ISO 16904:2016
(Main)Petroleum and natural gas industries — Design and testing of LNG marine transfer arms for conventional onshore terminals
Petroleum and natural gas industries — Design and testing of LNG marine transfer arms for conventional onshore terminals
ISO 16904:2016 specifies the design, minimum safety requirements and inspection and testing procedures for liquefied natural gas (LNG) marine transfer arms intended for use on conventional onshore LNG terminals, handling LNG carriers engaged in international trade. It can provide guidance for offshore and coastal operations. It also covers the minimum requirements for safe LNG transfer between ship and shore. Although the requirements for power/control systems are covered, this International Standard does not include all the details for the design and fabrication of standard parts and fittings associated with transfer arms. ISO 16904:2016 is supplementary to local or national standards and regulations and is additional to the requirements of ISO 28460. ISO 16904:2016 needs not be applied to existing facilities.
Industries du pétrole et du gaz naturel — Conception et essais des bras de transfert de GNL sur des terminaux terrestres conventionnels
L'ISO 16904:2016 spécifie les règles de conception, les spécifications minimales de sécurité ainsi que les procédures de contrôle et d'essais relatifs aux bras de transfert de gaz naturel liquéfié (GNL) marins destinés à être utilisés sur des terminaux terrestres conventionnels, recevant des méthaniers engagés dans le commerce international. Elle peut fournir des lignes directrices pour des opérations côtières et au large. Elle fixe également les spécifications minimales permettant de garantir que le transfert de GNL entre le navire et le terminal s'effectue en toute sécurité. Bien que les spécifications relatives aux systèmes d'alimentation/télécommande soient couvertes, l'ISO 16904:2016 ne fixe pas tous les détails relatifs à la conception et à la fabrication des pièces normalisées et des raccords des bras de transfert. L'ISO 16904:2016 vient compléter les normes et règlements locaux ou nationaux, et s'ajoute aux spécifications de l'ISO 28460. Il n'est pas nécessaire d'appliquer l'ISO 16904:2016 aux installations existantes.
General Information
Standards Content (Sample)
DRAFT INTERNATIONAL STANDARD ISO/DIS 16904
ISO/TC 67 Secretariat: NEN
Voting begins on Voting terminates on
2013-03-14 2013-08-14
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION • МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ • ORGANISATION INTERNATIONALE DE NORMALISATION
Petroleum and natural gas industries — Design and testing of
LNG marine transfer arms for conventional onshore terminals
Industries du pétrole et du gaz naturel — Conception et essai de bras de transfert de gaz naturel liquéfié sur des
terminaux terrestres conventionnels
ICS 75.180.01
ISO/CEN PARALLEL PROCESSING
This draft has been developed within the International Organization for Standardization (ISO), and
processed under the ISO-lead mode of collaboration as defined in the Vienna Agreement.
This draft is hereby submitted to the ISO member bodies and to the CEN member bodies for a parallel
five-month enquiry.
Should this draft be accepted, a final draft, established on the basis of comments received, will be
submitted to a parallel two-month approval vote in ISO and formal vote in CEN.
To expedite distribution, this document is circulated as r eceived from the committee
secretariat. ISO Central Secretariat work of editing and text composition will be undertaken at
publication stage.
Pour accélérer la distribution, le présent document est distribué tel qu'il est parvenu du
secrétariat du comité. Le travail de rédaction et de composition de texte sera effectué au
Secrétariat central de l'ISO au stade de publication.
THIS DOCUMENT IS A DRAFT CIRCULATED FOR COMMENT AND APPROVAL. IT IS THEREFORE SUBJECT TO CHANGE AND MAY NOT BE
REFERRED TO AS AN INTERNATIONAL STANDARD UNTIL PUBLISHED AS SUCH.
IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL, TECHNOLOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT
INTERNATIONAL STANDARDS MAY ON OCCASION HAVE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME STANDARDS TO
WHICH REFERENCE MAY BE MADE IN NATIONAL REGULATIONS.
RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH
THEY ARE AWARE AND TO PROVIDE SUPPORTING DOCUMENTATION.
© International Organization for Standardization, 2013
ISO/DIS 16904
Copyright notice
This ISO document is a Draft International Standard and is copyright-protected by ISO. Except as permitted
under the applicable laws of the user’s country, neither this ISO draft nor any extract from it may be
reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic,
photocopying, recording or otherwise, without prior written permission being secured.
Requests for permission to reproduce should be addressed to either ISO at the address below or ISO’s
member body in the country of the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Reproduction may be subject to royalty payments or a licensing agreement.
Violators may be prosecuted.
ii © ISO 2013 – All rights reserved
ISO/DIS 16904
Contents Page
Foreword . v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions and abbreviations . 2
3.1 Terms and definitions . 2
3.2 Abbreviations . 9
4 Design of the arms . 10
4.1 Definition of the length and the configuration of the arms, arms description . 10
4.2 Design basis . 11
4.3 Swivel joints . 16
4.4 Structural bearings . 17
4.5 Accessories . 19
4.6 Pipework and fitting . 20
4.7 Welding . 20
4.8 Corrosion protection and embrittlement protection . 21
4.9 Maintenance . 21
5 Safety systems . 21
5.1 General . 21
5.2 Two stage alarm and shut down system . 22
5.3 Monitoring and alarm systems . 22
5.4 ERS . 23
5.5 Safety devices . 25
6 Connection with the ship . 26
6.1 General . 26
6.2 Design of QCDC . 27
6.3 QCDC system . 27
6.4 Flange cover . 28
7 Hydraulic and electric control systems . 28
7.1 General . 28
7.2 Arms operations . 28
7.3 Hydraulic components . 29
7.4 Electric components . 30
7.5 Testing of control systems . 31
7.6 Remote control . 31
7.7 Transfer arms jetty control console . 31
8 Inspection and tests . 31
8.1 General . 31
8.2 Prototype test . 31
8.3 Manufacturing inspection and tests . 38
8.4 Factory acceptance tests. 40
8.5 Site acceptance tests . 42
9 Quality assurance and control . 44
9.1 Quality system . 44
9.2 Quality plan . 44
Annex A (informative) Design data sheets . 45
Annex B (informative) Reference figures . 60
ISO/DIS 16904
Annex C (informative) Documentation requirements . 63
Bibliography . 68
iv © ISO 2012 – All rights reserved
ISO/DIS 16904
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 16904 was prepared by Technical Committee ISO/TC 67, Materials, equipment and offshore structures
for petroleum, petrochemical and natural gas industries.
DRAFT INTERNATIONAL STANDARD ISO/DIS 16904
Petroleum and natural gas industries — Design and testing of
LNG marine transfer arms for conventional onshore terminals
1 Scope
This International Standard specifies the design, minimum safety requirements and inspection and testing
procedures for liquefied natural gas (LNG) marine transfer arms intended for use on conventional onshore
LNG terminals, handling LNG carriers engaged in international trade. It can provide guidance for offshore and
coastal operations. It also covers the minimum requirements for safe LNG transfer between ship and shore.
Although the requirements for power/control systems are covered, this International Standard does not include
all the details for the design and fabrication of standard parts and fittings associated with transfer arms.
This International Standard is supplementary to local or national standards and regulations and is additional to
the requirements of ISO 28460.
This International Standard needs not be applied to existing facilities.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.
IEC 60034-5, Rotating electrical machines Part 5: Degrees of protection provided by the integral design of
rotating electrical machines (IP code) Classification
IEC 60079-0, Explosive atmospheres Part 0: General requirements
IEC 60079-1, Explosive atmospheres Part 1: Equipment protection by flameproof enclosures ―d‖
IEC 60079-2, Explosive atmospheres Part 2: Equipment protection by pressurized enclosures ―p‖
IEC 60079-5, Explosive atmospheres Part 5: Equipment protection by powder filling ―q‖
IEC 60079-6, Explosive atmospheres Part 6: Equipment protection by oil immersion ―o‖
IEC 60079-7, Explosive atmospheres Part 7: Equipment protection by increased safety ―e‖
IEC 60079-10-1, Explosive atmospheres Part 10-1: Classification of areas – Explosive gas atmospheres
IEC 60079-11, Explosive atmospheres Part 11: Equipment protection by intrinsically safety ―i‖
IEC 60079-18, Electrical atmospheres Part 18: Equipment protection by encapsulation ―m‖
IEC 60079-25, Electrical atmospheres Part 25: Intrinsically safe electrical systems
IEC 60529, Degrees of protection provided by enclosures (IP Code) and IEC 60529/A1, Amendment 1
ISO/DIS 16904
IEC 61508 (all parts), Functional safety of electrical/electronic/programmable electronic safety-related systems
IEC 62305-3, Protection against lightning Part 3: Physical damage to structures and life hazard
ISO 3452-1, Non-destructive testing Penetrant testing Part1: General principles
ISO 4406, Hydraulic fluid power – Fluids Method for coding the level of contamination by solid particles
ISO 9000, Quality management systems Fundamentals and vocabulary
ISO 9001, Quality management systems Requirements
ISO 9934-1, Non-destructive testing Magnetic particle testing – Part1: General principles
ISO 10474, Steel and steel products Inspection documents
ISO 10497, Testing of valves Fire type-testing requirements
ISO 17636, Non-destructive testing of welds Radiographic testing of fusion-welded joints
ISO 28460, Installation and equipment for liquefied natural gas - Ship to shore interface and port operations
ASME B16.5, Pipe Flanges and Flanged Fittings
ASME Boiler and Pressure Vessel Code IX: Welding and Brazing Qualifications
3 Terms and definitions and abbreviations
3.1 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
3.1
apex swivel
articulated, fluid-carrying joint located between the and
Note 1 to entry: See Figure B.2.
Note 2 to entry: It provides of the relative to the .
3.2
attitude
various modes of use and/or location of the (i.e. manoeuvring, stowed, connected, hydrostatic
test, and maintenance)
Note 1 to entry: The can take several positions for each .
3.3
base riser
riser
vertical assembly which bolts to the loading platform and supports the articulated assembly of the
arm>
Note 1 to entry: See Figure B.2.
Note 2 to entry: Sometimes referred to as ‗standpost‘.
2 © ISO 2012 – All rights reserved
ISO/DIS 16904
3.4
bottom swivel
accommodates pitching motion of and is located adjacent to in horizontal
part of
Note 1 to entry: See Figure B.2.
3.5
brinelling
any permanent indentation in or raceways caused by excessive loading of balls
or rollers
3.6
cargo manifold
pipe assembly mounted onboard to which the or of the
is connected
Note 1 to entry: See Figure B.2.
