connected to a distribution network and operating
3.1.14
temporary operation in parallel with the distribution network
conditions in which the generating plant is connected during defined short periods to a distribution
network to maintain the continuity of the supply and to facilitate testing
3.1.15
nominal value
value of a quantity used to designate and identify a component, device, equipment, or system
Note to entry: The nominal value is generally a rounded value.
[SOURCE: IEV 151-16-09]
3.2 Plant, module and unit
3.2.1
generating module
either a generating unit of synchronous generating technology or the sum of all generating units of
non-synchronous generating technology connected to a common point of connection including all
elements needed to feed electric power to the distribution grid
Note 1 to entry: In some documents this can mean a power-generating module.
Note 2 to entry: Generating modules in the context of this document can be of type A or type B according to the
definition of COMMISSION REGULATION 2016/631, article 5.
NSGT: non-synchronous generating technology
NSGT NSGT SGT SGT
Unit Unit Unit Unit
SGT: synchronous generating technology
NSGT SGT
SGT
Module Module
Module
Plant
POC
Distribution Network
Figure 1 — Generating module at a common POC
3.2.2
generating plant
sum of generating modules connected at one point of connection, including auxiliaries and all
connection equipment
Note 1 to entry: In some documents this can mean a power-generating plant.
Note 2 to entry: This definition is intended to be used for verification of compliance to the technical requirements
of this standard. It may be different to the legal definition of a plant.
3.2.3
generating unit
smallest set of installations which can generate electrical energy running independently and which can
feed this energy into a distribution network
Note 1 to entry: In some documents this can mean a power-generating unit.
Note 2 to entry: For example, a combined cycle gas turbine (CCGT) consisting of a gas turbine and a steam
turbine or an installation of an internal combustion engine (ICE) followed by an organic rankine cycle (ORC)
machine are considered both as a single generating unit.
Note 3 to entry: If a generating unit is a combination of technologies leading to different requirements, this has to
be resolved case by case.
Note 4 to entry: A electrical energy storage EES operating in electricity generation mode and AC connected to the
distribution network is considered to be a generating unit.
3.2.4
micro-generating plant
generating plant with generating units having nominal currents in sum not exceeding 16 A per phase
3.2.5
micro-generating unit
generating unit with nominal currents up to and including 16 A per phase
3.2.6
synchronous generating technology
technology where a generating unit is based on a synchronous machine which is directly coupled to
an electric power system
3.2.7
non-synchronous generating technology
technology where a generating unit is connected non-synchronously to an electric power system
EXAMPLE induction machine (non-synchronously connected in COMMISSION REGULATION 2016/631),
converter based technology (connected through power electronics in COMMISSION REGULATION 2016/631)
3.2.8
cogeneration
combined heat and power
CHP
combined generation of electricity and heat by an energy conversion system and the concurrent use of
the electric and thermal energy from the conversion system
3.2.9
Linear Stirling engines
a Stirling engine whose prime mover performs a cyclic linear up and down movement through a
magnetic field to generate AC electric power
3.2.10
electrical energy storage system
EES system
EESS
grid-integrated installation with defined electrical boundaries, comprising of at least one EES, whose
purpose is to extract electrical energy from an electric power system, store this energy internally in
some manner and inject electrical energy into an electrical power system and which includes civil
engineering works, energy conversion equipment and related ancillary equipment.
Note 1 to entry: The EES system is controlled and coordinated to provide services to the electric power system
operators or to the electric power system users.
Note 2 to entry: In some cases, an EES system may require an additional energy source during its discharge,
providing more energy to the electric power system than the energy it stored.
[SOURCE: IEC 62933-1 ED1]
3.2.11
electrical energy storage
EES
installation able to absorb electrical energy, to store it for a certain amount of time and to release
electrical energy during which energy conversion processes may be included
EXAMPLE A device that absorbs AC electrical energy to produce hydrogen by electrolysis, stores the hydrogen,
and uses that gas to produce AC electrical energy is an EES.
Note 1 to entry: EES may be used also to indicate the activity of an apparatus described in the definition during
performing its own functionality.
[SOURCE: IEC 62933-1 ED1]
3.3 Power
3.3.1
P
active power
under periodic conditions, mean value, taken over one period T, of the instantaneous power p
T
P= ptd
∫
T
Note 1 to entry: Under sinusoidal conditions, the active power is the real part of the complex power S, thus P = Re
S.
Note 2 to entry: The coherent SI unit for active power is watt, W.
[SOURCE: IEV 131-11-42]
3.3.2
P
D
design active power
maximum AC active power output at an active factor of 0,9 or the active factor specified by the DSO or
the responsible party for a certain generating plant or generating technology
3.3.3
P
max
maximum active power
maximum continuous active power, measured in a 10 min average, which a generating unit or the sum
of all the generating units in a generating plant can produce, minus any loads associated solely with
facilitating the operation of that generating plant and not fed into the network as specified in the
connection agreement or as agreed between the DSO and the generating plant operator
3.3.5
P
M
momentary active power
actual AC active power output at a certain instant
3.3.6
P
A
available active power
maximum AC active power available from the primary energy source after power conversion subject to
the availability and magnitude of that primary energy source at the relevant time
Note 1 to entry: The available active power considers all constraints regarding e.g. the primary energy source or
the availability of a heat sink for CHP.
3.3.7
rated current
maximum continuous AC output current which a generating unit or generating plant is designed to
achieve under normal operating conditions
3.3.8
S
max
maximum apparent power
maximum AC apparent power output, measured in a 10 min average, that the generating unit or the
sum of all the generating units in a generating plant is designed to achieve under normal operating
conditions
3.3.9
primary energy source
non-electric energy source supplying an electric generating unit
Note 1 to entry: Examples of primary energy sources include natural gas, wind and solar energy. These sources
can be utilized, e.g. by gas turbines, wind turbines and photovoltaic cells.
3.4 Voltage
3.4.1
U
n
nominal voltage
voltage by which a supply network is designated or identified and to which certain operating
characteristics are referred
3.4.2
f
n
nominal frequency
frequency used to designate and identify equipment or a power system
Note 1 to entry: For the purpose of this standard, the nominal frequency f is 50 Hz.
n
[SOURCE: IEV 151-16-09, modified]
3.4.3
(Void)
3.4.4
reference voltage
value specified as the base on which residual voltage, thresholds and other values are expressed in
per unit or percentage terms
Note 1 to entry: For the purpose of this standard, the reference voltage is the nominal voltage of the distribution
network.
