Explosion resistant equipment

This European Standard specifies requirements for explosion resistant equipment which will be able to withstand an internal explosion without rupturing and will not give rise to dangerous effects to the surroundings. It is applicable to equipment (vessels and systems) where explosions are considered to be an exceptional load case.
There are two types of explosion resistant equipment: explosion pressure resistant and explosion pressure shock-resistant equipment (see Figure 1).
(...)
Explosion pressure resistant equipment is designed to withstand the explosion pressure without permanent deformation and will not give rise to dangerous effects to the surroundings. Since the design and calculation methods for explosion pressure resistant equipment are similar to those described in EN 13445-1 to -6 "Unfired pressure vessels" they are not repeated in this standard.
For explosion pressure shock resistant equipment permanent deformation is allowed provided the equipment will not give rise to dangerous effects to the surroundings. This design has been developed especially for explosion protection purposes. This standard focusses on the requirements for explosion pressure shock resistant equipment.
This standard is valid for atmospheres having absolute pressures ranging from 800 mbar to 1 100 mbar and temperatures ranging from −20 °C to +60 °C. This standard may also be helpful for the design, construction, testing and marking of equipment intended for use in atmospheres outside the validity range stated above, as far as this subject is not covered by specific standards.
This standard applies to equipment and combinations of equipment where deflagrations may occur and is not applicable to equipment and combination of equipment where detonations may occur. In this case, different design criteria for the required explosion resistance are applicable which are not covered by this standard.
It is not applicable to equipment which is designed according to type of protection, flameproof enclosures "d" (EN 13463-3 or EN 60079-1).
This standard does not apply to offshore situations.
This standard is only applicable for equipment where metallic materials provide the explosion resistance. This standard does not cover fire risk associated with the explosions, neither with the materials processed nor with the materials used for construction.

Explosionsfeste Geräte

Diese Europäische Norm legt die Anforderungen an explosionsfeste Geräte fest, die einer im Innern erfolgenden Explosion standhalten werden, ohne zu bersten und ohne gefährliche Auswirkungen auf die Umgebung hervorzurufen. Sie ist auf Geräte (Behälter und Systeme) anwendbar, bei denen Explosionen eine außergewöhnliche Belastung darstellen.
Es gibt zwei Arten explosionsfester Geräte: explosionsdruckfeste und explosionsdruckstoßfeste Geräte (siehe Bild 1).
Explosionsdruckfeste Geräte sind so gebaut, dass sie dem Explosionsdruck standhalten, ohne sich bleibend zu verformen und ohne gefährliche Auswirkungen auf die Umgebung hervorzurufen. Da die Auslegungs- und Berechnungsverfahren explosionsdruckfester Geräte den in EN 13445 Teil 1 bis 6 "Unbefeuerte Druckbehälter" beschriebenen ähnlich sind, werden sie in dieser Norm nicht erneut aufgeführt.
Bei explosionsdruckstoßfesten Geräten ist eine dauerhafte Verformung zulässig, sofern diese Geräte keine gefährlichen Auswirkungen auf die Umgebung hervorrufen. Diese Bauweise wurde speziell für Explosionsschutzzwecke entwickelt. Diese Norm stellt die Anforderungen an explosionsdruckstoßfeste Geräte in den Mittelpunkt.
Diese Norm gilt für Atmosphären mit Absolutdrücken im Bereich von 800 mbar bis 1 100 mbar und Temperaturen im Bereich von −20 °C bis +60 °C. Diese Norm kann auch für die Auslegung, Konstruktion, Prüfung und Kennzeichnung von Geräten von Nutzen sein, die für Atmosphären außerhalb des oben festgelegten Anwendungsbereiches vorgesehen sind, sofern dieses Thema nicht durch spezifische Normen abgedeckt ist.
Diese Norm ist auf Geräte und Gerätekombinationen anwendbar, in denen sich Deflagrationen ereignen können. Sie ist nicht auf Geräte und Gerätekombinationen anwendbar, in denen Detonationen vorkommen können. In solchen Fällen sind für die erforderliche Explosionsfestigkeit andere Auslegungskriterien anwendbar, die in dieser Norm nicht behandelt werden.
Sie ist nicht anwendbar auf Geräte, die nach der Zündschutzart "Druckfeste Kapselung" "d" (EN 13463-3 oder EN 60079-1) konstruiert sind.
Diese Norm gilt nicht für Offshore-Anwendungen.
Diese Norm ist nur auf Geräte anwendbar, deren Explosionsfestigkeit durch die Verwendung metallischer Werkstoffe erreicht wird. Diese Norm behandelt nicht die mit den Explosionen einhergehende Brandgefahr, weder bezüglich der verarbeiteten noch der für die Konstruktion verwendeten Werkstoffe.

