ISO 16637:2016
(Main)Radiological protection — Monitoring and internal dosimetry for staff members exposed to medical radionuclides as unsealed sources
Radiological protection — Monitoring and internal dosimetry for staff members exposed to medical radionuclides as unsealed sources
ISO 16637:2016 specifies the minimum requirements for the design of professional programmes to monitor workers exposed to the risk of internal contamination via inhalation by the use of radionuclides as unsealed sources in nuclear medicine imaging and therapy departments. It establishes principles for the development of compatible goals and requirements for monitoring programmes and, when adequate, dose assessment. It presents procedures and assumptions for the risk analysis, for the monitoring programmes, and for the standardized interpretation of monitoring data. ISO 16637:2016 addresses the following items: a) purposes of monitoring and monitoring programmes; b) description of the different categories of monitoring programmes; c) quantitative criteria for conducting monitoring programmes; d) suitable methods for monitoring and criteria for their selection; e) information that has to be collected for the design of a monitoring programme; f) general requirements for monitoring programmes (e.g. detection limits, tolerated uncertainties); g) frequencies of measurements; h) procedures for dose assessment based on reference levels for routine and special monitoring programmes; i) assumptions for the selection of dose-critical parameter values; j) criteria for determining the significance of individual monitoring results; k) interpretation of workplace monitoring results; l) uncertainties arising from dose assessments and interpretation of bioassays data; m) reporting/documentation; n) quality assurance. ISO 16637:2016 does not address the following: - monitoring and internal dosimetry for the workers exposed to laboratory use of radionuclides such as radioimmunoassay techniques; - monitoring and internal dosimetry for the workers involved in the operation, maintenance, and servicing of PET cyclotrons; - detailed descriptions of measuring methods and techniques; - dosimetry for litigation cases; - modelling for the improvement of internal dosimetry; - the potential influence of medical treatment of the internal contamination; - the investigation of the causes or implications of an exposure; - dosimetry for ingestion exposures and for contaminated wounds.
Radioprotection — Surveillance et dosimétrie interne des travailleurs exposés lors des utilisations médicales des radioéléments en sources non scellées
L'ISO 16637:2016 décrit les exigences minimales permettant d'établir des programmes de surveillance professionnelle des travailleurs exposés à un risque de contamination interne par inhalation lors de l'utilisation, à des fins diagnostiques ou thérapeutiques, de radionucléides en sources non scellées dans les services de médecine nucléaire. Elle établit des principes pour l'élaboration d'objectifs et d'exigences compatibles avec les programmes de surveillance et, le cas échéant, l'estimation de la dose. Elle présente les procédures et les hypothèses considérées pour l'analyse du risque, pour la mise en place des programmes de surveillance et pour l'interprétation normalisée des données de surveillance. L'ISO 16637:2016 traite des points suivants: a) objectifs de la surveillance et des programmes de surveillance; b) description des différentes catégories de programmes de surveillance; c) critères quantitatifs pour la conduite des programmes de surveillance; d) méthodes valables pour la surveillance et leurs critères de sélection; e) informations à collecter pour l'élaboration d'un programme de surveillance; f) exigences générales pour les programmes de surveillance (par exemple? limites de détection, incertitudes tolérées); g) fréquence des mesurages; h) procédures d'estimation dosimétrique fondées sur des niveaux de référence pour les programmes de surveillance de routine et post-incidentelle; i) hypothèses pour le choix des paramètres influençant l'estimation dosimétrique; j) critères pour déterminer si les résultats de la surveillance individuelle sont significatifs; k) interprétation des résultats de la surveillance aux postes de travail; l) incertitudes liées aux estimations de la dose et à l'interprétation des données de mesurage in vivo et d'analyse in vitro; m) compte-rendu/documentation; n) assurance de la qualité. L'ISO 16637:2016 ne traite pas des points suivants: - surveillance et dosimétrie interne pour les travailleurs exposés lors des utilisations en laboratoire de radionucléides, par exemple lors des dosages radio-immunologiques; - surveillance et dosimétrie interne pour les travailleurs impliqués dans l'exploitation, la maintenance et l'entretien des cyclotrons TEP; - descriptions détaillées des méthodes et techniques de mesurage; - dosimétrie dans les cas litigieux; - modélisation pour l'amélioration de la dosimétrie interne; - influence potentielle d'un traitement médical de la contamination interne; - investigation des causes ou des conséquences d'une exposition; - dosimétrie pour les expositions par ingestion et par plaies contaminées.
General Information
Standards Content (Sample)
DRAFT INTERNATIONAL STANDARD
ISO/DIS 16637
ISO/TC 85/SC 2 Secretariat: AFNOR
Voting begins on: Voting terminates on:
2014-01-15 2014-04-15
Radiological protection — Monitoring and internal
dosimetry for staff exposed to medical radionuclides as
unsealed sources
Radioprotection — Surveillance et dosimétrie interne des travailleurs exposés lors des utilisations
médicales des radioéléments en sources non scellées
ICS: 13.280
THIS DOCUMENT IS A DRAFT CIRCULATED
FOR COMMENT AND APPROVAL. IT IS
THEREFORE SUBJECT TO CHANGE AND MAY
NOT BE REFERRED TO AS AN INTERNATIONAL
STANDARD UNTIL PUBLISHED AS SUCH.
IN ADDITION TO THEIR EVALUATION AS
BEING ACCEPTABLE FOR INDUSTRIAL,
TECHNOLOGICAL, COMMERCIAL AND
USER PURPOSES, DRAFT INTERNATIONAL
STANDARDS MAY ON OCCASION HAVE TO
BE CONSIDERED IN THE LIGHT OF THEIR
POTENTIAL TO BECOME STANDARDS TO
WHICH REFERENCE MAY BE MADE IN
Reference number
NATIONAL REGULATIONS.
ISO/DIS 16637:2013(E)
RECIPIENTS OF THIS DRAFT ARE INVITED
TO SUBMIT, WITH THEIR COMMENTS,
NOTIFICATION OF ANY RELEVANT PATENT
RIGHTS OF WHICH THEY ARE AWARE AND TO
©
PROVIDE SUPPORTING DOCUMENTATION. ISO 2013
ISO/DIS 16637:2013(E)
Copyright notice
This ISO document is a Draft International Standard and is copyright-protected by ISO. Except as
permitted under the applicable laws of the user’s country, neither this ISO draft nor any extract
from it may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, photocopying, recording or otherwise, without prior written permission being secured.
Requests for permission to reproduce should be addressed to either ISO at the address below or ISO’s
member body in the country of the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Reproduction may be subject to royalty payments or a licensing agreement.
Violators may be prosecuted.
ii © ISO 2013 – All rights reserved
ISO/DIS 16637
Contents Page
Foreword . v
Introduction . vi
1 Scope . 1
2 Normative references . 2
3 Terms and definitions . 2
4 Symbols and abbreviated terms . 6
5 Purpose and need for monitoring programmes in nuclear medical diagnosis and therapy . 6
5.1 General . 6
5.2 Assessment of the level of likely exposures . 7
5.3 Monitoring programmes . 9
5.3.1 General . 9
5.3.2 Confirmatory monitoring programmes . 10
5.3.3 Triage monitoring programmes . 10
5.3.4 Routine monitoring programmes . 10
5.3.5 Special monitoring programmes . 10
5.3.6 Task-related monitoring programmes . 10
6 General aspects . 11
7 Reference levels . 13
8 Routine Monitoring programmes . 14
8.1 General aspects . 14
8.2 Individual monitoring . 14
8.3 Methods and time intervals . 15
8.4 Derived recording level . 16
9 Triage monitoring programmes . 16
10 Special Monitoring programmes . 17
10.1 General aspect . 17
10.2 Workplace monitoring . 17
10.3 Individual monitoring . 17
11 Confirmatory monitoring programmes . 18
11.1 General aspect . 18
11.2 Workplace monitoring . 18
11.3 Individual monitoring . 19
12 Measurement techniques and performance criteria . 19
12.1 General . 19
12.2 In vitro . 19
12.3 In vivo . 20
12.4 Quality assurance and quality control for bioassay laboratories . 20
13 Procedure for the assessment of exposures . 21
13.1 Interpretation of workplace monitoring data for dose assessment . 21
13.2 Interpretation of individual monitoring data for dose assessment . 21
13.2.1 General . 21
13.2.2 Dose assessment based on routine monitoring . 21
13.2.3 Dose assessment based on special monitoring . 21
13.3 Software tools . 26
13.4 Uncertainties . 26
ISO/DIS 16637
13.5 Quality assurance of the assessment process . 27
14 Reporting and Documentation . 27
14.1 Reporting results for in vitro measurements . 27
14.2 Reporting results for in vivo measurements . 27
14.3 Documentation of the dose assessment . 28
Annex A Example of d estimation (informative) . 29
j
Bibliography . 30
iv © ISO 2013 – All rights reserved
ISO/DIS 16637
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.
ISO 16637 was prepared by Technical Committee ISO/TC 85, Nuclear energy, nuclear technologies, and
radiological protection, Subcommittee SC 2, Radiological protection.
ISO/DIS 16637
Introduction
In the course of employment, individuals might work with radioactive materials that, under certain
circumstances, could be taken into the body. Protecting workers against risks of incorporated radionuclides
requires the monitoring of potential intakes and/or the quantification of actual intakes and exposures. The
doses resulting from internal radiation exposure arising from contamination by radioactive substances cannot
be measured directly. The selection of measures and programmes for this purpose requires decisions
concerning methods, techniques, frequencies etc. for measurements and dose assessment. The criteria
permitting the evaluation of the necessity of such a monitoring programme or for the selection of methods and
frequencies of monitoring usually depend upon the legislation, the purpose of the radiation protection
programme, the probabilities of potential radionuclide intakes, and the characteristics of the materials handled.
For these reasons, three ISO standards for the monitoring programmes (20553:2006), for the laboratory
requirements (28218:2010), and for the dose assessment (27048:2011) have been developed and can be
applied in a straightforward manner to many workplaces where internal contamination may occur. However,
their application for the staff involved in the diagnostic or therapeutic use of radionuclides in medicine requires
account to be taken of special aspects resulting from the short effective half-times of the nuclides in use and
from the distances between department of nuclear medicine and whole body and thyroid counting facilities or
laboratories undertaking spectrometry on urine samples. Consequently, guidance for the practical application
of the three standards cited above to the nuclear medicine staff was requested by a number of countries.
This International Standard offers guidance for the decision whether a monitoring is required for staff exposed
to medical radionuclides as unsealed sources and how it should be designed, for the dose assessment and
for the laboratories requirements. Recommendations of international expert bodies and international
experience with the practical application of these recommendations in radiological protection programmes
have been considered in the development of this International Standard. Its application facilitates the
exchanges of information between authorities, supervisory institutions and employers. The International
Standard is not a substitute for legal requirements.
vi © ISO 2013 – All rights reserved
DRAFT INTERNATIONAL STANDARD ISO/DIS 16637
Radiological protection — Monitoring and internal dosimetry for
staff exposed to medical radionuclides as unsealed sources
1 Scope
This International Standard specifies the minimum requirements for the design of professional programmes to
monitor workers exposed to the risk of internal exposure by the use of radionuclides as unsealed sources in
nuclear medicine departments and establishes principles for the development of compatible goals and
requirements for monitoring programmes and, when adequate, dose assessment. It presents procedures and
assumptions for the risk analysis, for the monitoring programmes and for the standardised interpretation of
monitoring data.
This International Standard addresses the following items:
a) purposes of monitoring and of monitoring programmes;
b) description of the different categories of monitoring programmes;
c) quantitative criteria for conducting monitoring programmes;
d) suitable methods for monitoring and criteria for their selection;
e) information that has to be collected for the design of a monitoring programme;
f) general requirements for monitoring programmes (e.g. detection limits, tolerated uncertainties);
g) frequencies of measurements;
h) procedures for dose assessment based on reference levels for routine and special monitoring
programmes;
i) assumptions for the selection of dose-critical parameter values;
j) criteria for determining the significance of monitoring results;
k) interpretation of workplace monitoring results;
l) uncertainties arising from dose assessments and interpretation of bioassays data;
m) reporting/documentation;
n) quality assurance.
