ISO 10381-2:2002
(Main)Soil quality - Sampling - Part 2: Guidance on sampling techniques
Soil quality - Sampling - Part 2: Guidance on sampling techniques
ISO 10381-2:2002 gives guidance on techniques for taking and storing soil samples so that these can subsequently be examined for the purpose of providing information on soil quality. ISO 10381-2:2002 gives information on typical equipment that is applicable in particular sampling situations to enable correct sampling procedures to be carried out and representative samples to be collected. Guidance is given on the selection of the equipment and the techniques to use to enable both disturbed and undisturbed samples to be correctly taken at different depths. The guidance provided is intended to assist in the collection of samples for soil quality for agricultural purposes and also provide guidance for the collection of samples for contamination investigations which will require different techniques and skills. ISO 10381-2:2002 makes reference to some aspects of the collection of samples of groundwater and soil gas as part of a soil sampling programme. ISO 10381-2:2002 specifically does not cover investigations for geotechnical purposes, though where redevelopment of a site is envisaged the soil quality investigation and the geotechnical investigation may be beneficially combined. ISO 10381-2:2002 is not applicable to the sampling of hard strata such as bedrock. Techniques to collect information on soil quality without taking samples, such as geophysical methods, are not covered by ISO 10381-2:2002.
Qualité du sol — Échantillonnage — Partie 2: Lignes directrices pour les techniques d'échantillonnage
L'ISO 10381-2:2002 donne des lignes directrices relatives aux techniques de prélèvement et de stockage des échantillons de sol en vue d'examiner ceux-ci ultérieurement pour obtenir des informations sur la qualité du sol. L'ISO 10381-2:2002 fournit des informations sur les équipements types qui peuvent être utilisés dans des situations d'échantillonnage particulières pour mettre en oeuvre des modes opératoires d'échantillonnage corrects et recueillir des échantillons représentatifs. Des lignes directrices sont fournies concernant la sélection des équipements et des techniques à utiliser pour prélever correctement des échantillons remaniés et non remaniés à différentes profondeurs. Les lignes directrices fournies visent à faciliter le prélèvement d'échantillons pour déterminer la qualité du sol à des fins agricoles et donnent également des indications pour le prélèvement d'échantillons pour des études de contamination qui nécessiteront des techniques et des compétences distinctes. L'ISO 10381-2:2002 fait référence à certains aspects de la collecte d'échantillons d'eau souterraine et de gaz présents dans le sol dans le cadre d'un programme d'échantillonnage des sols. L'ISO 10381-2:2002 ne couvre pas spécifiquement les études à des fins géotechniques, même si les études de qualité du sol et les études géotechniques peuvent être avantageusement associées lorsque l'on envisage le redéveloppement d'un site. L'ISO 10381-2:2002 n'est pas applicable à l'échantillonnage des strates dures, telles que le socle rocheux. Les techniques de collecte d'informations sur la qualité du sol sans prélèvement d'échantillons, telles que les méthodes géophysiques, ne sont pas couvertes par l'ISO 10381-2:2002.
Kakovost tal – Vzorčenje – 2. del: Navodilo za tehnike vzorčenja
General Information
Relations
Frequently Asked Questions
ISO 10381-2:2002 is a standard published by the International Organization for Standardization (ISO). Its full title is "Soil quality - Sampling - Part 2: Guidance on sampling techniques". This standard covers: ISO 10381-2:2002 gives guidance on techniques for taking and storing soil samples so that these can subsequently be examined for the purpose of providing information on soil quality. ISO 10381-2:2002 gives information on typical equipment that is applicable in particular sampling situations to enable correct sampling procedures to be carried out and representative samples to be collected. Guidance is given on the selection of the equipment and the techniques to use to enable both disturbed and undisturbed samples to be correctly taken at different depths. The guidance provided is intended to assist in the collection of samples for soil quality for agricultural purposes and also provide guidance for the collection of samples for contamination investigations which will require different techniques and skills. ISO 10381-2:2002 makes reference to some aspects of the collection of samples of groundwater and soil gas as part of a soil sampling programme. ISO 10381-2:2002 specifically does not cover investigations for geotechnical purposes, though where redevelopment of a site is envisaged the soil quality investigation and the geotechnical investigation may be beneficially combined. ISO 10381-2:2002 is not applicable to the sampling of hard strata such as bedrock. Techniques to collect information on soil quality without taking samples, such as geophysical methods, are not covered by ISO 10381-2:2002.
ISO 10381-2:2002 gives guidance on techniques for taking and storing soil samples so that these can subsequently be examined for the purpose of providing information on soil quality. ISO 10381-2:2002 gives information on typical equipment that is applicable in particular sampling situations to enable correct sampling procedures to be carried out and representative samples to be collected. Guidance is given on the selection of the equipment and the techniques to use to enable both disturbed and undisturbed samples to be correctly taken at different depths. The guidance provided is intended to assist in the collection of samples for soil quality for agricultural purposes and also provide guidance for the collection of samples for contamination investigations which will require different techniques and skills. ISO 10381-2:2002 makes reference to some aspects of the collection of samples of groundwater and soil gas as part of a soil sampling programme. ISO 10381-2:2002 specifically does not cover investigations for geotechnical purposes, though where redevelopment of a site is envisaged the soil quality investigation and the geotechnical investigation may be beneficially combined. ISO 10381-2:2002 is not applicable to the sampling of hard strata such as bedrock. Techniques to collect information on soil quality without taking samples, such as geophysical methods, are not covered by ISO 10381-2:2002.
ISO 10381-2:2002 is classified under the following ICS (International Classification for Standards) categories: 13.080.05 - Examination of soils in general. The ICS classification helps identify the subject area and facilitates finding related standards.