3.7
cavitation
formation and collapse of bubbles in a liquid when the pressure falls to or below the liquid vapour pressure;
the collapse releases energy, sometimes with an audible sound and vibration
Note 1 to entry: Such low pressures occur in high velocity zones such as the inner radius of elbows, or at places with
variations of diameters.
3.8
clash
any contact during design operational conditions, or as a result of an emergency separation, between any part
of a and:
adjacent while both s are operating or one is operating and the other
is stowed (e.g. the counterweights);
adjacent section of the same (e.g. and );
loading platform equipment (e.g. and piping or valves)
3.9
contact angle α
angle between the plane of the or balls or rollers and the centre of contact
at the ball or roller raceway interface
3.10
conventional onshore LNG terminal
LNG exporting or receiving terminal that is located on-shore and that has a marine transfer arms for the
loading or unloading of LNG carriers in a harbour or other sheltered coastal location
3.11
counterweight
system of weights used to balance the and assemblies
Note 1 to entry: Some s have a single for this function and others have multiple
s.
3.12
design pressure
pressure for which the is designed
ISO/DIS 16904
Note 1 to entry: See Table A.1.
3.13
design temperature
range of temperatures for which the is designed
Note 1 to entry: See Table A.1.
3.14
drift
longitudinal and/or lateral displacement of the under the influence of environmental forces
Note 1 to entry: See also ―surge fore or aft‖ in 3.51 and ―sway‖ in 3.53.
3.15
emergency release system
ERS
system that provides a positive means of quick release of s and safe isolation of
and shore
Note 1 to entry: See Figure B.2.
3.16
emergency shut down
ESD
method that safely and effectively stops the transfer of and vapour between the and
shore
3.17
freeboard
vertical distance between the ship's deck and the water level at the manifold location
Note 1 to entry: See Table A.3 and Figure A.1.
3.18
freewheel
ability of a hydraulically operated when connected to a to follow freely without
hydraulic restraint the vertical and horizontal motions of the ‘s manifold (draft changes and
and motions)
3.19
heave
vertical motion of the due to wave action
Note 1 to entry: See Table A.4 and Figure A.2.
3.20
inboard arm
product-carrying pipe and any structural members contained between the and the
swivel>
Note 1 to entry: See Figure B.2.
3.21
included angle
angle formed between and
Note 1 to entry: See Figure B.2.
Note 2 to entry: The maximum and minimum s are left to the transfer arm manufacturer.
4 © ISO 2012 – All rights reserved
ISO/DIS 16904
Note 3 to entry: The in the stowed position of the s is such, that the s are
parked with the behind the berthing line.
3.22
insulating flange
electrical insulating system, usually dedicated, which is installed in the lower end of the
Note 1 to entry: Its purpose is to prevent stray currents from causing an arc at the ‘s flange as the
is connected or disconnected.
3.23
jack
permanent, adjustable load-carrying mechanism potentially installed in the to transfer
a portion of the fluid weight to the deck instead of the manifold
Note 1 to entry: See Figure B.2.
3.24
jetty control centre
control centre situated on or adjacent to the jetty primarily to control and/or monitor the s
Note 1 to entry: Sometimes referred to as ‗jetty control room‘ or ‗local control room‘.
3.25
LNG carrier
LNGC
tank ship designed for the carriage of
3.26
luffing
rotary motions of the and in the vertical plane
Note 1 to entry: See Figure B.2.
3.27
main hydraulic unit
MHU
hydraulic unit that generates hydraulic power to ensure the normal operation and emergency release
sequence of the arms
3.28
manifold setback
horizontal distance between the board side of and the face of
Note 1 to entry: See Table A.3 and Figure A.1.
3.29
manifold spacing
horizontal distance between the centerlines of the pipe assembly of the
Note 1 to entry: See Table A.3 and Figure A.1.
3.30
middle swivel
accommodates yawing and surge of and is located between and
in vertical part of
Note 1 to entry: See Figure B.2.
ISO/DIS 16904
3.31
operating envelope
volume in which (s) of a (group of) (s) is (are) required to operate
3.32
outboard arm
product-carrying pipe and any structural members contained between the and the
assembly>
Note 1 to entry: See Figure B.2.
3.33
owner (or designated agent)
company or group of companies for whose use the s are installed, responsible for the safe
design and construction of the installation
3.34
pantograph system
system for transmitting balancing loads from the to the (s)
Note 1 to entry: The system comprises an assembly of linkages and pinned connections, or a cable and sheaves
system (respectively ―rigid link pantograph‖ and ―cables and sheaves pantograph‖).
3.35
pitch(ing)
rotation of the around transversal horizontal axis
Note 1 to entry: See Table A.4 and Figure A.2.
3.36
powered emergency release coupling
PERC
powered device to provide a means of quick release of the when such action is required only
as an emergency measure
3.37
presentation flange
flange for connection to either the or
Note 1 to entry: See Figure B.2.
3.38
product
fluid transferred using s
Note 1 to entry: Fluids are , or .
3.39
quick connect disconnect coupler
QCDC
coupler
manual or hydraulic mechanical device used to connect the to the without
employing bolts
Note 1 to entry: See Figure B.2.
6 © ISO 2012 – All rights reserved
ISO/DIS 16904
3.40
remote pendant control
remote control
device to facilitate the fine manoeuvring operation of the s from a remote location (e.g.
carrier>‘s area)
Note 1 to entry: The system can use a trailling wire or radio-controlled system.
3.41
riser and trunnion swivel assembly
fluid carrying system consists of , and elbows and mounted on top of the
Note 1 to entry: See Figure B.2.
3.42
riser flange
flange for connection to LNG piping
Note 1 to entry: See Figure B.2.
3.43
riser swivel
swing joint in the which permits of the
Note 1 to entry: See Figure B.2.
3.44
roll(ing)
rotation of around longitudinal horizontal axis
Note 1 to entry: See Table A.4 and Figure A.2.
3.45
safety integrity level
SIL
statistical representations of the integrity of the safety instrumented system when a process demand occurs
Note 1 to entry: See Clause 5.
3.46
slew(ing)
horizontal, rotary motion of the around the
Note 1 to entry: See Figure B.2.
3.47
spool (piece)
short length of pipe for the purpose of matching the to the or
Note 1 to entry: Sometimes referred to as ―adaptor‖ or ―short distance piece‖.
3.48
spotting line
line used by the when berthing to align the centrelines of the and
manifold>
Note 1 to entry: See Figure A.4.
ISO/DIS 16904
3.49
stress analysis
detailed calculation of the structural loading in the and for various positions
and attitudes to check the integrity of the for the service intended
3.50
structural bearing
bearing in the load carrying components supporting the product line that, in combination, allow the
arm> to follow freely the motion of the
3.51
surge fore or aft
longitudinal motion
Note 1 to entry: See Table A.4 and Figure A.2.
3.52
surge pressure
rapid change in pressure as a consequence of a change in flow rate in a pipeline and/or piping systems
(including s)
3.53
sway
transverse
Note 1 to entry: See Table A.4 and Figure A.2.
3.54
swivel joint (or swivel)
swing joint contained in the to permit the arm to freely follow the motion of the
3.55
terminal
LNG producing/receiving plant with loading/unloading facilities
3.56
top swivel
accommodates rolling, heave and sway motion of and is located between and
in horizontal part of
Note 1 to entry: See Figure B.2.
3.57
transfer
loading or unloading operation
3.58
transfer arm
arm
articulated metal transfer system used for transferring product to or from with the capability of
accommodating differences in tides, and ‘s motions
Note 1 to entry: See Figure B.2.
Note 2 to entry: Can be referred to as a ―loading arm‖ or ―unloading arm‖.
3.59
triple swivel assembly
TSA
group of three s and elbows located at the end of the
8 © ISO 2012 – All rights reserved
ISO/DIS 16904
Note 1 to entry: See Figure B.2.
3.60
trunnion swivel
swing joint in the which permits the to rotate around the
horizontal axis
Note 1 to entry: See Figure B.2.
3.61
uninterrupted power supply
UPS
back-up of the electrical supply system providing power to critical control and safety systems so that the plant
can be kept in safe conditions
3.62
yaw(ing)
rotation of the around vertical axis
Note 1 to entry: See Table A.4 and Figure A.2.
3.2 Abbreviations
For the purposes of this document, the following abbreviations apply:
CPMS: constant position monitoring system;
ERS: emergency release system;
ESD: emergency shut down;
FL: fluid load;
LNG: liquefied natural gas;
LNGC: liquefied natural gas carrier;
LN : liquefied nitrogen gas;
MHU: main hydraulic unit;
NG: natural gas;
N : nitrogen gas;
OBE: operating basis earthquake;
PERC: powered emergency release coupling;
PL: pressure load;
PQR: performance quality records;
QCDC: quick connect disconnect coupler
SIL: safety integrity level;
SSE: safe shutdown earthquake;
ISO/DIS 16904
TL: thermal load;
TSA: triple swivel assembly;
UPS: uninterrupted power supply;
WL: wind load;
WPS: welding procedure specifications.
4 Design of the arms
4.1 Definition of the length and the configuration of the arms, arms description
4.1.1 General
The transfer arm general arrangement is given in Figure B.2.
The length and the configuration of the transfer arms shall allow for the connection of the on-shore piping to
the ship‘s cargo manifold. The connection shall allow for free movement within the operating envelope.
The transfer arms are normally composed of (see definitions in Clause 3):
triple swivel assembly (TSA) including emergency release system (ERS) and quick connect/disconnect
coupler (QCDC) if specified;
outboard arm;
apex swivel assembly between the outboard and inboard arm;
pantograph system;
inboard arm;
riser and trunnion swivel assembly between the inboard arm and the base riser;
base riser.
The product piping subject to low temperature shall be free to expand or contract within the structure. The
structure itself shall not be subjected to low temperature.
All piping supports shall be adequately designed so that stresses in the piping and the structure are within
allowable limits for all attitudes and positions.
Any parts of transfer arm, e.g. seals, bolts and nuts, shall not come off or unfasten and drop into product
piping due to product flow, vibration, negative pressure and cryogenic condition.
4.1.2 Balancing
The complete TSA and outboard arm shall be balanced in the empty condition without ice. It shall be balanced
with pantograph system about the apex swivel.
The complete, articulated assembly shall be balanced, in empty condition without ice. It shall be balanced
about the trunnion swivel.
10 © ISO 2012 – All rights reserved
ISO/DIS 16904
The design of the transfer arms shall consider, in addition to the normal operation, the emergency release of
the arms in both the empty and full condition. There should be no clash of the arms with the ship or the jetty.