[SOURCE: EN 50160:2010, 3.18, modified]
3.4.5
voltage change
variation of the r.m.s. value of a voltage between two consecutive levels sustained for definite but
unspecified durations
[SOURCE: IEV 161-08-01, modified]
3.4.6
under-voltage ride through
UVRT
ability of a generating unit or generating plant to stay connected during voltage dips
Note 1 to entry: In some documents the expression low voltage ride through (LVRT) is used for the same concept.
3.4.7
over-voltage ride through
OVRT
ability of a generating unit or generating plant to stay connected during voltage swells
Note 1 to entry: In some documents the expression high voltage ride through (HVRT) is used for the same
concept.
3.5 Circuit theory
3.5.1
active factor
ratio of the active power to the apparent power for a two-terminal element or a two-terminal circuit
under sinusoidal conditions
Note 1 to entry: In a three phase system, this is referring to the positive sequence component of the fundamental.
Note 2 to entry: The active factor is equal to the cosine of the displacement angle.
[SOURCE: IEV 131-11-49, modified]
3.5.2
displacement angle
φ
under sinusoidal conditions, phase difference between the voltage applied to a linear two-terminal
element or two-terminal circuit and the electric current in the element or circuit
Note 1 to entry: In a three phase system, this is referring to the positive sequence component of the fundamental.
Note 2 to entry: The cosine of the displacement angle is the active factor.
[SOURCE: IEV 131-11-48, modified]
3.5.3
power factor
under periodic conditions, ratio of the absolute value of the active power P to the apparent power S:
P
λ=
S
Note 1 to entry: Under sinusoidal conditions, the power factor is the absolute value of the active factor.
[SOURCE: IEV 131-11-46]
3.5.4
fundamental components of a three-phase system
3.5.4.1
phasor
representation of a sinusoidal integral quantity by a complex quantity whose argument is equal to the
initial phase and whose modulus is equal to the root-mean-square value
Note 1 to entry: For a quantity a(t) = A √2 cos(ωt +Ө ) the phasor is A exp jӨ .
0 0
Note 2 to entry: The similar representation with the modulus equal to the amplitude is called “amplitude phasor”.
Note 3 to entry: A phasor can also be represented graphically.
[SOURCE: IEV 131-11-26, modified]
3.5.4.2
positive sequence component of the fundamental
for a three-phase system with phases L1, L2 and L3, the symmetrical sinusoidal three-phase set of
voltages or currents having frequency equal to the fundamental frequency and which is defined by the
following complex mathematical expression:
X X++aaX X
1 ( L1 L2 L3)
where
j2π/3
a = e is the 120 degree operator,
X , X and X are the complex expressions of the fundamental frequency phase quantities
L1 L2 L3
concerned, that is, current or voltage phasors
Note 1 to entry: In a balanced harmonic-free system, only positive sequence component of the fundamental
jθ j(θ+4 /3) j(θ+2 /3)
exists. For example, if phase voltage phasors are symmetrical UL1 = Ue , UL2 = Ue π and UL3 = Ue π
jθ j2 /3 j(θ+4 /3) j4 /3 j(θ+2 /3) jθ jθ jθ jθ
then U1 = (Ue + e π Ue π + e π Ue π )/3 = (Ue + Ue + Ue )/3 = Ue
[SOURCE: IEV 448-11-27]
3.5.4.3
negative sequence component of the fundamental
for a three-phase system with phases L1, L2 and L3, the symmetrical sinusoidal three-phase set of
voltages or currents having frequency equal to the fundamental frequency and which is defined by the
following complex mathematical e
...
S L O V E N S K I SIST EN 50549-1
S T A N D A R D april 2019
Zahteve za vzporedno vezavo generatorskih postrojev z razdelilnim
omrežjem – 1. del: Vezava z nizkonapetostnim razdelilnim omrežjem –
Generatorski postroji do vključno tipa B
Requirements for generating plants to be connected in parallel with distribution
networks – Part 1: Connection to a LV distribution network – Generating plants up
to and including Type B
Exigences relatives aux centrales électriques destinées à être raccordées en
parallèle à des réseaux de distribution – Partie 1: Raccordement à un réseau de
distribution BT – Centrales électriques jusqu'au Type B inclus
Anforderungen für zum Parallelbetrieb mit einem Verteilnetz vorgesehene
Erzeugungsanlagen – Teil 1: Anschluss an das Niederspannungsverteilnetz bis
einschließlich Typ B
Referenčna oznaka
ICS 22.160.20; 29.240.01 SIST EN 50549-1:2019 (sl)
Nadaljevanje na straneh II do III in od 1 do 72
2022-12. Slovenski inštitut za standardizacijo. Razmnoževanje ali kopiranje celote ali delov tega dokumenta ni dovoljeno.
SIST EN 50549-1 : 2019
NACIONALNI UVOD
Standard SIST EN 50549-1 (sl), Zahteve za vzporedno vezavo generatorskih postrojev z razdelilnim
omrežjem – 1. del: Vezava z nizkonapetostnim razdelilnim omrežjem – Generatorski postroji do vključno
tipa B, 2019, ima status slovenskega standarda in je istoveten evropskemu standardu EN 50549-1 (en),
Requirements for generating plants to be connected in parallel with distribution networks – Part 1:
Connection to a LV distribution network – Generating plants up to and including Type B, 2019.
Ta standard nadomešča SIST-TS CLC/TS 50549-1:2015.
NACIONALNI PREDGOVOR
Evropski standard EN 50549-1:2019 je pripravil tehnični odbor Evropskega komiteja za standardizacijo
v elektrotehniki CLC/TC 8X Sistemski vidiki oskrbe z električno energijo.
Slovenski standard SIST EN 50549-1:2019 je prevod evropskega standarda EN 50549-1:2019. V
primeru spora glede besedila slovenskega prevoda v tem standardu je odločilen izvirni evropski
standard v angleškem jeziku. Slovensko izdajo standarda je pripravil tehnični odbor SIST/NTF Oskrba
z električno energijo.
Odločitev za privzem tega standarda je v marcu 2019 sprejel tehnični odbor SIST/TC NTF Oskrba z
električno energijo.