ISO 10381-2:2002 has the following relationships with other standards: It is inter standard links to ISO 18400-102:2017. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.
You can purchase ISO 10381-2:2002 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of ISO standards.
Standards Content (Sample)
INTERNATIONAL ISO
STANDARD 10381-2
First edition
2002-11-01
Soil quality — Sampling —
Part 2:
Guidance on sampling techniques
Qualité du sol — Échantillonnage —
Partie 2: Lignes directrices pour les techniques d'échantillonnage
Reference number
©
ISO 2002
PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.
© ISO 2002
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.ch
Web www.iso.ch
Printed in Switzerland
ii © ISO 2002 – All rights reserved
Contents Page
Foreword . iv
Introduction. v
1 Scope. 1
2 Normative references. 1
3 Terms and definitions. 2
4 Principle . 2
4.1 Sampling of soil. 2
4.2 Sampling of water . 3
4.3 Sampling of soil gas . 3
5 Choice of sampling technique . 3
5.1 Preliminary information. 3
5.2 Type of sample . 4
5.3 Selection of sampling technique . 5
5.4 Cross-contamination . 6
6 Safety and environmental protection in the investigation.6
6.1 Personal protection. 7
6.2 Protection of buildings and installations. 7
6.3 Environmental protection. 7
6.4 Backfilling . 8
7 Techniques . 8
7.1 General . 8
7.2 Cross-contamination . 10
7.3 Undisturbed samples. 11
8 Storage of samples . 11
8.1 General . 11
8.2 Sample containers . 11
8.3 Labelling. 13
8.4 Sample storage. 13
9 Sampling report. 14
Annex A (informative) Manually and power-operated sampling tools . 15
Bibliography. 23
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO
member bodies). The work of preparing International Standards is normally carried out through ISO technical
committees. Each member body interested in a subject for which a technical committee has been established has
the right to be represented on that committee. International organizations, governmental and non-governmental, in
liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical
Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.
The main task of technical committees is to prepare International Standards. Draft International Standards adopted
by the technical committees are circulated to the member bodies for voting. Publication as an International
Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this part of ISO 10381 may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 10381-2 was prepared by Technical Committee ISO/TC 190, Soil quality, Subcommittee SC 2, Sampling.
ISO 10381 consists of the following parts, under the general title Soil quality — Sampling:
Part 1: Guidance on the design of sampling programmes
Part 2: Guidance on sampling techniques
Part 3: Guidance on safety
Part 4: Guidance on the procedure for the investigation of natural, near-natural and cultivated sites
Part 5: Guidance on investigation of soil contamination of urban and industrial sites
Part 6: Guidance on the collection, handling and storage of soil for the assessment of aerobic microbial
processes in the laboratory
The following parts are under preparation:
Part 7: Guidance on the investigation and sampling of soil gas
Part 8: Guidance on the sampling of stockpiles
Annex A of this part of ISO 10381 is for information only.
iv © ISO 2002 – All rights reserved
Introduction
This part of ISO 10381 is one of a group of International Standards intended to be used in conjunction with each
other where necessary. It deals with various aspects of sampling for the purposes of soil investigation, including
agricultural and contamination investigations, but is not applicable to investigations for geotechnical purposes.
General principles to be applied in the design of sampling programmes for the purpose of characterization of soil
and identification of sources and effects of pollution of soil and related material are given in ISO 10381-1.
ISO 10381-1, ISO 10381-4 and ISO 10381-5 should be consulted regarding the appropriate equipment, information
about where to sample, the tests to be conducted, the type of sample, the depth of sampling, soil type and the
required representativeness of the sampling system.
INTERNATIONAL STANDARD ISO 10381-2:2002(E)
Soil quality — Sampling —
Part 2:
Guidance on sampling techniques
1 Scope
This part of ISO 10381 gives guidance on techniques for taking and storing soil samples so that these can
subsequently be examined for the purpose of providing information on soil quality.
This part of ISO 10381 gives information on typical equipment that is applicable in particular sampling situations to
enable correct sampling procedures to be carried out and representative samples to be collected. Guidance is
given on the selection of the equipment and the techniques to use to enable both disturbed and undisturbed
samples to be correctly taken at different depths.
The guidance provided is intended to assist in the collection of samples for soil quality for agricultural purposes and
also provide guidance for the collection of samples for contamination investigations which will require different
techniques and skills.
This part of ISO 10381 makes reference to some aspects of the collection of samples of groundwater and soil gas
as part of a soil sampling programme.
This part of ISO 10381 specifically does not cover investigations for geotechnical purposes, though where
redevelopment of a site is envisaged the soil quality investigation and the geotechnical investigation may be
beneficially combined.
This part of ISO 10381 is not applicable to the sampling of hard strata such as bedrock.
Techniques to collect information on soil quality without taking samples, such as geophysical methods, are not
covered by this part of ISO 10381.
2 Normative references
The following normative documents contain provisions which, through reference in this text, constitute provisions of
this part of ISO 10381. For dated references, subsequent amendments to, or revisions of, any of these publications
do not apply. However, parties to agreements based on this part of ISO 10381 are encouraged to investigate the
possibility of applying the most recent editions of the normative documents indicated below. For undated
references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain
registers of currently valid International Standards.
ISO 11074-1, Soil quality — Vocabulary — Part 1: Terms and definitions relating to the protection and pollution of
the soil
ISO 11074-2, Soil quality — Vocabulary — Part 2: Terms and definitions relating to sampling
ISO 11074-4, Soil quality — Vocabulary — Part 4: Terms and definitions related to rehabilitation of soils and sites
3 Terms and definitions
For the purposes of this part of ISO 10381, the terms and definitions in ISO 11074-1, ISO 11074-2, ISO 11074-4
and the following apply.