4.1.3 Arms dimensions and clearances
4.1.3.1 Arms dimensions
Transfer arm dimensions, based on the design data in Tables A.1 to A.15 and Figures A.1 to A.4, shall be
determined by the transfer arm manufacturer to ensure that the transfer arm satisfies all specified
requirements.
4.1.3.2 Clearance study
The design shall cater for the following minimum clearances unless otherwise specified in Table A.6:
0,15 m minimum clearance between any part of an operating arm and a stowed arm;
0,3 m minimum clearance between any part of an operating arm and any adjacent structures, piping,
equipment;
0,3 m minimum clearance between any part of adjacent operating arms
NOTE The minimum manifold centers on some ships give less clearance than 0,3 m between adjacent ERS and
adjacent QCDC.
0,15 m minimum clearance between counterweights of operating arms.
Figure B.3 shows the location of main clearance checkpoints.
Transfer arm manufacturer's clearance study shall identify all check points, based on a drawing of the jetty
layout in elevation and plan. Consideration should be given for any future expansion.
In the stowed position no part of the transfer arm shall extend beyond the jetty face or berthing line with
compressed fenders (see Table A.6 and Figure A.3).
4.2 Design basis
4.2.1 Product line diameter and product data
The LNG product line should be sized for a maximum liquid product speed of 12 m/s unless otherwise
specified by the owner. Higher speeds can be locally acceptable in reduced passages for example in the ERS,
provided cavitation and vibration is acceptable.
Pressure loss curve for LNG and vapour return within the transfer arms should be agreed with the owner.
4.2.2 Material and grades
Material and grades shall have chemical, physical and mechanical properties conformable to the specified
design conditions, such as pressure, temperature, wind and earthquake loads and environment application.
Material and grades used for critical parts such as pressure containing parts including bolts and nuts and main
structural parts are subject to owner‘s approval.
In the product carrying components, stainless steel (304, 304L, 316 or 316L) should be used for low
temperature fracture toughness. Corrosion resistant property of stainless steel in a chloride environment should
be considered. (e.g., painting or coating)
ISO/DIS 16904
For welding purposes the carbon content of carbon steels for structural components should not be higher than
0,26 % except in case certified by welding procedure specifications (WPS) and performance quality records
(PQR).
Other material and grade may be considered for use if it can be demonstrated that it meets all safety and
operational performance criteria.
If the transfer arms are installed in low ambient temperature, the grade used for the structure shall be
adequate. The same applies to parts between the product line and the structure which may be subject to low
temperature.
4.2.3 Stress analysis
4.2.3.1 General
A complete analysis of stresses and deflections in the transfer arm and LNG carrier‘s manifolds shall be
performed for all appropriate arm conditions.
The calculated stresses shall be lower than or equal to the allowable design stress.
Loading combination, allowable design stress and design loads shall be in accordance with 4.2.3.2 to 4.2.3.9
or complied with the local or national standards and regulations or code agreed with the owner.
4.2.3.2 Loading combination
The transfer arm manufacturer shall prepare a stress report for the loading combinations in Table A.15 at all
appropriate transfer arm attitudes within the envelope. The LNG carrier manifold shall be included, if required
by 4.2.3.10.
Where combinations other than those in Table A.15 (e.g. exclusion of a load) can be shown to lead to a
greater feasible loading effect, then the design shall also allow for that condition.
Where applicable, the stress report shall also include loading effects of using any installation/maintenance
lifting lugs.
4.2.3.3 Allowable design stress
The basic allowable design stress (Sd) for pressure containing and non-pressure containing structural
components shall be the lower of either:
yield strength /1,5;
or
ultimate tensile strength /3 for austenitic steels, and ultimate tensile strength /2,4 for ferritic steels.
The yield strength and ultimate tensile strength should be the values specified in the applicable material
standards.
The allowable design stress is obtained by multiplying the basic allowable design stress with the K factor as
provided.
4.2.3.4 Pressure load
The pressure loads (PL) shall be based on design pressure.
12 © ISO 2012 – All rights reserved
ISO/DIS 16904
4.2.3.5 Fluid load
The fluid loads (FL) shall be based on the highest density of LNG.
4.2.3.6 Ice build-up
Unless otherwise specified in Table A.9, the dead load and wind load (DL + WL) shall include ice build-up
(specific gravity = 0,80) as follows:
a) 6 mm on all components in cold climate;
b) 25 mm on product carrying components.
NOTE These criteria are not cumulative.
4.2.3.7 Thermal load
The thermal loads (TL) are the loads caused by material temperature differences. The temperature
differences used in the design shall be based on the design temperatures specified and the ambient and solar
radiation temperatures. These temperatures shall be applied in the most extreme combination.
A cool-down procedure shall be included in the operating procedures. This procedure shall provide
temperature gradients across fluid and structural members and/or recommended maximum cool-down rate
and minimum cool-down duration to prevent excessive stresses and strains.
4.2.3.8 Wind load
4.2.3.8.1 The wind loads (WL) shall be calculated for the worst direction(s). The transfer arm manufacturer
shall calculate wind loads as follows.
4.2.3.8.2 Velocity pressure
The velocity pressure is calculated as follows:
q 0,613K K V I
Z Z ZT
where
q velocity pressure at height z above minimum water level (N/m );
Z
K velocity pressure co-efficient evaluated at height z;
Z
K topographic factor (use 1,0);
ZT
V basic 3 s gust wind speed at 10 m above lowest low water (m/s);
I importance factor (use 1,0);
K is determined as follows:
Z
2 /
K 2,01 (Z /Zg) for 4,6 ≤ Z ≤ Zg
Z
2 /
K 2,01 (4,6/Zg) for Z < 4,6
Z
where
ISO/DIS 16904
Z heights above low tide (m);
Zg gradient height (m), see Table 1;
α power law coefficient, see Table 1.
Table 1 Exposure
Exposure α Zg
m
C 9,5 274
D 11,5 213
Exposure C covers open terrain with scattered obstructions having heights generally less than 10 m.
Exposure D covers flat, unobstructed locations which are exposed to wind flowing over open water for a
distance of at least 1,6 km. Exposure D extends 4 000 m inland from the shoreline or 10 times the height of
the transfer arm, whichever is greater.
NOTE Exposure D is generally used for transfer arms except where Exposure C can be justified.
4.2.3.8.3 Wind forces
The wind force is calculated as follows:
F q GCf Af
Z
where
F design wind force (N);
G gust effect factor (use 0,85);
Cf force coefficient;
Af projected area normal to wind (m ).
The gust effect factor, G, accounts for the loading effects in the along-wind direction due to the effect of wind
turbulence on the transfer arm. It also accounts for along-wind loading due to dynamic amplification for flexible
structures. It does not include cross-wind loading effects, vortex shedding, instability or dynamic torsional
effects. If a higher value factor is justified due to dynamic sensitivity to wind it should be determined in
[9]
accordance with EN 1991-1-4 .
The force coefficient, Cf, accounts for along-wind effects due to the shape or drag of the transfer arm. Transfer
arms are unique structures and there are no wind tunnel test data available to establish precise force
[9]
coefficients. However, based on recommendations provided in EN 1991-1-4 for round cylindrical shapes and
flat or angular shaped members, the coefficients as listed in Table 2 are recommended.
Table 2 Force coefficients
Cross-section Type of surface Cf
Round Moderately smooth 0,7
Rough 1,0
D q 5,3
Z
14 © ISO 2012 – All rights reserved
ISO/DIS 16904
Round All 1,2
D q 5,3
Z
Flat or angular All 1,7
D is diameter (m)
q is velocity pressure at height z above minimum water level (N/m )
z
Alternatively, the transfer arm manufacturer may determine wind loads from wind tunnel tests on a
representative model including adjacent arms.
4.2.3.9 Earthquake load
The earthquake load shall be based on operating basis earthquake (OBE). When the owner requires, the
earthquake load based on safe shutdown earthquake (SSE) shall also be considered (see Table A.9).
The earthquake loads shall be considered to act in the plane parallel and perpendicular to the jetty face. Also
it should be considered to act in horizontal and vertical simultaneously.
The seismic design shall be in accordance with local or national standards and regulations, but with arms in
stowed conditions. An analysis in connected condition may be required by the owner (see Table A.15).
4.2.3.10 Design stress procedure
The design stress procedure shall be as follows:
a) Determine the design loads for the various load cases.
b) Calculate the stresses using linear elastic material behaviour and the equivalent (Tresca, von Mises or
Principal) stress;
c) Determine the allowable design stress.
d) Equivalent stress shall not exceed the allowable design stress.
e) Stresses due to local discontinuity and/or local thermal stresses shall not exceed two times the yield
stress;
f) In absence of reference to the local or national standards and regulations or code, components under
predominantly compressive stresses shall be shown to have a safety factor of 2 against instability.
g) Maximum deformation of components shall be limited such that the functionality of the equipment and the
clearance requirements as specified are guaranteed under all loading conditions.
h) Check dynamic behaviour where appropriate.
i) Complete wire rope assemblies, including their anchorages, shall have a safety factor of at least 5,
related to minimum rated breaking strength.
j) The transfer arm manufacturer should ensure that the loads transmitted to the manifold flange, under all
circumstances are limited to the maximum given specified by the owner, but not exceeding those given in
the latest edition of ―Recommendations for Manifolds for Refrigerated Liquefied Natural Gas Carriers
[8]
(LNG)‖ by OCIMF/SIGTTO .
The manifold loads shall be analysed based on Cases 4 and 5 of Table A.15.
ISO/DIS 16904
k) Stress intensification factors shall be used for elbows flanges and pipe bends etc. Correction factors for
flanged ends shall be restricted to arc angles of 90° or less. The effect of swivels shall be considered if
appropriate.
4.3 Swivel joints
4.3.1 General
The product swivel joint is made up of a product sealing arrangement, a bearing system and an external
sealing arrangement.
4.3.2 Product sealing arrangement
The arrangement shall comprise of minimum two seals, one primary and one secondary. The secondary seal
is to avoid external leakage or leakage into the bearing in case of primary seal failure. The design should not
allow for over pressurization between primary and secondary seal that could lead to external leakage beyond
the defined leakage rate (see Clause 8).
The detection port shall be provided in the annular space between the primary and secondary seal.
The swivels shall accommodate temporary partial vacuum conditions.
4.3.3 Bearing system
The bearing system shall be kept dry with N to prevent internal ice formation.
4.3.4 External sealing arrangement
The external sealing arrangement shall prevent ingress of water and particulate matter into the bearing.
