ISO 15175:2004
(Main)Soil quality - Characterization of soil related to groundwater protection
Soil quality - Characterization of soil related to groundwater protection
ISO 15175:2004 provides guidance on the principles behind, and main methods for, the evaluation of sites, soils, and soil materials in relation to their role as a source of contamination of groundwater and their function in transporting, degrading and transforming contaminants. It identifies and lists relevant monitoring strategies, methods for sampling, soil processing and analytical methods. ISO 15175:2004 is applicable to the evaluation of the impact of contaminants on groundwater in relation to drinking water quality, irrigation water quality, industrial use and natural base flow.
Qualité du sol — Caractérisation des sols en relation avec la nappe phréatique
L'ISO 15175:2004 fournit des lignes directrices sur les principes régissant l'évaluation des sites, des sols et des matériaux provenant du sol, et sur les principales méthodes correspondantes, en relation avec leur rôle comme source de pollution des eaux souterraines et avec leur fonction de transfert, de dégradation et de transformation des contaminants. Elle identifie et énumère des stratégies de surveillance, des méthodes d'échantillonnage, des méthodes de traitement des sols et des méthodes analytiques applicables. Elle est applicable à l'évaluation de l'impact des contaminants sur les eaux souterraines, en relation avec les aspects suivants: la qualité de l'eau potable; la qualité de l'eau de l'irrigation; l'usage industriel; le débit de base naturel d'alimentation des cours d'eau.
Kakovost tal – Karakterizacija tal v zvezi z varstvom podtalnice
General Information
Relations
Frequently Asked Questions
ISO 15175:2004 is a standard published by the International Organization for Standardization (ISO). Its full title is "Soil quality - Characterization of soil related to groundwater protection". This standard covers: ISO 15175:2004 provides guidance on the principles behind, and main methods for, the evaluation of sites, soils, and soil materials in relation to their role as a source of contamination of groundwater and their function in transporting, degrading and transforming contaminants. It identifies and lists relevant monitoring strategies, methods for sampling, soil processing and analytical methods. ISO 15175:2004 is applicable to the evaluation of the impact of contaminants on groundwater in relation to drinking water quality, irrigation water quality, industrial use and natural base flow.
ISO 15175:2004 provides guidance on the principles behind, and main methods for, the evaluation of sites, soils, and soil materials in relation to their role as a source of contamination of groundwater and their function in transporting, degrading and transforming contaminants. It identifies and lists relevant monitoring strategies, methods for sampling, soil processing and analytical methods. ISO 15175:2004 is applicable to the evaluation of the impact of contaminants on groundwater in relation to drinking water quality, irrigation water quality, industrial use and natural base flow.
ISO 15175:2004 is classified under the following ICS (International Classification for Standards) categories: 13.080.40 - Hydrological properties of soils. The ICS classification helps identify the subject area and facilitates finding related standards.
ISO 15175:2004 has the following relationships with other standards: It is inter standard links to ISO 4017:2014, ISO 15175:2018. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.
You can purchase ISO 15175:2004 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of ISO standards.
Standards Content (Sample)
INTERNATIONAL ISO
STANDARD 15175
First edition
2004-05-15
Soil quality — Characterization of soil
related to groundwater protection
Qualité du sol — Caractérisation des sols en relation avec la nappe
phréatique
Reference number
©
ISO 2004
PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.
© ISO 2004
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
ii © ISO 2004 – All rights reserved
Contents Page
Foreword. iv
1 Scope. 1
2 Normative references . 1
3 Terms and definitions. 5
4 General. 7
5 Site assessment . 9
5.1 General. 9
5.2 Relevant soil processes . 10
5.3 Impact assessment procedures . 11
5.4 Site and soil description. 13
5.5 Sampling . 14
5.6 Characterization of soil and water . 15
6 Data handling, evaluation and quality . 22
Annex A (informative) Qualitative methods for assessing the potential leaching risk. 25
Annex B (informative) Quantitative methods for assessing the actual leaching risk . 44
Annex C (informative) Types of contaminated site and associated contaminants . 48
Annex D (informative) List of priority pollutants with respect to groundwater pollution . 49
Annex E (informative) Overview of soil leaching and extraction test . 53
Bibliography . 57
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 15175 was prepared by Technical Committee ISO/TC 190, Soil quality, Subcommittee SC 7, Soil and site
assessment.
iv © ISO 2004 – All rights reserved
INTERNATIONAL STANDARD ISO 15175:2004(E)
Soil quality — Characterization of soil related to groundwater
protection
1 Scope
This International Standard provides guidance on the principles behind, and main methods for, the evaluation of
sites, soils, and soil materials in relation to their role as a source of contamination of groundwater and their
function in transporting, degrading and transforming contaminants. It identifies and lists relevant monitoring
strategies, methods for sampling, soil processing and analytical methods.
This International Standard is applicable to the evaluation of the impact of contaminants on groundwater in
relation to
drinking water quality,
irrigation water quality,
industrial use,
natural base flow.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.
ISO 6341, Water quality — Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera,
Crustacea) — Acute toxicity test
ISO 6468, Water quality — Determination of certain organochlorine insecticides, polychlorinated biphenyls
and chlorobenzenes — Gas chromatographic method after liquid-liquid extraction
ISO 6878, Water quality — Spectrometric of phosphorus using ammonium molybdate
ISO 7150-1, Water quality — Determination of ammonium — Part 1: Manual spectrometric method
ISO 7150-2, Water quality — Determination of ammonium — Part 2: Automated spectrometric method
ISO 7888, Water quality — Determination of electrical conductivity
ISO 7890-1, Water quality — Determination of nitrate — Part 1: 2,6-Dimethylphenol spectrometric method
ISO 7890-2, Water quality — Determination of nitrate — Part 2: 4-Fluorophenol spectrometric method after
distillation
ISO 7890-3, Water quality — Determination of nitrate — Part 3: Spectrometric method using sulfosalicylic acid
ISO 7981-2, Water quality — Determination of six specified polynuclear hydrocarbons (PAH) — Part 2:
Determination of six PAH by high-performance liquid chromatography with fluorescence detection after liquid-
liquid extraction
ISO 8165-1, Water quality — Determination of selected monovalent phenols — Part 1: Gas chromatographic
method after enrichment by extraction
ISO 8245, Water quality — Guidelines for the determination of total organic carbon (TOC) and dissolved
organic carbon (DOC)
ISO 9001:2000, Quality management systems — Requirements
ISO 9562, Water quality — Determination of adsorbable organically bound halogens (AOX)
ISO 9964-1, Water quality — Determination of sodium and potassium — Part 1: Determination of sodium by
atomic absorption spectrometry
ISO 9964-2, Water quality — Determination of sodium and potassium — Part 2: Determination of potassium
by atomic absorption spectormetry
ISO 9964-3, Water quality — Determination of sodium and potassium — Part 3: Determination of sodium and
potassium by flame emission spectrometry
ISO 10048, Water quality — Determination of nitrogen — Catalytic digestion after reduction with Devarda's
alloy
ISO 10301, Water quality — Determination of highly volatile halogenated hydrocarbons — Gas
chromatographic methods
ISO 10382, Determination of organochlorine pesticides and polychlorinated biphenyls – gas chromatographic
method with electron capture detection
ISO 10390, Soil quality — Determination of pH
ISO 10523, Water quality — Determination of pH
ISO 10573, Soil quality — Determination of water content in the unsaturated zone — Neutron depth probe
method
ISO 10693, Soil quality — Determination of carbonate content — Volumetric method
ISO 10694, Soil quality — Determination of organic and total carbon after dry combustion (elementary
analysis)
ISO 11047, Soil quality — Determination of cadmium, chromium, cobalt, copper, lead, manganese, nickel and
zinc — Flame and electrothermal atomic absorption spectrometric methods
ISO 11048, Soil quality — Determination of water-soluble and acid-soluble sulfate
ISO 11074-1, Soil quality — Vocabulary — Part 1: Terms and definitions relating to the protection and
pollution of the soil
ISO 11074-4 Soil quality — Vocabulary — Part 4: Terms and definitions relating to the rehabilitation of soils
and sites
ISO 11259, Soil quality — Simplified soil description
ISO 11260, Soil quality — Determination of effective cation exchange capacity and base saturation level using
barium chloride solution
ISO 11261, Soil quality — Determination of total nitrogen — Modified Kjeldahl method
2 © ISO 2004 – All rights reserved
ISO 11263, Soil quality — Determination of phosphorus — Spectrometric determination of phosphorus soluble
in sodium hydrogen carbonate solution
ISO 11264, Soil quality — Determination of herbicides — Method using HPLC with UV detection
ISO 11265, Soil quality — Determination of the specific electrical conductivity
ISO 11266, Soil quality — Guidance on laboratory testing for biodegradation of organic chemicals in soil under
aerobic conditions
ISO 11271, Soil quality — Determination of redox potential — Field method
ISO 11272, Soil quality — Determination of dry bulk density
ISO 11274, Soil quality — Determination of the water retention characteristic — Laboratory methods
ISO 11275, Soil quality — Determination of unsaturated hydraulic conductivity and water-retention
characteristic — Wind's evaporation method
ISO 11277, Soil quality — Determination of particle size distribution in mineral soil material — Method by
sieving and sedimentation
ISO 11348-1, Water quality — Determination of the inhibitory effect of water samples on the light emission of
Vibrio fischeri (Luminescent bacteria test) — Part 1: Method using freshly prepared bacteria
ISO 11348-2, Water quality — Determination of the inhibitory effect of water samples on the light emission of
Vibrio fischeri (Luminescent bacteria test) — Part 2: Method using liquid-dried bacteria
ISO 11348-3 Water quality — Determination of the inhibitory effect of water samples on the light emission of
Vibrio fischeri (Luminescent bacteria test) — Part 3: Method using freeze-dried bacteria
ISO 11369, Water quality — Determination of selected plant treatment agents — Method using high
performance liquid chromatography with UV detection after solid-liquid extraction
ISO/TS 11370, Water quality — Determination of selected organic plant treatment agents — Automated
multiple development (AMD) technique
ISO 11464, Soil quality — Pretreatment of samples for physico-chemical analyses
ISO 11423-1, Water quality — Determination of benzene and some derivatives — Part 1: Head-space gas
chromatographic method
ISO 11423-2, Water quality — Determination of benzene and some derivatives — Part 2: Method using
extraction and gas chromatography
ISO 11466, Soil quality — Extraction of trace elements soluble in aqua regia
ISO 11905-1, Water quality — Determination of nitrogen — Part 1: Method using oxidative digestion with
peroxodisulfate
ISO/TR 11905-2, Water quality — Determination of nitrogen — Part 2: Determination of bound nitrogen, after
combustion and oxidation to nitrogen dioxide, using chemiluminescence detection
ISO 13536, Soil quality — Determination of the potential cation exchange capacity and exchangeable cations
using barium chloride solution buffered at pH = 8,1
ISO 13877, Soil quality — Determination of polynuclear aromatic hydrocarbons — Method using high-
performance liquid chromatography
ISO 13878, Soil quality — Determination of total nitrogen content by dry combustion (“elemental analysis”)
ISO 14154, Soil quality — Determination of selected phenols and chlorophenols — gas chromatographic
method
ISO 14235, Soil quality — Determination of organic carbon by sulfochromic oxidation
ISO 14238, Soil quality — Biological methods — Determination of nitrogen mineralization and nitrification in
soils and the influence of chemicals on these processes
ISO 14239, Soil quality — Laboratory incubation systems for measuring the mineralization of organic
chemicals in soil under aerobic conditions
ISO 14254, Soil quality — Determination of exchangeable acidity in barium chloride extracts
ISO 14255, Soil quality — Determination of nitrate nitrogen, ammonium nitrogen and total soluble nitrogen in
air-dry soils using calcium chloride solution as extractant
ISO 14256-2, Soil quality — Determination of nitrate, nitrite and ammonium in field-moist soils by extraction
with potassium chloride solution — Part 2: Automated method
ISO 14507, Soil quality — Pretreatment of samples for determination of organic contaminants
ISO 14869-1, Soil quality — Dissolution for the determination of total element content — Part 1: Dissolution
with hydrofluoric and perchloric acids
ISO 14869-2, Soil quality — Dissolution for the determination of total element content — Part 2: Dissolution by
alkaline fusion
ISO 14870, Soil quality — Extraction of trace elements by buffered DTPA solution
+ + + + 2+ 2+ 2+ 2+ 2+
ISO 14911, Water quality — Determination of dissolved Li , Na , NH , K , Mn , Ca , Mg , Sr and Ba
using ion chromatography — Method for water and waste water
ISO 15009, Soil quality — Gas chromatogrphic determination of the content of volatile aromatic hydrocarbons,
naphthalene and volatile halogenated hydrocarbons — Purge-and-trap method with thermal desorption
ISO 15089, Water quality — Guidelines for selective immunoassays for the determination of plant treatment
and pesticide agents
ISO 15178, Soil quality — Determination of total sulfur by dry combustion
ISO 15473: 2002, Soil quality — Guidance on laboratory testing for biodegradation of organic chemicals in soil
under anaerobic conditions
ISO 15799, Soil quality — Guidance on the ecotoxicological characterization of soils and soil materials
ISO 15913, Water quality — Determination of selected phenoxyalkanoic herbicides, including bentazones and
hydroxybenzonitriles by gas chromatography and mass spectrometry after solid phase extraction and
derivatization
ISO 16703, Soil quality — Determination of content of hydrocarbon in the range C to C by gas
10 40
chromatography
ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories
ISO 20279, Soil quality — Extraction of thallium and determination by electrothermal atomic absorption
spectrometry
OIML R 112:1994, High performance liquid chromatographs for measurement of pesticides and other toxic
substances
4 © ISO 2004 – All rights reserved
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 11074-1 and ISO 11074-4 and the
following apply.