3.1
spot sample
single sample
sample of material collected from a single point
NOTE This may be a disturbed or undisturbed sample.
3.2
slot sample
sample taken as a vertical slot from within a stratum or other subpart which is putatively homogeneous
NOTE This is a disturbed sample.
3.3
stratified sample
sample obtained as a combination of spot samples from strata or subparts, putatively homogeneous
NOTE This is a disturbed sample.
3.4
cluster sample
sample which is a composite of small incremental point samples taken close together
NOTE This is a disturbed sample.
3.5
spatial sample
sample which is a composite of small incremental point samples taken over an area (such as a field)
NOTE This is a disturbed sample.
4 Principle
4.1 Sampling of soil
Soil samples are collected and examined primarily to determine associated physical, chemical, biological and
radiological parameters. This clause outlines the more general factors to be considered when selecting sampling
equipment and its use. More detailed information is given in subsequent clauses.
Whenever a volume of soil is to be characterized, it is generally impossible to examine the whole and it is therefore
necessary to take samples. The samples collected need to be as fully representative as possible of the whole to be
characterized, and all precautions should be taken to ensure that, as far as possible, the samples do not undergo
any changes in the interval between sampling and analysis. The samples normally collected are described as
disturbed samples, i.e. the soil particles become loosened and separated in the sampling process. If it is necessary
to collect undisturbed samples, e.g. for microbiological or geotechnical purposes, the samples need to be collected
in such a manner that the soil particles and pore structure remain unaltered in comparison with the original ground
structure. The sampling of multiphase systems, such as soils containing water or gases which are not of natural
origin (e.g. waste materials), can present special problems.
The sampling technique should be selected to enable the collection of samples of ground material which can be
presented to the laboratory for examination or analysis to establish basic information on the pedology and
distribution of naturally occurring or manmade soils, their chemical, mineralogical and biological composition, and
their physical properties at selected locations.
2 © ISO 2002 – All rights reserved
The choice of sampling technique depends, in addition, on the required precision of the results, which in turn
depends on the ranges of concentration of components, the sampling procedures and the type of analysis.
Sampling equipment should be carefully selected in relation to the different materials which may be present in the
ground and the analysis to be carried out. Utmost care should be taken to avoid cross-contamination, loss of
volatile compounds, change of composition due to exposure to air, and other changes which may occur between
sampling and the testing of the sample.
Every soil sampling technique usually consists of two separate steps:
a) gaining access to the point of sampling (removing the cover or sealing, digging or drilling a hole to reach the
desired depth of sampling), and
b) taking the soil sample.
Both steps depend on each other and both shall meet the requirements of the sampling principles.
4.2 Sampling of water
Soil investigation programmes, particularly those carried out at contaminated sites, may also require water samples
to be taken. These should be collected in accordance with appropriate International Standards on ground or
surface water sampling with regard to ground investigation. For further information see ISO 10381-1.
4.3 Sampling of soil gas
Ground investigation programmes may involve assessment of soil gas composition for typical landfill gas
components such as methane and carbon dioxide. In the case of contaminated sites, the suspected presence of
solvents or fuels may require investigation. An International Standard (ISO 10381-7) is in the course of preparation
to cover such investigations, and some indicative guidance is incorporated in this part of ISO 10381.
5 Choice of sampling technique
5.1 Preliminary information
The choice of sampling technique, the selection of the sampling equipment and the method of taking soil samples
depends upon the objectives of the sampling, the strata to be sampled, the nature of possible contamination, and
the examination or analysis to be carried out on the samples.
Thus certain information is needed to make this choice. This information may include
the size and topography of the area to be sampled,
the nature of the ground to be sampled,
some indication of the possible lateral and vertical variations of soil type or strata,
the geology of the site and surrounding area,
the depth to groundwater and its direction of flow,
the depths from which samples are to be taken, taking into consideration the future use of the site, including
depth of excavations or foundations,
previous usage or treatment of the site,
the presence of buildings and obstructions, such as foundations or hardstandings, buried tanks and
underground services (e.g. electricity, sewers, mains, cables),
indications of the presence of underground tanks and service (for example inspection covers, inspection
chambers, vent pipes),
the presence of concrete or tarmac pathways, roadways or hardstandings,
the safety of the site personnel and protection of the environment,
the growth of vegetation leading to extensive root development,
the presence of unexpected surface-water pools or water-saturated ground,
the presence of fences, walls or earthworks designed to prevent access to the site,
the presence of tipped material above the level of the site, or material from the demolition of buildings,
location of water bodies at risk from contamination, including surface and ground water.
Extreme natural circumstances, such as permafrost, laterization, calcrete or other indurations, may occur which
require special techniques in order to obtain samples. This shall be known prior to the design of a sampling
programme.
To collect this information, a desk study or preliminary survey of the site is strongly recommended. When
investigating soils suspected of contamination, the preliminary survey is an essential part of the investigation
1) 1)
programme [see clause 6 of ISO 10381-1:— and clause 6 of ISO 10381-5:— ]. Its main relevant concerns are
a) to ensure an investigation which is both technically and cost effective;
b) to ensure the safety of personnel and to protect the environment.
The preliminary survey may comprise both desktop studies and site reconnaissance (field work). It does not
normally include taking samples, but in some circumstances limited sampling may be useful in relation to
determining the parameters for the site investigation, investigating some metholodical aspects, and identifying
possible hazards to the investigating personnel.