ZVEZE S STANDARDI
S privzemom tega evropskega standarda veljajo za omejeni namen referenčnih standardov vsi
standardi, navedeni v izvirniku, razen standarda, ki je že sprejet v nacionalno standardizacijo:
SIST EN 50549-2 Zahteve za vzporedno vezavo generatorskih postrojev z razdelilnim omrežjem
– 2. del: Vezava s srednjenapetostnim razdelilnim omrežjem do vključno tipa
B
SIST EN 60255-127 Merilni releji in zaščitna oprema - 127. del: Funkcijske zahteve za pre- in
podnapetostno zaščito (IEC 60255-127)
SIST EN 61000-4-30 Elektromagnetna združljivost (EMC) - 4-30. del: Preskusne in merilne tehnike
- Metode merjenja kakovosti napetosti (IEC 61000-4-30)
SIST HD 60364-1 Nizkonapetostne električne inštalacije - 1. del: Temeljna načela, ocena
splošnih karakteristik, definicije
SIST HD 60364-5-551 Nizkonapetostne električne inštalacije - 5-55. del: Izbira in namestitev
električne opreme - Druga oprema - 551. točka: Nizkonapetostni generatorji
OSNOVA ZA IZDAJO STANDARDA
– privzem standarda EN 50549-1:2019
PREDHODNA IZDAJA
– SIST-TS CLC/TS 50549-1:2015, Zahteve za priklop generatorjev za toke nad 16 A na fazo – 1. del:
Priklop na nizkonapetostni distribucijski sistem
OPOMBE
– Povsod, kjer se v besedilu standarda uporablja izraz “evropski standard”, v SIST EN 50549-1:2019
to pomeni “slovenski standard”.
– Nacionalni uvod in nacionalni predgovor nista sestavni del standarda.
II
SIST EN 50549-1 : 2019
– Ta nacionalni dokument je istoveten EN 50549-1:2019 in je objavljen z dovoljenjem
CEN-CENELEC
Upravni center
Rue de la Science 23
B-1040 Bruselj
This national document is identical with EN 50549-1:2019 and is published with the permission of
CEN-CENELEC
Management Centre
Rue de la Science
B-1040 Brussels
III
SIST EN 50549-1 : 2019
(prazna stran)
IV
EVROPSKI STANDARD EN 50549-1
EUROPEAN STANDARD
NORME EUROPÉENNE
februar 2019
EUROPÄISCHE NORM
ICS 29.160.20 Nadomešča CLC/TS 50549-1:2015, EN 50438:2013,
EN 50438:2013/IS1:2015
Slovenska izdaja
Zahteve za vzporedno vezavo generatorskih postrojev z razdelilnim
omrežjem – 1. del: Vezava z nizkonapetostnim razdelilnim omrežjem –
Generatorski postroji do vključno tipa B
Requirements for generating Exigences relatives aux Anforderungen für zum
plants to be connected in centrales électriques destinées Parallelbetrieb mit einem
parallel with distribution à être raccordées en parallèle à Verteilnetz vorgesehene
networks – Part 1: Connection des réseaux de distribution – Erzeugungsanlagen –
to a LV distribution network – Partie 1: Raccordement à un Teil 1: Anschluss an das
Generating plants up to and réseau de distribution BT – Niederspannungsverteilnetz bis
including Type B Centrales électriques jusqu'au einschließlich Typ B
Type B inclus
Ta evropski standard je CENELEC sprejel 9. avgusta 2018. Člani CENELEC morajo izpolnjevati
notranje predpise CEN/CENELEC, s katerimi so predpisani pogoji za privzem tega evropskega
standarda na nacionalno raven brez kakršnihkoli sprememb.
Najnovejši seznami teh nacionalnih standardov z njihovimi bibliografskimi podatki se na zahtevo lahko
dobijo pri Upravnem centru CEN-CENELEC ali kateremkoli članu CENELEC.
Ta evropski standard obstaja v treh uradnih izdajah (angleški, francoski in nemški). Izdaje v drugih
jezikih, ki jih člani CENELEC na lastno odgovornost prevedejo in izdajo ter prijavijo pri Upravnem centru
CEN-CENELEC, veljajo kot uradne izdaje.
Člani CENELEC so nacionalni elektrotehniški komiteji Avstrije, Belgije, Bolgarije, Cipra, Češke
republike, Danske, Estonije, Finske, Francije, Hrvaške, Grčije, Irske, Islandije, Italije, Latvije, Litve,
Luksemburga, Malte, Nekdanje jugoslovanske republike Makedonije, Madžarske, Nemčije,
Nizozemske, Norveške, Poljske, Portugalske, Romunije, Slovaške, Slovenije, Srbije, Španije, Švedske,
Švice, Turčije in Združenega kraljestva.
CENELEC
Evropski komite za standardizacijo v elektrotehniki
European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung
Upravni center CEN-CENELEC: Rue de la Science 23, B-1000 Brussels
© 2019 CENELEC Vse pravice do izkoriščanja v kakršnikoli obliki in na kakršenkoli Ref. oznaka EN 50549-1:2019 E
način imajo nacionalni člani CENELEC.