Appareil résistant à l'explosion

La présente Norme européenne spécifie les exigences applicables aux appareils résistants à l'explosion qui devront supporter une explosion intérieure sans rompre et sans engendrer d'effets dangereux pour le milieu environnant. Elle s'applique aux appareils (enceintes et systèmes) dans lesquels les explosions sont considérées comme un cas de charge accidentelle.
Il existe deux types d'appareils résistants à l'explosion : les appareils résistants à la pression d'explosion et les appareils résistants au choc de pression de l'explosion (voir Figure 1).
Un appareil résistant à la pression d'explosion est conçu pour supporter la pression d'explosion sans déformation permanente et sans engendrer d'effets dangereux pour le milieu environnant. La conception et les méthodes de calcul des appareils résistants à la pression d'explosion étant similaires à celles décrites dans l'EN 13445-1 à -6, « Récipients sous pression non soumis à la flamme », elles ne sont pas reprises dans la présente norme.
Pour les appareils résistants au choc de pression de l'explosion, une déformation permanente est admise à condition que l'appareil n'engendre pas d'effets dangereux pour le milieu environnant. Cette conception a été développée spécialement à des fins de protection contre l'explosion. La présente norme est axée sur les exigences applicables aux appareils résistants au choc de pression de l'explosion.
La présente norme concerne les atmosphères dont la pression absolue est comprise entre 800 mbar et 1 100 mbar et la température entre −20 °C et + 60 °C. Il est possible de s’aider de la présente norme lors de la conception, de la construction, des essais et du marquage d’appareils destinés à être utilisés dans des atmosphères dont les caractéristiques sont différentes de celles citées ci-dessus et ce, tant que le sujet ne fait pas l’objet de normes spécifiques.
La présente norme s’applique aux appareils et combinaisons d’appareils dans lesquels peut se produire une déflagration et n’est pas applicable aux appareils et combinaisons d’appareils dans lesquels peuvent se produire des détonations. Dans ce cas, des critères de conception différents, non traités dans la présente norme, sont applicables pour la résistance à l'explosion requise.
Elle ne s’applique pas aux appareils conçus selon un type de protection par enveloppe antidéflagrante « d » (EN 13463 -3 ou EN 60079 -1).
La présente norme ne s'applique pas aux situations en mer (offshore).
La présente norme s’applique uniquement aux appareils dans lesquels des matériaux métalliques assurent la résistance à l’explosion. La présente norme ne traite pas du risque d'incendie associé aux explosions, aux matériaux traités ou aux matériaux utilisés pour la construction.

Eksplozijsko vzdržljiva oprema

Ta standard določa zahteve za opremo, ki je odporna na tlak pri eksploziji in šok zaradi tlaka pri eksploziji. Ta standard se uporablja za procesne posode in sisteme. Ne uporablja se za posamezne elemente opreme, kot so motorji in menjalniki, ki so lahko izdelani tako, da so odporni na notranjo eksplozijo, in so zajeti v standardu EN 13463-3. Ta standard velja za atmosfere s tlaki od 800 hPa do 1100 hPa in temperaturami od -20 °C do +60 °C. Ta standard se uporablja za opremo in kombinacije opreme, kjer lahko pride do eksplozije, in ne velja za opremo in kombinacije opreme, kjer lahko pride do detonacije. Ta standard je nujno uporabljati samo za opremo, narejeno iz kovinskih materialov.

General Information

Status
Published
Public Enquiry End Date
27-Feb-2017
Publication Date
19-Mar-2018
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
12-Feb-2018
Due Date
19-Apr-2018
Completion Date
20-Mar-2018

Relations

Standard
SIST EN 14460:2018
English language
36 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)


2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.Eksplozijsko vzdržljiva opremaExplosionsfeste GeräteAppareil résistant à l'explosionExplosion resistant equipment29.260.20Electrical apparatus for explosive atmospheres13.230Varstvo pred eksplozijoExplosion protectionICS:Ta slovenski standard je istoveten z:EN 14460:2018SIST EN 14460:2018en,fr,de01-maj-2018SIST EN 14460:2018SLOVENSKI
STANDARDSIST EN 14460:20061DGRPHãþD