5.2 Type of sample
There are two basic types of sample which are collected for the purposes of investigating soil and ground
conditions. These are:
a) disturbed samples: samples obtained from the ground without any attempt to preserve the soil structure; that
is the soil particles are collected “loose” and are allowed to move in relation to each other;
b) undisturbed samples: samples obtained from the ground using a method designed to preserve the soil
structure; i.e. special sampling equipment is used so that the soil particles and voids cannot change from the
distribution which exists in the ground before sampling.
Disturbed samples are suitable for most purposes, except for some physical measurements, profiles and
microbiological examinations for which undisturbed samples may be required. Undisturbed samples should be
collected if it is intended to determine the presence and concentration of volatile organic compounds, since
disturbance will result in loss of these compounds to the atmosphere.
1)
To be published.
4 © ISO 2002 – All rights reserved
If undisturbed samples are required for soil sampling, these can be taken, for example, using a Kubiena Box, a
coring tool or coring cylinder. In each case the sampling device is pushed into the soil and subsequently removed
with the sample, so that the soil is collected in its original physical form.
There are different methods of taking samples from the ground for the purpose of investigating soil quality (see
clause 3).
If a slot sample (single sample) is small it may be taken for a spot sample. All other sampling methods produce
composite samples (average samples, aggregate samples). Composite samples are not useful to determine soil
characteristics that suffer changes during the composition process, such as concentrations of volatile compounds.
They also cannot be used if peak concentrations of any substance or variations of soil characteristics are to be
determined.
Spot samples can be readily collected using hand augers and other similar sampling techniques. Where
undisturbed samples are required, special equipment (see above) is necessary in order to collect the sample whilst
maintaining the original ground structure.
Cluster samples are appropriate when using machines for excavating ground to obtain samples. In these
circumstances, the samples should be formed by taking portions from locations within the bucket of excavated
material (e.g. nine-point sample).
Spatial samples or other composite samples can be collected using hand or powered augers, but care shall be
taken to ensure the auger repetitively collects the same amount of sample.
5.3 Selection of sampling technique
Within this International Standard, it is not possible to fix one sampling technique to every possible sampling
objective, because there are so many objectives and many of them are satisfied by more than one technique.
The following examples indicate some of the main rules that shall be followed.
Soil characteristics that are bound to soil horizons (which are most of them) require horizon-bound (stratified)
sampling.
If the spatial variation of soil characteristics is of interest, spot samples are required. If the required precision of
the results is low, other types of sample also may be accepted.
Samples taken to identify the distribution and concentration of particular elements or compounds are normally
spot samples, or perhaps slot or cluster samples within the area being examined.
Samples taken to assess the overall quality or nature of the ground in an area, e.g. for certain agricultural
purposes, are spatial samples.
Sample size shall be sufficiently large to enable all tests and analyses to be performed.
Sample size shall be sufficiently large to represent all soil characteristics of interest.
Samples shall not be too large to obscure variations in soil characteristics of interest.
Soil characteristics of interest shall not be affected by the sampling process, nor by the transportation and
storage of samples.
Representative sampling usually means that increments with different properties shall be (if applicable at all)
combined into a composite sample only according to their volume fraction of the parent population to be
sampled.
Cross-contamination shall be avoided, as well as the spread of contaminants.
5.4 Cross-contamination
Chemical soil properties, in particular, can be changed by the sampling procedure in many ways:
by transmission of substances fixed to sampling equipment or containers;
by uncontrolled transport of soil particles to the sampling point from adjacent points of a site or a soil profile,
especially by material dropping into the sample from higher up a bore hole, either during augering/drilling or
during withdrawal of the sample;
by transfer of substances from the sampling device or container;
by loss of volatile compounds, leakage of liquids or mechanical separation;
by contamination with auxiliary substances used to enable or facilitate the sampling (fuels, exhaust fumes,
greases, oils, lubricants, glues and others);
by contamination with wind-blown particles, spread liquids or precipitation.
Whatever method is used for obtaining the sample, it is important that the sampling system used and the material
from which the equipment is made do not contaminate the sample.
The sampling equipment should be kept clean so that parts of a previous sample are not transmitted to a
subsequent sample causing cross-contamination. Even for agricultural purposes, with repetitive sampling across a
field to form a composite sample, the sampling device should be cleaned between each location.
Where it is necessary to use lubrication, e.g. water, to ease formation of a borehole to enable sample collection,
only lubrication should be used which will not conflict with nor confound the analysis to be performed on the
samples in the sense of matrix effects or contribution to the contamination.
Only devices of controlled chemical quality and composition shall be used to handle samples. For example, a hand
trowel of stainless steel can be useful when investigating organic compounds, while plastics normally do not
interfere with heavy metals. Devices that have contact with samples shall never be painted, greased or have
otherwise chemically treated surfaces.
Lining the borehole can prevent cross-contamination from material dropping into the sample from higher up the
bore.
6 Safety and environmental protection in the investigation
In any soil-sampling investigation there is some disturbance of the ground. In areas of agricultural use, woodland
and semi-natural vegetation, this disturbance is usually minimal and unlikely to result in the creation of any hazard.
When carrying out investigations on highly contaminated sites, consideration should be given to using probehole,
borehole or similar techniques, rather than excavations, in order to minimize and reduce problems due to exposure,
disturbance and potential dispersal of the contamination.
When the site surface prior to the investigation is obviously contaminated, or presents a general environmental
problem due to exposure to humans or animals, and there is the possibility of dispersal of contaminated dust or
water pollution, in addition to taking precautions to minimize disturbance and dispersal of contamination during the
site investigation, the situation should be brought to the attention of the landowner and local authorities, so that
preventative measures can be implemented. National or local regulations on information procedures or obligations
shall be obeyed.