4.3.5 Design
The swivel joints shall be designed for a minimum (see NOTEs 1 and 2 in 8.2.2.2.5):
a) safety factor a (SF ) × P + PL (see NOTE 2) against structural failure;
a CA swivel
b) safety factor b (SF ) × P + PL (see NOTE 2) against leakage, with maximum allowable leakage rate
b CA swivel
as defined in 8.2.2.2.5;
c) safety factor c (SF ) × P + PL (see NOTE 2) against brinelling, with allowable brinelling as defined in
c CA swivel
8.2.2.2.5.
The safety factor as listed in Table 3 is the ratio of the maximum equivalent axial load at which the event
occurs and the calculated maximum equivalent axial load.
Table 3 Safety factor
Case no. SF SF SF
a b c
(see Table A.15) structural failure leakage brinelling
3, 4, 5 or 9 4,0 2,0 1,5
1, 2, 7, 8 or 10 3,33 (=4,0/1,2) 1,67 (=2,0/1,2) 1,25 (=1,5/1,2)
SSE 2,0 (=4,0/2,0) 1,0 (=2,0/2,0) 0,75 (=1,5/2,0)
16 © ISO 2012 – All rights reserved
ISO/DIS 16904
NOTE 1 Swivel joints need not b
...
INTERNATIONAL ISO
STANDARD 16904
First edition
2016-02-15
Petroleum and natural gas
industries — Design and testing
of LNG marine transfer arms for
conventional onshore terminals
Industries du pétrole et du gaz naturel — Conception et essais des
bras de transfert de GNL sur des terminaux terrestres conventionnels
Reference number
©
ISO 2016
© ISO 2016, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2016 – All rights reserved
Contents Page
Foreword .vi
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 2
4 Abbreviated terms . 9
5 Design of the arms .10
5.1 Definition of the length and the configuration of the arms, arms description .10
5.1.1 General.10
5.1.2 Balancing .10
5.1.3 Arms dimensions and clearances .11
5.2 Design basis .11
5.2.1 Product line diameter and product data .11
5.2.2 Material and grades .11
5.2.3 Stress analysis .12
5.3 Swivel joints .15
5.3.1 General.15
5.3.2 Product sealing arrangement .16
5.3.3 Bearing system .16
5.3.4 External sealing arrangement .16
5.3.5 Design .16
5.4 Structural bearings .17
5.4.1 Design .17
5.4.2 Protection of structural bearings.18
5.4.3 Grease sampling point .18
5.5 Accessories .18
5.5.1 Adjustable support (jack) .18
5.5.2 Nitrogen injection line .18
5.5.3 Stowing locking device .18
5.5.4 Ladders and platforms . .19
5.5.5 Vapour recovery lines .19
5.5.6 Liquid nitrogen line .19
5.5.7 Thermal insulation .19
5.5.8 Ice fall protection .19
5.6 Pipework and fitting .19
5.6.1 Process connections . .19
5.6.2 Drain connection.19
5.6.3 Plugged connection .20
5.6.4 Valve .20
5.6.5 Connection flange.20
5.6.6 Gasket .20
5.7 Welding .20
5.8 Corrosion protection and embrittlement protection .20
5.8.1 Corrosion protection .20
5.8.2 Embrittlement protection .20
5.9 Maintenance .21
6 Safety systems .21
6.1 General .21
6.2 Two stage alarm and shutdown system .22
6.2.1 First stage .22
6.2.2 Second stage .22
6.3 Monitoring and alarm systems .22
6.3.1 Alarm envelopes .22
6.3.2 Arm positioning alarms system .22
6.3.3 Arm constant position monitoring system (CPMS) .23
6.3.4 Pressure and hydraulic level alarm .23
6.4 ERS .23
6.4.1 General.23
6.4.2 Design of ERS .23
6.4.3 Safety devices on ERS .24
6.5 Safety devices .24
6.5.1 Fire safety requirements .24
6.5.2 Electrical safety requirements .25
6.5.3 Failure of electrical power supply.25
6.5.4 Stray current protectors .26
6.5.5 Bonding .26
7 Connection with the ship .26
7.1 General .26
7.2 Design of QCDC .26
7.3 QCDC system .27
7.4 Flange cover.27
8 Hydraulic and electric control systems .28
8.1 General .28
8.2 Arms operations .28
8.3 Hydraulic components .29
8.4 Electric components .30
8.5 Testing of control systems .30
8.6 Remote control .30
8.7 Transfer arms jetty control console .30
9 Inspection and tests .31
9.1 General .31
9.2 Prototype test .31
9.2.1 General.31
9.2.2 Swivel joint .31
9.2.3 ERS .34
9.2.4 QCDC .35
9.3 Manufacturing inspection and tests .37
9.3.1 General.37
9.3.2 Materials .37
9.3.3 Welding .37
9.3.4 Non-destructive test .37
9.3.5 Dimensional inspection .37
9.3.6 Pressure test .37
9.3.7 ERS .38
9.3.8 QCDC .38
9.3.9 Insulating flange (stray current protector) .39
9.3.10 Hydraulic circuit test .39
9.4 Factory acceptance tests .39
9.5 Site acceptance tests .40
9.5.1 General.40
9.5.2 Transfer arm assembly .41
9.5.3 Hydraulic circuit .42
10 Quality assurance and control.42
10.1 Quality system .42
10.2 Quality plan .42
11 Required documentation .43
Annex A (informative) Design data sheets .44
Annex B (informative) Reference table and figures .58
iv © ISO 2016 – All rights reserved
Annex C (informative) Documentation requirements.62
Bibliography .67
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the meaning of ISO specific terms and expressions related to conformity
assessment, as well as information about ISO’s adherence to the WTO principles in the Technical
Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information
The committee responsible for this document is ISO/TC 67, Materials, equipment and offshore structures
for petroleum, petrochemical and natural gas industries.
vi © ISO 2016 – All rights reserved
INTERNATIONAL STANDARD ISO 16904:2016(E)
Petroleum and natural gas industries — Design and
testing of LNG marine transfer arms for conventional
onshore terminals
1 Scope
This International Standard specifies the design, minimum safety requirements and inspection
and testing procedures for liquefied natural gas (LNG) marine transfer arms intended for use on
conventional onshore LNG terminals, handling LNG carriers engaged in international trade. It can
provide guidance for offshore and coastal operations. It also covers the minimum requirements for safe
LNG transfer between ship and shore.
Although the requirements for power/control systems are covered, this International Standard does
not include all the details for the design and fabrication of standard parts and fittings associated with
transfer arms.
This International Standard is supplementary to local or national standards and regulations and is
additional to the requirements of ISO 28460.
This International Standard needs not be applied to existing facilities.
2 Normative references
The following referenced documents, in whole or in part, are normatively referenced in this document
and are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 3452-1, Non-destructive testing — Penetrant testing — Part 1: General principles
ISO 4406, Hydraulic fluid power — Fluids — Method for coding the level of contamination by solid particles
ISO 9934-1, Non-destructive testing — Magnetic particle testing — Part1: General principles
ISO 10474:2013, Steel and steel products — Inspection documents
ISO 10497, Testing of valves — Fire type-testing requirements
ISO 17636-1, Non-destructive testing of welds — Radiographic testing — Part 1: X- and gamma-ray
techniques with film
ISO 17636-2, Non-destructive testing of welds — Radiographic testing — Part 2: X- and gamma-ray
techniques with digital detectors
ISO 28460:2010, Petroleum and natural gas industries — Installation and equipment for liquefied natural
gas — Ship-to-shore interface and port operations
IEC 60034-5, Rotating electrical machines — Part 5: Degrees of protection provided by the integral design
of rotating electrical machines (IP code) — Classification
IEC 60079-0, Explosive atmospheres — Part 0: Equipment — General requirements
IEC 60079-1, Explosive atmospheres — Part 1: Equipment protection by flameproof enclosures “d”
IEC 60079-2, Explosive atmospheres — Part 2: Equipment protection by pressurized enclosures “p”
IEC 60079-5, Explosive atmospheres — Part 5: Equipment protection by powder filling “q”
IEC 60079-6, Explosive atmospheres — Part 6: Equipment protection by oil immersion “o”
IEC 60079-7, Explosive atmospheres — Part 7: Equipment protection by increased safety “e”
IEC 60079-10-1, Explosive atmospheres — Part 10-1: Classification of areas — Explosive gas atmospheres
IEC 60079-11, Explosive atmospheres — Part 11: Equipment protection by intrinsic safety “i”
IEC 60079-14, Explosive atmospheres — Part 14: Electrical installations design, selection and erection
IEC 60079-18, Explosive atmospheres — Part 18: Equipment protection by encapsulation “m”
IEC 60079-25, Explosive atmospheres — Part 25: Intrinsically safe electrical systems
IEC 60529, Degrees of protection provided by enclosures (IP Code) and IEC 60529/A1&A2, Amendment 1&2
IEC 61508 (all parts), Functional safety of electrical/electronic/programmable electronic safety-
related systems
IEC 62305-3, Protection against lightning — Part 3: Physical damage to structures and life hazard
ASME B16.5, Pipe Flanges and Flanged Fittings
ASMEBoiler and Pressure Vessel Code Section IX: Welding and Brazing Qualifications
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
3.1
apex swivel
articulated, fluid-carrying joint located between the inboard arm (3.20) and outboard arm (3.32)
Note 1 to entry: See Figure B.2.
Note 2 to entry: It provides luffing (3.26) of the outboard arm relative to the inboard arm.
3.2
attitude
various modes of use and/or location of the transfer arm (3.59) (i.e. manoeuvring, stowed, connected,
hydrostatic test, and maintenance)
Note 1 to entry: The transfer arm can take several positions for each attitude.
3.3
base riser
riser
vertical assembly which bolts to the loading platform and supports the articulated assembly of the
transfer arm (3.59)
Note 1 to entry: See Figure B.2.
Note 2 to entry: Sometimes referred to as “standpost”.
3.4
bottom swivel
accommodates pitching (3.35) motion of LNG carrier (3.25) and is located adjacent to presentation flange
(3.37) in horizontal part of TSA (3.60)
Note 1 to entry: See Figure B.2.
2 © ISO 2016 – All rights reserved
3.5
brinelling
any permanent indentation in swivel (3.55) or structural bearing (3.50) raceways caused by excessive
loading of balls or rollers
3.6
cargo manifold
pipe assembly mounted onboard LNG carrier (3.25) to which the presentation flange (3.37) or QCDC
(3.39) of the transfer arm (3.59) is connected
Note 1 to entry: See Figure B.2.