3.1
soil
upper layer of the Earth's crust composed of mineral particles, organic matter, water, air and organisms
[ISO 11074-1]
3.2
contaminant
substance or agent present in the soil as a result of human activity
cf. pollutant (3.8).
NOTE There is no assumption in this definition that harm results from the presence of the contaminant.
3.3
diffuse-source input
non-point-source input
input of a substance emitted from moving sources, from sources with a large area or from many sources
NOTE 1 The sources can be for example cars, application of substances through agricultural practices, emissions from
town or region, deposition through flooding of a river.
NOTE 2 Diffuse-source input usually leads to sites that are relatively uniformly contaminated. At some sites the input
conditions may nevertheless cause a higher local input near the source or where atmospheric deposition/rain is increased.
3.4
groundwater
water which is being held in, and can usually be recovered from, an underground formation
3.5
hazard
property of a substance or material, or any action, which may cause an adverse effect on soil functions
3.6
percolating water
soil water that moves downward in the percolating space due to gravity, insofar as it is not groundwater
3.7
point-source input
input of a substance from a stationary discrete source of defined size
NOTE 1 The sources can be stack emissions, accidental spills, waste dumps, spills on industrial sites, major leaks
from sewers and other pipelines.
NOTE 2 Point-source input can cause both locally contaminated sites and relatively uniformly contaminated sites.
[ISO 11074-1]
3.8
pollutant
substance or agent present in the soil (or groundwater) which due to its properties, amount or concentration
causes adverse impacts on soil functions or soil use
NOTE Also described as those substances which due to their properties, amount or concentration cause impacts on
soil functions or soil use.
3.9
residual contamination
amount or concentration of contaminants remaining in specific media following remediation
[ISO 11074-4]
3.10
risk
expression of the probability that an adverse effect on soil functions will occur under defined conditions, and
the magnitude of the consequences of the effect occurring
3.11
saturated zone
zone of the underground, where the space of the lithosphere is filled uninterruptedly with water at the time
under consideration
NOTE The saturated zone encompasses the groundwater zone including the zone of capillary water.
3.12
soil function
function of soil which is significant to man and the environment
NOTE Important soil functions are
control of matter and energy cycles as compartments of an ecosystem,
vital support for the life of plants, animals and man,
basis for the stability of buildings and roads,
basis for agricultural production,
buffer inhibiting movement of water, contaminants or other agents into the groundwater,
source of a gene pool,
preservation of archaeological remains,
preservation of paleoecological remains.
[ISO 11074-4]
3.13
soil material
excavated soil, dredged materials and soil treated to remove or destroy or reduce the environmental
availability of contaminants
3.14
soil water
all water of the unsaturated and saturated zone
3.15
subsoil
partially decomposed layer of rock underlying the topsoil and overlying the solid parent rock beneath
3.16
topsoil
upper part of a natural soil which is generally dark-coloured and has a higher content of organic matter and
nutrient when compared to the subsoil below
[ISO 11074-4]
6 © ISO 2004 – All rights reserved
3.17
unsaturated zone
zone of the soil and the underground, where the space of the lithosphere is not filled uninterruptedly with
water at the time under consideration
NOTE The unsaturated zone encompasses the zone of percolating water with the zone of capillary water being
excluded.
4 General
Soils are of central importance within the water cycle because their storage and filter functions have a lasting
influence on the water balance and groundwater quality. In this context, particular attention shall be paid to the
following functions:
mechanical filter functions (retention of suspended sludge and pollutant particles);
chemical filter functions (sorption and mobilization of substances);
transformation functions (degradation or transformation of substances).
Soil is understood as a porous medium consisting of three phases: the solid phase, the liquid phase and the
gaseous phase. The ratio of these phases and their respective compositions vary widely in time and space.
The assessment of contamination affecting groundwater quality requires a profound understanding of the
governing processes and reactions of potentially toxic compounds in soils. Contaminants are translocated in
all three phases of soils as a function of the properties of the chemicals and the soil. Hence strategies for
assessing risks to groundwater due to soil contamination should vary with the contaminants considered, and
should take into account those soil properties which mainly govern the soil's filter, retention, release and
transformation functions.
In addition to considering the properties of the chemicals and the soil governing the behaviour of contaminants
in soils, different ways for contaminants to enter soils shall also be evaluated when designing suitable risk
assessment strategies, with respect to contamination of groundwater. Soil and groundwater contamination
can be caused by different sources on different spatial scales, as indicated in Figure 1. On regional and larger
scales, soil contamination is caused, for example, by wet and dry atmospheric deposition and has
predominantly diffuse character on a moderate level of contamination. On a local scale, a variety of point
sources can cause all kinds and magnitudes of soil and groundwater contamination. Most point sources of
contamination may also be regarded as off-site diffuse sources of groundwater contamination. It is evident
that different contamination scenarios as a function of contamination sources and scale demand different
investigation strategies with respect to groundwater impact. At present there are no uniform principles for the
investigation and evaluation of contaminated soils and contaminated sites in relation to the protection of water
resources.
Figure 1 — Definition of groundwater zones and examples of sources of contamination
8 © ISO 2004 – All rights reserved
Investigation strategies may be qualitative or quantitative. Qualitative approaches mostly refer to assessment
of, for example, the potential leaching risk of chemicals through the soil towards groundwater. In contrast to
quantitative approaches, the level of actual soil contamination is not taken into account. Approaches of this
type can also be utilized, e.g. to classify larger areas with respect to their capability of protecting groundwater
resources against contamination, or as an introductory step in an assessment of an actual contaminated site.
To assess the on-site impact on groundwater resulting from specific soil contamination, quantitative
approaches based on site-specific investigation procedures including laboratory and/or field measurements
have to be carried out. Laboratory measurements can include physical, chemical and biological analysis, and
leaching tests. Assessments of this kind also shall take into account natural background concentrations of a
substance and other natural conditions affecting the impact on the groundwater. Assessments of impact on
groundwater often include a temporal aspect, since the actual impact may not be measurable at the time of
the investigation, but may happen some time in the future.
Assessments also depend on the purposes of investigations, for example:
conservation of soil functions in order to prevent groundwater contamination;
soil and groundwater monitoring;
risk assessment;
controlling remediation measures.
A listing of suitable methods are covered in the main part of this International Standard (see Clause 5). Some
examples of assessment using principles of this International Standard are provided in Annexes A and B.
Since the impact on groundwater can lead to impact on surface waters, this aspect can in some cases be
relevant in an overall impact assessment. This issue is not addressed explicitly in this International Standard.
5 Site assessment
5.1 General
A prerequisite for the evaluation of the soil-to-groundwater pathway is the determination of the relevant
physical, chemical and biological characteristics of soils and the hydrological characteristics of the site. It is
therefore normally necessary to collect data for the assessment of the contamination source with respect to
the type and degree of contamination and extent of source(s).
It is also necessary to describe the soil compartment that is influenced by the source, and the factors in this
compartment affecting the actual impact on the groundwater. Many processes influence the groundwater
impact in this soil compartment, where a number of physical, chemical and biological processes can take
place. In order to evaluate the importance of these processes in a specific assessment, it is necessary to
describe the structure of the soil compartment, e.g. the geometry, hydraulic conditions and natural chemical
and biologic processes. Input to the soil compartment includes the infiltration of water and specific
contaminants. Output is the contaminant flux to the compartment of the groundwater zone investigated. A
general description hereof is given in Figure 2 and a further description of the relevant parameters is given
in 5.2.
Figure 2 — Schematic diagram illustrating the soil compartment covered by the assessment
procedure and processes affecting the impact of contamination on groundwater
The types of information needed to describe the relevant soil compartment include pedology, lithology of
parent material, pedology (e.g. soil unit), hydrogeology (e.g. permeability), physico-chemical conditions (e.g.
pH) and biological conditions (e.g. substrate availability). How large the actual soil compartment investigated
should be (and thus the detail of the investigation) depends on the type of assessment chosen. For example,
the volume is large if the assessment focuses on the general use of pesticides and fertilizers in an area
covering a groundwater reservoir used as a drinking water source. The area and volume of the soil
compartment investigated is considerably smaller if the assessment covers a “hot spot” on a contaminated
site with a groundwater-pumping well located on a neighbouring site.
5.2 Relevant soil processes
Contaminant transport in the unsaturated zone is governed not only by the transport of percolating water but
also by a number of biological and chemical processes. Which of these processes are to be considered
important within a given context will depend on the type of contaminants and the actual soil conditions. An
overview of soil and contaminant parameters related to contaminant transport is given in Table 1.
10 © ISO 2004 – All rights reserved
Table 1 — Soil and contaminant parameters related to different processes in soil
Process Soil parameters Contaminant parameters Soil/contaminant
interactions
Mass transport of Hydraulic conductivity, degree of Solubility, volatility, density, Relative permeability,
contaminants saturation, porosity, pore size viscosity residual saturation,
distribution, soil water-retention wettability, surface
functions tension, capillary
pressure
Contaminant transport in
water:
Advection Pressure gradient, hydraulic Viscosity
conductivity, porosity
Dispersion/diffusion Dispersivity, pore water velocity Diffusion coefficient
Density transport Pore water velocity, soil layering Liquid density Dispersion, change in
density
Preferential flow Pore size distribution, fissure size, Viscosity, density, diffusion
macropore size, connectivity coefficient
Volatilization Water content, temperature, chemical- Vapour pressure, Henry's
phase content constant
Gas-phase transport Water content, tortuosity, pressure Diffusion coefficient
differences
Dissolution of organics Hydraulic conductivity, tortuosity, water Solubility, composition of
content chemical phase
Dissolution of inorganics Hydraulic conductivity, tortuosity, water Solubility product
content
Precipitation pH, redox, other components Solubility product,
complexation constant
Complexation pH, ligand concentration, DOC Complexation constant
Ion exchange Cation exchange capacity, ionic Valence, degree of
strength, other cations, pH hydratization
Sorption of organics pH, organic matter content, clay Octanol-water distribution Ageing
content and mineralogy, specific coefficient, sorption constant
surface area
Sorption of inorganics pH, organic matter content, clay Sorption constant Ageing
content and mineralogy, specific
surface area, non-crystalline (short-
range ordered) oxide and hydrous
oxide gels
Degradation
Abiotic Redox, pH, temperature Presence of primary
substrate, degradability,
Biotic Microorganisms, redox, substrate, pH,
toxicity to microorganisms
temperature
5.3 Impact assessment procedures
In order to complete a description of the source and the soil it is necessary to develop
strategies for evaluation of site-specific parameters,
sampling strategies, and
analytical and testing strategies
for each site and/or media (soil, groundwater, soil air) that influences the impact on the groundwater.
These strategies should be determined on the basis of
history of the site or area,
available data and/or results of previous investigations,
the nature of any process-based treatment methods that have been applied to the soil,
the intended use of the site.
To optimize the actual need for information in relation to the costs and time demanded for the investigations in
the field and laboratory, it is recommended to carry out the assessment in a stepwise procedure (see Table 2).
Table 2 — Stepwise procedure for impact assessment
Step 1
Preliminary investigation, including desktop investigation, site history, potential contaminants, available
regional data on geology and hydrogeology
Description of local geology and pedology in moderate detail and to verify the existence of contamination
Chemical analyses to identify components and concentrations
Primary impact assessment
Definition of the importance of the problem, further action (e.g. site monitoring, immediate clean-up, further
investigation or action is not necessary)
Step 2 Exploratory investigation, including supplemental field and laboratory investigations to estimate extent of
source, specific hydraulic conditions, mobility, transformation and degradation and relevant reservoir
conditions
Secondary impact assessment
Decision as to further action
Step 3
If necessary, main site investigations and testing in laboratory and field of specific details (e.g. leachability
and/or degradation), computer modelling
Tertiary impact assessment
The first step includes a preliminary study based on desktop investigations and limited field investigations with
the aim to carry out an initial impact assessment. This step includes estimation of the soil geometry, soil unit
and hydrological conditions on the basis of general knowledge of the area, possibly supplemented with some
field data concerning local conditions. The presence of contaminants of interest and their likely concentrations
are estimated on basis of site history and a few analyses of soil and water samples and/or soil-gas
measurements. The relevant transport and decomposition processes are approximated from data related to
the relevant soil conditions and contaminants retrieved from the literature. In step 1, qualitative methods as
exemplified in Annex A can be useful, as can quantitative methods described as Level 1 in B.7.