NOTE See also ISO 10381-3.
6 © ISO 2002 – All rights reserved
6.1 Personal protection
During a soil-sampling investigation there are different procedures that may influence human health and safety:
handling sampling instruments and machinery;
unstable ground or slopes, open holes or excavations;
exposure of contaminants to sampling personnel and people living near by or passing by;
exposure of sampling personnel to contaminants released from transport or storage containers or during
sample pretreatment;
inconveniences from noise, dust, odours and so on, resulting from heavy fieldwork.
Where there is the possibility of munitions or explosives residues, the assistance of a specialist may be necessary
to ensure that the site has been cleared and made safe before the commencement of any on-site work.
All possible hazardous effects of soil sampling on human health shall be considered when selecting appropriate
sampling methods. If this is done carefully, most adverse effects on other organisms, constructions and the
environment will be regarded automatically.
6.2 Protection of buildings and installations
Prior to the commencement of any intrusive survey, it is essential that the location of any below-ground services be
identified to prevent damage, and the location of any overhead cables (power lines and telecommunications) be
identified. In agricultural surveys, features such as irrigation and drainage lines should be identified.
Locations of services and other features which shall not be damaged can be identified by consultation with the
landowner (or tenant) and the service utilities. Even when service locations have been identified, the sampling
location should be checked with a services monitor before commencement of the intrusive investigation. If there is
doubt about the possibility of services being present, the initial 1,0 m to 1,5 m, or the maximum depth of the
services, should be dug by hand.
Excavations shall be planned with respect to slope stability, stability of the ground of adjacent buildings and
possible emissions of hazardous substances from contaminated ground. If problem is suspected, bores or drillings
should be used instead of excavations.
6.3 Environmental protection
Material exposed on the surface can present a hazard to the environment due to the release of odours, fumes,
dust, liquid contaminants or contaminated water. For example, dust or contaminated water can wash into streams
or ponds or onto adjoining land. This can be difficult to control and can only be minimized by carrying out work
carefully. This is equally important on completion of the investigation; the backfilling of trial pits and cleanup of the
site after the investigation should ensure that such exposure does not occur.
When the arisings are a result of drilling and construction of boreholes, the amount is likely to be small and unlikely
to create any disposal problem outside the site. Such arisings should be collected together and disposed of to a
suitable location upon completion of the investigation.
If the water table is reached, trial pits will fill with groundwater that may be contaminated or covered with
non-aqueous fluids such as oils. In these situations, special care is required in backfilling in order to prevent the
escape or dispersal of the contaminated liquids onto the site surface or into uncontaminated soil.
Open water with contamination or oil sheets poses a danger to waterfowl and other animals.
If boreholes are installed or excavations penetrate impermeable strata, e.g. clay, new pathways can be created
which result in increased dispersion of contamination. In these situations, the excavations should avoid penetrating
the protective impermeable strata. For boreholes, it is possible to drill down to the impermeable strata, and insert
an impermeable protective plug of bentonite or similar material, through which a smaller-diameter inner borehole
can be drilled to greater depth. In this way a seal is established which prevents the dispersion of the contamination.
Increased dispersal can also result where contamination exists beneath a relatively impermeable layer, such as
tarmac or concrete hardstanding. If such a layer is broken through and the impermeable layer is not replaced, then
the resultant increased penetration of rainwater can result in greater percolation and dispersion of contamination
into the ground and groundwater. In such circumstances the borehole or excavation should be reinstated with an
appropriate low-permeability cover layer of appropriate thickness. Also, in such circumstances, because of the
possible settlement of the backfilled trial pits, a period of maintenance should be incorporated into the site
investigation specification, so that the possible effects of any settlement can be rectified.
6.4 Backfilling
Each soil-sampling process produces voids where the sample has been removed or access to the sampling point
was enabled. These voids can present new migratory pathways which shall be considered, especially in
contaminated ground. Big holes and excavations present a hazard to organisms and machines that may fall into
them and may influence the stability of the surrounding ground. If not used for installation of monitoring devices,
profiling or foundation holes, excavations originated from soil sampling therefore usually must be refilled.
When backfilling trial pits, the excavated material may be used, in which case it should be returned to the original
depth below ground level, ensuring that any obviously suspect material is buried well below the ground surface.
Where this method of backfilling could result in suspect material coming into contact with apparently
uncontaminated ground, it may be necessary to use clean material for backfilling at least part of the excavation.
Measures should be taken so that no additional contamination is left at the surface of the site on completion of the
investigation. It may be necessary to import clean material to form a surface layer over the excavation upon
completion of the backfilling process. It may also be considered appropriate to backfill with clean material and
dispose of the excavated material off-site to a suitable location.
Local regulations and national legislation shall be observed.
When backfilling boreholes where contamination is suspected, it is advisable to grout the borehole to prevent the
possible dispersal of contamination and dispose of the arisings off-site to a suitable location.
Any surplus excavated material should be collected for safe disposal.
7 Techniques
7.1 General
The selection of sampling techniques should be guided by the following consecutive questions:
a) What are the soil characteristics of interest?
b) What type of sample is therefore required?
c) What amount of sample is needed for the investigations planned?
d) What precision of results is required and therefore what method can be used?
e) What is the accessibility of the sampling site?
f) What sampling depth must be reached and what are the basic physical soil characteristics?
Additionally, costs, safety, availability of qualified staff, machinery or instruments, time and environmental aspects
will lead to the final selection of the appropriate sampling technique. The arguments for the final decision should be
documented.