This International Standard does not address
monitoring and internal dosimetry for the workers exposed to laboratory use of radionuclides such as
radioimmunoassay techniques;
monitoring and internal dosimetry for the workers involved in the operation, maintenance and servicing of
PET cyclotrons;
ISO/DIS 16637
detailed descriptions of measuring methods and techniques;
dosimetry for litigation cases;
modelling for the improvement of internal dosimetry;
the potential influence of medical treatment of the internal contamination;
the investigation of the causes or implications of an exposure;
dosimetry for ingestion exposures.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.
ISO/IEC Guide 99, International vocabulary of metrology — Basic and general concepts and associated terms
(VIM)
ISO 20553:2006, Radiation protection — Monitoring of workers occupationally exposed to a risk of internal
contamination with radioactive material
ISO 28218:2010, Radiation protection — Performance criteria for radiobioassay
ISO 27048:2011, Radiation protection — Dose assessment for the monitoring of workers for internal radiation
exposure
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO/IEC Guide 99, ISO 20553,
ISO 28218 and ISO 27048 and the following apply.
3.1
absorption
absorption characterised by its rate in the deposited material and which, depending on the material, is
denoted as being of type F, M or S
3.2
absorption type F
deposited materials that have high (fast) rates of absorption into body fluids from the respiratory tract
3.3
absorption type M
deposited materials that have intermediate (moderate) rates of absorption into body fluids from the respiratory
tract
3.4
absorption type S
deposited materials that have low (slow) rates of absorption into body fluids from the respiratory tract
3.5
activity
number of spontaneous nuclear transformations per unit time
Note 1 to entry: The activity is stated in becquerel (Bq), i.e. the number of transformations per second.
ISO/DIS 16637
3.6
activity median aerodynamic diameter
AMAD
value of aerodynamic diameter such that 50 % of the airborne activity in a specified aerosol is associated with
particles smaller than the AMAD, and 50 % of the activity is associated with particles larger than the AMAD
Note 1 to entry: The aerodynamic diameter of an airborne particle is the diameter that a sphere of unit density would need
to have in order to have the same terminal velocity when settling in air as the particle of interest.
3.7
contamination
activity of radionuclides present on surfaces, or within solids, liquids or gases (including the human body),
where the presence of such radioactive material is unintended or undesirable
3.8
critical value
maximum value for the result of a single measurement in a monitoring programme where it is safe to assume
that the corresponding extrapolated annual dose does not exceed a predefined dose level
3.9
decision threshold
fixed value of the measurand by which, when exceeded by the result of an actual measurement of a
measurand quantifying a physical effect, it is decided that the physical effect is present
3.10
detection limit
smallest true value of the measurand which is detectable by the measuring method
3.11
annual dose
committed effective dose resulting from all intakes occurring during a calendar year
Note 1 to entry: The term “annual dose” is not used to represent the dose received in a year from all preceding intakes.
3.12
committed effective dose
sum of the products of the committed organ or tissue equivalent doses and the appropriate tissue weighting
factors. In the context of this International Standard, the commitment period (integration time following the
intake) is taken to be 50 years
3.13
effective dose
sum of the products of the committed organ or tissue equivalent doses and the appropriate tissue weighting
factors
3.14
excretion function
fraction of an intake excreted per day after a given time has elapsed since the intake occurred
3.15
event = incident
any unintended occurrence, including operating error, equipment failure or other mishap, the consequences or
potential consequences of which are not negligible from the point of view of protection or safety
3.16
intake
activity of a radionuclide taken into the body in a given time period or as a result of a given event
ISO/DIS 16637
3.17
in vitro analyses
indirect measurements
analyses including measurements of radioactivity present in biological samples taken from an individual
Note 1 to entry: These include urine, faeces and nasal samples; in special monitoring programmes, samples of other
materials such as blood and hair may be taken.
3.18
in vivo measurement
direct measurements
measurement of radioactivity present in the human body carried out using detectors to measure the radiation
emitted
Note 1 to entry: Normally, the measurement devices are whole-body or partial-body (e.g. lung, thyroid) counters.
3.19
monitoring
measurements made for the purpose of assessment or control of exposure to radioactive material and the
interpretation of the results
Note 1 to entry: This International Standard distinguishes five different categories of monitoring programmes, namely
routine monitoring programme (3.20), task-related monitoring programme (3.21), triage monitoring programme
(3.22), special monitoring programme (3.23), and confirmatory monitoring programme (3.24).
Note 2 to entry: This International Standard distinguishes two different types of monitoring, namely individual monitoring
(3.25) and workplace monitoring (3.26), which feature in each category.
3.20
routine monitoring programme
monitoring programme associated with continuing operations and intended to demonstrate that working
conditions, including the levels of individual dose, remain satisfactory, and to meet regulatory requirements
3.21
task-related monitoring programme
monitoring programme related to a specific operation, to provide information on a specific operation of limited
duration, or following major modifications applied to the installations or operating procedures, or to confirm
that the routine monitoring programme is suitable
3.22
triage monitoring programme
monitoring programme consist of frequent measurements performed in the nuclear medicine centres that does
not enable one to calculate a dose but to verify that a given threshold of potential intake is not surpassed
3.23
special monitoring programme
monitoring programme performed to quantify significant exposures following actual or suspected abnormal
events
3.24
confirmatory monitoring programme
monitoring programme carried out to confirm assumptions about working conditions, for example that
significant intakes have not occurred
3.25
individual monitoring
monitoring by means of equipment worn by individual workers, by measurement of the quantities of
radioactive materials in or on the bodies of individual workers, or by measurement of radioactive material
excreted by individual workers
ISO/DIS 16637
3.26
workplace monitoring
monitoring using measurements made in the working environment
3.27
monitoring interval
period between two consecutive times of measurement
3.28
quality assurance
planned and systematic actions necessary to provide adequate confidence that a process, measurement or
service satisfy given requirements for quality such as those specified in a licence
3.29
quality control
part of quality assurance intended to verify that systems and components correspond to predetermined
requirements
3.30
quality management
all activities of the overall management function that determine the quality policy, objectives and
responsibilities, and that implement them by means such as quality planning, quality control, quality assurance
and quality improvement within the quality system
3.31
reference level
investigation level or recording level
3.32
recording level
level of dose, specified by the employer or the regulatory authority, at or above which values of dose received
by workers are to be entered in their individual records
3.33
investigation level
level of dose, exposure or intake at or above which investigation has to be made in order to reduce the
uncertainty associated with the dose assessment
3.34
retention function
function describing the fraction of an intake present in the body or in a tissue, organ or region of the body after
a given time has elapsed since the intake occurred
3.35
scattering factor
geometric standard deviation of the lognormal distribution of bioassay measurements
3.36
time of measurement
in vitro analysis time at which the biological sample (e.g. urine, faeces) was taken from the individual
concerned
3.37
time of measurement
in vivo analysis time at which the measurement begins
ISO/DIS 16637
4 Symbols and abbreviated terms
A Mathematical symbol for the detection limit, used in equations
DL
Aj Cumulative activity of the radionuclide j present in the workplace over the course of a year (Bq)
AMAD Activity median aerodynamic diameter
3 -1
B Breathing rate of worker (m .h )
-3
Cm Airborne concentration of radionuclide (Bq.m )
dj Decision factor for radionuclide j (mSv)
D Decision factor for all radionuclides in the workplace (mSv)
DL Detection limit
DRL Derived recording level
E(50) Committed effective dose (Sv)
-1
e(50) Effective dose coefficient following a unit intake (Sv.Bq )
-1
e (50) Effective dose coefficient following a unit intake for radionuclide j (Sv.Bq )
j
E(t) Value of the excretion function at time, t, (in days) after a unit intake
f Physical form safety factor based on the physical and chemical properties of the material being
fS
handled
f Handling safety factor based on the experience of the operation being performed and the form of the
hS
material
f Protection safety factor based on the use of permanent laboratory protective equipment
pS
I Intake (Bq)
R(t) Value of the retention function at time, t, (in days) after a unit intake
T Time interval between two measurements in a routine monitoring programme (in days)
T Time spends by the worker in the radioactive atmosphere (h)
work
5 Purpose and need for monitoring programmes in nuclear medical diagnosis and
therapy
5.1 General
The purpose of monitoring, in general, is to verify and document that the worker is protected adequately
against risks from radionuclide intakes and the protection complies with legal requirements. Therefore, it forms
part of the overall radiation protection programme, which should starts with an assessment to identify work
situations in which there is a risk of radionuclide intake by workers, and to quantify the annual likely intake of
radioactive material and the resulting committed effective dose. Decisions about the need for monitoring and
the design of the monitoring programme should be made in the light of such a risk assessment.
ISO/DIS 16637
5.2 Assessment of the level of likely exposures
It is necessary to assess the likely magnitude of exposures without taking into account personal protective
measures. If available, this assessment can be done on the basis of results of earlier monitoring programmes
(individual or workplace monitoring) and/or on measurements perform at the workplace to characterize the
radiological conditions.
In nuclear medicine, workers can be contaminated by inhalation of volatile compounds (mainly radioiodine), or
aerosols. As a result, individual monitoring for internal contamination may be necessary for those workers who
[1]
regularly work with large activities of volatile radioactive materials .
In order to assess the level of likely exposures, quantification of airborne contamination should be performed
in departments where I-131 is used in large amount i.e. for therapy or where aerosols are used for pulmonary
inhalation examination.
To assess the risk of I-131 inhalation, aerosol sampling shall be performed in areas where there is a potential
for airborne radioactivity. These areas include:
hot laboratory;
radioiodine treatment rooms and adjacent areas;
radioactive waste collection areas and waste water treatment plant.
For a specific radionuclide j, the likely committed effective dose due to airborne radioactivity for a worker can
be calculated by the following Equation:
I e 50
j j
E 50 (1)
j
0,00
where
E (50) is the commited effective dose (mSv);
j
I is the intake (Bq) and;
j
-1
e (50) is the dose coefficient (Sv Bq ) for inhalation of the radionuclide;
j
0,001 is a conversion factor from Sv to mSv.
[2] [3]
Values for e(50) shall be taken from ICRP 68 or from ICRP 53 and following addenda for
radiopharmaceuticals used as aerosols.
The likely intake can be calculated by the following Equation:
I BT C (2)
WORK m
where
3 -1
B is the worker ventilation rate (1,2 m .h );
T is the time spent by the worker in the radioactive atmosphere (h) and;
work
-3
C is the airborne concentration of the radionuclide (Bq.m ).
m
ISO/DIS 16637
If no other reliable information is available or may be obtained from a limited monitoring on a sample of
worker, the likely annual dose can be estimated according to the criteria suggested by IAEA Safety Guide RS-
[4]
G-1.2 in order to determine whether an internal monitoring program is needed for nuclear medicine
[5][6][7]
workers .
This criterion is based on the estimation of a “decision factor”, d , corresponding to the order of magnitude of
j
the annual dose likely to be received by a worker, defined for a specific radionuclide j and a specific practice
as:
A e 50 f f f
j j fS hS pS
d (3)
j
0,001
where
d is the decision factor (mSv);
j
A is the cumulative activity (Bq) of the radionuclide j present in the workplace over the course of
j
the year;
e (50) is the dose coefficient (Sv/Bq) for inhalation of radionuclide j, with the AMAD normally taken to
j
be 5 m for worker as considered by ICRP 78. This default parameter may not fit the actual
particle size distribution present at the workplace. If there is documented evidence of smaller
aerosol dimensions (by example data issued from air monitoring), another value of AMAD can
be considered;
f is the physical form safety factor based on the physical and chemical properties of the material
fS
being handled;
f is the handling safety factor based on the experience of the operation being performed and the
hS
form of the material and;
f is the protection safety factor based on the use of permanent laboratory protective equipment
pS
(e.g. glove box, fume hood);
0,001 is a conversion factor from Sv to mSv.