If step 1 indicates need for a more detailed assessment, the next step is carried out. The relevant
investigations consisting of supplementary sampling, chemical analysis and field tests are planned on the
basis of step 1. Step 2 typically includes sampling to estimate the extent of the source(s), and the distribution
of contaminants in the soil matrix between the different phases: the soil gas, which is bound to the soil
particles and dissolved in the soil water. The transport of contaminants in various soil types and underlying
lithologies (e.g. sand versus fractured rock) can be very different depending on their static and dynamic
characteristics (e.g. cracking soils). It is very important in step 2 to determine the dominant mechanism of
transport. For example if the transport is related to fractures in clay and rock, then the adsorption process can
be of minor importance. Alternatively, in homogeneous sand with a high organic matter content, adsorption
can be the most important process in the impact assessment. Information about the groundwater reservoir
(e.g. extent, importance for the water supply situation) in question is also relevant in this phase, to be able to
assess the severity of a potential problem. The seasonal pattern of climatic characteristics should be known in
order to evaluate seasonal trends in potential and ongoing soil and groundwater contamination. Management
practices should also be taken into account (e.g. irrigation type and quantities). In step 2, quantitative methods
as exemplified as Level 2 in B.7 may be useful.
12 © ISO 2004 – All rights reserved
If the assessment still has to be improved after step 2, supplementary steps can be carried out. The content of
these following steps can consist of some of the same elements as in step 2, but with improved accuracy of
information available, e.g. by taking more samples to determine the influence of heterogeneity in the soil.
Sorption, degradation and leaching test can be carried out in the laboratory. Leaching and extraction tests can
be applied to assess the distribution of contaminants among the soil, water and geochemical phases, and to
assess the environmental impact (on groundwater in this context) and possible remediation actions.
Site-specific computer modelling of processes and groundwater flow can also be introduced as part of this
step. In step 3, quantitative methods as exemplified as Level 3 in B.7 may be useful.
It can be seen that the assessment is often an iterative procedure, each step being a more refined version of
the description of the problem and each leading to a more detailed basis for decision-making, as to the
necessity of remedial action in the form of site clean-up, land-use restrictions, etc.
Characterization of soil, water and the target site will require measurement of physical, chemical and biological
properties. Figure 3 indicates the broad areas in which measurement or description may be required.
Figure 3 — Overall flow chart for assessment of soil and water
5.4 Site and soil description
The assessment of the potential impacts of contaminated soil on groundwater requires general information
about the site under investigation. The most relevant parameters for a site-description are listed in Table 3.
ISO 11259 cited in Table 3 shall be applied. The scale at which this information should be collected, and the
degree of detail that is required, should be closely related to the objective of the investigation which primarily
depends on the anticipated nature and distribution of a contamination (see ISO 10381-5). In the stage of
desktop investigation (Step 1 according to Table 2), gathering information about the site does not include field
work, whereas further investigation steps may necessitate more detailed field data collection. It is important to
bear in mind that the reliability of data interpretation and risk assessment strongly depends on a profound
knowledge of the site under consideration, hence collection of parameters indicated in Table 3 should be as
comprehensive as possible.
Table 3 — Parameters for site and soil description
Parameters Applicable
International
Standard
Landform and topography Topography, landform, land element, position, slope, ISO 11259
microtopography
Land use and vegetation Land use, human influence, vegetation ISO 11259
Geology and lithology Kind of parent material, effective soil depth ISO 11259
Surface characteristics Rock outcrops, surface coarse fragments, erosion phenomena, ISO 11259
surface sealing, surface cracks, other characteristics
Soil-water relationship Surface water balance, rainfall, evapotranspiration, ISO 11259
groundwater recharge, presence and depth of water table, site
drainage, moisture conditions
Soil type/soil profile description Soil unit in regards of the classification system used ISO 11259
Sequence and depth of diagnostic horizons, kind of boundaries
Soil colour (matrix, mottling)
Organic matter
Texture, coarse elements, presence of non-soil material,
pedofeatures
Carbonates, field-pH, electrical conductivity
Structure, voids, fracturing, inhomogeneities
Compactness and consistence
Total estimated porosity
Roots, worm channels, biological activity
5.5 Sampling
5.5.1 General
Before commencing any investigation, it is essential to define the objectives of the investigation and to
prepare a sampling strategy consistent with those objectives (see Annex A to C). Reference should be made
to relevant International Standards and to the guidance attached to any national criteria or standards relating
to soil quality that are to be used in the assessment of the results of the investigation. In some jurisdictions,
there may be a legal requirement to follow certain procedures if published criteria are to be used as the basis
of the assessment.
For this International Standard, different sampling procedures may be required for pollution due to different
sources, for example diffuse sources such as
atmospheric deposition,
inappropriate agricultural activity,
inappropriate reuse of waste,
flooding by contaminated water,
14 © ISO 2004 – All rights reserved
road and urban runoff;
or point sources such as
abandoned hazardous sites,
abandoned industrial sites,
abandoned waste disposal sites,
abandoned potentially hazardous sites,
abandoned mine workings,
suspected hazardous sites,
industrial sites,
waste disposal sites,
soil contamination caused by accidents and leakage (e.g. tank pipes).
International Standards are available for sampling of percolating water, groundwater and soil. Otherwise,
appropriate national standards or equivalent regulations should be used.
5.5.2 Soil
If sufficient data are not already available, soil material and/or soil gas shall be sampled at the investigation site.
The International Standards listed in Clause 2 on soil sampling in relation to soil quality shall be considered.
5.5.3 Water
It may be necessary to sample groundwater or percolating water at the site of investigation. The International
Standards listed in Clause 2 shall be consulted and applied, where appropriate.
5.6 Characterization of soil and water
5.6.1 General
As can be seen in 5.1 to 5.5, the description and assessment of contaminated and uncontaminated sites
require information on soil and water characteristics. In 5.6.2 to 5.6.4, relevant parameters required for the
physical, chemical and biological characterization of soil and water are listed. Certain parameters require
measurement in almost all situations; others only require measurement on a site- and contaminant-specific
basis.
Principles of strategies for determination of relevant analysis and tests are provided in 5.2 and 5.3. Examples
of the application of such procedures in the context of assessment methods are provided in Annexes A and B.
Qualitative assessment approaches (Annex A) require, in addition to the general site and soil description (Table 3),
selected physical (Table 4) and basic chemical parameters (Table 5) as input data. Quantitative assessment
methods (Annex B) mostly require an extended and more specific data input, in particular with respect to the
actual concentrations of potential contaminants in soils and water. Relevant inorganic and organic contaminants
are listed in Tables 6, 7 and 8.
5.6.2 Physical parameters
A number of soil physical parameters are relevant in connection with the assessment of groundwater and
contaminant transport in the unsaturated zone (Table 4). The actual choice of parameters measured should
be based on a preliminary knowledge of site characteristics and the contaminant situation (Step 1).
International Standards listed in Table 4 shall be applied.
In order to estimate hydraulic data for the saturated zone (e.g. hydraulic conductivity, transmissivity, leakage,
etc.) pumping tests can be carried out. With this type of test, groundwater flow in the saturated zone can be
described. Water migration in the unsaturated zone can be estimated on the basis of measurements of grain
size distribution (e.g. by pedo-transfer functions/rules). However, inhomogeneities can dominate the
distribution and velocity of the infiltration. If more accurate estimates are necessary, infiltration tests can be
performed on site.
Table 4 — Physical parameters
a a
Parameter Methods Soil Water Applicable
International
b
Standard
Texture sieving, sedimentation X ISO 11277 (s)
Coarse material sieving X ISO 11277 (s)
Presence of non-soil material sieving X ISO 11259 (s)
Hydraulic conductivity (unsaturated and/or Wind´s evaporation method, field X ISO 11275 (s)
saturated) methods, e.g. Guelph constant-
head permeameter
Temperature temperature sensors X X
Water-retention characteristics stepwise extraction of water by X ISO 11274 (s)
suction or tension
Soil water content (ex situ) neutron depth probe, TDR X ISO 10573 (s)
Pore size distribution estimation from soil water- X ISO 11259 (s)
retention curves
Field capacity estimation from soil water- X ISO 11274 (s)
retention curves
Bulk density direct measurement on X ISO 11272 (s)
undisturbed soil samples,
estimation from soil water
retention curves
Infiltration rate constant head pressure
...
SLOVENSKI STANDARD
01-december-2006
Kakovost tal – Karakterizacija tal v zvezi z varstvom podtalnice
Soil quality -- Characterization of soil related to groundwater protection
Qualité du sol -- Caractérisation des sols en relation avec la nappe phréatique
Ta slovenski standard je istoveten z: ISO 15175:2004
ICS:
13.080.40 Hidrološke lastnosti tal Hydrological properties of
soils
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
INTERNATIONAL ISO
STANDARD 15175
First edition
2004-05-15
Soil quality — Characterization of soil
related to groundwater protection
Qualité du sol — Caractérisation des sols en relation avec la nappe
phréatique
Reference number
©
ISO 2004
PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.
© ISO 2004
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
ii © ISO 2004 – All rights reserved
Contents Page
Foreword. iv
1 Scope. 1
2 Normative references . 1
3 Terms and definitions. 5
4 General. 7
5 Site assessment . 9
5.1 General. 9
5.2 Relevant soil processes . 10
5.3 Impact assessment procedures . 11
5.4 Site and soil description. 13
5.5 Sampling . 14
5.6 Characterization of soil and water . 15
6 Data handling, evaluation and quality . 22
Annex A (informative) Qualitative methods for assessing the potential leaching risk. 25
Annex B (informative) Quantitative methods for assessing the actual leaching risk . 44
Annex C (informative) Types of contaminated site and associated contaminants . 48
Annex D (informative) List of priority pollutants with respect to groundwater pollution . 49
Annex E (informative) Overview of soil leaching and extraction test . 53
Bibliography . 57
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 15175 was prepared by Technical Committee ISO/TC 190, Soil quality, Subcommittee SC 7, Soil and site
assessment.
iv © ISO 2004 – All rights reserved
INTERNATIONAL STANDARD ISO 15175:2004(E)
Soil quality — Characterization of soil related to groundwater
protection
1 Scope
This International Standard provides guidance on the principles behind, and main methods for, the evaluation of
sites, soils, and soil materials in relation to their role as a source of contamination of groundwater and their
function in transporting, degrading and transforming contaminants. It identifies and lists relevant monitoring
strategies, methods for sampling, soil processing and analytical methods.
This International Standard is applicable to the evaluation of the impact of contaminants on groundwater in
relation to
drinking water quality,
irrigation water quality,
industrial use,
natural base flow.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.