8 © ISO 2002 – All rights reserved
Specialized tools and techniques may be required for collection of samples for physical, geological and biological
purposes. These forms of sampling should be carried out under the guidance of an appropriate expert.
Choices of sampling method include the use of machinery or manual methods. The sampling may be carried out
near the ground surface, at some depth below ground level or from locations deep below the ground surface.
Methods of achieving the desired depth for sampling are by formation of excavations (e.g. trial pits), by driven
probes, or by drilling (e.g. boreholes).
Table 1 gives guidance on the selection of appropriate sampling techniques for the circumstances anticipated in a
site investigation. It is not possible to include all possible circumstances in such a table, and on occasion
judgement will be necessary in determining the most appropriate sampling method.
The most commonly used methods of sampling and providing access to the sampling point are covered in annex A.
This does not preclude the use of other techniques which are suited to the problems of a particular location, e.g.
areas of permafrost, nor does it preclude the use of other methods which have been developed. Whatever
technique is used, the principles of sample collection and the approach to sampling to obtain an appropriately
representative sample should be adhered to.
The choice of sampling method is determined by taking into account all the needs of the investigation, including
distribution of sampling locations, size and type of sample (see 5.2), and the nature of the site including any
problems the site poses to carrying out the investigation.
Sampling during borehole construction allows the required integrity for the chemical, physical and biological
investigation of selected soil horizons. Gas and water sampling may also be undertaken for specific purposes
relating to the need to acquire information rapidly, for example monitoring the borehole for methane and carbon
dioxide or volatile organic compounds and on occasions when the rapid identification of chemical constituents in
groundwater is required. It is recommended that the monitoring over time, of groundwater horizons for
hydrogeological and chemical parameters as well as ground composition, is undertaken from cased wells or
standpipes installed in boreholes. The needs of the sampling strategy should identify the requirements of borehole
construction so that the design can be specified in line with the monitoring needs.
Table 1 — Applicability of ground excavation, drilling and sampling techniques
Suitability for ground type
Soil profile Depth of
Method of Normal Suitable Type of
Designa-
detail sampling
Method sample area/ below sampling Comments
tion Unsuitable Suitable for
extraction diameter water table possible
mm m
for soil type soil type
Manual methods
Hand auger Rotary With auger 50 mm to 50 Non- Clay, silt, No Disturbed 0 to 2,0 Sampling to
100 mm cohesive cohesive 5,0 m possible in
gravel, sand and cohesive sandy
stones, similar ground
rubble, lumps ground
of material
Hand Digging With 1 m ¥ 1 m 10 Solid All types No Disturbed or 0 to 1,5 In unstable
excavation sampling tool concrete or undisturbed ground the sides
similar may need
obstruction support
Power-driven sampling holes
Power auger Rotary With auger 50 mm 50 Non- Clay, silt, No Disturbed 0,05 to 2,0 Sampling to
cohesive cohesive and and 5,0 m possible in
gravel, large similar undisturbed cohesive sandy
stones, ground ground
lumps of
material
Pulse Ramming With sample 50 mm 25 Gravels, Clay, silt, Yes Disturbed 0,5 to 10
boring/ tool on large stones, cohesive and
dynamic machine lumps of sand and undisturbed
probe material similar
ground
Multi- Percussion Various bits > 30 mm 150 to 2 500 No natural All types Yes Disturbed 0 to 100 Suitable
function obstructions including and specially in
Rotary
drill glacial till and undisturbed glaciated terrain
bedrock
Pressure
Light cable Percussion With boring 150 mm to 100 Obstructions, Clay, silt, Yes Disturbed 0,5 to 30
tools 250 mm e.g. tyres, cohesive and
wood, sand and undisturbed
concrete similar
ground
Rotary driils Rotary Not possible. 150 mm to 300 to 500 Solid All soils No None 1,0 to 40 Suitable for
(Open hole) For borehole 500 mm obstructions passing through
formation top layers which
only are not of
interest
Rotary drills Rotary Retrieval of 150 mm to 300 to 500 Solid All soils No None 1,0 to 20
(Core drill) core 500 mm obstructions
Continuous Rotary Not possible 150 mm to 300 to 500 Solid All soils No None 1,0 to 20 Suitable for
flight auger 500 mm obstructions passing through
top layers which
are of interest
Hollow stem Rotary With 150 mm to 50 Solid All soils Yes Disturbed 1,0 to 20 Sampling down
auger sampling 500 mm obstructions and centre stem with
equipment undisturbed auger in situ
down stem
Driven Pressure Retrieval of 30 mm to 10 Solid All soils Yes Disturbed 0 to 30 Core obtained
probes core 150 mm obstructions and and in situ
undisturbed instruments
possible in some
cases
Machine excavations
Trial pit Digging With 3 m to 4 m ¥ 10 Large solid All soils and No Disturbed 0 to 6
sampling 1 m obstructions material and
tools undisturbed
7.2 Cross-contamination
Whatever method is used for obtaining the sample, it is important that the sampling system used and the material
from which the equipment is made does not contaminate the sample. This avoidance of contamination includes
avoiding contamination of the sample due to contact with the sampling equipment or containers and also avoiding
the loss of contaminants from the sample by adsorption or volatilization.
10 © ISO 2002 – All rights reserved
The sampling equipment should be kept clean so that parts of a previous sample are not transmitted to a
subsequent sample causing cross-contamination. For agricultural purposes, even with repetitive sampling across a
field to form a composite sample, the sampling device should be cleaned between each location. For geological
and contamination investigations, all sampling equipment should be thoroughly cleaned between each sample.