Values for e(50) shall be taken from ICRP 68 or from ICRP 53 and following addenda for
radiopharmaceuticals used as aerosols.
In the majority of cases, f should be 0,01, therefore the above equation may be simplified to:
fS
d 10A e 50 f f (4)
j j j hS pS
IAEA Safety Guide RS-G-1.2 presents suggested values of f and f in Tables 1 and 2 respectively.
hS pS
ISO/DIS 16637
Table 1 — Handling safety factors
Process Handling safety factors
Storage (stock solution) 0,01
Very simple wet operations 0,1
Normal chemical operations 1
Complex wet operations with risk of spills 10
Simple dry operations 10
Handling of volatile compounds 100
Dry and dusty operations 100
Table 2 — Protection safety factors
Protection measure Protection safety factor f
ps
Open bench operations 1
Fume hood 0,1
Glove box 0,01
The IAEA methodology may be excessively restrictive when applied to nuclear medicine practices. Therefore,
[8]
additional correction factors may be taken into account if they are approved by the national regulatory
authority including.
individual workload;
fraction of handled activity by each worker;
fraction of the handled activity that could be incorporated by the worker through aerolization or
volatization.
An example of d estimation including these three additional correction factors is provided in Annex A.
j
The decision factor D (mSv) for all radionuclides in the workplace is the sum of all radionuclide specific
decision factors:
(5)
D d
j
j
If D is 1 mSv or more, individual monitoring should be performed, and if D is less than 1 mSv, individual
monitoring may not be necessary.
When more than one radionuclide is present in the workplace, all radionuclides for which d 1 shall be
j
monitored.
5.3 Monitoring programmes
5.3.1 General
Individual monitoring gives information needed to assess the exposure of a single worker by measuring
individual body activities, excretion rates or activity inhaled (using personal air samplers).
Workplace monitoring, either by air monitoring or by measurements of the surface contamination, helps to
assess the internal exposure of workers through inhalation and provide information on the risk of
contamination for setting up individual monitoring programmes for workers.
ISO/DIS 16637
Factors determining the need for a monitoring programme are:
the magnitude of likely exposures;
the need to recognise incorporation events;
the need to assess the effectiveness of protective equipment (RPE).
A monitoring programme for internal contamination is required if the worker is occupationally exposed and the
assessed dose contribution from intakes of radionuclides is likely to be significant. The recommended level of
the likely annual committed effective dose to initiate monitoring is 1 mSv.
5.3.2 Confirmatory monitoring programmes
Confirmatory monitoring, which consists of workplace and/or individual monitoring performed at regular
intervals (by example every month for workplace measurements or every six months for individual
measurements) should be required to check the assumptions about exposure conditions underlying the
procedures selected, e.g. the effectiveness of protection measures. Recorded data should be periodically
review as they can demonstrate the need for triage, routine or task related monitoring. The time of
implementation should be during the process identified as the highest risk of internal exposure.
5.3.3 Triage monitoring programmes
Triage monitoring programmes rely on frequent individual screening measurements performed at the
workplace to the whole staff at risk to detect whether potential intake has occurred. If the screening threshold
is exceeded, in vivo or in vitro radiobioassays are performed in order to confirm internal contamination and to
quantify the incorporated activity for dose assessment.
5.3.4 Routine monitoring programmes
Routine monitoring programmes are performed to quantify exposures where there is the possibility either of
undetected accidental intakes or of chronic intakes. The basis for routine monitoring programmes is the
assumption that working conditions, and thus risks of intake, remain reasonably constant. The design of such
a programme of regular measurements strongly depends on the level of the annual dose the quantification of
which is ensured. This level should be well below legally relevant limits; its definition should take into account
uncertainties, for example in activity measurement and dose assessment. If this level is too high, intakes
representing considerable fractions of dose limits could be overlooked, whilst a low value can cause the
expenditure of unnecessary efforts at low exposures.
5.3.5 Special monitoring programmes
Special monitoring programmes are performed to quantify significant exposures following actual or suspected
abnormal events (by example the spill of a radiopharmeutical solution) or in case of a positive screening
during triage monitoring. Therefore, in comparison to routine monitoring programmes, the time of intake is
usually much better known and additional information can be available, which helps to reduce the uncertainty
of assessment. The purposes of dose assessment in such cases include assisting in decisions about
countermeasures (e.g. decorporation therapy), compliance with legal regulations and aiding decisions for the
improvement of conditions at the workplace. In most cases, special monitoring programmes are performed
individually. In cases where there is reason to suspect that exposure limits could be exceeded, it can be
appropriate to extend the measurements in order to derive individual retention and excretion functions and
biokinetic model parameters
5.3.6 Task-related monitoring programmes
Task-related monitoring programmes apply to a specific operation. The purpose and the dose criteria for
carrying out task-related monitoring programmes are identical to those for routine monitoring programmes.
ISO/DIS 16637
In nuclear medicine, task-related monitoring programmes are required in the case of a new diagnostic or
therapeutic protocol and operations of limited duration to provide data for dose assessment and for the
radiation protection optimisation process. The general requirements set out in 8.1 for routine monitoring
programmes shall be applied to task-related monitoring programmes.
When the operation is planned, an appropriate monitoring programme shall be devised. This is also necessary
after major modifications have been applied to the installations or operating procedures.
This task-related workplace monitoring (measurement of airborne activity, surface wipe tests, etc.)
complements individual monitoring, since it provides useful indicators for predicting doses and for establishing
protective measures for the operation. However, individual monitoring gives more reliable dose estimates.
In contrast to routine monitoring programmes, more information can be available about the circumstances of
an intake event, especially relating to the time between measurement and the intake.
The objectives of a task-related monitoring programme and the way it is organized, including the basis for
interpreting the results, shall be documented according to Clause 13.
A detailed flowchart is proposed as Figure 1 to contribute with the implementation of monitoring programmes.
Figure 1 — Flowchart for the implementation of monitoring programmes
6 General aspects
Most of the radionuclides used in nuclear medicine have short half-lives (Table 3). For diagnostic use, the
emitted energy shall be deposited in the camera crystal, with minimal absorption by the tissue. On the
ISO/DIS 16637
contrary, for therapeutic use, the energy shall be deposited in the tissue. Therefore, emitting radionuclides
are used for imaging while and emitters are used for therapeutic purposes.
ISO/DIS 16637
Table 3 — Most commonly used radionuclides in nuclear medicine
*
Radionuclides Half-life Main emissions
i
C-11 20,39 m
i
O-15 122,24 s
i
F-18 109,77 m
e-,
Ga-67 3,2612 d e-, X
I
Ga-68 67,71 m
,
Sr-89 50,53 d
Y-90 64,10 h
-
Tc-99m 6,015 h e-, X
In-111 2,8047 d
e-, X
I-123 13,27 h
e-, X
I-131 8,02070 d
e-, X
Sm-153 46,50 h e-, X
Er-169 9,40 d
Lu-177 6,647 d
Re-186 3,7183 d
e-, X
Re-188 17,0040 h e-, X
Tl-201 72,912 h
e-, X
Ra-223 11,43 d
X
[8]
according to ICRP 107
i
Annihilation photons.
7 Reference levels
Reference levels are the values of quantities above which a particular action or decision shall be taken. The
purpose of setting these levels is so that unnecessary, non-productive work can be avoided and resources
can be used where they are most needed. Reference levels include the recording level, above which a dose
assessment has to be recorded, lower values being ignored; and the investigation level, above which the
exposure estimates have to be confirmed by additional investigations (see Table 4).
NOTE The scope of this International Standard does not include the investigation of the causes or implications of an
exposure or intake.
The recording level shall be set at a value corresponding (having regard to the length of the monitoring
interval) to an annual dose no higher than 5 % of the annual dose limit. The investigation level shall be set at a
value corresponding to an annual dose no higher than 30 % of the annual dose limit.
Table 4 — Reference levels for monitoring internal exposures (ISO 20553)
Level Meaning
Recording level The recording level is the level of dose, exposure or intake at or
above which dose assessments have to be recorded in the individual
exposure records. It shall be set at a value corresponding to an
ISO/DIS 16637
annual dose no higher than 5 % of the annual dose limit. Results
falling below this level may be shown as “below recording level”.
Investigation level The investigation level is a level of dose, exposure or intake at or
above which investigation has to be made in order to reduce the
uncertainty associated with the dose assessment. The level shall be
set at a value corresponding to an annual dose no higher than 30 %
of the annual dose limit.
8 Routine Monitoring programmes
8.1 General aspects
Measurements in a routine monitoring programme are made at pre-determined times and are not related to
any known intake events. Decisions therefore have to be made in advance concerning methods, frequencies,
and the underlying biokinetic models. For the evaluation of measured values in terms of intakes it also is
necessary to make assumptions concerning the time interval between intake and measurement.
The following general requirements shall be observed when specifying a routine monitoring programme:
the consequences resulting from an unknown time interval between intake and measurement shall be
limited so that:
on average over many monitoring intervals, doses are not underestimated, and
the maximum underestimate of the dose resulting from a single intake does not exceed a factor of
three, and
the detection of all annual exposures that can exceed 1 mSv shall be ensured;
at least two measurements shall be performed annually.
The maximum overestimation is in nearly all cases greater than the maximum underestimation. The constraint
on the maximum underestimation of a single intake does not exclude a considerable overestimation.
These requirements together with the assumptions about the pattern of intake and the sensitivity of the
selected methods of measurement determine the frequency of the routine measurements.
In nuclear medicine, routine monitoring based on individual measurements can be performed to monitor the
risk of iodine 131 inhalation when significant activities in volatile forms are manipulated.
In vivo thyroid measurements can be performed in a radiobioassay laboratory or in the nuclear medicine
[9] [10][11]
department using gamma camera or thyroid probe .
The objectives of a monitoring programme and the way it is to be organized shall be documented according to
Clause 11 including the basis for interpreting the results. The monitoring programme shall be reviewed by
means of a confirmatory monitoring programme after any major modifications have been made to the
installation, to operations, or to the regulatory requirements.
8.2 Individual monitoring
Individual monitoring of radionuclides can be made by in vivo measurements or in vitro analyses, by taking
continuous air samples using individual air-sampling devices or by a combination of all these methods. The
selection depends on a number of factors, such as the following:
radiation emitted by the radionuclide and its progeny;
ISO/DIS 16637
decay rate of the radionuclide;
retention in the
...