SIST EN 50549-1 : 2019
VSEBINA Stran
Evropski predgovor . 4
Uvod . 5
1 Področje uporabe . 8
2 Zveze s standardi . 9
3 Izrazi in definicije . 9
3.1 Splošno . 9
3.2 Postroj, modul in enota .11
3.3 Moč .13
3.4 Napetost .14
3.5 Teorija vezij .15
3.6 Zaščita .17
3.7 Krmiljenje .21
3.8 Toleranca posamezne okvare .22
3.9 Istovzročne odpovedi, odpovedi s skupnim vzrokom .23
4 Zahteve za proizvodne postroje .23
4.1 Splošno .23
4.2 Shema priključitve .24
4.3 Izbira stikalne naprave .24
4.3.1 Splošno .24
4.3.2 Vmesniško stikalo .24
4.4 Normalno območje delovanja .25
4.4.1 Splošno .25
4.4.2 Območje obratovalnih frekvenc .25
4.4.3 Minimalne zahteve za dobavo delovne energije pri podfrekvenci .25
4.4.4 Območje neprekinjene obratovalne napetosti .26
4.5 Odpornost proti motnjam .27
4.5.1 Splošno .27
4.5.2 Stopnja odpornosti proti spremembi frekvence (ROCOF) .27
4.5.3 Podnapetostno obratovanje (UVRT) .27
4.5.4 Prenapetostno obratovanje (OVRT) .29
4.6 Aktivni odziv na odstopanje frekvence .30
4.6.1 Odziv električne moči na nadfrekvenco .30
4.6.2 Odziv električne moči na podfrekvenco .33
4.7 Odziv električne moči na spremembe napetosti .36
4.7.1 Splošno .36
4.7.2 Napetostna podpora z jalovo močjo .36
4.7.3 Zmanjšanje delovne moči, povezano z napetostjo .41
4.7.4 Zahteve glede toka kratkega stika v proizvodnih postrojih .41
4.8 EMC in kakovost električne energije .42
SIST EN 50549-1 : 2019
4.9 Vmesniška zaščita .43
4.9.1 Splošno .43
4.9.2 Prazno .45
4.9.3 Zahteve za napetostno in frekvenčno zaščito .45
4.9.4 Sredstva za odkrivanje otočenja .47
4.9.5 Digitalni vhod na vmesniški zaščiti .48
4.10 Priključitev in začetek proizvodnje električne energije .48
4.10.1 Splošno .48
4.10.2 Avtomatski ponovni vklop po izklopu .48
4.10.3 Začetek proizvodnje električne energije .49
4.10.4 Sinhronizacija .49
4.11 Prekinitev in zmanjšanje delovne moči na nastavitveni točki .50
4.11.1 Prekinitev delovne moči .50
4.11.2 Zmanjšanje delovne moči na nastavitveni točki .50
4.12 Izmenjava informacij na daljavo .50
4.13 Zahteve za toleranco posamezne okvare vmesniškega zaščitnega sistema in
vmesniškega stikala .51
Dodatek A (informativni): Navodila za medsebojne povezave .52
A.1 Splošno .52
A.2 Omrežna integriteta .52
A.3 Skupine enofaznih proizvodnih enot .53
Dodatek B (informativni): Prazno .54
Dodatek C (informativni): Preglednica parametrov .55
Dodatek D (informativni): Seznam nacionalnih zahtev, ki veljajo za proizvodne postroje .60
Dodatek E (informativni): Izpad omrežja in splošna varnost elektroenergetskega sistema .62
Dodatek F (informativni): Primeri strategij zaščite .63
F.1 Uvod .63
F.1.1 Splošno .63
F.1.2 Splošne vsebine .63
F.1.3 Odkrivanje neželenih otokov .63
F.1.4 Težave z nenadzorovanim otočenjem v srednjenapetostnih omrežjih .64
F.1.4.1 Varnost .64
F.1.4.2 Omrežni parametri .64
F.1.4.3 Delovanje ponovnega vklopa .64
F.1.4.4 Zaščita otokov pred nadtoki .64
F.1.4.5 Zaščita pred okvarami med fazo in zemljo .64
F.2 Primer strategije 1 .65
F.3 Primer strategije 2 .68
Dodatek G (normativni): Kratice .70
Dodatek H (informativni): Razmerje med tem evropskim standardom in Uredbo
Komisije (EU) 2016/631 .71
Literatura .72
SIST EN 50549-1 : 2019
Evropski predgovor
Ta dokument (EN 50549-1:2019) je pripravil tehnični odbor CLC/TC 8X "Sistemski vidiki oskrbe z
električno energijo".
Določena sta naslednja datuma:
‒ najpoznejši datum, do katerega mora dobiti ta dokument status (dop) 2019-08-01
nacionalnega standarda z objavo istovetnega besedila ali
razglasitvijo
‒ zadnji datum, do katerega je treba razveljaviti nacionalne (dow) 2022-02-01
standarde, ki so v nasprotju s tem dokumentom
Ta dokument nadomešča EN 50438:2013 in CLC/TS 50549-1:2015.
Ta evropski standard se nanaša na evropski omrežni kodeks RfG in na trenutne tehnične potrebe trga.
Njegov namen je podrobno opisati funkcije, ki jih je treba uveljaviti pri izdelkih.
Ta evropski standard je namenjen tudi kot tehnična referenca za opredelitev nacionalnih zahtev, kadar
zahteve evropskega omrežnega kodeksa RfG omogočajo prilagodljivo izvajanje. Navedene zahteve so
izključno tehnične zahteve; ekonomska vprašanja v zvezi z npr. stroški niso vključeni v področje uporabe
tega dokumenta.
Tehnični odbor CLC/TC 8X načrtuje nadaljevanje dela na tem področju standardizacije, da bi zagotovil
združljivost tega evropskega standarda (EN) z razvojem pravnega okvira.
Opozoriti je treba na možnost, da bi lahko bil kateri od elementov tega dokumenta predmet patentnih
pravic. CENELEC ni odgovoren za identificiranje nobene ali vseh takih patentnih pravic.
SIST EN 50549-1 : 2019
Uvod
Utemeljitev področja uporabe in strukture tega dokumenta
1 Predgovor
Ta pojasnjevalna opomba pojasnjuje utemeljitev področja uporabe in strukture prEN 50549-1 in prEN
50549-2. Zaradi edinstvenega odnosa med Uredbo Komisije 2016/631 (RfG) in skupino standardov EN
50549 ter na podlagi pripomb, prejetih na stopnji poizvedbe prEN 50549-1 in prEN 50549-2, se je TC 8X
WG 03 odločil zasnovati to pojasnilo, da bi nacionalnim odborom in širši javnosti zagotovil razumevanje
teh razlogov.
2 Povečan obseg EN 50549 v zvezi z RfG
V skladu s standardom EN 50438 je TC 8X WG 03 pri pisanju prEN 50549 nameraval vanj vključiti vse
zmogljivosti proizvodnih postrojev, ki so potrebne za njihovo delovanje vzporedno z distribucijskimi
omrežji. To vključuje vprašanja, potrebna za stabilno upravljanje distribucijskega omrežja, ter tudi za
upravljanje interkonekcijskega sistema. Ker je RfG osredotočen na interkonekcijski sistem, je logično,
da se ob upoštevanju nadaljnjih potreb po upravljanju distribucijskega omrežja vključijo še drugi vidiki.
3 Uvedba "odgovorne stranke"
Med nacionalnim postopkom izvajanja Uredbe Komisije (EU) 2016/631 imajo različne vrste odgovornih
strank vlogo pri izpopolnjevanju neizčrpnih zahtev. V vsaki državi članici nacionalni regulativni organ
odobri to nacionalno izvajanje. Glede na nacionalni regulativni okvir bi zato lahko na tej podlagi nastali
različni dokumenti: nacionalni zakoni, uredbe ali predpisi, tehnične specifikacije ali zahteve operaterjev
prenosnih in distribucijskih sistemov. Zato se, kot je razloženo v področju uporabe, EN 50549-1 in EN
50549-2 nanašata na "odgovorno stranko", kjer mora zahteve opredeliti drug deležnik, in ne operater
distribucijskega omrežja. Ko pa je proizvodni postroj (elektrarna) zgrajen in priključen na distribucijsko
omrežje, navadno operater distribucijskega omrežja navede razvijalcu postroja vse tehnične zahteve, ki
jih je treba izpolniti.