ISO 6341, Water quality — Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera,
Crustacea) — Acute toxicity test
ISO 6468, Water quality — Determination of certain organochlorine insecticides, polychlorinated biphenyls
and chlorobenzenes — Gas chromatographic method after liquid-liquid extraction
ISO 6878, Water quality — Spectrometric of phosphorus using ammonium molybdate
ISO 7150-1, Water quality — Determination of ammonium — Part 1: Manual spectrometric method
ISO 7150-2, Water quality — Determination of ammonium — Part 2: Automated spectrometric method
ISO 7888, Water quality — Determination of electrical conductivity
ISO 7890-1, Water quality — Determination of nitrate — Part 1: 2,6-Dimethylphenol spectrometric method
ISO 7890-2, Water quality — Determination of nitrate — Part 2: 4-Fluorophenol spectrometric method after
distillation
ISO 7890-3, Water quality — Determination of nitrate — Part 3: Spectrometric method using sulfosalicylic acid
ISO 7981-2, Water quality — Determination of six specified polynuclear hydrocarbons (PAH) — Part 2:
Determination of six PAH by high-performance liquid chromatography with fluorescence detection after liquid-
liquid extraction
ISO 8165-1, Water quality — Determination of selected monovalent phenols — Part 1: Gas chromatographic
method after enrichment by extraction
ISO 8245, Water quality — Guidelines for the determination of total organic carbon (TOC) and dissolved
organic carbon (DOC)
ISO 9001:2000, Quality management systems — Requirements
ISO 9562, Water quality — Determination of adsorbable organically bound halogens (AOX)
ISO 9964-1, Water quality — Determination of sodium and potassium — Part 1: Determination of sodium by
atomic absorption spectrometry
ISO 9964-2, Water quality — Determination of sodium and potassium — Part 2: Determination of potassium
by atomic absorption spectormetry
ISO 9964-3, Water quality — Determination of sodium and potassium — Part 3: Determination of sodium and
potassium by flame emission spectrometry
ISO 10048, Water quality — Determination of nitrogen — Catalytic digestion after reduction with Devarda's
alloy
ISO 10301, Water quality — Determination of highly volatile halogenated hydrocarbons — Gas
chromatographic methods
ISO 10382, Determination of organochlorine pesticides and polychlorinated biphenyls – gas chromatographic
method with electron capture detection
ISO 10390, Soil quality — Determination of pH
ISO 10523, Water quality — Determination of pH
ISO 10573, Soil quality — Determination of water content in the unsaturated zone — Neutron depth probe
method
ISO 10693, Soil quality — Determination of carbonate content — Volumetric method
ISO 10694, Soil quality — Determination of organic and total carbon after dry combustion (elementary
analysis)
ISO 11047, Soil quality — Determination of cadmium, chromium, cobalt, copper, lead, manganese, nickel and
zinc — Flame and electrothermal atomic absorption spectrometric methods
ISO 11048, Soil quality — Determination of water-soluble and acid-soluble sulfate
ISO 11074-1, Soil quality — Vocabulary — Part 1: Terms and definitions relating to the protection and
pollution of the soil
ISO 11074-4 Soil quality — Vocabulary — Part 4: Terms and definitions relating to the rehabilitation of soils
and sites
ISO 11259, Soil quality — Simplified soil description
ISO 11260, Soil quality — Determination of effective cation exchange capacity and base saturation level using
barium chloride solution
ISO 11261, Soil quality — Determination of total nitrogen — Modified Kjeldahl method
2 © ISO 2004 – All rights reserved
ISO 11263, Soil quality — Determination of phosphorus — Spectrometric determination of phosphorus soluble
in sodium hydrogen carbonate solution
ISO 11264, Soil quality — Determination of herbicides — Method using HPLC with UV detection
ISO 11265, Soil quality — Determination of the specific electrical conductivity
ISO 11266, Soil quality — Guidance on laboratory testing for biodegradation of organic chemicals in soil under
aerobic conditions
ISO 11271, Soil quality — Determination of redox potential — Field method
ISO 11272, Soil quality — Determination of dry bulk density
ISO 11274, Soil quality — Determination of the water retention characteristic — Laboratory methods
ISO 11275, Soil quality — Determination of unsaturated hydraulic conductivity and water-retention
characteristic — Wind's evaporation method
ISO 11277, Soil quality — Determination of particle size distribution in mineral soil material — Method by
sieving and sedimentation
ISO 11348-1, Water quality — Determination of the inhibitory effect of water samples on the light emission of
Vibrio fischeri (Luminescent bacteria test) — Part 1: Method using freshly prepared bacteria
ISO 11348-2, Water quality — Determination of the inhibitory effect of water samples on the light emission of
Vibrio fischeri (Luminescent bacteria test) — Part 2: Method using liquid-dried bacteria
ISO 11348-3 Water quality — Determination of the inhibitory effect of water samples on the light emission of
Vibrio fischeri (Luminescent bacteria test) — Part 3: Method using freeze-dried bacteria
ISO 11369, Water quality — Determination of selected plant treatment agents — Method using high
performance liquid chromatography with UV detection after solid-liquid extraction
ISO/TS 11370, Water quality — Determination of selected organic plant treatment agents — Automated
multiple development (AMD) technique
ISO 11464, Soil quality — Pretreatment of samples for physico-chemical analyses
ISO 11423-1, Water quality — Determination of benzene and some derivatives — Part 1: Head-space gas
chromatographic method
ISO 11423-2, Water quality — Determination of benzene and some derivatives — Part 2: Method using
extraction and gas chromatography
ISO 11466, Soil quality — Extraction of trace elements soluble in aqua regia
ISO 11905-1, Water quality — Determination of nitrogen — Part 1: Method using oxidative digestion with
peroxodisulfate
ISO/TR 11905-2, Water quality — Determination of nitrogen — Part 2: Determination of bound nitrogen, after
combustion and oxidation to nitrogen dioxide, using chemiluminescence detection
ISO 13536, Soil quality — Determination of the potential cation exchange capacity and exchangeable cations
using barium chloride solution buffered at pH = 8,1
ISO 13877, Soil quality — Determination of polynuclear aromatic hydrocarbons — Method using high-
performance liquid chromatography
ISO 13878, Soil quality — Determination of total nitrogen content by dry combustion (“elemental analysis”)
ISO 14154, Soil quality — Determination of selected phenols and chlorophenols — gas chromatographic
method
ISO 14235, Soil quality — Determination of organic carbon by sulfochromic oxidation
ISO 14238, Soil quality — Biological methods — Determination of nitrogen mineralization and nitrification in
soils and the influence of chemicals on these processes
ISO 14239, Soil quality — Laboratory incubation systems for measuring the mineralization of organic
chemicals in soil under aerobic conditions
ISO 14254, Soil quality — Determination of exchangeable acidity in barium chloride extracts
ISO 14255, Soil quality — Determination of nitrate nitrogen, ammonium nitrogen and total soluble nitrogen in
air-dry soils using calcium chloride solution as extractant
ISO 14256-2, Soil quality — Determination of nitrate, nitrite and ammonium in field-moist soils by extraction
with potassium chloride solution — Part 2: Automated method
ISO 14507, Soil quality — Pretreatment of samples for determination of organic contaminants
ISO 14869-1, Soil quality — Dissolution for the determination of total element content — Part 1: Dissolution
with hydrofluoric and perchloric acids
ISO 14869-2, Soil quality — Dissolution for the determination of total element content — Part 2: Dissolution by
alkaline fusion
ISO 14870, Soil quality — Extraction of trace elements by buffered DTPA solution
+ + + + 2+ 2+ 2+ 2+ 2+
ISO 14911, Water quality — Determination of dissolved Li , Na , NH , K , Mn , Ca , Mg , Sr and Ba
using ion chromatography — Method for water and waste water
ISO 15009, Soil quality — Gas chromatogrphic determination of the content of volatile aromatic hydrocarbons,
naphthalene and volatile halogenated hydrocarbons — Purge-and-trap method with thermal desorption
ISO 15089, Water quality — Guidelines for selective immunoassays for the determination of plant treatment
and pesticide agents
ISO 15178, Soil quality — Determination of total sulfur by dry combustion
ISO 15473: 2002, Soil quality — Guidance on laboratory testing for biodegradation of organic chemicals in soil
under anaerobic conditions
ISO 15799, Soil quality — Guidance on the ecotoxicological characterization of soils and soil materials
ISO 15913, Water quality — Determination of selected phenoxyalkanoic herbicides, including bentazones and
hydroxybenzonitriles by gas chromatography and mass spectrometry after solid phase extraction and
derivatization
ISO 16703, Soil quality — Determination of content of hydrocarbon in the range C to C by gas
10 40
chromatography
ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories
ISO 20279, Soil quality — Extraction of thallium and determination by electrothermal atomic absorption
spectrometry
OIML R 112:1994, High performance liquid chromatographs for measurement of pesticides and other toxic
substances
4 © ISO 2004 – All rights reserved
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 11074-1 and ISO 11074-4 and the
following apply.
3.1
soil
upper layer of the Earth's crust composed of mineral particles, organic matter, water, air and organisms
[ISO 11074-1]
3.2
contaminant
substance or agent present in the soil as a result of human activity
cf. pollutant (3.8).
NOTE There is no assumption in this definition that harm results from the presence of the contaminant.
3.3
diffuse-source input
non-point-source input
input of a substance emitted from moving sources, from sources with a large area or from many sources
NOTE 1 The sources can be for example cars, application of substances through agricultural practices, emissions from
town or region, deposition through flooding of a river.
NOTE 2 Diffuse-source input usually leads to sites that are relatively uniformly contaminated. At some sites the input
conditions may nevertheless cause a higher local input near the source or where atmospheric deposition/rain is increased.
3.4
groundwater
water which is being held in, and can usually be recovered from, an underground formation
3.5
hazard
property of a substance or material, or any action, which may cause an adverse effect on soil functions
3.6
percolating water
soil water that moves downward in the percolating space due to gravity, insofar as it is not groundwater
3.7
point-source input
input of a substance from a stationary discrete source of defined size
NOTE 1 The sources can be stack emissions, accidental spills, waste dumps, spills on industrial sites, major leaks
from sewers and other pipelines.
NOTE 2 Point-source input can cause both locally contaminated sites and relatively uniformly contaminated sites.
[ISO 11074-1]
3.8
pollutant
substance or agent present in the soil (or groundwater) which due to its properties, amount or concentration
causes adverse impacts on soil functions or soil use
NOTE Also described as those substances which due to their properties, amount or concentration cause impacts on
soil functions or soil use.
3.9
residual contamination
amount or concentration of contaminants remaining in specific media following remediation
[ISO 11074-4]
3.10
risk
expression of the probability that an adverse effect on soil functions will occur under defined conditions, and
the magnitude of the consequences of the effect occurring
3.11
saturated zone
zone of the underground, where the space of the lithosphere is filled uninterruptedly with water at the time
under consideration
NOTE The saturated zone encompasses the groundwater zone including the zone of capillary water.
3.12
soil function
function of soil which is significant to man and the environment
NOTE Important soil functions are
control of matter and energy cycles as compartments of an ecosystem,
vital support for the life of plants, animals and man,
basis for the stability of buildings and roads,
basis for agricultural production,
buffer inhibiting movement of water, contaminants or other agents into the groundwater,
source of a gene pool,
preservation of archaeological remains,
preservation of paleoecological remains.
[ISO 11074-4]
3.13
soil material
excavated soil, dredged materials and soil treated to remove or destroy or reduce the environmental
availability of contaminants
3.14
soil water
all water of the unsaturated and saturated zone
3.15
subsoil
partially decomposed layer of rock underlying the topsoil and overlying the solid parent rock beneath
3.16
topsoil
upper part of a natural soil which is generally dark-coloured and has a higher content of organic matter and
nutrient when compared to the subsoil below
[ISO 11074-4]
6 © ISO 2004 – All rights reserved
3.17
unsaturated zone
zone of the soil and the underground, where the space of the lithosphere is not filled uninterruptedly with
water at the time under consideration
NOTE The unsaturated zone encompasses the zone of percolating water with the zone of capillary water being
excluded.
4 General
Soils are of central importance within the water cycle because their storage and filter functions have a lasting
influence on the water balance and groundwater quality. In this context, particular attention shall be paid to the
following functions:
mechanical filter functions (retention of suspended sludge and pollutant particles);
chemical filter functions (sorption and mobilization of substances);
transformation functions (degradation or transformation of substances).
Soil is understood as a porous medium consisting of three phases: the solid phase, the liquid phase and the
gaseous phase. The ratio of these phases and their respective compositions vary widely in time and space.
The assessment of contamination affecting groundwater quality requires a profound understanding of the
governing processes and reactions of potentially toxic compounds in soils. Contaminants are translocated in
all three phases of soils as a function of the properties of the chemicals and the soil. Hence strategies for
assessing risks to groundwater due to soil contamination should vary with the contaminants considered, and
should take into account those soil properties which mainly govern the soil's filter, retention, release and
transformation functions.
In addition to considering the properties of the chemicals and the soil governing the behaviour of contaminants
in soils, different ways for contaminants to enter soils shall also be evaluated when designing suitable risk
assessment strategies, with respect to contamination of groundwater. Soil and groundwater contamination
can be caused by different sources on different spatial scales, as indicated in Figure 1. On regional and larger
scales, soil contamination is caused, for example, by wet and dry atmospheric deposition and has
predominantly diffuse character on a moderate level of contamination. On a local scale, a variety of point
sources can cause all kinds and magnitudes of soil and groundwater contamination. Most point sources of
contamination may also be regarded as off-site diffuse sources of groundwater contamination. It is evident
that different contamination scenarios as a function of contamination sources and scale demand different
investigation strategies with respect to groundwater impact. At present there are no uniform principles for the
investigation and evaluation of contaminated soils and contaminated sites in relation to the protection of water
resources.
Figure 1 — Definition of groundwater zones and examples of sources of contamination
8 © ISO 2004 – All rights reserved
Investigation strategies may be qualitative or quantitative. Qualitative approaches mostly refer to assessment
of, for example, the potential leaching risk of chemicals through the soil towards groundwater. In contrast to
quantitative approaches, the level of actual soil contamination is not taken into account. Approaches of this
type can also be utilized, e.g. to classify larger areas with respect to their capability of protecting groundwater
resources against contamination, or as an introductory step in an assessment of an actual contaminated site.
To assess the on-site impact on groundwater resulting from specific soil contamination, quantitative
approaches based on site-specific investigation procedures including laboratory and/or field measurements
have to be carried out. Laboratory measurements can include physical, chemical and biological analysis, and
leaching tests. Assessments of this kind also shall take into account natural background concentrations of a
substance and other natural conditions affecting the impact on the groundwater. Assessments of impact on
groundwater often include a temporal aspect, since the actual impact may not be measurable at the time of
the investigation, but may happen some time in the future.
Assessments also depend on the purposes of investigations, for example:
conservation of soil functions in order to prevent groundwater contamination;
soil and groundwater monitoring;
risk assessment;
controlling remediation measures.
A listing of suitable methods are covered in the main part of this International Standard (see Clause 5). Some
examples of assessment using principles of this International Standard are provided in Annexes A and B.
Since the impact on groundwater can lead to impact on surface waters, this aspect can in some cases be
relevant in an overall impact assessment. This issue is not addressed explicitly in this International Standard.
5 Site assessment
5.1 General
A prerequisite for the evaluation of the soil-to-groundwater pathway is the determination of the relevant
physical, chemical and biological characteristics of soils and the hydrological characteristics of the site. It is
therefore normally necessary to collect data for the assessment of the contamination source with respect to
the type and degree of contamination and extent of source(s).