3.7
cavitation
formation and collapse of bubbles in a liquid when the pressure falls to or below the liquid vapour
pressure; the collapse releases energy, sometimes with an audible sound and vibration
Note 1 to entry: Such low pressures occur in high velocity zones such as the inner radius of elbows, or at places
with variations of diameters.
3.8
clash
any contact during design operational conditions, or as a result of an emergency separation, between
any part of a transfer arm (3.59) and:
— adjacent transfer arm while both arms are operating or one arm is operating and the other arm is
stowed [e.g. the counterweights (3.11)];
— adjacent section of the same transfer arm [e.g. triple swivel assembly (3.60) and outboard arm (3.32)];
— loading platform equipment [e.g. counterweight (3.11) and piping or valves]
3.9
contact angle
α
angle between the plane of the swivel joint (3.55) or structural bearing (3.50) balls or rollers and the
centre of contact at the ball or roller raceway interface
3.10
conventional onshore LNG terminal
LNG exporting or receiving terminal that is located on-shore and that has a marine transfer arms for
the loading or unloading of LNG carriers (3.25) in a harbour or other sheltered coastal location
3.11
counterweight
system of weights used to balance the inboard arm (3.20) and outboard arm (3.32) assemblies
Note 1 to entry: Some transfer arms (3.59) have a single counterweight for this function and others have multiple
counterweights.
3.12
design pressure
pressure for which the transfer arm (3.59) is designed
Note 1 to entry: See Table A.1.
3.13
design temperature
range of temperatures for which the transfer arm (3.59) is designed
Note 1 to entry: See Table A.1.
3.14
drift
longitudinal and/or lateral displacement of the LNG carrier (3.25) under the influence of
environmental forces
Note 1 to entry: See also surge fore (3.52) or aft (3.51) and sway (3.54).
3.15
emergency release system
ERS
system that provides a positive means of quick release of transfer arms (3.59) and safe isolation
between the LNG carrier (3.25) and shore, following a predefined procedure including an emergency
shutdown (ESD) (3.16)
Note 1 to entry: See Figure B.2.
3.16
emergency shutdown
ESD
method that safely and effectively stops the transfer of LNG and vapour between the LNG carrier
(3.25) and shore
3.17
freeboard
vertical distance between the ship’s deck and the water level at the manifold location
Note 1 to entry: See Table A.3 and Figure A.1.
3.18
free wheel
ability of a hydraulically operated transfer arm (3.59) when connected to a LNG carrier (3.25) to follow
freely without hydraulic restraint the vertical and horizontal motions of the LNG carrier’s manifold
(draft changes and sway (3.54) and surge motions)
3.19
heave
vertical motion of the LNG carrier (3.25) due to wave action
Note 1 to entry: See Table A.4 and Figure A.2.
3.20
inboard arm
product-carrying pipe and any structural members contained between the apex swivel (3.1) and the
trunnion swivel (3.61)
Note 1 to entry: See Figure B.2.
3.21
included angle
angle formed between inboard arm (3.20) and outboard arm (3.32)
Note 1 to entry: See Figure B.2.
Note 2 to entry: The maximum and minimum included angles are left to the transfer arm manufacturer.
Note 3 to entry: The included angle in the stowed position of the transfer arms (3.59) is such, that the arms are
parked with the triple swivel assembly (3.60) behind the berthing line.
4 © ISO 2016 – All rights reserved
3.22
insulating flange
electrical insulating system, usually dedicated, which is installed in the lower end of the outboard arm
(3.32) or in the vertical part of the triple swivel assembly (3.60)
Note 1 to entry: Its purpose is to prevent stray currents from causing an arc at the LNG carrier’s (3.25) flange as
the transfer arm (3.59) is connected or disconnected.
3.23
jack
permanent, adjustable load-carrying mechanism potentially installed in the triple swivel assembly (3.60)
to transfer a portion of the arm (3.59) fluid weight to the deck instead of the LNG carrier’s (3.25) manifold
Note 1 to entry: See Figure B.2.
3.24
jetty control centre
control centre situated on or adjacent to the jetty primarily to control and/or monitor the transfer arms
(3.59)
Note 1 to entry: Sometimes referred to as “jetty control room” or “local control room”.
3.25
LNG carrier
LNGC
tank ship designed for the carriage of LNG
3.26
luffing
rotary motions of the inboard arm (3.20) and outboard arm (3.32) in the vertical plane
Note 1 to entry: See Figure B.2.
3.27
main hydraulic unit
MHU
hydraulic unit that generates hydraulic power to ensure the normal operation and emergency release
sequence of the arms
3.28
manifold setback
horizontal distance between the board side of LNG carrier (3.25) and the face of cargo manifold (3.6)
Note 1 to entry: See Table A.3 and Figure A.1.
3.29
manifold spacing
horizontal distance between two adjacent cargo manifold (3.6) flange axes
Note 1 to entry: See Table A.3 and Figure A.1.
3.30
middle swivel
accommodates yawing (3.63) and surge of LNG carrier (3.25) and is located between top swivel (3.57)
and bottom swivel (3.4) in vertical part of TSA (3.60)
Note 1 to entry: See Figure B.2.
3.31
operating envelope
volume in which presentation flange(s) (3.37) of a (group of) transfer arm(s) (3.59) is (are) required to
operate
3.32
outboard arm
product-carrying pipe and any structural members contained between the apex swivel (3.1) and the
triple swivel assembly (3.60)
Note 1 to entry: See Figure B.2.
3.33
owner
designated agent
company or group of companies for whose use the transfer arms (3.59) are installed, responsible for the
safe design and construction of the installation
3.34
pantograph system
system for transmitting balancing loads from the outboard arm (3.32) to the counterweight(s) (3.11)
Note 1 to entry: The system comprises an assembly of linkages and pinned connections, or a cable and sheaves
system (respectively, “rigid link pantograph” and “cables and sheaves pantograph”).
3.35
pitch
rotation of the LNG carrier (3.25) around transversal horizontal axis
Note 1 to entry: See Table A.4 and Figure A.2.
3.36
powered emergency release coupling
PERC
powered device to provide a means of quick release of the transfer arms (3.59) when such action is
required only as an emergency measure
3.37
presentation flange
transfer arm (3.59) flange for connection to either the cargo manifold (3.6) or spool piece (3.47)
Note 1 to entry: See Figure B.2.
3.38
product
fluid transferred using transfer arms (3.59)
Note 1 to entry: Fluids are LNG, NG or LN .
3.39
quick connect disconnect coupler
QCDC
coupler
manual or hydraulic mechanical device used to connect the transfer arm (3.59) to the cargo manifold
(3.6) without employing bolts
Note 1 to entry: See Figure B.2.
3.40
remote pendant control
remote control
device to facilitate the fine manoeuvring operation of the transfer arms (3.59) from a remote location
(e.g. LNG carrier’s (3.25) cargo manifold (3.6) area)
Note 1 to entry: The system can use a trailing wire or radio-controlled system.
6 © ISO 2016 – All rights reserved
3.41
riser and trunnion swivel assembly
fluid carrying system consists of riser swivel (3.43), trunnion swivel (3.61) and elbows and mounted on
top of the base riser (3.3)
Note 1 to entry: See Figure B.2.
3.42
riser flange
transfer arm (3.59) flange for connection to LNG piping
Note 1 to entry: See Figure B.2.
3.43
riser swivel
swing joint in the riser and trunnion swivel assembly (3.41) which permits slewing (3.46) of the
transfer arm (3.59)
Note 1 to entry: See Figure B.2.
3.44
roll
rotation of LNG carrier (3.25) around longitudinal horizontal axis
Note 1 to entry: See Table A.4 and Figure A.2.
3.45
safety integrity level
SIL
statistical representations of the integrity of the safety instrumented system when a process
demand occurs
Note 1 to entry: See Clause 6.
3.46
slew
horizontal, rotary motion of the transfer arm (3.59) around the base riser (3.3)
Note 1 to entry: See Figure B.2.
3.47
spool piece
short length of pipe for the purpose of matching the cargo manifold (3.6) to the presentation flange
(3.37) or QCDC (3.39)
Note 1 to entry: Sometimes referred to as “adaptor” or “short distance piece”.
3.48
spotting line
pre-determined location on the jetty used by the LNG carrier (3.25) when berthing to align with the
LNG carrier vapour manifold
Note 1 to entry: See Figure A.4.
3.49
stress analysis
detailed calculation of the structural loading in the transfer arm (3.59) and cargo manifold (3.6) for
various positions and attitudes to check the integrity of the transfer arm for the service intended
3.50
structural bearing
bearing in the load carrying components supporting the product line that, in combination, allow the
transfer arm (3.59) to follow freely the motion of the LNG carrier (3.25)
3.51
surge aft
longitudinal LNG carrier (3.25) afterward motion
Note 1 to entry: See Table A.4 and Figure A.2.
3.52
surge fore
longitudinal LNG carrier (3.25) forward motion
Note 1 to entry: See Table A.4 and Figure A.2.
3.53
surge pressure
rapid change in pressure as a consequence of a change in flow rate in a pipeline and/or piping systems
(including transfer arms (3.59))
3.54
sway
transverse LNG carrier (3.25) motion
Note 1 to entry: See Table A.4 and Figure A.2.
3.55
swivel joint
swivel
swing joint contained in the transfer arm (3.59) to permit the arm to follow freely the motion of the LNG
carrier (3.25)
3.56
terminal
LNG producing/receiving plant with loading/unloading facilities
3.57
top swivel
accommodates rolling (3.44), heave and sway motion of LNG carrier (3.25) and is located between
outboard arm (3.32) and middle swivel (3.30) in horizontal part of TSA (3.60)
Note 1 to entry: See Figure B.2.
3.58
transfer
loading or unloading operation
3.59
transfer arm
arm
articulated metal transfer system used for transferring product (3.38) to or from LNG carrier (3.25)
with the capability of accommodating differences in tides, freeboard (3.17) and LNG carrier’s motions
Note 1 to entry: See Figure B.2.
Note 2 to entry: It can be referred to as a “loading arm” or “unloading arm”.
8 © ISO 2016 – All rights reserved
3.60
triple swivel assembly
TSA
group of three swivels (3.55) and elbows located at the end of the outboard arm (3.32)
Note 1 to entry: See Figure B.2.
3.61
trunnion swivel
swing joint in the riser and trunnion swivel assembly (3.41) which permits the inboard arm (3.20) to
rotate around the horizontal axis
Note 1 to entry: See Figure B.2.