INTERNATIONAL ISO
STANDARD 16637
First edition
2016-02-15
Radiological protection — Monitoring
and internal dosimetry for staff
members exposed to medical
radionuclides as unsealed sources
Radioprotection — Surveillance et dosimétrie interne des travailleurs
exposés lors des utilisations médicales des radioéléments en sources
non scellées
Reference number
©
ISO 2016
© ISO 2016, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2016 – All rights reserved
Contents Page
Foreword .v
Introduction .vi
1 Scope . 1
2 Normative references . 2
3 Terms and definitions . 2
4 Symbols and abbreviated terms . 5
5 Purpose and need for monitoring programmes in nuclear medical diagnosis and therapy 6
5.1 General . 6
5.2 Assessment of the level of likely exposures . 6
5.3 Monitoring programmes . 7
5.3.1 General. 7
5.3.2 Confirmatory monitoring programmes . 7
5.3.3 Routine monitoring programmes. 8
5.3.4 Triage monitoring programmes . 8
5.3.5 Task-related monitoring programmes . 8
5.3.6 Special monitoring programmes . 8
5.3.7 Implementation of a monitoring programme. 9
6 Common radionuclides .10
7 Reference levels .10
8 Routine monitoring programmes .11
8.1 General aspects .11
8.2 Individual monitoring .12
8.3 Methods and monitoring intervals .12
9 Triage monitoring programmes .13
10 Special Monitoring programmes .13
10.1 General aspects .13
10.2 Workplace monitoring . .14
10.3 Individual monitoring .14
11 Confirmatory monitoring programmes .15
11.1 General aspects .15
11.2 Workplace monitoring . .15
11.3 Individual monitoring .15
12 Measurement techniques and performance criteria .15
12.1 General .15
12.2 Measurements performed in a laboratory specialised for radiobioassay .16
12.2.1 In vitro.16
12.2.2 In vivo .16
12.2.3 Quality assurance and quality control for bioassay laboratories .16
12.3 Measurements performed in nuclear medicine service .17
13 Procedure for the assessment of exposures .17
13.1 Interpretation of individual monitoring data for dose assessment .17
13.1.1 General.17
13.1.2 Dose assessment based on routine monitoring .17
13.1.3 Dose assessment based on special monitoring .17
13.2 Software tools .22
13.3 Uncertainties .22
13.4 Quality assurance of the assessment process .22
14 Reporting and documentation .23
14.1 Reporting results for in vitro measurements .23
14.2 Reporting results for in vivo measurements .23
14.3 Documentation of the dose assessment .24
Annex A (informative) IAEA Safety Guide RS-G-1.2 “decision factor” .25
Bibliography .27
iv © ISO 2016 – All rights reserved
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the meaning of ISO specific terms and expressions related to conformity
assessment, as well as information about ISO’s adherence to the WTO principles in the Technical
Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information
The committee responsible for this document is ISO/TC 85, Nuclear energy, nuclear technologies, and
radiological protection, Subcommittee SC 2, Radiological protection.
Introduction
In the course of employment, individuals might work with radioactive materials that, under certain
circumstances, could be taken into the body. Protecting workers against risks of incorporated
radionuclides requires the monitoring of potential intakes and/or the quantification of actual intakes
and exposures. The doses resulting from internal radiation exposure arising from contamination
by radioactive substances cannot be measured directly. The selection of measures and programmes
for this purpose requires decisions concerning methods, techniques, frequencies, etc. for activity
measurements and dose assessment. The criteria permitting the evaluation of the necessity of such a
monitoring programme or for the selection of methods and frequencies of monitoring usually depend
upon the legislation, the purpose of the radiation protection programme, the probabilities of potential
radionuclide intakes, and the characteristics of the materials handled.
For these reasons, ISO standards establishing requirements for monitoring programmes (ISO 20553),
laboratory requirements (ISO 28218), and dose assessment (ISO 27048) have been developed. These can
be applied in a straightforward manner to many workplaces where internal contamination may occur.
In order to apply these standards to staff involved in diagnostic or therapeutic uses of radionuclides
in medicine, the short effective half-life of radionuclides commonly used for these purposes and the
distance between nuclear medicine department and in vivo counting facilities or radio-analytical
laboratories shall be taken into account. Consequently, guidance on the application of the three
International Standards cited above to nuclear medicine staff was requested by a number of countries.
This International Standard establishes criteria to determine whether intake monitoring is required
for staff exposed to medical radionuclides as unsealed sources. It also establishes requirements on the
design of such monitoring programmes, associated dose assessments, and laboratory requirements.
Recommendations of international expert bodies and international experience with the practical
application of these recommendations in radiological protection programmes have been considered in
the development of this International Standard. Its application facilitates the exchange of information
between authorities, supervisory institutions, and employers. This International Standard is not a
substitute for legal requirements.
vi © ISO 2016 – All rights reserved
INTERNATIONAL STANDARD ISO 16637:2016(E)
Radiological protection — Monitoring and internal
dosimetry for staff members exposed to medical
radionuclides as unsealed sources
1 Scope
This International Standard specifies the minimum requirements for the design of professional
programmes to monitor workers exposed to the risk of internal contamination via inhalation by
the use of radionuclides as unsealed sources in nuclear medicine imaging and therapy departments.
It establishes principles for the development of compatible goals and requirements for monitoring
programmes and, when adequate, dose assessment. It presents procedures and assumptions for the risk
analysis, for the monitoring programmes, and for the standardized interpretation of monitoring data.
This International Standard addresses the following items:
a) purposes of monitoring and monitoring programmes;
b) description of the different categories of monitoring programmes;
c) quantitative criteria for conducting monitoring programmes;
d) suitable methods for monitoring and criteria for their selection;
e) information that has to be collected for the design of a monitoring programme;
f) general requirements for monitoring programmes (e.g. detection limits, tolerated uncertainties);
g) frequencies of measurements;
h) procedures for dose assessment based on reference levels for routine and special monitoring
programmes;
i) assumptions for the selection of dose-critical parameter values;
j) criteria for determining the significance of individual monitoring results;
k) interpretation of workplace monitoring results;
l) uncertainties arising from dose assessments and interpretation of bioassays data;
m) reporting/documentation;
n) quality assurance.
This International Standard does not address the following:
— monitoring and internal dosimetry for the workers exposed to laboratory use of radionuclides such
as radioimmunoassay techniques;
— monitoring and internal dosimetry for the workers involved in the operation, maintenance, and
servicing of PET cyclotrons;
— detailed descriptions of measuring methods and techniques;
— dosimetry for litigation cases;
— modelling for the improvement of internal dosimetry;
— the potential influence of medical treatment of the internal contamination;
— the investigation of the causes or implications of an exposure;
— dosimetry for ingestion exposures and for contaminated wounds.
2 Normative references
The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.
ISO 20553, Radiation protection — Monitoring of workers occupationally exposed to a risk of internal
contamination with radioactive material
ISO 27048:2011, Radiation protection — Dose assessment for the monitoring of workers for internal
radiation exposure
ISO 28218, Radiation protection — Performance criteria for radiobioassay
ISO/IEC Guide 99, International vocabulary of metrology — Basic and general concepts and associated
terms (VIM)
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO/IEC Guide 99, ISO 20553,
ISO 28218 and ISO 27048 and the following apply.
3.1
absorption
movement of material to blood regardless of mechanism, generally applied to dissociation of particles
and uptake into blood of soluble substances and material dissociated from particles
3.2
absorption type F
as defined by ICRP, deposited materials that have high (fast) rates of absorption (3.1) into body fluids
from the respiratory tract
3.3
absorption type M
as defined by ICRP, deposited materials that have intermediate (moderate) rates of absorption (3.1) into
body fluids from the respiratory tract
3.4
activity
number of spontaneous nuclear transformations per unit time
Note 1 to entry: The activity is stated in becquerel (Bq), i.e. the number of transformations per second.
3.5
activity median aerodynamic diameter
AMAD
value of aerodynamic diameter such that 50 % of the airborne activity (3.4) in a specified aerosol is
associated with particles smaller than the AMAD, and 50 % of the activity is associated with particles
larger than the AMAD
Note 1 to entry: The aerodynamic diameter of an airborne particle is the diameter that a sphere of unit density
would need to have in order to have the same terminal velocity when settling in air as the particle of interest.
2 © ISO 2016 – All rights reserved
3.6
contamination
activity (3.4) of radionuclides present on surfaces, or within solids, liquids or gases (including the
human body), where the presence of such radioactive material is unintended or undesirable
3.7
decision threshold
fixed value of the measurand by which, when exceeded by the result of an actual measurement of a
measurand quantifying a physical effect, it is decided that the physical effect is present
3.8
detection limit
smallest true value of the measurand which is detectable by the measuring method
3.9
annual dose
committed effective dose (3.11) resulting from all intakes (3.14) occurring during a calendar year
Note 1 to entry: The term “annual dose” is not used to represent the dose received in a year from all preceding
intakes.
3.10
committed equivalent dose
sum of the products of the total doses absorbed by an organ or a tissue from radiation types, integrated
over the commitment period following the intake (3.14) of a radionuclide, and the appropriate radiation
weighting factors
3.11
committed effective dose
sum of the products of the committed organ or tissue equivalent doses and the appropriate tissue
weighting factors
Note 1 to entry: In the context of this International Standard, the commitment period [integration time following
the intake (3.14)] is taken to be 50 years.
3.12
excretion function
function describing the fraction of an intake (3.14) excreted per day after a given time has elapsed since
the intake occurred
3.13
event = incident
any unintended occurrence, including operating error, equipment failure or other mishap, the
consequences or potential consequences of which are not negligible from the point of view of protection
or safety
3.14
intake
activity (3.4) of a radionuclide taken into the body in a given time period or as a result of a given event
3.15
in vitro analyses
indirect measurements
analyses including measurements of radioactivity present in biological samples taken from an
individual
Note 1 to entry: These include urine, faeces, and nasal samples; in special monitoring programmes (3.21), samples
of other materials, such as blood and hair, may be taken.
3.16
in vivo measurements
direct measurements
measurement of radioactivity present in the human body, carried out using detectors to measure the
radiation emitted
Note 1 to entry: Normally, the measurement devices are whole-body or partial-body (e.g. lung, thyroid) counters.
3.17
monitoring
measurements made for the purpose of assessment or control of exposure to radioactive material and
the interpretation of the results
Note 1 to entry: This International Standard distinguishes five different categories of monitoring programmes,
namely, routine monitoring programme (3.18), task-related monitoring programme (3.19), triage monitoring
programme (3.20), special monitoring programme (3.21), and confirmatory monitoring programme (3.22).
Note 2 to entry: This International Standard distinguishes two different types of monitoring, namely, individual
monitoring (3.23) and workplace monitoring (3.24).
3.18
routine monitoring programme
monitoring programme associated with continuing operations and intended to demonstrate that
working conditions, including the levels of individual dose, remain satisfactory, and to meet regulatory
requirements
3.19
task-related monitoring programme
monitoring programme related to a specific operation, to provide information on a specific operation of
limited duration, or following major modifications applied to the installations or operating procedures,
or to confirm that the routine monitoring programme (3.18) is suitable
3.20
triage monitoring programme
monitoring programme consist of frequent measurements performed in the nuclear medicine centres
that does not enable one to calculate a dose but to verify that a given threshold of potential intake (3.14)
is not surpassed
3.21
special monitoring programme
monitoring programme performed to quantify significant exposures following actual or suspected
abnormal events
3.22
confirmatory monitoring programme
monitoring programme carried out to confirm assumptions about working conditions, for example,
that significant intakes (3.14) have not occurred
3.23
individual monitoring
monitoring by means of equipment worn by individual workers, by measurement of the quantities
of radioactive materials in or on the bodies of individual workers, or by measurement of radioactive
material excreted by individual workers
3.24
workplace monitoring
monitoring using measurements made in the working environment
3.25
monitoring interval
period between two consecutive times of measurement
4 © ISO 2016 – All rights reserved
3.26
quality assurance
planned and systematic actions necessary to provide adequate confidence that a process, measurement,
or service satisfy given requirements for quality such as those specified in a licence
3.27
quality control
part of quality assurance (3.26) intended to verify that systems and components correspond to
predetermined requirements
3.28
quality management
all activities of the overall management function that determine the quality policy, objectives, and
responsibilities and that implement them by means such as quality planning, quality control (3.27),
quality assurance (3.26), and quality improvement within the quality system
3.29
reference level
investigation level (3.30) or recording level (3.29)
3.30
recording level
level of dose, exposure, or intake (3.14) specified by the employer or the regulatory authority, at or
above which values of dose received by workers are to be entered in their individual records
3.31
investigation level
level of dose, exposure, or intake (3.14) at or above which investigation has to be made in order to reduce
the uncertainty associated with the dose assessment
3.32
retention function
function describing the fraction of an intake (3.14) present in the body or in a tissue, organ, or region of
the body after a given time has elapsed since the intake occurred
3.33
scattering factor
geometric standard deviation of the lognormal distribution of bioassay measurements
3.34
time of measurement
time at which the measurement begins
4 Symbols and abbreviated terms
A Value of the activity detection limit (in becquerel) for routine measurements
DL
AMAD Activity median aerodynamic diameter
3 -1
B Breathing rate of worker (m ·h )
-3
C Airborne concentration of radionuclide (Bq·m )
m
DL Detection limit
E(50) Committed effective dose accumulated for an integration period of 50 years following an unit intake (Sv)
e(50) Dose coefficient i.e. committed effective dose accumulated for an integration period of 50 years follow-
-1
ing a unit intake (Sv·Bq )
m(t) Predicted value of the measured quantity at time, t, for unit intake (excretion or retention function at
time t for unit intake)
I Intake (Bq)
IAEA International Atomic Energy Agency
ICRP International Commission on Radiological Protection
ΔT Duration of the monitoring interval between two measurements in a routine monitoring programme
(in days)
T Time spent by the worker in the radioactive atmosphere (h)
work
5 Purpose and need for monitoring programmes in nuclear medical diagnosis
and therapy
5.1 General
The purpose of monitoring, in general, is to verify and document that the worker is protected adequately
against risks from radionuclide intakes and the protection complies with legal requirements. Therefore,
it forms part of the overall radiation protection programme, which should start with an assessment to
identify work situations in which there is a risk of radionuclide intake by workers, and to quantify the
annual likely intake of radioactive material and the resulting committed effective dose. Decisions about
the need for monitoring and the design of the monitoring programme should be made in the light of
such a risk assessment.