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM
EN 14460
January
t r s z ICS
s uä t u râ
t {ä t x rä t r Supersedes EN
s v v x rã t r r xEnglish Version
Explosion resistant equipment Appareil résistant à l 5explosion
Explosionsfeste Geräte This European Standard was approved by CEN on
s y December
t r s yä
egulations which stipulate the conditions for giving this European Standard the status of a national standard without any alterationä Upætoædate lists and bibliographical references concerning such national standards may be obtained on application to the CENæCENELEC Management Centre or to any CEN memberä
translation under the responsibility of a CEN member into its own language and notified to the CENæCENELEC Management Centre has the same status as the official versionsä
CEN members are the national standards bodies of Austriaá Belgiumá Bulgariaá Croatiaá Cyprusá Czech Republicá Denmarká Estoniaá Finlandá Former Yugoslav Republic of Macedoniaá Franceá Germanyá Greeceá Hungaryá Icelandá Irelandá Italyá Latviaá Lithuaniaá Luxembourgá Maltaá Netherlandsá Norwayá Polandá Portugalá Romaniaá Serbiaá Slovakiaá Sloveniaá Spainá Swedená Switzerlandá Turkey and United Kingdomä
EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre:
Rue de la Science 23,
B-1040 Brussels
t r s z CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Membersä Refä Noä EN
s v v x rã t r s z ESIST EN 14460:2018

Calculation of design pressure for single vessels . 19 Annex B (informative)
Explosion in pipes and interconnected vessels . 20 SIST EN 14460:2018

Use of Finite Element Analysis (FEA) for the design of explosion pressure shock resistant equipment . 23 C.1 Software . 23 C.2 Validation . 23 Annex D (informative)
Definition of permissible stresses . 24 D.1 General . 24 D.2 Verification by Typical Design Rules . 24 D.3 Yield line method . 25 D.4 Equivalent Stress Theories . 26 D.4.1 General . 26 D.4.2 The “von Mises Theory” . 26 D.4.3 The “Tresca Theory” . 27 D.4.4 The “Rankine Theory” . 27 D.5 Permissible Stress . 28 Annex E (informative)
Examples for limitation of stress concentration . 29 Annex F (informative)
Significant changes between this European Standard and EN 14460:2006 . 31 Annex ZA (informative)
Relationship between this European Standard and the Essential Requirements of EU Directive 2014/34/EU aimed to be covered . 34 Bibliography . 35
Figure 1 — Explosion resistant equipment Explosion pressure resistant equipment is designed to withstand the explosion pressure without permanent deformation and will not give rise to dangerous effects to the surroundings. Since the design and calculation methods for explosion pressure resistant equipment are similar to those described in EN 13445-1 to -6 “Unfired pressure vessels” they are not repeated in this standard. For explosion pressure shock resistant equipment permanent deformation is allowed provided the equipment will not give rise to dangerous effects to the surroundings. This design has been developed especially for explosion protection purposes. This standard focusses on the requirements for explosion pressure shock resistant equipment. This standard is valid for atmospheres having absolute pressures ranging from 800 mbar to 1 100 mbar and temperatures ranging from
« t r °C to +60 °C. This standard may also be helpful for the design, construction, testing and marking of equipment intended for use in atmospheres outside the validity range stated above, as far as this subject is not covered by specific standards. This standard applies to equipment and combinations of equipment where deflagrations may occur and is not applicable to equipment and combination of equipment where detonations may occur. In this case, different design criteria for the required explosion resistance are applicable which are not covered by this standard. It is not applicable to equipment which is designed according to type of protection, flameproof enclosures “d” (EN 13463-3 or EN 60079-1). This standard does not apply to offshore situations. This standard is only applicable for equipment where metallic materials provide the explosion resistance. This standard does not cover fire risk associated with the explosions, neither with the materials processed nor with the materials used for construction. SIST EN 14460:2018

design for the maximum explosion pressure; SIST EN 14460:2018

design for the reduced explosion pressure in combination with explosion venting or explosion suppression. NOTE If explosions are part of the normal operation (allowed operation pressure) the design rules of this standard do not apply. 4.2 Design procedure The procedure for explosion pressure shock resistant design is as follows: — define geometry; — define design pressure, temperature and loads (see 4.3, 4.4, 4.5); — choose materials (see Clause 5); — define safety factors for material properties (see 6.2.1); — calculate according to state of the art with engineering standards or finite element methods or prove design by testing. NOTE See additional information in Bibliography. 4.3 Design pressure The design pressure shall not be less than the maximum gauge pressure occurring in the equipment, when subjected to explosion or reduced explosion conditions. If the inside of the equipment is divided into sections (e.g. vessels connected by pipes or containing baffles or surge plates) and an explosion is initiated in one of the sections the pressure in the other sections of the equipment will be increased. As a result, an explosion in these sections will occur at an elevated initial pressure and/or a higher turbulence level. Explosion pressures will thus be higher than the value expected under atmospheric conditions. In the case of such arrangements, appropriate measures shall be taken, either explosion isolation techniques or explosion resistant design derived from representative explosion tests or validated explosion modelling (see informative Annex B). NOTE 1 Pressures quoted are gauge pressures unless otherwise stated. NOTE 2 If an explosion is initiated at pressures higher than atmospheric pressure, the maximum explosion pressure will rise proportionally to the initial pressure. NOTE 3 For guidance on the derivation of design pressure for single vessels see Annex A, for interconnected vessels and pipes see Annex B. For explosion venting, the design pressure is derived from EN 14491 and EN 14994 for dust and gas explosions respectively. For explosion suppression, the design pressure is given by the manufacturer of the explosion suppression system according to EN 14373. 4.4 Design temperature In case of an explosion the vessel walls will generally not heat up significantly. Therefore, the intended operating temperatures (minimum and maximum) at the initial pressure shall be used as the design temperatures. The effect of higher gas temperatures caused by exothermic reactions (e.g. subsequent fire) should be considered for gaskets and bolts. Depending on the dimensions of the equipment fully contained light-metal dust explosions could give rise to elevated wall temperatures which should be assessed. SIST EN 14460:2018