4 Uporaba izrazov
Izrazi in definicije so izbrani tako, da so skladni z EN 60050, IEV (prim. www.electropedia.org) in
terminologijo CENELEC, ob zavedanju, da se izrazi v Uredbi Komisije (EU) 2016/631 lahko razlikujejo.
5 Dodatne zahteve za upravljanje distribucijskega sistema
Zahteve v nadaljevanju so navedene v standardu EN 50549 zaradi razlogov upravljanja distribucijskega
sistema, ki morda niso potrebni v RfG, oziroma če so potrebni v RfG, niso potrebni za tip A. Ker Direktiva
714/2009 8 (7) omejuje področje uporabe RfG na vprašanja pri čezmejni trgovini z električno energijo,
se zahteve, vključene izključno za potrebe upravljanja distribucijskega sistema, obravnavajo zunaj
področja uporabe RfG:
‒ shema priključitve in usklajevanje stikalne opreme,
‒ napetostno območje delovanja,
‒ zmogljivost jalove moči in načini nadzorovanja,
‒ zmanjšanje delovne moči glede na napetost,
‒ zaščita vmesnika, vključno z odkrivanjem otočnih situacij,
‒ priključitev in ponovni vklop omrežja,
‒ zmanjšanje proizvodnje,
‒ izmenjava informacij na daljavo.
SIST EN 50549-1 : 2019
6 Dodatne zahteve za stabilnost interkonekcijskega sistema
Dodatno so vključene zahteve za stabilnost interkonekcijskih sistemov v primeru obratovanja v stanju
prenapetosti (OVRT), saj tega RfG ne obravnava. Zaradi dolgotrajnega razvoja RfG in hitrega razvoja
razpršene proizvodnje v Evropi je odpornost proti napetostnim grbinam zelo pomembna, vendar je
očitno ni bilo mogoče vključiti v RfG.
Ker so sistemi za shranjevanje električne energije (EESS) izključeni iz področja uporabe RfG, vendar
so vključeni v področje uporabe skupine standardov EN 50549, vključuje EN 50549 tudi dodatno
zahtevo po odzivanju delovne moči omrežne frekvence na podfrekvenco (LFSM-U) sistemov za
shranjevanje električne energije. Ta zahteva je zelo pomembna glede na pričakovano hitro rast
shranjevanja električne energije v naslednjih letih in se šteje, da ne bo vplivala na stroške sistemov za
shranjevanje električne energije, če bo že upoštevana pri njihovi zasnovi.
7 Podrobnosti o delovanju LFSM-O
V fazi poizvedbe so nekateri komentarji poročali, da nekatere podrobnosti v poglavju o delovanju LFSM-
O (npr. namerna zamuda, obratovanje z dezaktivacijskim pragom) kršijo RfG. Te teme so bile dodatno
ovrednotene v posvetovanju z Evropskim odborom deležnikov (ESC-GC) in delovna skupina TC 8X
WG 03 ni mogla sklepati na enak način. Dejstvo, da te operacije v RfG niso predvidene, se šteje, da ne
zadostuje za navedbo katerekoli kršitve. Zato se ti podatki hranijo z dodatnimi informacijami o njihovi
uporabi.
8 Izvajanje UVRT in LFSM-U za izogibanje pravnemu sporu z RfG
Zahteve za podnapetostno obratovanje (UVRT) so opredeljene v RfG za module tipa B, tipa C in tipa D.
Za module tipa A se ta tema ne omenja.
Kljub temu se UVRT v nekaterih državah članicah obravnava kot pomembna zahteva tudi pri malih
proizvodnih modulih (malih elektrarnah), kot je tip A.
S pravnega vidika obstajata dve nasprotujoči si mnenji o tem, ali je dovoljeno ali prepovedano zahtevati
UVRT za module tipa A.
‒ Možnost 1: se lahko zahteva, ker tema ni obravnavana za module tipa A.
‒ Možnost 2: ni mogoče zahtevati, ker je tema UVRT obravnavana v okviru RfG. Poleg tega UVRT
za tip A v RfG zato pomeni, da ga za module tipa A ni mogoče zahtevati.
Dokler to pravno vprašanje ni pojasnjeno, CENELEC nima možnosti zahtevati UVRT za module tipa A.
To je razlog, zakaj v EN 50549-1 in 50549-2 funkcionalnosti UVRT za proizvodne postroje tipa A niso
opredeljene kot zahteve (morajo), ampak kot priporočila (naj).
Isto razlago je mogoče uporabiti za zahteve v zvezi z omejenim frekvenčno občutljivim načinom –
podfrekvenco (LFSM -U). V RfG je ta LFSM-U določen izključno za module tipa C in tipa D. V standardu
EN 50549 je LFSM-U opredeljen kot priporočilo (naj) za proizvodne module tipa A in tipa B. Edina izjema
so sistemi za shranjevanje električne energije, za katere se to zahteva (morajo), vendar ti sistemi ne
spadajo v področje uporabe RfG.
9 Dodatek H: Razmerje med tem evropskim standardom in Uredbo Komisije (EU)
2016/631
Proizvajalci proizvodnih enot in postrojev morajo upoštevati vse ustrezne direktive in predpise EU. Za
posebno funkcijo povezovanja proizvodnega postroja z električnim sistemom je referenčni predpis
Uredba Komisije (EU) 2016/631 (NC RfG).
SIST EN 50549-1 : 2019
Ker standarda EN 50549-1 in -2 zajemata vse tehnične zahteve za enote, module in naprave za
proizvodnjo tipa A in tipa B, je koristno v strukturiranem informativnem dodatku v okviru standarda
zagotoviti informacije, katera točka standarda podpira kateri člen RfG.
Za druge direktive in uredbe EU (npr. LVD, MD ali GAR) je uradna naloga, podeljena CCMC, da vključi
takšen informativni dodatek ZZ na podlagi zahteve EU za standardizacijo. Končno ga pregleda
svetovalec novega pristopa (NAC) za ustrezno direktivo ali uredbo, preden standard uvrsti v Uradni list
EU (Uradni list EU), ki zagotavlja "domnevo o skladnosti". To pomeni, da če je izdelek skladen s
standardom, je izpolnjena tudi direktiva ali uredba.