5.2 Assessment of the level of likely exposures
It is necessary to assess the likely magnitude of exposures without taking into account personal
protective measures. If available, this assessment can be done on the basis of results of earlier
monitoring programmes (individual or workplace monitoring) and/or on measurements performed at
the workplace to characterize the radiological conditions.
In nuclear medicine, workers can be contaminated by inhalation of volatile compounds (mainly
radioiodine) or aerosols. As a result, individual monitoring for internal contamination may be necessary
[1]
for those workers who regularly work with large activities of volatile radioactive materials.
In order to assess the level of likely exposures, quantification of airborne contamination should be
performed in departments where I-131 is used in large amount, i.e. for therapy or where aerosols are
used for pulmonary inhalation examination.
To assess the risk of I-131 inhalation, air sampling should be performed in areas where there is a
potential for airborne radioactivity. These areas may include the following:
— hot laboratory;
— radioiodine treatment rooms and adjacent areas;
— facility radioactive waste and effluent storage areas.
For a specific radionuclide, the likely committed effective dose due to airborne radioactivity for a
worker can be calculated by
Ie× ()50
E 50 = (1)
()
0,001
where
E(50) is the committed effective dose for the radionuclide (mSv);
I is the intake for the radionuclide (Bq);
-1
e(50) is the dose coefficient (Sv·Bq ) for inhalation of the radionuclide and;
0,001 is a conversion factor from Sv to mSv.
6 © ISO 2016 – All rights reserved
[2]
Values for e(50) shall be taken from ICRP 68 or, for radiopharmaceuticals used as aerosols, from
[3]
ICRP 53 and following addenda. For iodine radioactive isotopes, a vapour form should be assumed
unless material-specific information suggesting a particulate form is available.
The likely intake can be calculated by
IB=×TC× (2)
work m
where
3 -1
B is the mean breathing rate of a sedentary worker (1,2 m ·h );
T is the time spent by the worker in the radioactive atmosphere (h) and;
work
-3
C is the airborne concentration of the radionuclide (Bq·m ).
m
If no other reliable information is available or may be obtained from workplace and/or individual
[4]
measurements, the criteria suggested by IAEA Safety Guide RS-G-1.2 and presented in Annex A,
can be used to determine whether an internal monitoring program is needed for nuclear medicine
[5][6][7]
workers .
5.3 Monitoring programmes
5.3.1 General
Factors determining the need for a monitoring programme are the following:
— the magnitude of likely exposures;
— the need to recognize incorporation events;
— the need to assess the effectiveness of protective equipment.
A monitoring programme can include individual and/or workplace monitoring. These two types of
monitoring provide different information.
— Individual monitoring gives information needed to assess the exposure of a single worker by
measuring individual body activities, excretion rates, or activity inhaled (using personal air
samplers).
— Workplace monitoring, either by air monitoring or by measurements of the surface contamination,
helps to assess the potential for internal exposure of workers through inhalation and provides
information on the risk of contamination for setting up individual monitoring programmes for
workers. It complements individual monitoring, since it provides useful indicators for predicting
doses and for establishing protective measures for the operation.
As stated in ISO 20553, a monitoring programme for internal contamination is required if the worker is
occupationally exposed and the assessed dose contribution from intakes of radionuclides is likely to be
significant and is recommended if the level of the likely annual committed effective dose exceeds 1 mSv.
For workers exposed to medical radionuclides as unsealed sources in nuclear medicine departments,
different categories of monitoring programmes can be implemented depending on the risk assessment:
confirmatory monitoring programmes, triage monitoring programmes, routine or task-related
monitoring programmes, and special monitoring programmes, following an incidental intake.
5.3.2 Confirmatory monitoring programmes
Confirmatory monitoring, which consists of workplace and/or individual monitoring performed
occasionally or at regular intervals, should be required to check the assumptions about exposure
conditions underlying the procedures selected, e.g. the effectiveness of protection measures. Recorded
data should be periodically reviewed as they can demonstrate the need for triage, routine, or task-
related monitoring. The time of implementation should be during the process identified as the highest
risk of internal exposure.
Confirmatory monitoring is not intended to quantify doses. However, it can be used to review the risk
of contamination and the estimation of the likely dose and, following this review, it can demonstrate
the need to implement a routine or triage monitoring programme.
5.3.3 Routine monitoring programmes
Routine monitoring programmes are performed to quantify exposures where there is the possibility
either of undetected accidental intakes or of chronic intakes. The basis for routine monitoring
programmes is the assumption that working conditions, and thus risks of intake, remain reasonably
constant. The design of such a programme of regular measurements strongly depends on the level of
the annual dose the quantification of which is ensured. This level should be well below legally relevant
limits; its definition should take into account uncertainties, for example, in activity measurement and
dose assessment. If this level is too high, intakes representing considerable fractions of dose limits could
be overlooked, whilst a low value can cause the expenditure of unnecessary efforts at low exposures.
5.3.4 Triage monitoring programmes
Triage monitoring programmes rely on frequent individual screening measurements performed at the
workplace by local staff using standard laboratory instrumentation to detect whether potential intake
has occurred. Screening measurements, in contrast with in vivo or in vitro measurement performed in
the frame of a routine monitoring programme, do not enable the calculation of an accurate or precise
absorbed dose but can be used to determine whether a dose threshold is exceeded. If the screening
threshold is exceeded, in vivo or in vitro radiobioassays are performed in order to confirm internal
contamination and to quantify the incorporated activity for dose assessment.
5.3.5 Task-related monitoring programmes
Task-related monitoring programmes apply to a specific operation. The purpose and the dose criteria
for carrying out task-related monitoring programmes are identical to those for routine monitoring
programmes.
In nuclear medicine, task-related monitoring programmes are required in the case of a new diagnostic
or therapeutic protocol and operations of limited duration to provide data for dose assessment and for
the radiation protection optimisation process. This is also necessary after major modifications have
been applied to the installations or operating procedures. The general requirements set out in 8.1 for
routine monitoring programmes shall be applied to task-related monitoring programmes. In contrast
to routine monitoring programmes, more information can be available about the circumstances of an
intake event, especially relating to the time between measurement and the intake.
The objectives of a task-related monitoring programme and the way it is organized, including the basis
for interpreting the results, shall be documented.
5.3.6 Special monitoring programmes
Special monitoring programmes are performed to quantify significant exposures following actual
or suspected abnormal events (by example, the spill of a radiopharmaceutical solution) or in case
of a positive screening during triage monitoring. Therefore, in comparison to routine monitoring
programmes, the time of intake is usually much better known, and additional information can be
available, which helps to reduce the uncertainty of assessment. The purposes of dose assessment in such
cases include assisting in decisions about countermeasures (e.g. decorporation therapy), compliance
with legal regulations, and aiding decisions for the improvement of conditions at the workplace. In
most cases, special monitoring programmes are performed individually. In cases where there is reason
to suspect that the annual effective dose limit could be exceeded, it can be appropriate to extend the
measurements in order to derive individual-specific retention and excretion functions and biokinetic
model parameters.
8 © ISO 2016 – All rights reserved
5.3.7 Implementation of a monitoring programme
A detailed flowchart is proposed as Figure 1 to contribute to the implementation of monitoring
programmes. This flowchart presents the monitoring programmes to apply following three starting
points corresponding to different situations:
1) the commissioning of a new nuclear medicine facility or the review of an existing facility;
2) the development of a new protocol (by example for a new radiopharmaceutical);
3) the suspicion of an incidental contamination.
Periodic review of the monitoring programmes shall be conducted, taking into account the recorded
data (internal contamination measurements results and, when performed, assessed doses).
Figure 1 — Flowchart for the implementation of monitoring programmes
6 Common radionuclides
Most of the radionuclides used in nuclear medicine have short half-lives (Table 1). For diagnostic use,
the emitted energy shall be deposited in the gamma camera scintillator, with minimal absorption by
the tissue. On the contrary, for therapeutic use, the energy shall be deposited in the tissue. Therefore,
radionuclides with γ or β+ decay are used for imaging and radionuclides with α or β- decays are used
for therapeutic purposes.
Table 1 — Most commonly used radionuclides in nuclear medicine
a
Radionuclides Half-life Main emissions
i
C-11 20,39 m β+, γ
i
O-15 122,24 s β+, γ
i
F-18 109,77 m e-, β+, γ
Ga-67 3,26 d e-, X, γ
i
Ga-68 67,71 m β+, γ ,γ
Sr-89 50,53 d β-, γ
Y-90 64,10 h β-
Tc-99m 6,02 h e-, X, γ
In-111 2,80 d e-, X, γ
I-123 13,27 h e-, X, γ
I-131 8,02 d e-, β-, X, γ
Sm-153 46,50 h e-, β-, X, γ
Er-169 9,40 d β-, γ
Lu-177 6,65 d β-, γ
Re-186 3,72 d e-, β-, X, γ
Re-188 17,00 h e-, β-, X, γ
Tl-201 72,91 h e-, X, γ
Ra-223 11,43 d α, β-, X , γ
a [8]
According to ICRP 107.
i
γ Annihilation photons.
7 Reference levels
Reference levels are the values of quantities above which a particular action or decision shall be taken.
The purpose of setting these levels is so that unnecessary, non-productive work can be avoided and
resources can be used where they are most needed. Reference levels include the recording level, above
which a dose assessment has to be recorded, lower values being ignored; and the investigation level,
above which the exposure estimates have to be confirmed by additional investigations (see Table 2).
NOTE The scope of this International Standard does not include the investigation of the causes or
implications of an exposure or intake.
The recording level shall be set at a value corresponding (having regard to the length of the monitoring
interval) to an annual dose no higher than 5 % of the annual dose limit. The investigation level shall be
set at a value corresponding to an annual dose no higher than 30 % of the annual dose limit.
10 © ISO 2016 – All rights reserved
Table 2 — Reference levels for monitoring internal exposures (ISO 20553)
Level Meaning
Recording level The recording level is the level of dose, exposure, or intake at or above
which dose assessments have to be recorded in the individual exposure
records. It shall be set at a value corresponding to an annual dose no
higher than 5 % of the annual dose limit. Results falling below this level
may be shown as “below recording level”.
Investigation level The investigation level is a level of dose, exposure, or intake at or above
which investigation has to be made in order to reduce the uncertainty
associated with the dose assessment. The level shall be set at a value
corresponding to an annual dose no higher than 30 % of the annual
dose limit.