3.62
uninterrupted power supply
UPS
back-up of the electrical supply system providing power to critical control and safety systems so that
the plant can be kept in safe conditions
3.63
yaw
rotation of the LNG carrier (3.25) around vertical axis
Note 1 to entry: See Table A.4 and Figure A.2.
4 Abbreviated terms
For the purposes of this document, the following abbreviated terms apply.
CPMS constant position monitoring system
ERS emergency release system
ESD emergency shutdown
FL fluid load
LNG liquefied natural gas
LNGC liquefied natural gas carrier
LN liquefied nitrogen gas
MHU main hydraulic unit
NDE non destruction examination
NG natural gas
N nitrogen gas
OBE operating basis earthquake
PERC powered emergency release coupling
PL pressure load
PQR performance quality records
QCDC quick connect disconnect coupler
SIL safety integrity level
SSE safe shutdown earthquake
TL thermal load
TSA triple swivel assembly
UPS uninterrupted power supply
WL wind load
WPS welding procedure specifications
5 Design of the arms
5.1 Definition of the length and the configuration of the arms, arms description
5.1.1 General
The transfer arm general arrangement is given in Figure B.2.
The length and the configuration of the transfer arms shall allow for the connection of the on-shore piping
to the ship’s cargo manifold. The connection shall allow for free movement within the operating envelope.
The transfer arms are normally composed of the following (see definitions in Clause 3):
— triple swivel assembly (TSA) including emergency release system (ERS) and quick connect
disconnect coupler (QCDC), if specified;
— outboard arm;
— apex swivel assembly between the outboard and inboard arm;
— pantograph system;
— inboard arm;
— riser and trunnion swivel assembly between the inboard arm and the base riser;
— base riser.
The product piping subject to low temperature shall be free to expand or contract within the structure.
The structure itself shall not be subjected to low temperature.
All piping supports shall be adequately designed so that stresses in the piping and the structure are
within allowable limits for all attitudes and positions.
Any parts of transfer arm, e.g. seals, bolts and nuts, shall not come off or unfasten and drop into product
piping due to product flow, vibration, negative pressure and cryogenic condition.
5.1.2 Balancing
The complete TSA and outboard arm shall be balanced in the empty condition without ice. It shall be
balanced with pantograph system about the apex swivel.
The complete, articulated assembly shall be balanced in empty condition without ice. It shall be
balanced about the trunnion swivel.
10 © ISO 2016 – All rights reserved
The design of the transfer arms shall consider, in addition to the normal operation, the emergency
release of the arms in both the empty and full condition. There should be no clash of the arms with the
ship or the jetty.
5.1.3 Arms dimensions and clearances
5.1.3.1 Arms dimensions
Transfer arm dimensions, based on the design data in Tables A.1 to A.15 and Figures A.1 to A.4 attached,
shall be determined by the transfer arm manufacturer to ensure that the transfer arm satisfies all
specified requirements.
5.1.3.2 Clearance study
The design shall cater for the following minimum clearances unless otherwise specified in Table A.6:
— 0,15 m minimum clearance between any part of an operating arm and a stowed arm;
— 0,3 m minimum clearance between any part of an operating arm and any adjacent structures,
piping, equipment;
— 0,3 m minimum clearance between any part of adjacent operating arms;
— 0,15 m minimum clearance between counterweights of operating arms.
Table B.1 shows the location of main clearance checkpoints.
Transfer arm manufacturer’s clearance study shall include all cases including emergency release
positions and retracting attitude following emergency release.
The study shall identify all check points, based on a drawing of the jetty layout in elevation and plan.
Consideration should be given for any future expansion.
In the stowed position, no part of the transfer arm shall extend beyond the jetty face or berthing line
with compressed fenders plus the additional safety margin c
...
NORME ISO
INTERNATIONALE 16904
Première édition
2016-02-15
Industries du pétrole et du gaz
naturel — Conception et essais des
bras de transfert de GNL sur des
terminaux terrestres conventionnels
Petroleum and natural gas industries — Design and testing of LNG
marine transfer arms for conventional onshore terminals
Numéro de référence
©
ISO 2016
DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2016, Publié en Suisse
Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée
sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie, l’affichage sur
l’internet ou sur un Intranet, sans autorisation écrite préalable. Les demandes d’autorisation peuvent être adressées à l’ISO à
l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2016 – Tous droits réservés
Sommaire Page
Avant-propos .vi
1 Domaine d’application . 1
2 Références normatives . 1
3 Termes et définitions . 2
4 Abréviations . 9
5 Conception des bras .10
5.1 Définition de la longueur et de la configuration des bras, description des bras .10
5.1.1 Généralités .10
5.1.2 Équilibrage .11
5.1.3 Dimensions et dégagements des bras .11
5.2 Principes de conception .12
5.2.1 Diamètre de la tuyauterie produit et caractéristiques du produit .12
5.2.2 Matériaux et nuances .12
5.2.3 Analyse des contraintes .12
5.3 Joints articulés .16
5.3.1 Généralités .16
5.3.2 Dispositif d’étanchéité du produit .16
5.3.3 Système de roulement .17
5.3.4 Dispositif d’étanchéité externe .17
5.3.5 Conception .17
5.4 Articulations de structure .18
5.4.1 Conception .18
5.4.2 Protection des articulations de structure .19
5.4.3 Prise d’échantillons de graisse.19
5.5 Accessoires .19
5.5.1 Support ajustable (vérin) .19
5.5.2 Tuyauterie d’injection d’azote .20
5.5.3 Dispositif de verrouillage en position de stockage .20
5.5.4 Échelles et plates-formes .20
5.5.5 Tuyauteries de récupération de vapeur .20
5.5.6 Tuyauterie d’azote liquide .20
5.5.7 Isolation thermique .21
5.5.8 Protection contre les chutes de glace .21
5.6 Canalisations et robinetterie .21
5.6.1 Raccordements .21
5.6.2 Raccord de vidange . .21
5.6.3 Prise de connexion .21
5.6.4 Vanne .21
5.6.5 Bride de connexion .21
5.6.6 Joint d’étanchéité .21
5.7 Soudage .21
5.8 Protection contre la corrosion et contre la fragilisation .22
5.8.1 Protection contre la corrosion .22
5.8.2 Protection contre la fragilisation .22
5.9 Maintenance .22
6 Systèmes de sécurité .23
6.1 Généralités .23
6.2 Système d’arrêt et d’alarme à deux niveaux .23
6.2.1 Premier niveau .23
6.2.2 Second niveau .24
6.3 Systèmes de contrôle et d’alarme .24
6.3.1 Enveloppes des alarmes .24
6.3.2 Système de contrôle de position des bras .24
6.3.3 Système de contrôle permanent de position des bras (CPMS) .24
6.3.4 Alarme de pression et niveau hydraulique.24
6.4 ERS .25
6.4.1 Généralités .25
6.4.2 Conception de l’ERS . .25
6.4.3 Dispositifs de sécurité sur l’ERS .26
6.5 Dispositifs de sécurité .26
6.5.1 Exigences de sécurité au feu .26
6.5.2 Exigences de sécurité électrique .27
6.5.3 Défaillance de l’alimentation électrique .27
6.5.4 Protection contre les courants vagabonds .28
6.5.5 Continuité électrique . . .28
7 Connexion au navire .28
7.1 Généralités .28
7.2 Conception du QCDC .28
7.3 Système QCDC .29
7.4 Couvercle de bride .29
8 Systèmes de commande hydraulique et électrique .30
8.1 Généralités .30
8.2 Fonctionnement des bras.30
8.3 Composants hydrauliques .31
8.4 Composants électriques .32
8.5 Essais du système de commande .33
8.6 Commande à distance .33
8.7 Console de contrôle des bras de transfert sur la jetée .33
9 Contrôle et essais .33
9.1 Généralités .33
9.2 Essais de prototype .33
9.2.1 Généralités .33
9.2.2 Joint articulé .34
9.2.3 ERS .37
9.2.4 QCDC .38
9.3 Contrôle de la fabrication et essais .40
9.3.1 Généralités .40
9.3.2 Matériaux .40
9.3.3 Soudage .40
9.3.4 Essai non destructif .40
9.3.5 Contrôle dimensionnel .41
9.3.6 Essai de pression .41
9.3.7 ERS .41
9.3.8 QCDC .42
9.3.9 Bride d’isolation (protection contre les courants vagabonds) .42
9.3.10 Essai du circuit hydraulique .42
9.4 Essais d’acceptation en usine .42
9.5 Essais d’acceptation sur site .44
9.5.1 Généralités .44
9.5.2 Ensemble bras de transfert .44
9.5.3 Circuit hydraulique .45
10 Contrôle et assurance de la qualité .46
10.1 Système qualité .46
10.2 Plan qualité.46
11 Documentation requise .47
Annexe A (informative) Fiches de données conceptuelles .48
Annexe B (informative) Figures de référence .61
iv © ISO 2016 – Tous droits réservés
Annexe C (informative) Exigences en matière de documentation .66
Bibliographie .71
Avant-propos
L’ISO (Organisation internationale de normalisation) est une fédération mondiale d’organismes
nationaux de normalisation (comités membres de l’ISO). L’élaboration des Normes internationales est
en général confiée aux comités techniques de l’ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l’ISO participent également aux travaux.
L’ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui
concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1 Il convient, en particulier, de prendre note des différents
critères d’approbation requis pour les différents types de documents ISO. Le présent document a été
rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2 (voir www.
iso.org/directives).
L’attention est appelée sur le fait que certains des éléments du présent document peuvent faire l’objet de
droits de propriété intellectuelle ou de droits analogues. L’ISO ne saurait être tenue pour responsable
de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant
les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de
l’élaboration du document sont indiqués dans l’Introduction et/ou dans la liste des déclarations de
brevets reçues par l’ISO (voir www.iso.org/brevets).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données
pour information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un
engagement.
Pour une explication de la signification des termes et expressions spécifiques de l’ISO liés à l’évaluation
de la conformité, ou pour toute information au sujet de l’adhésion de l’ISO aux principes de l’Organisation
mondiale du commerce (OMC) concernant les obstacles techniques au commerce (OTC), voir le lien
suivant: www.iso.org/iso/fr/avant-propos.html.