Contamination of samples due to lubrication used to ease sample collection, or contamination due to lubricants and
oils, greases or fuels due to the machinery used for sampling, should be avoided. If it is necessary to use
lubrication, e.g. water, to ease formation of a borehole to enable sample collection, only lubrication should be used
which will not conflict with nor confound the analysis to be performed on the samples in the sense of matrix effects
or contribution to the contamination.
A hand trowel of stainless steel should be used to place samples into sample containers. The quality of the
stainless steel should however first be verified to ensure that cross-contamination of the samples will not occur or
interfere with the quality of the analytical data.
The most commonly used methods of drilling, excavation and sampling of the ground provide disturbed samples. If
undisturbed samples are required, special sampling equipment is required and extra care should be taken in
collecting such samples.
7.3 Undisturbed samples
If undisturbed samples are required for soil sampling, these can be taken using, for example, a sampling frame, a
coring tool or cylinder. In each case the sampling device is pushed into the soil and subsequently removed with the
sample so that the soil is collected in its original physical form.
8 Storage of samples
8.1 General
Methods of sampling and preservation of samples for physical, chemical and biological (including microbiological)
examination may differ greatly, therefore storage of samples including method and speed of transport to the
investigating laboratory should be carried out in accordance with the requirements of the aim of the investigation
and the desired accuracy of the analytical results. It is essential that the laboratory which will perform the analysis
is consulted prior to the commencement of the investigation, in o
...
INTERNATIONAL ISO
STANDARD 10381-2
First edition
2002-11-01
Soil quality — Sampling —
Part 2:
Guidance on sampling techniques
Qualité du sol — Échantillonnage —
Partie 2: Lignes directrices pour les techniques d'échantillonnage
Reference number
©
ISO 2002
PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.
© ISO 2002
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.ch
Web www.iso.ch
Printed in Switzerland
ii © ISO 2002 – All rights reserved
Contents Page
Foreword . iv
Introduction. v
1 Scope. 1
2 Normative references. 1
3 Terms and definitions. 2
4 Principle . 2
4.1 Sampling of soil. 2
4.2 Sampling of water . 3
4.3 Sampling of soil gas . 3
5 Choice of sampling technique . 3
5.1 Preliminary information. 3
5.2 Type of sample . 4
5.3 Selection of sampling technique . 5
5.4 Cross-contamination . 6
6 Safety and environmental protection in the investigation.6
6.1 Personal protection. 7
6.2 Protection of buildings and installations. 7
6.3 Environmental protection. 7
6.4 Backfilling . 8
7 Techniques . 8
7.1 General . 8
7.2 Cross-contamination . 10
7.3 Undisturbed samples. 11
8 Storage of samples . 11
8.1 General . 11
8.2 Sample containers . 11
8.3 Labelling. 13
8.4 Sample storage. 13
9 Sampling report. 14
Annex A (informative) Manually and power-operated sampling tools . 15
Bibliography. 23
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO
member bodies). The work of preparing International Standards is normally carried out through ISO technical
committees. Each member body interested in a subject for which a technical committee has been established has
the right to be represented on that committee. International organizations, governmental and non-governmental, in
liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical
Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.
The main task of technical committees is to prepare International Standards. Draft International Standards adopted
by the technical committees are circulated to the member bodies for voting. Publication as an International
Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this part of ISO 10381 may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 10381-2 was prepared by Technical Committee ISO/TC 190, Soil quality, Subcommittee SC 2, Sampling.
ISO 10381 consists of the following parts, under the general title Soil quality — Sampling:
Part 1: Guidance on the design of sampling programmes
Part 2: Guidance on sampling techniques
Part 3: Guidance on safety
Part 4: Guidance on the procedure for the investigation of natural, near-natural and cultivated sites
Part 5: Guidance on investigation of soil contamination of urban and industrial sites
Part 6: Guidance on the collection, handling and storage of soil for the assessment of aerobic microbial
processes in the laboratory
The following parts are under preparation:
Part 7: Guidance on the investigation and sampling of soil gas
Part 8: Guidance on the sampling of stockpiles
Annex A of this part of ISO 10381 is for information only.
iv © ISO 2002 – All rights reserved
Introduction
This part of ISO 10381 is one of a group of International Standards intended to be used in conjunction with each
other where necessary. It deals with various aspects of sampling for the purposes of soil investigation, including
agricultural and contamination investigations, but is not applicable to investigations for geotechnical purposes.
General principles to be applied in the design of sampling programmes for the purpose of characterization of soil
and identification of sources and effects of pollution of soil and related material are given in ISO 10381-1.
ISO 10381-1, ISO 10381-4 and ISO 10381-5 should be consulted regarding the appropriate equipment, information
about where to sample, the tests to be conducted, the type of sample, the depth of sampling, soil type and the
required representativeness of the sampling system.
INTERNATIONAL STANDARD ISO 10381-2:2002(E)
Soil quality — Sampling —
Part 2:
Guidance on sampling techniques
1 Scope
This part of ISO 10381 gives guidance on techniques for taking and storing soil samples so that these can
subsequently be examined for the purpose of providing information on soil quality.
This part of ISO 10381 gives information on typical equipment that is applicable in particular sampling situations to
enable correct sampling procedures to be carried out and representative samples to be collected. Guidance is
given on the selection of the equipment and the techniques to use to enable both disturbed and undisturbed
samples to be correctly taken at different depths.
The guidance provided is intended to assist in the collection of samples for soil quality for agricultural purposes and
also provide guidance for the collection of samples for contamination investigations which will require different
techniques and skills.
This part of ISO 10381 makes reference to some aspects of the collection of samples of groundwater and soil gas
as part of a soil sampling programme.