8 Routine monitoring programmes
8.1 General aspects
Measurements in a routine monitoring programme are made at pre-determined times and are not
related to any known intake events. Decisions therefore have to be made in advance, concerning
methods, frequencies, and the underlying biokinetic models. For the evaluation of measured values in
terms of intakes, it also is necessary to make assumptions concerning the time interval between intake
and measurement.
The following general requirements shall be observed when specifying a routine monitoring
programme:
— the consequences resulting from an unknown time interval between intake and measurement shall
be limited, so that
— on average, over many monitoring intervals, doses are not underestimated, and
— the maximum underestimate of the dose resulting from a single intake does not exceed a factor
of three;
— the detection of all annual exposures that can exceed 1 mSv shall be ensured;
— at least two measurements shall be performed annually.
The maximum overestimation is in nearly all cases greater than the maximum underestimation.
The constraint on the maximum underestimation of a single intake does not exclude a considerable
overestimation.
These requirements together with the assumptions about the pattern of intake and the sensitivity of
the selected methods of measurement determine the frequency of the routine measurements.
In nuclear medicine, routine monitoring based on individual measurements should be considered for
staff members involved routinely in the treatment of patients with significant quantities of I-131.
For this purpose, in vivo thyroid measurements can be performed in a radiobioassay laboratory or in
[9] [10][11]
the nuclear medicine department using gamma camera or thyroid probe .
The objectives of a monitoring programme and the way it is to be organized shall include the basis
for interpreting the results. The monitoring programme shall be reviewed by means of a confirmatory
monitoring programme after any major modifications have been made to the installation, to operations,
or to the regulatory requirements.
8.2 Individual monitoring
Individual monitoring of radionuclides can be made by in vivo measurements or in vitro analyses, by
taking continuous air samples using individual air-sampling devices or by a combination of all these
methods. The selection depends on a number of factors, such as the following:
— radiation emitted by the radionuclide and its progeny;
— decay rate of the radionuclide;
— retention in the body or excretion rate from the body of the radionuclide as a function of the time
between intake and measurement;
— biokinetics, organ deposition and excretion pathway of the radionuclide;
— technical feasibility of measurement.
8.3 Methods and monitoring intervals
The duration of time interval (ΔT, in day) between two measurements in a routine monitoring
programme depends on the retention and excretion of the radionuclide, the sensitivity of the available
measurement techniques and the uncertainty that is acceptable when estimating annual intake and
committed effective dose,
This time intervals given in the following formulae comply with the two requirements:
...
NORME ISO
INTERNATIONALE 16637
Première édition
2016-02-15
Radioprotection — Surveillance et
dosimétrie interne des travailleurs
exposés lors des utilisations médicales
des radioéléments en sources non
scellées
Radiological protection — Monitoring and internal dosimetry for
staff members exposed to medical radionuclides as unsealed sources
Numéro de référence
©
ISO 2016
DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2016, Publié en Suisse
Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée
sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie, l’affichage sur
l’internet ou sur un Intranet, sans autorisation écrite préalable. Les demandes d’autorisation peuvent être adressées à l’ISO à
l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2016 – Tous droits réservés
Sommaire Page
Avant-propos .v
Introduction .vi
1 Domaine d’application . 1
2 Références normatives . 2
3 Termes et définitions . 2
4 Symboles et abréviations . 6
5 Objectif et nécessité des programmes de surveillance en médecine nucléaire
diagnostique et thérapeutique . 6
5.1 Généralités . 6
5.2 Évaluation du niveau des expositions potentielles . 6
5.3 Programmes de surveillance . . 7
5.3.1 Généralités . 7
5.3.2 Programmes de surveillance de contrôle . 8
5.3.3 Programmes de surveillance de routine . 8
5.3.4 Programmes de surveillance de triage . 9
5.3.5 Programmes de surveillance de chantier . 9
5.3.6 Programmes de surveillance spéciale . 9
5.3.7 Mise en œuvre d’un programme de surveillance . 9
6 Radionucléides courants.10
7 Niveaux de référence .11
8 Programmes de surveillance de routine .12
8.1 Aspects généraux .12
8.2 Surveillance individuelle .13
8.3 Méthodes et intervalles de surveillance .13
9 Programmes de surveillance de triage .14
10 Programmes de surveillance spéciale.15
10.1 Aspects généraux .15
10.2 Surveillance aux postes de travail .15
10.3 Surveillance individuelle .15
11 Programmes de surveillance de contrôle .16
11.1 Aspects généraux .16
11.2 Surveillance aux postes de travail .16
11.3 Surveillance individuelle .17
12 Techniques de mesure et critères de performance .17
12.1 Généralités .17
12.2 Mesurages réalisés dans un laboratoire spécialisé d’anthroporadiométrie ou
de radiotoxicologie .18
12.2.1 In vitro.18
12.2.2 In vivo .18
12.2.3 Assurance qualité et contrôle qualité pour les laboratoires
d’anthroporadiométrie et de radiotoxicologie .18
12.3 Mesurages réalisés dans un service de médecine nucléaire .18
13 Procédure d’évaluation des expositions .19
13.1 Interprétation dosimétrique des données de la surveillance individuelle .19
13.1.1 Généralités .19
13.1.2 Estimation dosimétrique lors d’une surveillance de routine .19
13.1.3 Estimation dosimétrique lors d’une surveillance spéciale . .19
13.2 Outils logiciels .24
13.3 Incertitudes .24
13.4 Assurance de la qualité du processus d’estimation .24
14 Compte-rendu et documentation .25
14.1 Compte-rendu des résultats de mesurages in vitro .25
14.2 Compte-rendu des résultats de mesurages in vivo .25
14.3 Documentation de l’estimation dosimétrique .26
Annexe A (informative) «Facteur de décision» du Guide de Sûreté RS-G-1.2 de l’AIEA .27
Bibliographie .29
iv © ISO 2016 – Tous droits réservés
Avant-propos
L’ISO (Organisation internationale de normalisation) est une fédération mondiale d’organismes
nationaux de normalisation (comités membres de l’ISO). L’élaboration des Normes internationales est
en général confiée aux comités techniques de l’ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l’ISO participent également aux travaux.
L’ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui
concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier de prendre note des différents
critères d’approbation requis pour les différents types de documents ISO. Le présent document a été
rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2 (voir www.
iso.org/directives).
L’attention est appelée sur le fait que certains des éléments du présent document peuvent faire l’objet de
droits de propriété intellectuelle ou de droits analogues. L’ISO ne saurait être tenue pour responsable
de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant
les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de
l’élaboration du document sont indiqués dans l’Introduction et/ou dans la liste des déclarations de
brevets reçues par l’ISO (voir www.iso.org/brevets).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données
pour information, par souci de commodité à l’intention des utilisateurs et ne sauraient constituer un
engagement.
Pour une explication de la nature volontaire des normes, la signification des termes et expressions
spécifiques de l’ISO liés à l’évaluation de la conformité, ou pour toute information au sujet de l’adhésion
de l’ISO aux principes de l’Organisation mondiale du commerce (OMC) concernant les obstacles
techniques au commerce (OTC) voir le lien suivant: www.iso.org/iso/fr/foreword.html.
Le comité chargé de l’élaboration du présent document est l’ISO/TC 85, Énergie nucléaire, technologies
nucléaires, et radioprotection, sous-comité SC 2, Radioprotection.
Introduction
Dans le cadre de leurs activités professionnelles, les travailleurs peuvent être exposés à des produits
radioactifs qui, selon certaines circonstances, peuvent être incorporés. La protection des travailleurs
contre les risques d’incorporation des radionucléides exige une surveillance des incorporations
potentielles et/ou la quantification des incorporations et des expositions. Les doses résultant de
l’exposition aux rayonnements ionisants provenant d’une contamination interne par des substances
radioactives ne peuvent pas être mesurées directement. Le choix des examens et des programmes
de radioprotection dans ce domaine demande de prendre des décisions concernant les méthodes, les
techniques utilisées, la fréquence des mesurages d’activité, etc. et les estimations dosimétriques. Les
critères permettant d’évaluer la nécessité d’un programme de surveillance et de choisir des méthodes
et une fréquence de surveillance dépendent en général de la législation, de l’objectif du programme de
radioprotection, de l’exposition potentielle aux rayonnements ionisants et des caractéristiques des
matériaux manipulés.
Dans ce contexte, des normes ISO fixant les exigences relatives aux programmes de surveillance
(ISO 20553), les exigences relatives aux laboratoires (ISO 28218) et à l’estimation de la dose interne
(ISO 27048) ont été élaborées. Ces normes peuvent s’appliquer directement à de nombreux postes de
travail où une contamination interne est susceptible de survenir. Afin de les appliquer au personnel
impliqué dans les utilisations diagnostiques ou thérapeutiques des radionucléides en médecine, la
courte période effective des radionucléides couramment utilisés à ces fins et l’éloignement entre d’une
part les services de médecine nucléaire et d’autre part les installations de comptage in vivo ou les
laboratoires de radiotoxicologie, doivent être pris en compte. En conséquence, de nombreux pays ont
demandé à disposer de directives sur l’application des trois Normes internationales mentionnées ci-
dessus au personnel des services de médecine nucléaire.
La présente Norme internationale définit des critères permettant de déterminer si une surveillance
de l’incorporation est requise pour le personnel exposé aux radionucléides médicaux en sources
non scellées. Elle fixe également les exigences relatives à la conception des programmes de cette
surveillance, aux estimations de dose associées et aux exigences relatives aux laboratoires. Les
recommandations des instances internationales et les expériences internationales pour l’application
pratique de ces recommandations dans les programmes de radioprotection ont été prises en compte
dans le développement de la présente Norme internationale. Son application facilite les échanges des
données entre les autorités, les instituts de contrôle et les employeurs. La présente Norme internationale
ne dispense pas les utilisateurs de respecter les exigences légales.
vi © ISO 2016 – Tous droits réservés
NORME INTERNATIONALE ISO 16637:2016(F)
Radioprotection — Surveillance et dosimétrie interne des
travailleurs exposés lors des utilisations médicales des
radioéléments en sources non scellées
1 Domaine d’application
La présente Norme internationale décrit les exigences minimales permettant d’établir des programmes
de surveillance professionnelle des travailleurs exposés à un risque de contamination interne par
inhalation lors de l’utilisation, à des fins diagnostiques ou thérapeutiques, de radionucléides en sources
non scellées dans les services de médecine nucléaire. Elle établit des principes pour l’élaboration
d’objectifs et d’exigences compatibles avec les programmes de surveillance et, le cas échéant,
l’estimation de la dose. Elle présente les procédures et les hypothèses considérées pour l’analyse du
risque, pour la mise en place des programmes de surveillance et pour l’interprétation normalisée des
données de surveillance.
La présente Norme internationale traite des points suivants:
a) objectifs de la surveillance et des programmes de surveillance;
b) description des différentes catégories de programmes de surveillance;
c) critères quantitatifs pour la conduite des programmes de surveillance;
d) méthodes valables pour la surveillance et leurs critères de sélection;
e) informations à collecter pour l’élaboration d’un programme de surveillance;
f) exigences générales pour les programmes de surveillance (par exemple? limites de détection,
incertitudes tolérées);
g) fréquence des mesurages;
h) procédures d’estimation dosimétrique fondées sur des niveaux de référence pour les programmes
de surveillance de routine et post-incidentelle;
i) hypothèses pour le choix des paramètres influençant l’estimation dosimétrique;
j) critères pour déterminer si les résultats de la surveillance individuelle sont significatifs;
k) interprétation des résultats de la surveillance aux postes de travail;
l) incertitudes liées aux estimations de la dose et à l’interprétation des données de mesurage in vivo
et d’analyse in vitro;
m) compte-rendu/documentation;
n) assurance de la qualité.