CLC/TC 8X se zaveda, da ta uradni postopek ni vključen v RfG. Zato je CLC/TC 8X WG 3 pripravil
dodatek H. V dodatku H je prikazano razmerje med točkami in členi. Šteje se, da so proizvodni postroji,
ki so v skladu z določili standardov, skladni tudi z določbami členov v RfG. Seveda to ne zagotavlja
"domneve o skladnosti", kot bi to določal standard, naveden v Uradnem listu EU. Kljub temu bo industriji
v pomoč pri ugotavljanju skladnosti z RfG.
SIST EN 50549-1 : 2019
1 Področje uporabe
Ta dokument določa tehnične zahteve za zaščitne funkcije in obratovalne zmogljivosti proizvodnih
postrojev, ki naj bi delovali vzporedno z nizkonapetostnimi distribucijskimi omrežji.
Iz praktičnih razlogov se ta dokument nanaša na odgovorno stranko, kjer mora zahteve določiti drug
deležnik, in ne operater distribucijskega omrežja (ODO), npr. operater prenosnega sistema (TSO),
država članica, regulativni organi v skladu s pravnim okvirom. Navadno bo ODO obvestil proizvajalca o
teh zahtevah.
OPOMBA 1: To vključuje evropske omrežne kodekse in njihovo nacionalno izvajanje ter dodatne nacionalne predpise.
OPOMBA 2: Veljajo lahko dodatne nacionalne zahteve, zlasti za priključitev na distribucijsko omrežje in obratovanje
proizvodnega postroja.
Zahteve tega evropskega standarda veljajo ne glede na vrsto vira energije in ne glede na prisotnost
obremenitev v proizvajalčevem omrežju za proizvodne postroje, proizvodne module, električne stroje in
elektronsko opremo, ki izpolnjujejo vse naslednje pogoje:
‒ pretvorba kateregakoli vira energije v električni izmenični tok,
‒ zmogljivosti proizvodnih modulov tipa B ali manj so v skladu z Uredbo Komisije (EU) 2016/631 ob
upoštevanju nacionalne izvedbe za odločitev o mejah moči med tipoma A in B ter tipoma B in C,
‒ priključeni in v obratovanju vzporedno z distribucijskim nizkonapetostnim izmeničnim omrežjem.
OPOMBA 3: Proizvodni postroji, priključeni na srednjenapetostno distribucijsko omrežje, spadajo v področje uporabe EN
50549-2.
OPOMBA 4: Vključeni so sistemi za shranjevanje električne energije (EESS), ki izpolnjujejo pogoje zgoraj.
Če se proizvodni moduli različnih tipov (A ali B) združijo v enem postroju, veljajo različne zahteve za
različne module glede na tip vsakega modula.
PRIMER: Če je proizvodni postroj sestavljen iz več proizvodnih modulov (glej 3.2.1), lahko v skladu z
Uredbo Komisije (EU) 2016/631 pride do situacije, da so nekateri proizvodni moduli tipa A, nekateri pa
tipa B.
Razen če ODO in odgovorna stranka ne določita drugače, so proizvodni postroji, priključeni na
srednjenapetostno distribucijsko omrežje z največjo navidezno močjo do 150 kVA, lahko v skladu s tem
evropskim standardom kot alternativo zahtevam iz EN 50549-2. ODO in odgovorna stranka lahko
določita drugačen prag.
Ta dokument priznava obstoj posebnih tehničnih zahtev (npr. omrežni kodeksi) ODO ali druge
odgovorne stranke v državi članici, ki jih je treba upoštevati.
Iz področja uporabe so izvzeti:
‒ izbira in ovrednotenje priključnega mesta,
‒ ocena vpliva elektroenergetskega sistema, npr. ocena učinkov na kakovost električne energije,
lokalno povišanje napetosti, vpliv na delovanje linijske zaščite,
‒ ocena povezave, niz tehničnih preverjanj, ki so del načrtovanja povezave,
‒ otočno obratovanje proizvodnih postrojev, namerno in nenamerno, kjer ni vključen noben del
distribucijskega omrežja,
‒ štirikvadrantni usmernik pogonov, ki dovajajo prekinitveno energijo nazaj v distribucijsko omrežje
za omejeno obdobje brez notranjega vira primarne energije,
‒ neprekinjeno napajanje z omejenim trajanjem vzporednega obratovanja na 100 ms,
SIST EN 50549-1 : 2019
OPOMBA 5: Vzporedno obratovanje zaradi vzdrževanja enot neprekinjenega napajanja se ne obravnava kot del normalnega
delovanja UPS in ga zato ta dokument ne obravnava.
‒ zahteve za varnost osebja, ker so že ustrezno zajete v obstoječih evropskih standardih,
‒ priključitev proizvodne enote, modula ali postroja v enosmerno omrežje.
2 Zveze s standardi
Naslednji dokumenti so v besedilu navedeni tako, da del ali celotna njihova vsebina predstavlja zahteve
tega dokumenta. Pri datiranih sklicevanjih se uporablja le navedena izdaja. Pri nedatiranih sklicevanjih
se uporablja zadnja izdaja publikacije (vključno z dopolnili).
EN 50549-2 Zahteve za vzporedno vezavo generatorskih postrojev z razdelilnim omrežjem
– 2. del: Vezava s srednjenapetostnim razdelilnim omrežjem do vključno tipa
B
EN 60255-127 Merilni releji in zaščitna oprema – 127. del: Funkcijske zahteve za pre- in
podnapetostno zaščito (IEC 60255-127)
EN 61000-4-30 Elektromagnetna združljivost (EMC) – 4-30. del: Preskusne in merilne tehnike
– Metode merjenja kakovosti napetosti (IEC 61000-4-30)
HD 60364-1 Nizkonapetostne električne inštalacije – 1. del: Temeljna načela, ocena
splošnih karakteristik, definicije (IEC 60364-1)
HD 60364-5-551 Nizkonapetostne električne inštalacije – 5-55. del: Izbira in namestitev
električne opreme – Druga oprema – 551. točka: Nizkonapetostni generatorji
(IEC 60364-5-551)
3 Izrazi in definicije
V tem dokumentu se uporabljajo naslednji izrazi in definicije.
ISO in IEC vzdržujeta terminološke baze podatkov za uporabo pri standardizaciji na naslednjih naslovih:
‒ IEC Electropedia: na voljo na http://www.electropedia.org/
‒ ISO spletna platforma za brskanje: na voljo na http://www.iso.org/obp
OPOMBA: Izrazi in definicije so izbrani z namenom doseganja skladnosti s terminologijo IEV (prim. www.electropedia.org)
in terminologijo CENELEC, ob zavedanju, da se izrazi v Uredbi Komisije (EU) 2016/631 lahko razlikujejo.