It is also necessary to describe the soil compartment that is influenced by the source, and the factors in this
compartment affecting the actual impact on the groundwater. Many processes influence the groundwater
impact in this soil compartment, where a number of physical, chemical and biological processes can take
place. In order to evaluate the importance of these processes in a specific assessment, it is necessary to
describe the structure of the soil compartment, e.g. the geometry, hydraulic conditions and natural chemical
and biologic processes. Input to the soil compartment includes the infiltration of water and specific
contaminants. Output is the contaminant flux to the compartment of the groundwater zone investigated. A
general description hereof is given in Figure 2 and a further description of the relevant parameters is given
in 5.2.
Figure 2 — Schematic diagram illustrating the soil compartment covered by the assessment
procedure and processes affecting the impact of contamination on groundwater
The types of information needed to describe the relevant soil compartment include pedology, lithology of
parent material, pedology (e.g. soil unit), hydrogeology (e.g. permeability), physico-chemical conditions (e.g.
pH) and biological conditions (e.g. substrate availability). How large the actual soil compartment investigated
should be (and thus the detail of the investigation) depends on the type of assessment chosen. For example,
the volume is large if the assessment focuses on the general use of pesticides and fertilizers in an area
covering a groundwater reservoir used as a drinking water source. The area and volume of the soil
compartment investigated is considerably smaller if the assessment covers a “hot spot” on a contaminated
site with a groundwater-pumping well located on a neighbouring site.
5.2 Relevant soil processes
Contaminant transport in the unsaturated zone is governed not only by the transport of percolating water but
also by a number of biological and chemical processes. Which of these processes are to be considered
important within a given context will depend on the type of contaminants and the actual soil conditions. An
overview of soil and contaminant parameters related to contaminant transport is given in Table 1.
10 © ISO 2004 – All rights reserved
Table 1 — Soil and contaminant parameters related to different processes in soil
Process Soil parameters Contaminant parameters Soil/contaminant
interactions
Mass transport of Hydraulic conductivity, degree of Solubility, volatility, density, Relative permeability,
contaminants saturation, porosity, pore size viscosity residual saturation,
distribution, soil water-retention wettability, surface
functions tension, capillary
pressure
Contaminant transport in
water:
Advection Pressure gradient, hydraulic Viscosity
conductivity, porosity
Dispersion/diffusion Dispersivity, pore water velocity Diffusion coefficient
Density transport Pore water velocity, soil layering Liquid density Dispersion, change in
density
Preferential flow Pore size distribution, fissure size, Viscosity, density, diffusion
macropore size, connectivity coefficient
Volatilization Water content, temperature, chemical- Vapour pressure, Henry's
phase content constant
Gas-phase transport Water content, tortuosity, pressure Diffusion coefficient
differences
Dissolution of organics Hydraulic conductivity, tortuosity, water Solubility, composition of
content chemical phase
Dissolution of inorganics Hydraulic conductivity, tortuosity, water Solubility product
content
Precipitation pH, redox, other components Solubility product,
complexation constant
Complexation pH, ligand concentration, DOC Complexation constant
Ion exchange Cation exchange capacity, ionic Valence, degree of
strength, other cations, pH hydratization
Sorption of organics pH, organic matter content, clay Octanol-water distribution Ageing
content and mineralogy, specific coefficient, sorption constant
surface area
Sorption of inorganics pH, organic matter content, clay Sorption constant Ageing
content and mineralogy, specific
surface area, non-crystalline (short-
range ordered) oxide and hydrous
oxide gels
Degradation
Abiotic Redox, pH, temperature Presence of primary
substrate, degradability,
Biotic Microorganisms, redox, substrate, pH,
toxicity to microorganisms
temperature
5.3 Impact assessment procedures
In order to complete a description of the source and the soil it is necessary to develop
strategies for evaluation of site-specific parameters,
sampling strategies, and
analytical and testing strategies
for each site and/or media (soil, groundwater, soil air) that influences the impact on the groundwater.
These strategies should be determined on the basis of
history of the site or area,
available data and/or results of previous investigations,
the nature of any process-based treatment methods that have been applied to the soil,
the intended use of the site.
To optimize the actual need for information in relation to the costs and time demanded for the investigations in
the field and laboratory, it is recommended to carry out the assessment in a stepwise procedure (see Table 2).
Table 2 — Stepwise procedure for impact assessment
Step 1
Preliminary investigation, including desktop investigation, site history, potential contaminants, available
regional data on geology and hydrogeology
Description of local geology and pedology in moderate detail and to verify the existence of contamination
Chemical analyses to identify components and concentrations
Primary impact assessment
Definition of the importance of the problem, further action (e.g. site monitoring, immediate clean-up, further
investigation or action is not necessary)
Step 2 Exploratory investigation, including supplemental field and laboratory investigations to estimate extent of
source, specific hydraulic conditions, mobility, transformation and degradation and relevant reservoir
conditions
Secondary impact assessment
Decision as to further action
Step 3
If necessary, main site investigations and testing in laboratory and field of specific details (e.g. leachability
and/or degradation), computer modelling
Tertiary impact assessment
The first step includes a preliminary study based on desktop investigations and limited field investigations with
the aim to carry out an initial impact assessment. This step includes estimation of the soil geometry, soil unit
and hydrological conditions on the basis of general knowledge of the area, possibly supplemented with some
field data concerning local conditions. The presence of contaminants of interest and their likely concentrations
are estimated on basis of site history and a few analyses of soil and water samples and/or soil-gas
measurements. The relevant transport and decomposition processes are approximated from data related to
the relevant soil conditions and contaminants retrieved from the literature. In step 1, qualitative methods as
exemplified in Annex A can be useful, as can quantitative methods described as Level 1 in B.7.
If step 1 indicates need for a more detailed assessment, the next step is carried out. The relevant
investigations consisting of supplementary sampling, chemical analysis and field tests are planned on the
basis of step 1. Step 2 typically includes sampling to estimate the extent of the source(s), and the distribution
of contaminants in the soil matrix between the different phases: the soil gas, which is bound to the soil
particles and dissolved in the soil water. The transport of contaminants in various soil types and underlying
lithologies (e.g. sand versus fractured rock) can be very different depending on their static and dynamic
characteristics (e.g. cracking soils). It is very important in step 2 to determine the dominant mechanism of
transport. For example if the transport is related to fractures in clay and rock, then the adsorption process can
be of minor importance. Alternatively, in homogeneous sand with a high organic matter content, adsorption
can be the most important process in the impact assessment. Information about the groundwater reservoir
(e.g. extent, importance for the water supply situation) in question is also relevant in this phase, to be able to
assess the severity of a potential problem. The seasonal pattern of climatic characteristics should be known in
order to evaluate seasonal trends in potential and ongoing soil and groundwater contamination. Management
practices should also be taken into account (e.g. irrigation type and quantities). In step 2, quantitative methods
as exemplified as Level 2 in B.7 may be useful.
12 © ISO 2004 – All rights reserved
If the assessment still has to be improved after step 2, supplementary steps can be carried out. The content of
these following steps can consist of some of the same elements as in step 2, but with improved accuracy of
information available, e.g. by taking more samples to determine the influence of heterogeneity in the soil.
Sorption, degradation and leaching test can be carried out in the laboratory. Leaching and extraction tests can
be applied to assess the distribution of contaminants among the soil, water and geochemical phases, and to
assess the environmental impact (on groundwater in this context) and possible remediation actions.
Site-specific computer modelling of processes and groundwater flow can also be introduced as part of this
step. In step 3, quantitative methods as exemplified as Level 3 in B.7 may be useful.
It can be seen that the assessment is often an iterative procedure, each step being a more refined version of
the description of the problem and each leading to a more detailed basis for decision-making, as to the
necessity of remedial action in the form of site clean-up, land-use restrictions, etc.
Characterization of soil, water and the target site will require measurement of physical, chemical and biological
properties. Figure 3 indicates the broad areas in which measurement or description may be required.
Figure 3 — Overall flow chart for assessment of soil and water
5.4 Site and soil description
The assessment of the potential impacts of contaminated soil on groundwater requires general information
about the site under investigation. The most relevant parameters for a site-description are listed in Table 3.
ISO 11259 cited in Table 3 shall be applied. The scale at which this information should be collected, and the
degree of detail that is required, should be closely related to the objective of the investigation which primarily
depends on the anticipated nature and distribution of a contamination (see ISO 10381-5). In the stage of
desktop investigation (Step 1 according to Table 2), gathering information about the site does not include field
work, whereas further investigation steps may necessitate more detailed field data collection. It is important to
bear in mind that the reliability of data interpretation and risk assessment strongly depends on a profound
knowledge of the site under consideration, hence collection of parameters indicated in Table 3 should be as
comprehensive as possible.
Table 3 — Parameters for site and soil description
Parameters Applicable
International
Standard
Landform and topography Topography, landform, land element, position, slope, ISO 11259
microtopography
Land use and vegetation Land use, human influence, vegetation ISO 11259
Geology and lithology Kind of parent material, effective soil depth ISO 11259
Surface characteristics Rock outcrops, surface coarse fragments, erosion phenomena, ISO 11259
surface sealing, surface cracks, other characteristics
Soil-water relationship Surface water balance, rainfall, evapotranspiration, ISO 11259
groundwater recharge, presence and depth of water table, site
drainage, moisture conditions
Soil type/soil profile description Soil unit in regards of the classification system used ISO 11259
Sequence and depth of diagnostic horizons, kind of boundaries
Soil colour (matrix, mottling)
Organic matter
Texture, coarse elements, presence of non-soil material,
pedofeatures
Carbonates, field-pH, electrical conductivity
Structure, voids, fracturing, inhomogeneities
Compactness and consistence
Total estimated porosity
Roots, worm channels, biological activity
5.5 Sampling
5.5.1 General
Before commencing any investigation, it is essential to define the objectives of the investigation and to
prepare a sampling strategy consistent with those objectives (see Annex A to C). Reference should be made
to relevant International Standards and to the guidance attached to any national criteria or standards relating
to soil quality that are to be used in the assessment of the results of the investigation. In some jurisdictions,
there may be a legal requirement to follow certain procedures if published criteria are to be used as the basis
of the assessment.
For this International Standard, different sampling procedures may be required for pollution due to different
sources, for example diffuse sources such as
atmospheric deposition,
inappropriate agricultural activity,
inappropriate reuse of waste,
flooding by contaminated water,
14 © ISO 2004 – All rights reserved
road and urban runoff;
or point sources such as
abandoned hazardous sites,
abandoned industrial sites,
abandoned waste disposal sites,
abandoned potentially hazardous sites,
abandoned mine workings,
suspected hazardous sites,
industrial sites,
waste disposal sites,
soil contamination caused by accidents and leakage (e.g. tank pipes).
International Standards are available for sampling of percolating water, groundwater and soil. Otherwise,
appropriate national standards or equivalent regulations should be used.
5.5.2 Soil
If sufficient data are not already available, soil material and/or soil gas shall be sampled at the investigation site.
The International Standards listed in Clause 2 on soil sampling in relation to soil quality shall be considered.
5.5.3 Water
It may be necessary to sample groundwater or percolating water at the site of investigation. The International
Standards listed in Clause 2 shall be consulted and applied, where appropriate.
5.6 Characterization of soil and water
5.6.1 General
As can be seen in 5.1 to 5.5, the description and assessment of contaminated and uncontaminated sites
require information on soil and water characteristics. In 5.6.2 to 5.6.4, relevant parameters required for the
physical, chemical and biological characterization of soil and water are listed. Certain parameters require
measurement in almost all situations; others only require measurement on a site- and contaminant-specific
basis.
Principles of strategies for determination of relevant analysis and tests are provided in 5.2 and 5.3. Examples
of the application of such procedures in the context of assessment methods are provided in Annexes A and B.
Qualitative assessment approaches (Annex A) require, in addition to the general site and soil description (Table 3),
selected physical (Table 4) and basic chemical parameters (Table 5) as input data. Quantitative assessment
methods (Annex B) mostly require an extended and more specific data input, in particular with respect to the
actual concentrations of potential contaminants in soils and water. Relevant inorganic and organic contaminants
are listed in Tables 6, 7 and 8.
5.6.2 Physical parameters
A number of soil physical parameters are relevant in connection with the assessment of groundwater and
contaminant transport in the unsaturated zone (Table 4). The actual choice of parameters measured should
be based on a preliminary knowledge of site characteristics and the contaminant situation (Step 1).
International Standards listed in Table 4 shall be applied.
In order to estimate hydraulic data for the saturated zone (e.g. hydraulic conductivity, transmissivity, leakage,
etc.) pumping tests can be carried out. With this type of test, groundwater flow in the saturated zone can be
described. Water migration in the unsaturated zone can be estimated on the basis of measurements of grain
size distribution (e.g. by pedo-transfer functions/rules). However, i
...