Le comité chargé de l’élaboration du présent document est l’ISO/TC 67, Matériel, équipement et structures
en mer pour les industries pétrolière, pétrochimique et du gaz naturel.
vi © ISO 2016 – Tous droits réservés
NORME INTERNATIONALE ISO 16904:2016(F)
Industries du pétrole et du gaz naturel — Conception et
essais des bras de transfert de GNL sur des terminaux
terrestres conventionnels
1 Domaine d’application
La présente Norme internationale spécifie les règles de conception, les spécifications minimales de
sécurité ainsi que les procédures de contrôle et d’essais relatifs aux bras de transfert de gaz naturel
liquéfié (GNL) marins destinés à être utilisés sur des terminaux terrestres conventionnels, recevant des
méthaniers engagés dans le commerce international. Elle peut fournir des lignes directrices pour des
opérations côtières et au large. Elle fixe également les spécifications minimales permettant de garantir
que le transfert de GNL entre le navire et le terminal s’effectue en toute sécurité.
Bien que les spécifications relatives aux systèmes d’alimentation/télécommande soient couvertes, la
présente Norme internationale ne fixe pas tous les détails relatifs à la conception et à la fabrication des
pièces normalisées et des raccords des bras de transfert.
La présente Norme internationale vient compléter les normes et règlements locaux ou nationaux, et
s’ajoute aux spécifications de l’ISO 28460.
Il n’est pas nécessaire d’appliquer la présente Norme internationale aux installations existantes.
2 Références normatives
Les documents ci-après, dans leur intégralité ou non, sont des références normatives indispensables à
l’application du présent document. Pour les références datées, seule l’édition citée s’applique. Pour les
références non datées, la dernière édition du document de référence s’applique (y compris les éventuels
amendements).
ISO 3452-1, Essais non destructifs — Examen par ressuage — Partie 1: Principes généraux
ISO 4406, Transmissions hydrauliques — Fluides — Méthode de codification du niveau de pollution
particulaire solide
ISO 9934-1, Essais non destructifs — Magnétoscopie — Partie 1: principes généraux du contrôle
ISO 10474:2013, Aciers et produits sidérurgiques — Documents de contrôle
ISO 10497, Essais des appareils de robinetterie — Exigences de l’essai au feu
ISO 17636-1, Contrôle non destructif des assemblages soudés — Contrôle par radiographie — Partie 1:
Techniques par rayons X ou gamma à l’aide de film
ISO 17636-2, Contrôle non destructif des assemblages soudés — Contrôle par radiographie — Partie 2:
Techniques par rayons X ou gamma à l’aide de détecteurs numériques
ISO 28460:2010, Industries du pétrole et du gaz naturel — Installations et équipements relatifs au gaz
naturel liquéfié — Interface terre-navire et opérations portuaires
IEC 60034-5, Machines électriques tournantes — Partie 5: Degrés de protection procurés par la conception
intégrale des machines électriques tournantes (code IP) — Classification
IEC 60079-0, Atmosphères explosives — Partie 0: Exigences générales
IEC 60079-1, Atmosphères explosives — Partie 1: Protection du matériel par enveloppes antidéflagrantes «d»
IEC 60079-2, Atmosphères explosives — Partie 2: Protection du matériel par enveloppe à surpression
interne «p»
IEC 60079-5, Atmosphères explosives — Partie 5: Protection du matériel par remplissage pulvérulent «q»
IEC 60079-6, Atmosphères explosives — Partie 6: Protection du matériel par immersion dans l’huile «o»
IEC 60079-7, Atmosphères explosives — Partie 7: Protection du matériel par sécurité augmentée «e»
IEC 60079-10-1, Atmosphères explosives — Partie 10-1: classement des emplacements — Atmosphères
explosives gazeuses
IEC 60079-11, Atmosphères explosives — Partie 11: Protection de l’équipement par sécurité intrinsèque «i»
IEC 60079-18, Atmosphères explosives — Partie 18: Protection du matériel par encapsulage «m»
IEC 60079-14, Atmosphères explosives — Partie 18: conception, sélection et construction des installations
électriques
IEC 60079-25, Atmosphères explosives — Partie 25: Systèmes de sécurité intrinsèque
IEC 60529, Degrés de protection procurés par les enveloppes (code IP) et IEC 60529/A1, Amendement 1
IEC 61508 (toutes les parties), Sécurité fonctionnelle des systèmes électriques/électroniques/ électroniques
programmables relatifs à la sécurité
IEC 62305-3, Protection contre la foudre — Partie 3: Dommages physiques sur les structures et risques
humains
ASME B16.5, Pipe Flanges and Flanged Fittings
ASMEBoiler and Pressure Vessel Code IX: Welding and Brazing Qualifications
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions suivants s’appliquent.
3.1
rotation d’ouverture du compas (rotation médiane)
raccord articulé, conçu pour le transfert des liquides et situé entre le bras interne (3.20) et le bras
externe (3.32)
Note 1 à l’article: Voir la Figure B.2.
Note 2 à l’article: Il permet le relevage (3.26) du bras externe par rapport au bras interne.
3.2
position de travail
divers modes d’utilisation et/ou de positionnement du bras de transfert (3.59) (manœuvre, stockage,
connexion, essai hydrostatique et maintenance)
Note 1 à l’article: Le bras de transfert peut avoir différentes positions pour chaque position de travail.
3.3
embase
fût du bras qui est assemblé à la plate-forme de chargement et qui supporte l’ensemble articulé du bras
de transfert (3.59)
Note 1 à l’article: Voir la Figure B.2.
Note 2 à l’article: Cet ensemble est parfois désigné par le terme ‘colonne support’.
2 © ISO 2016 – Tous droits réservés
3.4
rotation inférieure
supporte le mouvement de tangage (3.35) du méthanier (3.25) et est située de façon contiguë à la bride
de présentation (3.37) dans la partie horizontale du TSA (3.60)
Note 1 à l’article: Voir la Figure B.2.
3.5
marquage (des chemins de roulement)
toute empreinte permanente située sur les chemins de roulement (3.55) ou les articulations de structure
(3.50) provoquée par le chargement excessif des billes ou des galets
3.6
traverse du navire
ensemble de tuyauteries à brides à bord du méthanier (3.25) sur lesquelles sont connectées la bride de
présentation (3.37) ou le QCDC (3.39) du bras de transfert (3.59)
Note 1 à l’article: Voir la Figure B.2.
3.7
cavitation
formation et écrasement de bulles dans un liquide lorsque la pression atteint ou chute en-dessous de
la pression de vapeur du liquide. L’écrasement libère de l’énergie, quelquefois accompagnée d’un bruit
audible et de vibrations
Note 1 à l’article: Ces basses pressions apparaissent dans des zones de grande vitesse telles que les rayons
internes des coudes ou à des endroits où il existe des variations de diamètre.
3.8
interférence
tout contact, dans des conditions opérationnelles de conception ou suite à une déconnexion d’urgence,
entre tout ou partie d’un bras de transfert (3.59) et:
— bras de transfert contigu, alors que tous deux sont en service, ou lorsque l’un est en service et l’autre
en position de stockage [par exemple les contrepoids (3.11)];
— section contiguë du même bras de transfert [par exemple l’ensemble articulé triple (3.60) et le bras
externe (3.32)];
— équipement de la plate-forme de chargement [par exemple le contrepoids (3.11) ou les vannes]
3.9
angle de contact α
angle entre le plan du chemin des billes ou des galets du joint articulé (3.55) ou de l’articulation de
structure (3.50) et le point de contact de la bille ou du galet sur le chemin de roulement
3.10
terminal terrestre conventionnel de GNL
terminal de réception ou d’exportation de GNL situé à terre et doté d’un bras de transfert marin pour le
chargement ou le déchargement des méthaniers (3.25) dans un port ou un autre emplacement côtier abrité
3.11
contrepoids
système de poids utilisés pour équilibrer les ensembles bras interne (3.20) et bras externe (3.32)
Note 1 à l’article: Certains bras de transfert (3.59) sont munis d’un simple contrepoids pour cette fonction,
d’autres en ont plusieurs.
3.12
pression de calcul
pression pour laquelle est conçu le bras de transfert (3.59)
Note 1 à l’article: Voir le Tableau A.1.
3.13
température de calcul
plage des températures pour lesquelles le bras de transfert (3.59) est conçu
Note 1 à l’article: Voir le Tableau A.1.
3.14
dérive
déplacement longitudinal et/ou latéral du méthanier (3.25) sous l’influence des facteurs
environnementaux
Note 1 à l’article: Voir également cavalement avant (3.51) ou arrière (3.52) et balancement (3.54).
3.15
système de déconnexion d’urgence
ERS
système permettant la déconnexion positive rapide des bras de transfert (3.59) et garantissant une
isolation sûre entre le méthanier (3.25) et la terre, selon une procédure prédéfinie comprenant un arrêt
d’urgence (ESD) (3.16)
Note 1 à l’article: Voir la Figure B.2.
3.16
arrêt d’urgence
ESD
méthode permettant d’interrompre de manière sûre et efficace le transfert de GNL et de gaz entre le
méthanier (3.25) et la terre
3.17
franc-bord
élévation du pont du navire au-dessus du niveau de la mer à l’endroit des traverses
Note 1 à l’article: Voir le Tableau A.3 et la Figure A.1.
3.18
roue libre
capacité d’un bras de transfert (3.59) à fonctionnement hydraulique et sans retenue par le système
hydraulique, à suivre librement les mouvements verticaux et horizontaux des traverses du méthanier
(changements de tirant d’eau, ainsi que balancement (3.54) et cavalement)
3.19
pilonnement
mouvement vertical du méthanier (3.25) provoqué par l’action des vagues
Note 1 à l’article: Voir le Tableau A.4 et la Figure A.2.
3.20
bras interne
tuyauterie transportant le produit et toute structure porteuse située entre la rotation d’ouverture du
compas (3.1) et la rotation horizontale d’embase (3.61)
Note 1 à l’article: Voir la Figure B.2.
4 © ISO 2016 – Tous droits réservés
3.21
angle d’ouverture
angle formé entre le bras interne (3.20) et le bras externe (3.32)
Note 1 à l’article: Voir la Figure B.2.
Note 2 à l’article: Les angles d’ouverture minimaux et maximaux sont laissés à la discrétion du fabricant du bras
de transfert.
Note 3 à l’article: Lorsque les bras de transfert (3.59) sont en position de stockage, il est nécessaire que l’angle
d’ouverture soit tel que l’ensemble articulé triple (3.60) se trouve derrière la ligne d’accostage.
3.22
bride d’isolation
système d’isolation électrique, généralement dédié, installé sur l’extrémité inférieure du bras externe
(3.32) ou ensemble triple de rotation (3.60)
Note 1 à l’article: Ce système permet d’éviter que les courants vagabonds ne créent un arc électrique au niveau de
la bride du méthanier (3.25) lors de la connexion ou de la déconnexion du bras de transfert (3.59).