La présente Norme internationale ne traite pas des points suivants:
— surveillance et dosimétrie interne pour les travailleurs exposés lors des utilisations en laboratoire
de radionucléides, par exemple lors des dosages radio-immunologiques;
— surveillance et dosimétrie interne pour les travailleurs impliqués dans l’exploitation, la maintenance
et l’entretien des cyclotrons TEP;
— descriptions détaillées des méthodes et techniques de mesurage;
— dosimétrie dans les cas litigieux;
— modélisation pour l’amélioration de la dosimétrie interne;
— influence potentielle d’un traitement médical de la contamination interne;
— investigation des causes ou des conséquences d’une exposition;
— dosimétrie pour les expositions par ingestion et par plaies contaminées.
2 Références normatives
Les documents suivants, dans leur intégralité ou non, sont des références normatives indispensables à
l’application du présent document. Pour les références datées, seule l’édition citée s’applique. Pour les
références non datées, la dernière édition du document de référence s’applique (y compris les éventuels
amendements).
ISO 20553, Radioprotection — Surveillance professionnelle des travailleurs exposés à un risque de
contamination interne par des matériaux radioactifs
ISO 27048:2011, Radioprotection — Estimation de la dose interne dans le cadre de la surveillance des
travailleurs en cas d’exposition aux rayonnements
ISO 28218, Radioprotection — Critères de performance pour l’analyse radiotoxicologique
Guide ISO/IEC 99, Vocabulaire international de métrologie — Concepts fondamentaux et généraux et
termes associés (VIM)
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions donnés dans le Guide ISO/IEC 99,
l’ISO 20553, l’ISO 28218 et l’ISO 27048 ainsi que les suivants s’appliquent.
3.1
absorption
transfert de composés dans le sang, quel qu’en soit le mécanisme, qui s’applique généralement à la
dissociation des particules et à l’incorporation dans le sang des substances solubles et des composés
dissociés des particules
3.2
absorption de type F
telle que définie par la CIPR, absorption (3.1) des composés déposés présentant un taux de transfert
rapide (en anglais, fast) de l’appareil respiratoire vers les fluides corporels
3.3
absorption de type M
telle que définie par la CIPR, absorption (3.1) des composés déposés présentant un taux de transfert
intermédiaire (en anglais, moderate) de l’appareil respiratoire vers les fluides corporels
3.4
activité
nombre de désintégrations nucléaires par unité de temps
Note 1 à l’article: L’activité est exprimée en becquerels (Bq), soit en nombre de désintégrations par seconde.
2 © ISO 2016 – Tous droits réservés
3.5
diamètre aérodynamique médian en activité
DAMA
valeur du diamètre aérodynamique telle que 50 % de l’activité dans l’air d’un aérosol défini sont associés
à des particules plus petites que le DAMA, et que 50 % de l’activité (3.4) sont associés à des particules
plus grosses que le DAMA
Note 1 à l’article: Le diamètre aérodynamique d’une particule dans l’air est le diamètre correspondant à une
sphère de densité unitaire qui devrait posséder la même vélocité dans l’air que la particule étudiée.
3.6
contamination
activité (3.4) des radionucléides présents sur les surfaces, dans les solides, dans les liquides ou dans les
gaz (y compris le corps humain), dont la présence est inattendue ou indésirable
3.7
seuil de décision
valeur invariable du mesurande qui, lorsqu’elle est dépassée par la valeur du résultat d’un mesurage
réel du mesurande quantifiant un effet physique, permet de décider que l’effet physique est présent
3.8
limite de détection
plus petite valeur vraie du mesurande qu’il est possible de détecter par la méthode de mesurage
3.9
dose annuelle
dose efficace engagée (3.11) résultant de toutes les incorporations (3.14) survenues durant une année
calendaire
Note 1 à l’article: Le terme «dose annuelle» n’est pas utilisé pour représenter la dose reçue en une année résultant
de l’ensemble des incorporations antérieures.
3.10
dose équivalente engagée
somme des produits des doses totales absorbées par un organe ou un tissu, provenant des différents
types de rayonnements et intégrée sur la période d’engagement succédant à l’incorporation (3.14) d’un
radionucléide, par les facteurs de pondération tissulaire appropriés
3.11
dose efficace engagée
somme des produits des doses équivalentes reçues par un organe ou un tissu et des facteurs de
pondération tissulaire appropriés
Note 1 à l’article: Dans le cadre de la présente Norme internationale, la période d’engagement [temps d’intégration
après l’incorporation (3.14)] retenue est de 50 ans.
3.12
fonction d’excrétion
fonction décrivant la fraction d’une incorporation (3.14) excrétée par jour après un temps donné après
incorporation
3.13
événement = incident
toute circonstance inattendue, incluant une erreur de manipulation, un défaut d’équipement ou autre
incident, qui entraînerait des conséquences réelles ou potentielles qui peuvent être non négligeables du
point de vue de la radioprotection ou de la sûreté
3.14
incorporation
activité (3.4) d’un radionucléide ayant pénétré dans le corps à un moment donné ou résultant d’un
événement donné
3.15
examens in vitro
mesurages indirects
examens, y compris le mesurage de la radioactivité, effectués sur des échantillons biologiques issus
d’une personne
Note 1 à l’article: Ils comprennent des échantillons d’urine, de fèces et de mucus nasal; dans le cadre des
programmes de surveillance spéciale (3.21), d’autres échantillons peuvent être prélevés, comme par exemple le
sang et les cheveux.
3.16
mesurages in vivo
mesurages directs
mesurages de la radioactivité retenue dans un corps humain, effectué en utilisant des détecteurs pour
mesurer les rayonnements émis
Note 1 à l’article: Normalement, les dispositifs mesurent l’activité dans tout le corps ou une partie du corps (par
exemple poumons, thyroïde).
3.17
surveillance
campagnes de mesurages ayant pour objet l’évaluation ou le contrôle de l’exposition à des composés
radioactifs et l’interprétation des résultats
Note 1 à l’article: La présente Norme internationale distingue cinq catégories différentes de programmes de
surveillance, à savoir programmes de surveillance de routine (3.18), programmes de surveillance de chantier
(3.19), programmes de surveillance de triage (3.20), programmes de surveillance spéciale (3.21) et programmes de
surveillance de contrôle (3.22).
Note 2 à l’article: La présente Norme internationale distingue deux types différents de surveillance, à savoir la
surveillance individuelle (3.23) et la surveillance aux postes de travail (3.24).
3.18
programme de surveillance de routine
programme de surveillance associé à des opérations continues et visant à démontrer que les conditions
de travail, y compris les niveaux de doses individuelles, restent satisfaisantes et en accord avec les
exigences réglementaires
3.19
programme de surveillance particulière (de chantiers)
programme de surveillance s’appliquant à une opération spécifique et permettant d’obtenir des
données soit sur une opération spécifique d’une durée limitée, soit à la suite de modifications majeures
appliquées aux installations ou aux procédures, ou mis en place pour confirmer que le programme de
surveillance de routine (3.18) est adéquat
3.20
programme de surveillance de triage
programme de surveillance consistant à réaliser des mesurages fréquents dans les services de
médecine nucléaire qui ne permettent pas d’évaluer une dose reçue, mais simplement de vérifier qu’un
seuil donné d’incorporation (3.14) potentielle n’a pas été franchi
3.21
programme de surveillance spéciale
programme de surveillance mis en place pour quantifier des expositions significatives suite à des
événements anormaux réels ou suspectés
3.22
programme de surveillance de contrôle
programme de surveillance mis en place pour confirmer des hypothèses sur les conditions de travail,
par exemple que des incorporations (3.14) significatives ne se sont pas produites
4 © ISO 2016 – Tous droits réservés
3.23
surveillance individuelle
surveillance effectuée par le port d’un appareil individuel de mesurage ou par le mesurage des quantités
de composés radioactifs retenues sur ou dans le corps de chaque travailleur ou par le mesurage des
composés radioactifs excrétés par chaque travailleur
3.24
surveillance aux postes de travail
surveillance effectuée à partir des mesurages effectués dans l’environnement de travail
3.25
intervalle de surveillance
période entre deux dates successives de mesurage
3.26
assurance de la qualité
toutes les actions planifiées et systématiques nécessaires pour attester qu’un processus, un mesurage
ou un service satisfait aux exigences de qualité, par exemple, celles spécifiées dans une autorisation
3.27
contrôle de la qualité
partie de l’assurance de la qualité (3.26) destinée à vérifier que les systèmes et les composants
correspondent à des exigences qualité prédéterminées
3.28
management de la qualité
toutes les activités de la fonction globale de management qui déterminent la politique, les objectifs et
les responsabilités, et les mettent en application à l’aide de la planification de la qualité, du contrôle de
la qualité (3.27), de l’assurance de la qualité (3.26) et de l’amélioration de la qualité dans le cadre du
système qualité
3.29
niveau de référence
niveau d’investigation (3.30) ou niveau d’enregistrement (3.29)
3.30
niveau d’enregistrement
niveau de dose, d’exposition, ou d’incorporation (3.14), spécifié par l’employeur ou par l’organisme de
réglementation, à partir duquel les valeurs de dose reçues par les travailleurs doivent être consignées
dans leur dossier individuel
3.31
niveau d’investigation
niveau de dose, d’exposition ou d’incorporation (3.14) à partir duquel une investigation doit être menée
afin de réduire l’incertitude associée à l’estimation de la dose
3.32
fonction de rétention
fonction décrivant la fraction de l’incorporation (3.14) retenue dans l’organisme ou dans un tissu, un
organe cible ou une région corporelle, après un temps donné suivant l’incorporation
3.33
facteur de dispersion
écart-type géométrique de la distribution log-normale des mesurages sur des échantillons biologiques
3.34
date de la mesure
date de début de l’examen
4 Symboles et abréviations
A Valeur de la limite de détection de l’activité (en becquerels) pour des mesurages de routine
DL
DAMA Diamètre aérodynamique médian en activité
3 −1
B Débit respiratoire d’un travailleur (m ·h )
−3
C Activité volumique d’un radionucléide dans l’air (Bq·m )
m
LD Limite de détection
E(50) Dose efficace engagée cumulée sur une période d’intégration de 50 ans par unité incorpo-
rée (Sv)
e(50) Coefficient de dose, c’est-à-dire dose efficace engagée cumulée sur une période d’intégration
−1
de 50 ans par unité incorporée (Sv·Bq )
m(t) Valeur prédite de la grandeur mesurée au temps, t, pour une unité incorporée (fonction
d’excrétion ou de rétention au temps t d’une unité incorporée)
I Incorporation (Bq)
AIEA Agence Internationale de l’Énergie Atomique
CIPR Commission Internationale de Protection Radiologique
ΔT Durée de l’intervalle de surveillance entre deux mesurages d’un programme de surveillance
de routine (en jours)
T Durée de présence du travailleur dans l’atmosphère radioactive (h)
travail
5 Objectif et nécessité des programmes de surveillance en médecine nucléaire
diagnostique et thérapeutique
5.1 Généralités
Les objectifs généraux de la surveillance sont de vérifier et de prouver que les travailleurs sont protégés
efficacement contre les risques d’incorporation des radionucléides et que la protection est en accord
avec les exigences légales. C’est pourquoi elle est intégrée dans le programme de radioprotection, qui
débute par une évaluation permettant d’identifier les conditions de travail pour lesquelles il existe un
risque d’incorporation de radioéléments par les travailleurs, et de quantifier l’incorporation annuelle
probable de produit radioactif et la dose efficace engagée reçue correspondante. Il convient de prendre
des décisions sur la nécessité de surveillance et sur la conception du programme de surveillance à la
lumière d’une telle évaluation des risques.
5.2 Évaluation du niveau des expositions potentielles
Il est nécessaire d’évaluer l’ampleur probable des expositions sans tenir compte des moyens de
protection individuelle. Cette évaluation peut être effectuée sur la base des résultats de programmes de
surveillance antérieurs (surveillance individuelle ou aux postes de travail), s’ils sont disponibles, et/ou
sur des mesurages effectués aux postes de travail afin de caractériser l’environnement radiologique.