NORME ISO
INTERNATIONALE 15175
Première édition
2004-05-15
Qualité du sol — Caractérisation des sols
en relation avec la nappe phréatique
Soil quality — Characterization of soil related to groundwater protection
Numéro de référence
©
ISO 2004
PDF – Exonération de responsabilité
Le présent fichier PDF peut contenir des polices de caractères intégrées. Conformément aux conditions de licence d'Adobe, ce fichier
peut être imprimé ou visualisé, mais ne doit pas être modifié à moins que l'ordinateur employé à cet effet ne bénéficie d'une licence
autorisant l'utilisation de ces polices et que celles-ci y soient installées. Lors du téléchargement de ce fichier, les parties concernées
acceptent de fait la responsabilité de ne pas enfreindre les conditions de licence d'Adobe. Le Secrétariat central de l'ISO décline toute
responsabilité en la matière.
Adobe est une marque déposée d'Adobe Systems Incorporated.
Les détails relatifs aux produits logiciels utilisés pour la création du présent fichier PDF sont disponibles dans la rubrique General Info
du fichier; les paramètres de création PDF ont été optimisés pour l'impression. Toutes les mesures ont été prises pour garantir
l'exploitation de ce fichier par les comités membres de l'ISO. Dans le cas peu probable où surviendrait un problème d'utilisation,
veuillez en informer le Secrétariat central à l'adresse donnée ci-dessous.
© ISO 2004
Droits de reproduction réservés. Sauf prescription différente, aucune partie de cette publication ne peut être reproduite ni utilisée sous
quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit
de l'ISO à l'adresse ci-après ou du comité membre de l'ISO dans le pays du demandeur.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax. + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Publié en Suisse
ii © ISO 2004 – Tous droits réservés
Sommaire Page
Avant-propos. iv
1 Domaine d'application. 1
2 Références normatives. 1
3 Termes et définitions . 5
4 Généralités. 7
5 Évaluation du site . 9
5.1 Généralités. 9
5.2 Principaux processus dans le sol . 10
5.3 Procédures d'évaluation de l'impact. 12
5.4 Description du site et du sol. 14
5.5 Échantillonnage . 15
5.6 Caractérisation des sols et de l'eau. 16
6 Manipulation, évaluation et qualité des données . 23
Annexe A (informative) Méthodes qualitatives d'évaluation des risques potentiels de lixiviation. 26
Annexe B (informative) Méthodes quantitatives d'évaluation des risques réels de lixiviation. 46
Annexe C (informative) Types de sites pollués et contaminants associés. 51
Annexe D (informative) Liste des polluants prioritaires du point de vue de la pollution des eaux
souterraines. 52
Annexe E (informative) Présentation des essais de lixiviation et d'extraction du sol . 56
Bibliographie . 61
Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux de
normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général confiée
aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude a le droit de faire partie du
comité technique créé à cet effet. Les organisations internationales, gouvernementales et non
gouvernementales, en liaison avec l'ISO participent également aux travaux. L'ISO collabore étroitement avec
la Commission électrotechnique internationale (CEI) en ce qui concerne la normalisation électrotechnique.
Les Normes internationales sont rédigées conformément aux règles données dans les Directives ISO/CEI,
Partie 2.
La tâche principale des comités techniques est d'élaborer les Normes internationales. Les projets de Normes
internationales adoptés par les comités techniques sont soumis aux comités membres pour vote. Leur
publication comme Normes internationales requiert l'approbation de 75 % au moins des comités membres
votants.
L'attention est appelée sur le fait que certains des éléments du présent document peuvent faire l'objet de
droits de propriété intellectuelle ou de droits analogues. L'ISO ne saurait être tenue pour responsable de ne
pas avoir identifié de tels droits de propriété et averti de leur existence.
L'ISO 15175 a été élaborée par le comité technique ISO/TC 190, Qualité du sol, sous-comité SC 7, Évaluation
des sols et des sites.
iv © ISO 2004 – Tous droits réservés
NORME INTERNATIONALE ISO 15175:2004(F)
Qualité du sol — Caractérisation des sols en relation avec la
nappe phréatique
1 Domaine d'application
La présente Norme internationale fournit des lignes directrices sur les principes régissant l'évaluation des
sites, des sols et des matériaux provenant du sol, et sur les principales méthodes correspondantes, en
relation avec leur rôle comme source de pollution des eaux souterraines et avec leur fonction de transfert, de
dégradation et de transformation des contaminants.
Elle identifie et énumère des stratégies de surveillance, des méthodes d'échantillonnage, des méthodes de
traitement des sols et des méthodes analytiques applicables.
Elle est applicable à l'évaluation de l'impact des contaminants sur les eaux souterraines, en relation avec
la qualité de l'eau potable,
la qualité de l'eau de l'irrigation,
l'usage industriel, et
le débit de base naturel d'alimentation des cours d'eau.
2 Références normatives
Les documents de référence suivants sont indispensables pour l'application du présent document. Pour les
références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du
document de référence s'applique (y compris les éventuels amendements).
ISO 6341, Qualité de l'eau — Détermination de l'inhibition de la mobilité de Daphnia magna Straus (Cladocera,
Crustacea) — Essai de toxicité aiguë
ISO 6468, Qualité de l'eau — Dosage de certains insecticides organochlorés, des polychlorobiphényles et des
chlorobenzènes — Méthode par chromatographie en phase gazeuse après extraction liquide-liquide
ISO 6878, Qualité de l'eau — Dosage spectrométrique du phosphore en utilisant le molybdate d'ammonium
ISO 7150-1, Qualité de l'eau — Dosage de l'ammonium — Partie 1: Méthode spectrométrique manuelle
ISO 7150-2, Qualité de l'eau — Dosage de l'ammonium — Partie 2: Méthode spectrométrique automatique
ISO 7888, Qualité de l'eau — Détermination de la conductivité électrique
ISO 7890-1, Qualité de l'eau — Dosage des nitrates — Partie 1: Méthode spectrométrique au diméthyl-2,6
phénol
ISO 7890-2, Qualité de l'eau — Dosage des nitrates — Partie 2: Méthode spectrométrique au fluoro-4 phénol
après distillation
ISO 7890-3, Qualité de l'eau — Dosages des nitrates — Partie 3: Méthode spectrométrique avec l'acide
sulfosalicylique
ISO 7981-2, Qualité de l'eau — Détermination des hydrocarbures aromatiques polycycliques (HAP) —
Partie 2: Dosage de six HAP par chromatographie de haute performance en phase liquide avec détection
fluorimétrique à la suite d'une extraction liquide-liquide
ISO 8165-1, Qualité de l'eau — Dosage des phénols monovalents sélectionnés — Partie 1: Méthode par
chromatographie en phase gazeuse après enrichissement par extraction
ISO 8245, Qualité de l'eau — Lignes directrices pour le dosage du carbone organique total (COT) et du
carbone organique dissous (COD)
ISO 9001:2000, Systèmes de management de la qualité — Exigences
ISO 9562, Qualité de l'eau — Dosage des halogènes adsorbables organiquement liés (AOX)
ISO 9964-1, Qualité de l'eau — Dosage du sodium et du potassium — Partie 1: Dosage du sodium par
spectrométrie d'absorption atomique
ISO 9964-2, Qualité de l'eau — Dosage du sodium et du potassium — Partie 2: Dosage du potassium par
spectrométrie d'absorption atomique
ISO 9964-3, Qualité de l'eau — Dosage du sodium et du potassium — Partie 3: Dosage du sodium et du
potassium par spectrométrie d'émission de flamme
ISO 10048, Qualité de l'eau — Dosage de l'azote — Minéralisation catalytique après réduction avec l'alliage
de Devarda
ISO 10301, Qualité de l'eau — Dosage des hydrocarbures halogénés hautement volatils — Méthodes par
chromatographie en phase gazeuse
ISO 10382, Qualité du sol — Dosage des pesticides organochlorés et des biphényles polychlorés — Méthode
par chromatographie en phase gazeuse avec détection par capture d'électrons
ISO 10390, Qualité du sol — Détermination du pH
ISO 10523, Qualité de l'eau — Détermination du pH
ISO 10573, Qualité du sol — Détermination de la teneur en eau de la zone non saturée — Méthode à la
sonde à neutrons de profondeur
ISO 10693, Qualité du sol — Détermination de la teneur en carbonate — Méthode volumétrique
ISO 10694, Qualité du sol — Dosage du carbone organique et du carbone total après combustion sèche
(analyse élémentaire)
ISO 11047, Qualité du sol — Dosage du cadmium, du chrome, du cobalt, du cuivre, du plomb, du manganèse,
du nickel et du zinc — Méthodes par spectrométrie d'absorption atomique dans la flamme et électrothermique
ISO 11048, Qualité du sol — Dosage du sulfate soluble dans l'eau et dans l'acide
ISO 11074-1, Qualité du sol — Vocabulaire — Partie 1: Termes et définitions relatifs à la protection et à la
pollution du sol
ISO 11074-4, Qualité du sol — Vocabulaire — Partie 4: Termes et définitions relatifs à la réhabilitation des
sols et sites
ISO 11259, Qualité du sol — Description simplifiée du sol
2 © ISO 2004 – Tous droits réservés
ISO 11260, Qualité du sol — Détermination de la capacité d'échange cationique effective et du taux de
saturation en bases échangeables à l'aide d'une solution de chlorure de baryum
ISO 11261, Qualité du sol — Dosage de l'azote total — Méthode de Kjeldahl modifiée
ISO 11263, Qualité du sol — Dosage du phosphore — Dosage spectrométrique du phosphore soluble dans
une solution d'hydrogénocarbonate de sodium
ISO 11264, Qualité du sol — Dosage des herbicides — Méthode par CLHP avec détection par UV
ISO 11265, Qualité du sol — Détermination de la conductivité électrique spécifique
ISO 11266, Qualité du sol — Lignes directrices relatives aux essais en laboratoire pour la biodégradation de
produits chimiques organiques dans le sol sous conditions aérobies
ISO 11271, Qualité du sol — Détermination du potentiel d'oxydoréduction — Méthode de terrain
ISO 11272, Qualité du sol — Détermination de la masse volumique apparente sèche
ISO 11274, Qualité du sol — Détermination de la caractéristique de la rétention en eau — Méthodes de
laboratoire
ISO 11275, Qualité du sol — Détermination de la conductivité hydraulique en milieu non saturé et de la
caractéristique de rétention en eau — Méthode par évaporation de Wind
ISO 11277, Qualité du sol — Détermination de la répartition granulométrique de la matière minérale des
sols — Méthode par tamisage et sédimentation
ISO 11348-1, Qualité de l'eau — Détermination de l'effet inhibiteur d'échantillons d'eau sur la luminescence de
Vibrio fischeri (Essai de bactéries luminescentes) — Partie 1: Méthode utilisant des bactéries fraîchement
préparées
ISO 11348-2, Qualité de l'eau — Détermination de l'effet inhibiteur d'échantillons d'eau sur la luminescence de
Vibrio fischeri (Essai de bactéries luminescentes) — Partie 2: Méthode utilisant des bactéries déshydratées
ISO 11348-3, Qualité de l'eau — Détermination de l'effet inhibiteur d'échantillons d'eau sur la luminescence de
Vibrio fischeri (Essai de bactéries luminescentes) — Partie 3: Méthode utilisant des bactéries lyophylisées
ISO 11369, Qualité de l'eau — Dosage de certains agents de traitement des plantes — Méthode par
chromatographie en phase liquide à haute performance (CLHP) avec détection UV après extraction solide-
liquide
ISO/TS 11370, Qualité de l'eau — Dosage de certains agents organiques de traitement des plantes —
Méthode automatisée par développement multiple (ADM)
ISO 11464, Qualité du sol — Prétraitement des échantillons pour analyses physico-chimiques
ISO 11423-1, Qualité de l'eau — Détermination du benzène et de certains dérivés benzéniques — Partie 1:
Méthode par chromatographie en phase gazeuse de l'espace de tête
ISO 11423-2, Qualité de l'eau — Détermination du benzène et de certains dérivés benzéniques — Partie 2:
Méthode par extraction et chromatographie en phase gazeuse
ISO 11466, Qualité du sol — Extraction des éléments en traces solubles dans l'eau régale
ISO 11905-1, Qualité de l'eau — Dosage de l'azote — Partie 1: Méthode par minéralisation oxydante au
peroxodisulfate
ISO/TR 11905-2, Qualité de l'eau — Dosage de l'azote — Partie 2: Dosage de l'azote lié, après combustion et
oxydation au dioxyde d'azote, par détection chimiluminescente
ISO 13536, Qualité du sol — Détermination de la capacité d'échange cationique potentielle et des teneurs en
cations échangeables en utilisant une solution tampon de chlorure de baryum à pH = 8,1
ISO 13877, Qualité du sol — Dosage des hydrocarbures aromatiques polycycliques — Méthode par
chromatographie en phase liquide à haute performance
ISO 13878, Qualité du sol — Détermination de la teneur totale en azote par combustion sèche («analyse
élémentaire»)
ISO 14154, Qualité du sol — Dosage de certains chlorophénols — Méthode par chromatographie en phase
gazeuse
ISO 14235, Qualité du sol — Dosage du carbone organique par oxydation sulfochromique
ISO 14238, Qualité du sol — Méthodes biologiques — Détermination de la minéralisation de l'azote et de la
nitrification dans les sols, et de l'influence des produits chimiques sur ces processus
ISO 14239, Qualité du sol — Méthodes de mesure de la minéralisation de produits chimiques organiques
dans le sol sous conditions aérobies, au moyen de systèmes d'incubation de laboratoire
ISO 14254, Qualité du sol — Détermination de l'acidité échangeable dans un extrait au chlorure de baryum
ISO 14255, Qualité du sol — Détermination de l'azote nitrique, de l'azote ammoniacal et de l'azote soluble
total dans les sols séchés à l'air en utilisant le chlorure de calcium comme solution d'extraction
ISO 14256-2, Qualité du sol — Dosage des nitrates, des nitrites et de l'ammonium dans des sols bruts par
extraction au moyen d'une solution de chlorure de potassium — Partie 2: Méthode automatisée
ISO 14507, Qualité du sol — Prétraitement des échantillons pour la détermination des contaminants
organiques
ISO 14869-1, Qualité du sol — Mise en solution pour la détermination des teneurs élémentaires totales —
Partie 1: Mise en solution par l'acide fluorhydrique et l'acide perchlorique
ISO 14869-2, Qualité du sol — Mise en solution pour la détermination des teneurs élémentaires totales —
Partie 2: Mise en solution par fusion alcaline
ISO 14870, Qualité du sol — Extraction des éléments en traces par une solution tamponnée de DTPA
+ + + + 2+ 2+
ISO 14911, Qualité de l'eau — Dosage, par chromatographie ionique, de Li , Na , NH , K , Mn , Ca ,
2+ 2+ 2+
Mg , Sr et Ba dissous — Méthode applicable pour l'eau et les eaux résiduaires
ISO 15009, Qualité du sol — Détermination par chromatographie en phase gazeuse des teneurs en
hydrocarbures aromatiques volatils, en naphtalène et en hydrocarbures halogénés volatils — Méthode par
purge et piégeage avec désorption thermique
ISO 15089, Qualité de l'eau — Lignes directrices relatives aux dosages immunologiques sélectifs pour la
détermination des agents de traitement des plantes et des pesticides
ISO 15178, Qualité du sol — Dosage du soufre total par combustion sèche
ISO 15473:2002, Qualité du sol — Lignes directrices relatives aux essais en laboratoire pour la biodégradation
de produits chimiques organiques dans le sol sous conditions anaérobies
ISO 15799, Qualité du sol — Lignes directrices relatives à la caractérisation écotoxicologique des sols et des
matériaux du sol
ISO 15913, Qualité de l'eau — Dosage de certains herbicides phénoxyalcanoïques, y compris bentazones et
hydroxybenzonitriles, par chromatographie en phase gazeuse et spectrométrie de masse après extraction en
phase solide et dérivatisation
4 © ISO 2004 – Tous droits réservés
ISO 16703, Qualité du sol — Dosage des hydrocarbures dans l'intervalle C à C par chromatographie en
10 40
phase gazeuse
ISO/CEI 17025, Prescriptions générales concernant la compétence des laboratoires d'étalonnages et d'essais
ISO 20279, Qualité du sol — Extraction du thallium et dosage par spectrométrie d'absorption atomique
électrothermale
OIML R 112:1994, Chromatographes en phase liquide de haute performance pour la mesure des pesticides et
autres substances toxiques
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions donnés dans l'ISO 11074-1 et l'ISO 11074-4
ainsi que les suivants s'appliquent.