3.1 Splošno
3.1.1
distribucijsko omrežje, razdelilno omrežje
električno omrežje z izmenično napetostjo, vključno z zaprtimi omrežji, namenjeno za distribucijo
električne energije od tretjih strank in do tretjih strank, ki so priključene nanj, ter za prenosna ali druga
distribucijska omrežja, za katera je odgovoren ODO
Opomba 1: Distribucijsko omrežje ne vključuje omrežja proizvodnih objektov.
3.1.2
zaprto distribucijsko omrežje
sistem, ki distribuira elektriko znotraj industrijskih, komercialnih ali drugih skupnih celot, ki so geografsko
omejene in ne oskrbujejo gospodinjskih odjemalcev (brez izključitve možnosti, da se manjše število
gospodinjstev oskrbuje s takim sistemom v povezavi z zaposlenimi ali drugačnimi povezavami s takim
sistemom)
SIST EN 50549-1 : 2019
OPOMBA 1: Zaprto distribucijsko omrežje se bo uporabljalo za integracijo proizvodnih procesov uporabnikov omrežja iz
posebnih ali tehničnih razlogov ali za distribucijo električne energije predvsem operaterju zaprtega distribucijskega
omrežja ali njegovim povezanim podjetjem.
Vir: Direktiva 2009/72/ES, člen 28, spremenjen]
3.1.3
operater distribucijskega sistema
ODS
fizična ali pravna oseba, odgovorna za distribucijo električne energije končnim odjemalcem in za
obratovanje, s tem da zagotavlja vzdrževanje in po potrebi razvija distribucijsko omrežje na danem
območju
OPOMBA 1: Ker se ta dokument uporablja za distribucijska omrežja, se ODS šteje za ustreznega sistemskemu operaterju v
skladu s členom 2 (13) Uredbe Komisije 2016/631.
OPOMBA 2: V nekaterih državah operater distribucijskega omrežja (ODO) opravlja vlogo ODS.
3.1.4
operater prenosnega sistema
fizična ali pravna oseba, odgovorna za obratovanje, vzdrževanje in po potrebi razvoj prenosnega
sistema na danem območju in, kjer je to uporabno, za njegove medsebojne povezave z drugimi
elektroenergetskimi sistemi ter za zagotavljanje dolgoročne sposobnosti elektroenergetskega sistema,
da izpolnjuje sprejemljive zahteve za prenos električne energije
3.1.5
odgovorna stranka
stranka, ki je v skladu s pravnim okvirom odgovorna za opredelitev zahtev ali parametrov v skladu z
Uredbo Komisije 2016/631, npr. operater prenosnega sistema, država članica, regulativni organ
3.1.6
nizkonapetostno distribucijsko omrežje (NN)
električno distribucijsko omrežje z napetostjo, katere nazivna efektivna vrednost je U ≤ 1 kV
n
3.1.7
srednjenapetostno distribucijsko omrežje (SN)
električno distribucijsko omrežje z napetostjo, katere nazivna efektivna vrednost je 1 kV < U ≤ 36 kV
n
OPOMBA 1: Zaradi obstoječih omrežnih struktur je lahko zgornja SN-meja v nekaterih državah drugačna.
3.1.8
stabilnost elektroenergetskega sistema
sposobnost elektroenergetskega sistema, da ponovno vzpostavi stabilno stanje, za katerega je
značilno, da proizvodni postroji po motnjah spet delujejo sinhrono
[Vir: IEV 603-03-01]
3.1.9
proizvajalec
fizična ali pravna oseba, ki je že priključila ali načrtuje priključitev proizvodnega postroja na distribucijsko
omrežje
3.1.10
proizvajalčevo omrežje
električne inštalacije za izmenični tok dolvodno od priključnega mesta, ki jih upravlja proizvajalec za
notranjo distribucijo električne energije
OPOMBA 1: Če je notranje distribucijsko omrežje identično električnemu omrežju odjemalca, ki ima lastni proizvodni postroj,
kjer je ena ali več proizvodnih enot priključenih na to notranje distribucijsko omrežje dolvodno od priključnega
mesta, se lahko tudi to omrežje imenuje omrežje proizvajalca-odjemalca.
SIST EN 50549-1 : 2019
3.1.11
dolvodno
smer, v katero bi tekla delovna moč, če ne bi delovala nobena od proizvodnih enot, priključenih na
distribucijsko omrežje
3.1.12
priključno mesto
POC
referenčna točka v elektroenergetskem sistemu, kjer je električno priključen uporabnik
OPOMBA 1: V tem standardu je elektroenergetski sistem distribucijsko omrežje.
[Vir: IEV 617-04-01, spremenjen]
3.1.13
vzporedno obratovanje z distribucijskim omrežjem
situacija, ko je proizvodni postroj priključen na distribucijsko omrežje in obratuje
3.1.14
začasno vzporedno obratovanje z distribucijskim omrežjem
pogoji, v katerih je proizvodni postroj v določenih kratkih obdobjih priključen na distribucijsko omrežje,
da se ohrani neprekinjenost dobave in omogoči preskušanje
3.1.15
nazivna vrednost
vrednost veličine, ki se uporablja za označevanje in identifikacijo komponente, naprave, opreme ali
sistema
OPOMBA 1: Nazivna vrednost je na splošno zaokrožena vrednost.
[Vir: IEV 151-16-09]
3.2 Postroj, modul in enota
3.2.1
proizvodni modul
bodisi proizvodna enota sinhrone proizvodne tehnologije ali vsota vseh proizvodnih enot nesinhrone
proizvodne tehnologije, priključenih na skupno priključno mesto, vključno z vsemi elementi, potrebnimi
za dovajanje električne energije v distribucijsko omrežje
OPOMBA 1: V nekaterih dokumentih je to lahko modul za proizvodnjo električne energije.
OPOMBA 2: Proizvodni moduli v kontekstu tega dokumenta so v skladu z opredelitvijo Uredbe Komisije 2016/631, člen 5,
lahko tipa A ali tipa B.
SIST EN 50549-1 : 2019
Slika 1: Proizvodni modul na skupnem priključnem mestu (POC)
3.2.2
proizvodni postroj
vsota proizvodnih modulov, povezanih na enem priključnem mestu, vključno s pomožnimi napravami in
vso priključno opremo
OPOMBA 1: V nekaterih dokumentih je to lahko postroj za proizvodnjo električne energije (elektrarna).