3.23
support
mécanisme de reprise de charge, permanent et ajustable, potentiellement installé sur l’ensemble articulé
triple (3.60). Il permet de transférer une partie du poids du liquide contenu dans le bras (3.59) sur le
pont et non sur la traverse du méthanier (3.25)
Note 1 à l’article: Voir la Figure B.2.
3.24
cabine de commande de la jetée
cabine de commande située sur la jetée ou à proximité, essentiellement pour diriger et/ou contrôler les
bras de transfert (3.59)
Note 1 à l’article: Parfois appelée «salle de contrôle de la jetée» ou «salle de contrôle locale».
3.25
méthanier
LNGC
navire-citerne conçu pour le transport de GNL
3.26
relevage
mouvements rotatifs des bras interne (3.20) et externe (3.32) dans le plan vertical
Note 1 à l’article: Voir la Figure B.2.
3.27
centrale hydraulique
MHU
centrale hydraulique qui génère la puissance hydraulique pour assurer le fonctionnement normal et la
séquence de déconnexion d’urgence des bras
3.28
recul de la traverse
distance horizontale entre la muraille plane du méthanier (3.25) et la face de la traverse du navire (3.6)
Note 1 à l’article: Voir le Tableau A.3 et la Figure A.1.
3.29
espacement des traverses
distance horizontale qui sépare les axes de deux traverses du navire (3.6) contiguës
Note 1 à l’article: Voir le Tableau A.3 et la Figure A.1.
3.30
rotation moyenne
supporte le lacet et le cavalement du lacet (3.63) méthanier (3.25) et est située entre la rotation
supérieure (3.57) et la rotation inférieure (3.4) dans la partie verticale du TSA (3.60)
Note 1 à l’article: Voir la Figure B.2.
3.31
enveloppe de fonctionnement
volume dans lequel doit ou doivent fonctionner la ou les brides de présentation (3.37) d’un bras de
transfert individuel ou d’un groupe de bras de transfert (3.59)
3.32
bras externe
tuyauterie de transport du produit et toute structure porteuse située entre la rotation d’ouverture du
compas (3.1)et l’ensemble articulé triple (3.60)
Note 1 à l’article: Voir la Figure B.2.
3.33
propriétaire
son représentant
société ou groupe de sociétés pour lesquels les bras de transfert (3.59) sont installés pour utilisation. Le
propriétaire est responsable de la conception de la sécurité et de la construction de l’installation
3.34
système de pantographe
système utilisé pour transmettre au(x) contrepoids (3.11) les charges d’équilibrage du bras externe (3.32)
Note 1 à l’article: Le système est constitué d’un ensemble de tringleries et de connexions articulées, ou bien
d’un système de câbles et de poulies (respectivement «pantographe par liaison rigide» et «câbles et poulies
pantographes»).
3.35
tangage
rotation du méthanier (3.25) autour de l’axe horizontal transversal
Note 1 à l’article: Voir le Tableau A.4 et la Figure A.2.
3.36
déconnecteur d’urgence énergisé
PERC
dispositif énergisé permettant de déconnecter rapidement les bras de transfert (3.59) lorsqu’une telle
action est requise uniquement en cas d’urgence
3.37
bride de présentation
bride d’un bras de transfert (3.59) pour connexion à la traverse du navire (3.6) ou à la manchette de
raccordement (3.47)
Note 1 à l’article: Voir la Figure B.2.
3.38
produit
fluide transféré par les bras de transfert (3.59)
Note 1 à l’article: Les fluides sont: , ou .
6 © ISO 2016 – Tous droits réservés
3.39
coupleur de connexion et de déconnexion rapide
QCDC
coupleur
dispositif mécanique manuel ou hydraulique utilisé pour connecter le bras de chargement (3.59) à la
traverse du navire (3.6) sans utiliser de boulons
Note 1 à l’article: Voir la Figure B.2.
3.40
dispositif de commande à distance
commande à distance
dispositif destiné à faciliter les opérations délicates de connexion et/ou de déconnexion des brides des
bras de transfert (3.59) à distance (par exemple zone de traverse (3.25) du méthanier (3.6))
Note 1 à l’article: La commande peut être à fil ou radiocommandée.
3.41
ensemble embase et rotation horizontale d’embase
système de transport du produit, composé de la rotation de l’embase (3.43), la rotation horizontale
d’embase (3.61) et de coudes et monté au sommet de l’embase (3.3)
Note 1 à l’article: Voir la Figure B.2.
3.42
bride d’embase
bride d’un bras de transfert (3.59) pour le raccordement aux tuyauteries de GNL
Note 1 à l’article: Voir la Figure B.2.
3.43
rotation de l’embase
joint articulé de l’ensemble embase et rotation horizontale d’embase (3.41) qui permet le pivotement
(3.46) du bras de transfert (3.59)
Note 1 à l’article: Voir la Figure B.2.
3.44
roulis
rotation du méthanier (3.25) autour de l’axe horizontal longitudinal
Note 1 à l’article: Voir le Tableau A.4 et la Figure A.2.
3.45
niveau d’intégrité de sécurité
SIL
représentations statistiques de l’intégrité du système instrumenté de sécurité lorsqu’une demande de
processus a lieu
Note 1 à l’article: Voir l’Article 5.
3.46
pivotement
mouvement de rotation horizontal du bras de chargement (3.59) autour de l’embase (3.3)
Note 1 à l’article: Voir la Figure B.2.
3.47
manchette de raccordement
courte longueur de tuyauterie destinée à faire concorder la traverse du navire (3.6) et la bride de
présentation (3.37) ou le QCDC (3.39)
Note 1 à l’article: Ces dispositifs sont parfois appelés «adaptateurs» ou «réductions».
3.48
repère d’alignement du navire
marquage utilisé par le méthanier (3.25) au moment de l’accostage pour aligner les axes des bras de
transfert
Note 1 à l’article: Voir la Figure A.4.
3.49
analyse des contraintes
calcul détaillé des charges structurelles exercées sur le bras de transfert (3.59) et la traverse du navire
(3.6) en fonction des différentes conditions et positions, permettant de vérifier l’intégrité du bras de
transfert pour les différents modes d’utilisation prévus
3.50
articulations de structure
roulements des organes porteurs qui soutiennent la canalisation de produit et qui, associés à d’autres
éléments, permettent au bras de transfert (3.59) de suivre librement le mouvement du méthanier (3.25)
3.51
cavalement arrière
déplacement longitudinal du méthanier (3.25) vers l’arrière
Note 1 à l’article: Voir le Tableau A.4 et la Figure A.2.
3.52
cavalement avant
déplacement longitudinal du méthanier (3.25) vers l’avant
Note 1 à l’article: Voir le Tableau A.4 et la Figure A.2.
3.53
coup de bélier
modification rapide de la pression provoquée par un changement du débit dans une canalisation et/ou
dans des systèmes de canalisations (ce qui inclut les bras de transfert (3.59))
3.54
balancement
mouvement transversal du méthanier (3.25)
Note 1 à l’article: Voir le Tableau A.4 et la Figure A.2.
3.55
joint articulé
rotation
joint articulé contenu dans le bras de transfert (3.59) qui permet au bras de suivre librement le
mouvement du méthanier (3.25)
3.56
terminal
installation de production/réception de GNL doté d’une installation de chargement et/ou de
déchargement
8 © ISO 2016 – Tous droits réservés
3.57
rotation supérieure
supporte le mouvement de roulis (3.44), de pilonnement et de balancement du méthanier et est située
entre le bras externe et la rotation moyenne dans la partie horizontale du TSA
Note 1 à l’article: Voir la Figure B.2.
3.58
transfert
opération de chargement et/ou de déchargement
3.59
bras de transfert
bras
système de transfert articulé en métal utilisé pour transférer un produit (3.38) vers ou depuis le
méthanier avec la capacité de supporter des différences de marées, le franc-bord et les mouvements du
méthanier
Note 1 à l’article: Voir la Figure B.2.
Note 2 à l’article: Il peut aussi être appelé «bras de chargement» ou «bras de déchargement»
3.60
ensemble articulé triple
TSA
ensemble de trois rotations et coudes situé à l’extrémité du bras externe (3.32)
Note 1 à l’article: Voir la Figure B.2.
3.61
rotation horizontale d’embase
joint articulé dans l’ensemble embase et rotation horizontale d’embase qui permet la rotation du bras
interne autour de l’axe horizontal
Note 1 à l’article: Voir la Figure B.2.
3.62
dispositif d’alimentation continue
UPS
source de secours du système principal d’alimentation électrique fournissant l’énergie nécessaire aux
commandes critiques et aux systèmes de sécurité afin de maintenir les installations dans des conditions
de sécurité
3.63
lacet
rotation du méthanier (3.25) autour d’un axe vertical
Note 1 à l’article: Voir le Tableau A.4 et la Figure A.2.
4 Abréviations
Pour les besoins du présent document, les abréviations suivantes s’appliquent:
CND contrôle non destructif
CPMS système de contrôle permanent de position des bras;
ERS système de déconnexion d’urgence;
ESD arrêt d’urgence;
FL charge due à la masse du fluide;
GNL gaz naturel liquéfié;
LNGC navire transporteur de gaz naturel liquéfié;
LN azote liquide;
MHU centrale hydraulique;
GN gaz naturel;
N azote gazeux;
OBE séisme de maintien en exploitation;
PERC déconnecteur d’urgence énergisé;
PL charge due à la pression;
PQR enregistrements relatifs à la qualité des performances;
QCDC coupleur de connexion et de déconnexion rapide;
SIL niveau d’intégrité de sécurité;
SSE séisme d’arrêt de sécurité;
TL charge thermique;
TSA ensemble articulé triple;
UPS dispositif d’alimentation continue;
WL charge due au vent;
MOS spécifications du mode opératoire de soudage.
5 Conception des bras
5.1 Définition de la longueur et de la configuration des bras, description des bras
5.1.1 Généralités
La disposition générale des bras de transfert est illustrée en Figure B.2.
La longueur et la configuration des bras de transfert doivent permettre la connexion entre la traverse
du navire et la tuyauterie terrestre. Cette connexion ne doit pas entraver la liberté de mouvement des
bras au sein de l’enveloppe de fonctionnement.
Les bras de transfert sont normalement composés (voir les définitions à l’Article 3):
— d’un ensemble articulé triple (TSA) comportant un système de déconnexion d’urgence (ERS) et un
coupleur de connexion et de déconnexion rapide (QCDC) si cela est spéc
...












Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...