3.1
sol
couche supérieure de la croûte terrestre composée de parties minérales, de matières organiques, d'eau, d'air
et d'organismes vivants
[ISO 11074-1]
3.2
contaminant
substance ou agent présent dans le sol à la suite d'une activité humaine
cf. polluant (3.8)
NOTE Cette définition ne présuppose pas que la présence du contaminant entraîne des effets négatifs.
3.3
apport dû à une source diffuse
apport dû à une source non ponctuelle
apport d'une substance émise par des sources mobiles, des sources de grande étendue ou par un grand
nombre de sources
NOTE 1 Les sources peuvent être des automobiles, des substances introduites par des pratiques agricoles, des
émissions venant d'une ville ou d'une région, un dépôt de sédiments par débordement d'une rivière.
NOTE 2 Les apports dus à une source diffuse conduisent habituellement à des sites à pollution relativement uniforme.
Pour certains sites, les conditions peuvent être des facteurs d'augmentation de l'apport local, à proximité de la source ou à
l'endroit où les dépôts d'origine atmosphérique/pluviaux sont intensifiés.
3.4
eaux souterraines
eaux contenues dans une formation souterraine et qui peuvent généralement être récupérées dans cette
formation
3.5
danger
propriété d'une substance, d'un matériau ou d'une action qui peut avoir un effet négatif sur les fonctions du sol
3.6
eau d'infiltration
eau du sol descendant dans la zone d'infiltration sous l'influence de la gravité, dans la mesure où il ne s'agit
pas d'eaux souterraines
3.7
apport dû à une source ponctuelle
apport d'une substance par une source ponctuelle fixe de taille définie
NOTE 1 Les sources peuvent être un conduit d'émissions, des déversements accidentels, des dépôts de déchets, des
déversements sur sites industriels, des fuites importantes provenant d'égouts et d'autres canalisations.
NOTE 2 L'apport dû à une source ponctuelle peut être la cause aussi bien de sites localement pollués que de sites
pollués de façon relativement uniforme.
[ISO 11074-1]
3.8
polluant
substances ou agents présents dans le sol (ou dans les eaux souterraines) qui, du fait de leurs propriétés, de
leur quantité ou de leur concentration, provoquent des effets négatifs sur les fonctions ou l'usage du sol
NOTE Aussi décrit comme substances qui, à cause de leurs propriétés, de leur quantité ou de leur concentration ont
un impact sur les fonctions ou sur l'usage du sol.
3.9
pollution résiduelle
quantité ou concentration de polluants restant dans un milieu déterminé après remédiation
[ISO 11074-4]
3.10
risque
expression de la probabilité qu'il se produise un effet négatif sur les fonctions du sol dans des conditions
définies, et de l'importance des conséquences de cet effet
3.11
zone saturée
zone souterraine, où l'espace de la lithosphère est rempli d'eau de manière ininterrompue à l'instant considéré
NOTE La zone saturée comprend la zone des eaux souterraines, incluant la zone de l'eau capillaire.
3.12
fonctions du sol
fonctions définissant l'importance du sol pour l'homme et l'environnement
NOTE Les fonctions importantes du sol comprennent les aspects suivants:
le contrôle des cycles des substances et de l'énergie en tant que compartiment des écosystèmes;
le support vital pour les plantes, les animaux et l'homme;
le support pour la stabilité des immeubles et des routes;
la base de la production agricole;
la constitution d'un «tampon» régulant la pénétration dans les eaux souterraines de l'eau, des polluants et autres
agents;
la constitution d'une réserve génétique;
la conservation des traces archéologiques;
la conservation de traces paléoécologiques.
[ISO 11074-4]
6 © ISO 2004 – Tous droits réservés
3.13
matériau du sol
comprend le sol excavé, les matériaux de dragage et le sol traité pour que soit éliminée, détruite ou réduite la
disponibilité de contaminants dans l'environnement
3.14
eau du sol
comprend toute l'eau des zones saturée et non saturée
3.15
sous-sol
couche de roches partiellement décomposées sous le sol superficiel et au-dessus de la roche mère
sous-jacente
3.16
horizon(s) superficiel(s)
partie supérieure d'un sol naturel, généralement de couleur brune et contenant plus de substances
organiques et de nutriments que le sous-sol
[ISO 11074-4]
3.17
zone non saturée
zone du sol et du sous-sol où l'espace de la lithosphère n'est pas totalement rempli d'eau à l'instant considéré
NOTE La zone non saturée comprend la zone de l'eau d'infiltration, la zone de l'eau capillaire étant exclue.
4 Généralités
Les sols ont une importance centrale dans le cycle de l'eau car leurs fonctions de stockage et de filtration ont
une influence durable sur le bilan hydrologique et sur la qualité des eaux souterraines. Dans ce contexte, une
attention particulière doit être portée aux fonctions suivantes:
fonctions de filtration mécanique (rétention des boues en suspension et des particules de polluant);
fonctions de filtration chimique (adsorption et mobilisation des substances);
fonctions de transformation (dégradation ou transformation des substances).
Le sol doit être considéré comme un milieu poreux constitué de trois phases: la phase solide, la phase liquide
et la phase gazeuse. Le rapport entre ces trois phases et leurs compositions respectives varie dans de
grandes proportions en fonction du temps et de l'espace.
L'évaluation de la pollution affectant la qualité des eaux souterraines requiert une très bonne compréhension
des processus fondamentaux et des réactions des composés potentiellement toxiques dans les sols. Les
contaminants se répartissent entre les trois phases des sols en fonction des propriétés des composés
chimiques et du sol. Ainsi, il convient que les stratégies d'évaluation des risques pour les eaux souterraines
dus à la pollution du sol varient en fonction des contaminants considérés et prennent en compte les propriétés
du sol qui régissent principalement les fonctions de filtration, de rétention, d'émissions et de transformation du
sol.
Outre l'étude des propriétés des substances chimiques et celles du sol régissant le comportement des
contaminants dans les sols, on doit également évaluer les différents modes de pénétration des contaminants
dans les sols lors de l'établissement de stratégies adaptées d'évaluation des risques, du point de vue de la
pollution des eaux souterraines. La pollution des sols et des eaux souterraines peut provenir de différentes
sources, à des échelles spatiales variées, comme le montre la Figure 1. À l'échelle régionale ou à plus grande
échelle, la pollution des sols est provoquée, par exemple, par des dépôts d'origine atmosphérique secs ou
humides, et elle présente un caractère principalement diffus avec un niveau de pollution modéré. À l'échelle
locale, différents types de sources ponctuelles peuvent provoquer des pollutions du sol et des eaux
souterraines de toutes natures et de tous degrés. La plupart des sources ponctuelles de pollution peuvent
également être considérées comme des sources diffuses hors site de pollution des eaux souterraines. Il est
évident que des scénarios de pollution différents en fonction des sources de pollution et de l'échelle de cette
pollution exigent des stratégies d'investigation différentes concernant l'impact sur les eaux souterraines. Il
n'existe actuellement aucun principe uniforme présidant à l'investigation et à l'évaluation des sols et des sites
pollués en relation avec la protection des ressources en eau.
Figure 1 — Définition des zones des eaux souterraines et exemples de sources de pollution
8 © ISO 2004 – Tous droits réservés
Les stratégies d'investigation peuvent être qualitatives ou quantitatives. Les méthodes qualitatives font le plus
souvent référence à l'évaluation, par exemple, des risques potentiels de lixiviation de produits chimiques à
travers le sol vers les eaux souterraines. Contrairement aux méthodes quantitatives, le niveau réel de
pollution du sol n'est pas pris en compte. Des approches de ce type peuvent également être utilisées, par
exemple pour la classification de zones plus étendues en fonction de leur capacité à protéger de la pollution
les ressources des eaux souterraines, ou en guise d'étape préliminaire dans l'évaluation d'un site réel pollué.
Pour évaluer l'impact sur site d'une pollution particulière du sol sur les eaux souterraines, on doit utiliser des
méthodes quantitatives basées sur les procédures spécifiques d'investigation sur site, incluant des mesures
en laboratoire et/ou sur le terrain. Les mesures en laboratoire peuvent comprendre des analyses physiques,
chimiques et biologiques et des essais de lixiviation. Les évaluations de cette nature doivent également
prendre en compte le fond (hydro)chimique naturel d'une substance et toute autre condition naturelle
influençant l'impact sur les eaux souterraines. Les évaluations de l'impact sur les eaux souterraines
intégreront souvent un aspect temporel, car il se peut que l'impact réel ne soit pas mesurable au moment de
l'investigation, mais se produise à un certain moment dans le futur.
Les évaluations dépendent également de la raison des investigations, par exemple:
préservation des fonctions du sol visant à éviter la pollution des eaux souterraines;
surveillance des sols et des eaux souterraines;
évaluation des risques;
contrôle des mesures de dépollution.
La partie principale de la présente Norme internationale (voir l'Article 5) couvre une liste des méthodes
applicables. Un certain nombre d'exemples d'évaluation utilisant les principes de la présente Norme
internationale sont donnés dans les Annexes A et B.
Comme l'impact sur les eaux souterraines peut entraîner un impact sur les eaux de surface, cet aspect peut
s'avérer dans certains cas pertinent dans une évaluation globale de l'impact. Ce problème n'est pas traité de
manière explicite dans la présente Norme internationale.
5 Évaluation du site
5.1 Généralités
Une condition préalable à l'évaluation du transfert entre le sol et les eaux souterraines est la détermination
des caractéristiques physiques, chimiques et biologiques pertinentes des sols et des caractéristiques
hydrologiques du site. Il sera donc habituellement nécessaire de recueillir au préalable des données pour
évaluer la source de pollution en fonction du type et du degré de pollution et de l'étendue de la/des source(s).