OPOMBA 2: Ta opredelitev se uporablja za preverjanje skladnosti s tehničnimi zahtevami tega standarda. Lahko se razlikuje
od pravne opredelitve postroja.
3.2.3
proizvodna enota
najmanjši niz naprav, ki lahko proizvajajo električno energijo, ki deluje neodvisno in ki lahko to energijo
dovaja v distribucijsko omrežje
OPOMBA 1: V nekaterih dokumentih je to lahko enota za proizvodnjo električne energije.
OPOMBA 2: Na primer plinsko-parna termoelektrarna (CCGT), sestavljena iz plinske in parne turbine, ali inštalacija motorja z
notranjim zgorevanjem (ICE), ki mu sledi stroj z Rankinovim organskim ciklom (ORC), se obe štejeta za eno samo
proizvodno enoto.
OPOMBA 3: Če je proizvodna enota kombinacija tehnologij, ki vodijo do različnih zahtev, je to treba rešiti od primera do
primera.
OPOMBA 4: Sistem za shranjevanje električne energije (EES), ki deluje v načinu proizvodnje električne energije in je priključen
na distribucijsko omrežje z izmenično napetostjo, se šteje za proizvodno enoto.
3.2.4
mikro proizvodni postroj
proizvodni postroj s proizvodnimi enotami, ki imajo nazivne toke skupaj največ 16 A na fazo
3.2.5
mikro proizvodna enota
proizvodna enota z nazivnim tokom do vključno 16 A na fazo
3.2.6
tehnologija sinhrone proizvodnje
tehnologija, kjer proizvodna enota temelji na sinhronem stroju, ki je neposredno povezan z
elektroenergetskim sistemom
SIST EN 50549-1 : 2019
3.2.7
tehnologija nesinhrone proizvodnje
tehnologija, pri kateri je proizvodna enota nesinhrono priključena na elektroenergetski sistem
PRIMER: Asinhronski stroj (nesinhrono povezan, naveden v Uredbi Komisije 2016/631), tehnologija s pretvornikom
(povezanim s pomočjo močnostne elektronike, navedena v Uredbi Komisije 2016/631).
3.2.8
kogeneracija
soproizvodnja toplote in elektrike
SPTE
kombinirana proizvodnja električne in toplotne energije s sistemom za pretvorbo energije ter hkratno
uporabo električne in toplotne energije iz sistema za pretvorbo
3.2.9
linearni Stirlingovi motorji
Stirlingov motor, kjer primarni motor izvaja ciklično linearno gibanje navzgor in navzdol skozi magnetno
polje, s čimer proizvaja izmenično električno energijo
3.2.10
sistem za shranjevanje električne energije
sistem EES
EESS
omrežno integrirana naprava z določenimi električnimi omejitvami, sestavljena iz vsaj enega hranilnika
električne energije (EES), katere namen je pridobivati električno energijo iz elektroenergetskega
sistema, interno hraniti to energijo na določen način in dovajati električno energijo v elektroenergetski
sistem in ki vključuje gradbena dela, opremo za pretvorbo energije in pripadajočo pomožno opremo
OPOMBA 1: Sistem EES je nadzorovan in usklajen za zagotavljanje storitev operaterjem elektroenergetskega sistema ali
uporabnikom elektroenergetskega sistema.
OPOMBA 2: V nekaterih primerih lahko sistem EES med praznjenjem potrebuje dodaten vir energije, ki elektroenergetskemu
sistemu zagotavlja več energije kot shranjena energija.
[VIR: IEC 62933-1 ED1]
3.2.11
hranilnik električne energije
EES
naprava, ki lahko absorbira električno energijo, jo shrani za določen čas in sprosti električno energijo,
pri čemer so lahko vključeni procesi pretvorbe energije
PRIMER: Naprava, ki absorbira izmenično električno energijo za proizvodnjo vodika z elektrolizo, shranjuje vodik in
uporablja ta plin za proizvodnjo izmenične električne energije, je hranilnik električne energije.
OPOMBA 1: Hranilnik električne energije se lahko uporablja tudi za nakazovanje dejavnosti aparata, opisanega v definiciji,
med izvajanjem svojih lastnih funkcij.
[VIR: IEC 62933-1 ED1]
3.3 Moč
3.3.1
P
delovna moč
pri periodičnih pogojih je to srednja vrednost trenutne moči p v enem obdobju T
1 T
P = pdt
∫
T
OPOMBA 1: V sinusnih pogojih je delovna moč realni del kompleksne moči S, torej P = Re S.
SIST EN 50549-1 : 2019
OPOMBA 2: Koherentna enota SI za delovno moč je watt, W.
[VIR: IEV 131-11-42]
3.3.2
P
D
projektna delovna moč
največja izhodna delovna moč izmeničnega toka pri faktorju delovne moči 0,9 ali pri faktorju delovne
moči, ki ga določi ODO ali odgovorna oseba za določen proizvodni postroj ali proizvodno tehnologijo
3.3.3
P
max
največja delovna moč
največja neprekinjena delovna moč, izmerjena v povprečju 10 minut, ki jo lahko proizvede proizvodna
enota ali vsota vseh proizvodnih enot v proizvodnem postroju, zmanjšana za vse obremenitve,
povezane z obratovanjem tega proizvodnega postroja, in se ne dovaja v omrežje, kot je določeno v
soglasju za priključitev ali po dogovoru med ODO in operaterjem proizvodnega postroja
3.3.5
PM
trenutna delovna moč
dejanska izhodna delovna moč izmeničnega toka v določenem trenutku
3.3.6
P
A
razpoložljiva delovna moč
največja razpoložljiva delovna moč izmeničnega toka iz primarnega vira energije po pretvorbi energije,
odvisna od razpoložljivosti in velikosti tega primarnega vira energije v ustreznem času
OPOMBA 1: Razpoložljiva delovna moč upošteva vse omejitve glede npr. primarnega vira energije ali razpoložljivosti ponora
toplote pri CHP.
3.3.7
naznačeni tok
največji neprekinjeni izmenični izhodni tok, za katerega je proizvodna enota ali proizvodni postroj
zasnovan, da ga je sposoben proizvajati v normalnih pogojih obratovanja
3.3.8
Smax
največja navidezna moč
največja izmenična navidezna izhodna moč, izmerjena v povprečju 10 minut, ki je namenjena za
proizvodno enoto ali vsoto vseh proizvodnih enot v proizvodnem postroju v normalnih pogojih
obratovanja
3.3.9
primarni vir energije
neelektrični vir energije, ki napaja električno proizvodno en
...












Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...