En médecine nucléaire, les travailleurs peuvent être contaminés par inhalation de composés volatils
(essentiellement de l’iode radioactif) ou d’aérosols. De ce fait, une surveillance individuelle de la
contamination interne peut être nécessaire pour les travailleurs manipulant régulièrement des
[1]
activités élevées de composés radioactifs volatils .
6 © ISO 2016 – Tous droits réservés
Pour évaluer le niveau des expositions potentielles, il convient de quantifier la contamination
atmosphérique dans les services qui utilisent des quantités importantes d’I-131 à des fins
thérapeutiques, ou qui réalisent des scintigraphies pulmonaires d’inhalation à l’aide d’aérosols.
Pour évaluer le risque d’inhalation d’I-131, il convient de prélever les échantillons d’air dans les zones
où existe un risque de contamination radioactive atmosphérique. Ces zones peuvent comprendre:
— le laboratoire chaud;
— les salles de traitement par l’iode radioactif et les zones adjacentes;
— les zones de stockage des déchets et effluents radioactifs de l’installation.
Pour un radionucléide spécifique, la dose efficace engagée potentiellement reçue par un travailleur
suite à une contamination atmosphérique peut être calculée à partir de l’équation:
Ie× ()50
E 50 = (1)
()
0,001
où
E(50) est la dose efficace engagée du radionucléide (mSv);
I est l’incorporation pour le radionucléide (Bq);
−1
e(50) est le coefficient de dose (Sv·Bq ) pour l’inhalation du radionucléide; et
0,001 est le facteur de conversion du Sv au mSv.
[2]
Les valeurs de e(50) doivent être issues de la publication 68 de la CIPR ou, pour les radiopharmaceutiques
[3]
utilisés sous forme d’aérosols, de la publication 53 et des publications suivantes de la CIPR sur les
doses aux patients dues aux radiopharmaceutiques. Pour les isotopes radioactifs de l’iode, il convient
de considérer une inhalation sous forme vapeur, sauf s’il existe des données propres aux composés
suggérant une inhalation sous forme particulaire.
L’incorporation probable peut être calculée selon:
I = B ×T × C (2)
travail m
où
3 −1
B est le débit respiratoire moyen d’un travailleur sédentaire (1,2 m ·h );
T est la durée de présence du travailleur dans l’atmosphère radioactive (h); et
tra-
vail
−3
C est l’activité volumique du radionucléide dans l’air (Bq·m ).
m
Si aucune donnée fiable n’est disponible ni ne peut être obtenue par des mesurages individuels et/ou
[4]
aux postes de travail, les critères suggérés dans le Guide de sûreté RS-G-1.2 de l’AIEA et présentés
dans l’Annexe A, peuvent être utilisés afin de déterminer si un programme de surveillance interne est
[5][6][7]
nécessaire pour les travailleurs en médecine nucléaire .
5.3 Programmes de surveillance
5.3.1 Généralités
Les facteurs qui déterminent la nécessité d’un programme de surveillance sont les suivants:
— l’ampleur des expositions potentielles;
— la nécessité de diagnostiquer les incidents d’incorporation;
— la nécessité d’estimer l’efficacité des équipements de protection.
Un programme de surveillance peut comprendre une surveillance individuelle et/ou aux postes de
travail. Ces deux types de surveillance fournissent des données différentes.
— La surveillance individuelle fournit des données nécessaires pour estimer les expositions pour un
seul travailleur en mesurant la rétention individuelle, les taux d’excrétion ou l’activité inhalée (par
l’utilisation de préleveurs personnels d’air).
— La surveillance aux postes de travail, par mesurage de l’activité de l’air ambiant ou par mesurages
des contaminations de surface, aide à l’estimation de la contamination interne potentielle des
travailleurs par inhalation et fournit des informations sur les risques de contamination qui
permettent d’établir les programmes de surveillance individuelle pour les travailleurs. Elle complète
la surveillance individuelle, car elle fournit des indicateurs utiles pour prédire les doses et mettre
en place des mesures de protection opérationnelles.
Comme indiqué dans l’ISO 20553, un programme de surveillance de la contamination interne est
nécessaire si le travailleur est exposé professionnellement et si la contribution des incorporations de
radionucléides à la dose évaluée est susceptible d’être significative et il est recommandé si le niveau de
dose efficace engagée annuelle probable excède 1 mSv.
Pour les travailleurs exposés lors des utilisations médicales de radioéléments en sources non scellées
dans les services de médecine nucléaire, différentes catégories de programmes de surveillance peuvent
être mises en œuvre en fonction de l’évaluation des risques: les programmes de surveillance de contrôle,
les programmes de surveillance de triage, les programmes de surveillance de routine ou de chantier et
les programmes de surveillance spéciale, suite à une incorporation accidentelle.
5.3.2 Programmes de surveillance de contrôle
Une surveillance de contrôle, qui consiste à réaliser une surveillance aux postes de travail et/ou une
surveillance individuelle, occasionnellement ou à intervalles réguliers, est à mettre en place pour
vérifier les hypothèses émises sur les conditions d’exposition se rapportant aux procédures choisies,
par exemple l’efficacité des mesures prises en radioprotection. Il convient de procéder périodiquement
à une revue des données enregistrées car elles peuvent démontrer la nécessité d’une surveillance de
triage, de routine ou de chantier. Il convient que cette surveillance soit réalisée lors des périodes de
manipulation identifiées comme présentant le plus haut risque de contamination interne.
Le programme de surveillance de contrôle n’est pas destiné à quantifier les doses. Il peut toutefois
être utilisé pour évaluer les risques de contamination et estimer la dose potentielle et, suite à cette
évaluation, le cas échéant, pour démontrer la nécessité de mettre en place un programme de surveillance
de routine ou de triage.
5.3.3 Programmes de surveillance de routine
Les programmes de surveillance de routine sont mis en place pour quantifier les contaminations
internes lorsqu’il peut se produire soit des incorporations accidentelles non détectées, soit des
incorporations chroniques. Les programmes de surveillance de routine sont basés sur l’hypothèse que
les conditions de travail et le risque d’incorporation associé restent raisonnablement constants. La mise
en place d’un tel programme de mesurages réguliers dépend fortement du niveau annuel de dose dont
la quantification doit être garantie. Il convient que ce niveau soit bien inférieur aux limites légalement
pertinentes et que sa définition tienne compte des incertitudes, par exemple dans les mesurages des
activités et dans les estimations dosimétriques. Si le niveau choisi est trop élevé, les incorporations
représentant une fraction importante des limites de dose pourraient passer inaperçues; par contre,
s’il est choisi trop bas, la surveillance pourrait nécessiter une surenchère d’efforts pour les faibles
expositions.
8 © ISO 2016 – Tous droits réservés
5.3.4 Programmes de surveillance de triage
Les programmes de surveillance de triage s’appuient sur des mesures de dépistage individuel réalisées
fréquemment aux postes de travail par le personnel du service en utilisant des instruments de
mesure standard afin de détecter si une incorporation potentielle a eu lieu. Les mesures de dépistage,
contrairement aux mesurages in vivo ou in vitro réalisés dans le cadre d’un programme de surveillance
de routine, ne permettent pas de calculer de façon exacte ou précise la dose reçue, mais peuvent être
utilisées pour déterminer si un seuil de dose est dépassé. Si le seuil de dépistage est dépassé, des
examens radiotoxicologiques in vivo ou in vitro sont réalisés afin de confirmer la contamination interne
et de quantifier l’activité incorporée pour évaluer la dose reçue.
5.3.5 Programmes de surveillance de chantier
Les programmes de surveillance de chantier s’appliquent à une opération spécifique. L’objectif et les
critères dosimétriques de ces programmes de surveillance sont identiques à ceux des programmes de
surveillance de routine.
En médecine nucléaire, les programmes de surveillance de chantier sont requis en cas de nouveau
protocole thérapeutique ou diagnostique mis en place sur une période de temps limitée pour fournir des
données utiles aux estimations dosimétriques et à l’optimisation de la radioprotection. C’est également
le cas si des modifications majeures ont été réalisées dans les procédés ou les installations. Les exigences
générales données en 8.1 pour les programmes de surveillance de routine doivent être appliquées aux
programmes de surveillance de chantier. Contrairement aux programmes de surveillance de routine,
plus de données peuvent être disponibles sur les circonstances d’une incorporation, spécialement en ce
qui concerne la durée entre le mesurage et l’incorporation.
Les objectifs d’un programme de surveillance de chantier et la manière dont il doit être organisé, y
compris les bases d’interprétation des résultats, doivent être documentés.
5.3.6 Programmes de surveillance spéciale
Les programmes de surveillance spéciale sont mis en place pour quantifier des expositions
significatives suite à des événements anormaux réels ou suspectés (par exemple la projection d’une
solution contenant un radiopharmaceutique) ou en cas de dépistage positif lors d’une surveillance
de triage. C’est pourquoi, en comparaison avec les programmes de surveillance de routine, la date
de l’incorporation est généralement mieux connue et d’autres informations peuvent être également
disponibles, ce qui permet de réduire l’incertitude de l’estimation dosimétrique. Dans ces cas, les
objectifs de l’estimation de la dose sont d’assister la mise en place des contre-mesures (par exemple un
traitement de décorporation), de respecter les obligations légales et d’aider aux décisions concernant
les améliorations des conditions de travail. Dans la plupart des cas, les programmes de surveillance
spéciale sont mis en place individuellement. Dans les cas où un dépassement de la limite de dose efficace
annuelle peut être suspecté, il peut être approprié d’augmenter le nombre de mesures afin de pouvoir
estimer les fonctions de rétention et d’excrétion et les paramètres du modèle biocinétique spécifiques à
un individu.
5.3.7 Mise en œuvre d’un programme de surveillance
Un logigramme détaillé est proposé à la Figure 1 pour faciliter la mise en œuvre des programmes de
surveillance. Ce logigramme présente les programmes de surveillance à appliquer selon les trois points
de départ suivants correspondant à différentes situations:
1) la mise en service d’une nouvelle installation de médecine nucléaire ou le contrôle d’une installation
existante;
2) l’élaboration d’un nouveau protocole (par exemple pour un nouveau radiopharmaceutique);
3) la suspicion d’une contamination accidentelle.
Une revue périodique des programmes de surveillance doit être menée en tenant compte des données
enregistrées (résultats des mesurages de contamination interne et, lorsqu’elles sont réalisées,
estimations dosimétriques).
Figure 1 — Logigramme pour la mise en œuvre des programmes de surveillance
6 Radionucléides courants
La plupart des radionucléides utilisés en médecine nucléaire ont des périodes courtes (Tableau 1). Pour
un usage à des fins diagnostiques, l’énergie émise doit être déposée dans le scintillateur de la gamma-
caméra, avec une absorption minimale par les tissus. Au contraire, pour un usage thérapeutique,
l’énergie doit être déposée dans les tissus. Par conséquent, les radionucléides avec une décroissance
γ ou β+ sont utilisés en imagerie et les radionucléides avec une décroissance α ou β- sont utilisés à des
fins thérapeutiques.
10 © ISO 2016 – Tous droits réservés
Tableau 1 — Radionucléides les plus couramment utilisés en médecine nucléaire
a
Radionucléides Période Principales émissions
i
C-11 20,39 min β+, γ
i
O-15 122,24 s β+, γ
i
F-18 109,77 min e-, β+, γ
Ga-67 3,26 j e-, X, γ
i
Ga-68 67,71 min β+, γ ,γ
Sr-89 50,53 j β-, γ
Y-90 64,10 h β-
Tc-99m 6,02 h e-, X, γ
In-111 2,80 j e-, X, γ
I-123 13,27 h e-, X, γ
I-131 8,02 j e-, β-, X, γ
Sm-153 46,50 h e-, β-, X, γ
Er-169 9,40 j β-, γ
Lu-177 6,65 j β-, γ
Re-186 3,72 j e-, β-, X, γ
Re-188 17,00 h
...












Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...