Il est également nécessaire de décrire le compartiment du sol qui est influencé par la source ainsi que les
facteurs de ce compartiment ayant une incidence sur l'impact réel sur les eaux souterraines. De nombreux
processus influencent l'impact sur les eaux souterraines de ce compartiment du sol, parmi lesquels un certain
nombre de processus physiques, chimiques et biologiques. Pour évaluer l'importance de ces processus lors
d'une évaluation particulière, il est nécessaire de décrire la structure du compartiment du sol, c'est-à-dire sa
géométrie, ses conditions hydrauliques et les processus chimiques et biologiques naturels. Les apports au
compartiment du sol comprennent les infiltrations d'eau et de contaminants particuliers. Le résultat est un flux
de contaminants vers le compartiment considéré des eaux souterraines. La Figure 2 présente une description
de principe de ces éléments, et une description complémentaire des paramètres pertinents est donnée en 5.2.
Figure 2 — Schéma illustrant le compartiment du sol couvert par la procédure d'évaluation
et les processus influençant la pollution sur les eaux souterraines
Les types d'informations nécessaires à la description du compartiment du sol pertinent comprennent les
horizons lithologiques de la roche mère, la pédologie (par exemple: structure du sol), l'hydrogéologie (par
exemple: perméabilité), les conditions physico-chimiques (par exemple: pH) et les conditions biologiques (par
exemple: présence de substrat). Il convient donc que les dimensions du compartiment du sol à étudier (et le
degré de détail de l'investigation) dépendent du type d'évaluation choisi. Par exemple, le volume est important
si l'évaluation s'intéresse à l'utilisation générale des pesticides et des engrais, dans la zone couvrant un
réservoir d'eaux souterraines utilisé comme source d'eau potable. La surface et le volume du compartiment
de sol étudié sont considérablement plus faibles si l'évaluation couvre un «point chaud» sur un site pollué
avec un puits pompant dans les eaux souterraines d'un site voisin.
5.2 Principaux processus dans le sol
Le transport des contaminants dans la zone non saturée dépend non seulement du transport de l'eau
d'infiltration, mais également d'un certain nombre de processus biologiques et chimiques. La nature des
processus considérés comme importants dans un contexte donné dépendra du type de contaminants et de
l'état réel du sol. Une vue d'ensemble des paramètres des sols et des contaminants en relation avec le
transfert des contaminants est présentée dans le Tableau 1.
10 © ISO 2004 – Tous droits réservés
Tableau 1 — Paramètres relatifs au sol et aux contaminants et correspondant
à différents processus dans le sol
Processus Paramètres relatifs au sol Paramètres relatifs Interaction
au contaminant sol/contaminant
Transport massique des Conductivité hydraulique, degré de Solubilité, volatilité, densité, Perméabilité relative,
contaminants saturation, porosité, distribution de la viscosité saturation résiduelle,
taille des pores, fonctions de mouillabilité, tension
rétention de l'eau dans le sol de surface, pression
capillaire
Transport du contaminant
dans l'eau:
Advection Gradient de pression, conductivité
(convection) hydraulique, porosité
Dispersion/diffusion Dispersivité, vitesse de l'eau Coefficient de diffusion Viscosité
interstitielle
Transfert de densité Vitesse de l'eau interstitielle, Densité du liquide
stratification du sol
Dispersion, variations
Écoulement Distribution de la taille des pores, Viscosité, densité, coefficient
de densité
préférentiel taille des fissures, taille des de diffusion
macropores, connectivité
Volatilisation Teneur en eau, température, teneur Pression de vapeur, constante
de la phase chimique de Henry
Transport en phase Teneur en eau, tortuosité, Coefficient de diffusion
gazeuse différences de pressions
Dissolution, Conductivité hydraulique, tortuosité, Solubilité, composition de la
composés organiques teneur en eau phase chimique
Dissolution, Conductivité hydraulique, tortuosité, Produit de solubilité
composés inorganiques teneur en eau
Précipitation pH, redox, autres éléments Produit de solubilité, constante
de complexation
Complexation pH, concentration en ligands, COD Constante de complexation
Échange ionique Capacité d'échange cationique, Valence, degré d'hydratation
force ionique, autres cations, pH
Adsorption, composés pH, teneur en matière organique, Coefficient de partition Vieillissement
organiques teneur en argile et minéralogie, octanol-eau, constante
surface spécifique d'adsorption
Adsorption, composés pH, teneur en matière organique, Constante d'adsorption Vieillissement
inorganiques teneur en argile et minéralogie,
surface spécifique, oxyde peu
cristallisé (ordre à courte distance)
et gels d'oxydes hydratés
Dégradation
abiotique Redox, pH, température
Présence de substrat primaire,
dégradabilité, toxicité pour les
biotique Microorganismes, redox, substrat,
microorganismes
pH, température
5.3 Procédures d'évaluation de l'impact
Pour effectuer la description de la source et du sol, il est nécessaire de définir
les stratégies d'évaluation des paramètres spécifiques au site,
les stratégies de prélèvement, et
les stratégies d'analyse et d'essai,
pour chacun des sites et/ou des milieux (sol, eaux souterraines, air contenu dans le sol) qui ont un impact sur
les eaux souterraines.
Il convient de définir ces stratégies à partir des éléments suivants:
historique du site ou de la zone;
données disponibles et/ou résultats d'études précédentes;
nature des procédés de traitement qui ont été appliqués au sol;
usage prévu du site.
Pour optimiser les besoins réels d'information en rapport avec les coûts et le temps exigés par les
investigations sur le terrain et en laboratoire, il est recommandé d'effectuer l'évaluation par étapes (voir
Tableau 2).
La première étape comporte une étude préliminaire basée sur des recherches documentaires et sur des
investigations limitées sur le terrain, dans le but de réaliser une première évaluation de l'impact. Cette étape
comprend une évaluation de la géométrie du sol, des structures du sol et des conditions hydrologiques à
partir d'une connaissance générale de la zone, complétée éventuellement par certaines données de terrain
correspondant aux conditions locales. On évalue la présence des contaminants étudiés et leurs
concentrations vraisemblables à partir de l'historique du site et de quelques analyses d'échantillons de sol et
d'eau et/ou de mesures des gaz contenus dans le sol. Les processus de transport et de décomposition
pertinents sont définis de manière approximative à partir de données relatives à l'état du sol et aux
contaminants, trouvées dans les publications. Au cours de l'étape 1, des méthodes qualitatives comme celles
présentées à titre d'exemple en Annexe A peuvent être utiles, tout comme des méthodes quantitatives telles
que celles décrites comme méthodes de niveau 1 en B.7.
12 © ISO 2004 – Tous droits réservés
Tableau 2 — Procédure progressive pour l'évaluation de l'impact
Investigation préliminaire, y compris recherches documentaires, historique du site, contaminants potentiels,
Étape 1
données régionales sur la géologie et l'hydrogéologie disponibles
Description de la géologie et de la pédologie locales, moyennement détaillées, et pour vérifier l'existence
d'une pollution
Analyses chimiques pour identifier les éléments et les concentrations
Évaluation préliminaire de l'impact
Définition de l'importance du problème, actions ultérieures (par exemple surveillance du site, nettoyage
immédiat, investigations complémentaires ou aucune action requise)
Étape 2 Investigations complémentaires sur site et en laboratoire pour une évaluation de l'étendue de la source, des
conditions hydrauliques spécifiques, de la mobilité, des conditions de transformation et de dégradation et
des conditions de réservoir applicables
Deuxième évaluation de l'impact
Décision d'actions complémentaires
Étape 3 Le cas échéant, investigations et essais, en laboratoire et sur site, de détails particuliers (par exemple
lixiviation et/ou dégradation), modélisation informatique
Troisième évaluation de l'impact
Si l'étape 1 indique le besoin d'une évaluation plus détaillée, l'étape suivante est menée. Les investigations
complémentaires comprenant des prélèvements, des analyses chimiques et des essais sur site
complémentaires sont planifiées sur la base de l'étape 1. L'étape 2 comporte généralement des prélèvements
destinés à estimer l'étendue de la (des) source(s), la distribution des contaminants entre les différentes
phases de la matrice du sol: les gaz du sol, fixés aux particules du sol et dissous dans l'eau contenue dans le
sol. Le transfert des contaminants dans différents types de sols et différents horizons lithologiques sous-
jacents (par exemple: sable par rapport à des roches fracturées) peut être très différent en fonction de leurs
caractéristiques statiques et dynamiques (par exemple: sols se fissurant). Il est très important, lors de
l'étape 2, de déterminer le mécanisme de transfert dominant. Par exemple, si le transfert est lié à des
fractures dans l'argile et la roche, alors le processus d'adsorption peut être d'une importance limitée.
Inversement, dans un sable homogène avec une forte teneur en matière organique, l'adsorption peut être le
processus le plus important pour l'évaluation de l'impact. Les informations sur le réservoir des eaux
souterraines concerné (par exemple: étendue ou importance pour la situation de l'approvisionnement en eau)
sont également pertinentes au cours de cette phase, car elles permettent d'évaluer la gravité du problème
potentiel. Il convient également de connaître le caractère saisonnier des caractéristiques climatiques pour
évaluer les tendances saisonnières de la pollution potentielle, ou en cours, du sol et des eaux souterraines. Il
convient également de prendre en compte les pratiques de gestion (par exemple: type d'irrigation et
quantités). Au cours de l'étape 2, des méthodes quantitatives, telles que celles présentées en B.7 en tant que
niveau 2, peuvent être utiles.
Si l'évaluation doit encore être améliorée après l'étape 2, des études supplémentaires peuvent être menées.
Le contenu de ces étapes supplémentaires peut consister en un certain nombre des éléments appartenant
déjà à l'étape 2, mais avec une amélioration de la précision des informations disponibles, par exemple grâce
à un prélèvement d'un nombre plus important d'échantillons, l'objectif étant de déterminer l'influence de
l'hétérogénéité du sol. Les essais d'adsorption, de dégradation et de lixiviation peuvent être menés en
laboratoire. Les essais de lixiviation et d'extraction peuvent servir à évaluer la distribution des contaminants
dans le sol, l'eau et les phases géochimiques, ainsi que l'impact sur l'environnement (dans ce contexte, sur
les eaux souterraines) et les actions de dépollution possibles. Une modélisation informatique spécifique au
site des processus et de l'écoulement des eaux souterraines peut également être introduite comme élément
de cette étape. Au cours de l'étape 3, des méthodes quantitatives, telles que celles présentées en B.7 en tant
que niveau 3, peuvent être utiles.
L'évaluation est souvent une procédure itérative, chacune des étapes étant une version plus élaborée de la
description du problème et conduisant à un support plus détaillé pour la prise de décisions en ce qui concerne
les actions de dépollution à entreprendre sous la forme d'un nettoyage du site, de restrictions de l'usage des
terrains, etc.
La caractérisation du sol, de l'eau et du site à étudier exigeront des mesures des propriétés physiques,
chimiques et biologiques. La Figure 3 présente les grands domaines dans lesquels des mesures ou des
descriptions peuvent être requises.
Figure 3 — Logigramme général pour l'évaluation du sol et de l'eau
5.4 Description du site et du sol
L'évaluation des impacts potentiels d'un sol pollué sur les eaux souterraines requiert habituellement des
informations générales sur le site d'investigation. Les paramètres les plus pertinents pour la description d'un
site sont énumérés dans le Tableau 3. L'ISO 11259 citée dans le Tableau 3 doit être utilisée. Il convient que
l'étendue du recueil de ces informations et le degré de détail requis soient étroitement liés à l'objectif de cette
investigation, qui dépend principalement de la nature et de la distribution envisagée pour la pollution (voir
l'ISO 10381-5). Au stade des recherches documentaires (étape 1, conformément au Tableau 2), le recueil
d'informations sur le site ne comprend pas de travaux sur site, tandis que les étapes d'investigation ultérieures
peuvent nécessiter le recueil d'informations plus détaillées sur site. Il importe de ne pas perdre de vue que la
fiabilité de l'interprétation des données et de l'évaluation des risques dépend fortement d'une connaissance
approfondie du site considéré, et il convient donc que le recueil des paramètres mentionnés dans le
Tableau 3 soit aussi exhaustif que possible.
14 © ISO 2004 – Tous droits réservés
Tableau 3 — Paramètres relatifs à la description du site et du sol
Paramètres Norme
internationale
(Géo)morphologie et topographie Topographie, (géo)morphologie, éléments du paysage, ISO 11259
position, pente, microtopographie
Usage du terrain et végétation Usage du terrain, influence humaine, végétation ISO 11259
Géologie et horizons lithologiques Nature de la roche mère, profondeur effective du sol ISO 11259
Caractéristiques de surface Affleurements rocheux, fragments grossiers en surface, ISO 11259
phénomènes d'érosion, étanchéification de la surface, fissures
en surface, autres caractéristiques
Relation sol-eau Bilan des eaux en surface, chutes de pluie, évapotranspiration, ISO 11259
renouvellement des eaux souterraines, présence et profondeur
du niveau de la nappe phréatique, drainage du terrain,
conditions d'h
...












Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...