· 14 %, test temperature 20 °C; and NOTE 1 For further information on A5 see EN ISO 6892-1. 2) notch impact energy
· 27 J, ISO V-notch. The test temperature shall not be higher than the lowest intended operating temperature and shall not exceed 20 °C. NOTE 2 For further information on ISO V-notch see EN ISO 148-1. The term “steel” covers e.g. ferrite, austenitic and cast steel. The material properties of these shall be assessed against the given criteria for ductility. b) aluminium with SIST EN 14460:2018

· 20 %, test temperature 20 °C; and 2) notch impact energy not relevant. 5.3 Criteria for brittle materials For materials not fulfilling the criteria of 5.2 the design stresses for brittle materials in 6.2.1 shall be used. NOTE Typical brittle materials are flake graphite castings, cast aluminium G-Al Mg 5 and G-Al Si Mg wa. For testing, brittle materials may be subdivided into two groups: — materials with high notch impact energy: Materials with minimum notch impact energy of 14 J (mean value of three tests), single values shall not be less than 11 J; — materials with low notch impact energy: Materials not fulfilling notch impact energy criteria. 6 Explosion pressure shock resistant design 6.1 General Explosion pressure shock resistant equipment shall be designed such that it can withstand the maximum or reduced explosion pressure without rupturing, but may become permanently deformed [see 8.2 i)]. Explosion pressure shock resistant equipment shall be designed or tested either by a) design according to 6.2, documentation of quality according to 7.2, 7.3 and 7.4 for each item, or b) pressure or explosion test as a type test according to 6.3, documentation of quality according to 7.2, 7.3 and 7.4 for each item. 6.2 Design 6.2.1 Definition of permissible stresses NOTE 1 During short durational loading, the yield stress of metals increases, but the ultimate strength is hardly effected. The actual increase in yield stress depends on the strain rate (1/s) and the characteristics of the metal involved. For explosion pressure resistant design the strain rate is typically in the order of 10 «4 – 10 «2 1/s. For carbon steel only a minor increase in yield stress will arise at such loading rates ((0 – 15) %). However, the duration of the loading is rather long (typically 0,1 s – > 1 s) and the increase in yield stress will be even lower. As a consequence, for explosion protection, it is a correct and safe approach to apply the normal yield stress. It is possible to use verification by engineering rules or finite element methods. NOTE 2 See Bibliography for further references. Detailed design features which can lead to cracking shall be avoided. This requires limitation of stress concentrations (for examples see Annex E). If design is done according to technical standards (membrane or two-dimensional stress), the permissible stresses are as follows: Ductile ferritic material ()ϑ=021,/dfpfR Ductile austenitic material ()ϑ=21%/dafR SIST EN 14460:2018

F Ductile materials according to 5.2 1,1 Brittle materials with high notch impact energy according to 5.3 1,3 Brittle materials with low notch impact energy according to 5.3 2,0 6.4 Special requirements for bolted structures Explosion pressure shock resistant equipment consisting of bolted structures shall withstand the explosion pressure with or without permanent deformation and shall not give rise to dangerous effects to the surroundings. Flame ejection, excessive emission of pressure and/or hot gases/dust during the explosion through gaps between construction elements to the surroundings shall be considered as a dangerous effect. The design and test procedure including test criteria for bolted structures shall address this point. Gaskets or seals which are designed to prevent the dangerous effects shall be part of the design procedure, type and routine tests. If bolted structures are solely designed by Finite Element Analysis and are not covered by other technical standards the assessment of the consequences of deformations shall be based on experimental validation of prototypes with geometrical similarity. 6.5 Docu
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...