This part of ISO 10381 specifically does not cover investigations for geotechnical purposes, though where
redevelopment of a site is envisaged the soil quality investigation and the geotechnical investigation may be
beneficially combined.
This part of ISO 10381 is not applicable to the sampling of hard strata such as bedrock.
Techniques to collect information on soil quality without taking samples, such as geophysical methods, are not
covered by this part of ISO 10381.
2 Normative references
The following normative documents contain provisions which, through reference in this text, constitute provisions of
this part of ISO 10381. For dated references, subsequent amendments to, or revisions of, any of these publications
do not apply. However, parties to agreements based on this part of ISO 10381 are encouraged to investigate the
possibility of applying the most recent editions of the normative documents indicated below. For undated
references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain
registers of currently valid International Standards.
ISO 11074-1, Soil quality — Vocabulary — Part 1: Terms and definitions relating to the protection and pollution of
the soil
ISO 11074-2, Soil quality — Vocabulary — Part 2: Terms and definitions relating to sampling
ISO 11074-4, Soil quality — Vocabulary — Part 4: Terms and definitions related to rehabilitation of soils and sites
3 Terms and definitions
For the purposes of this part of ISO 10381, the terms and definitions in ISO 11074-1, ISO 11074-2, ISO 11074-4
and the following apply.
3.1
spot sample
single sample
sample of material collected from a single point
NOTE This may be a disturbed or undisturbed sample.
3.2
slot sample
sample taken as a vertical slot from within a stratum or other subpart which is putatively homogeneous
NOTE This is a disturbed sample.
3.3
stratified sample
sample obtained as a combination of spot samples from strata or subparts, putatively homogeneous
NOTE This is a disturbed sample.
3.4
cluster sample
sample which is a composite of small incremental point samples taken close together
NOTE This is a disturbed sample.
3.5
spatial sample
sample which is a composite of small incremental point samples taken over an area (such as a field)
NOTE This is a disturbed sample.
4 Principle
4.1 Sampling of soil
Soil samples are collected and examined primarily to determine associated physical, chemical, biological and
radiological parameters. This clause outlines the more general factors to be considered when selecting sampling
equipment and its use. More detailed information is given in subsequent clauses.
Whenever a volume of soil is to be characterized, it is generally impossible to examine the whole and it is therefore
necessary to take samples. The samples collected need to be as fully representative as possible of the whole to be
characterized, and all precautions should be taken to ensure that, as far as possible, the samples do not undergo
any changes in the interval between sampling and analysis. The samples normally collected are described as
disturbed samples, i.e. the soil particles become loosened and separated in the sampling process. If it is necessary
to collect undisturbed samples, e.g. for microbiological or geotechnical purposes, the samples need to be collected
in such a manner that the soil particles and pore structure remain unaltered in comparison with the original ground
structure. The sampling of multiphase systems, such as soils containing water or gases which are not of natural
origin (e.g. waste materials), can present special problems.
The sampling technique should be selected to enable the collection of samples of ground material which can be
presented to the laboratory for examination or analysis to establish basic information on the pedology and
distribution of naturally occurring or manmade soils, their chemical, mineralogical and biological composition, and
their physical properties at selected locations.
2 © ISO 2002 – All rights reserved
The choice of sampling technique depends, in addition, on the required precision of the results, which in turn
depends on the ranges of concentration of components, the sampling procedures and the type of analysis.
Sampling equipment should be carefully selected in relation to the different materials which may be present in the
ground and the analysis to be carried out. Utmost care should be taken to avoid cross-contamination, loss of
volatile compounds, change of composition due to exposure to air, and other changes which may occur between
sampling and the testing of the sample.
Every soil sampling technique usually consists of two separate steps:
a) gaining access to the point of sampling (removing the cover or sealing, digging or drilling a hole to reach the
desired depth of sampling), and
b) taking the soil sample.
Both steps depend on each other and both shall meet the requirements of the sampling principles.
4.2 Sampling of water
Soil investigation programmes, particularly those carried out at contaminated sites, may also require water samples
to be taken. These should be collected in accordance with appropriate International Standards on ground or
surface water sampling with regard to ground investigation. For further information see ISO 10381-1.
4.3 Sampling of soil gas
Ground investigation programmes may involve assessment of soil gas composition for typical landfill gas
components such as methane and carbon dioxide. In the case of contaminated sites, the suspected presence of
solvents or fuels may require investigation. An International Standard (ISO 10381-7) is in the course of preparation
to cover such investigations, and some indicative guidance is incorporated in this part of ISO 10381.
5 Choice of sampling technique
5.1 Preliminary information
The choice of sampling technique, the selection of the sampling equipment and the method of taking soil samples
depends upon the objectives of the sampling, the strata to be sampled, the nature of possible contamination, and
the examination or analysis to be carried out on the samples.
Thus certain information is needed to make this choice. This information may include
the size and topography of the area to be sampled,
the nature of the ground to be sampled,
some indication of the possible lateral and vertical variations of soil type or strata,
the geology of the site and surrounding area,
the depth to groundwater and its direction of flow,
the depths from which samples are to be taken, taking into consideration the future use of the site, including
depth of excavations or foundations,
previous usage or treatment of the site,
the presence of buildings and obstructions, such as foundations or hardstandings, buried tanks and
underground services (e.g. electricity, sewers, mains, cables),
indications of the presence of underground tanks and service (for example inspection covers, inspection
chambers, vent pipes),
the presence of concrete or tarmac pathways, roadways or hardstandings,
the safety of the site personnel and protection of the environment,
the growth of vegetation leading to extensive root development,
the presence of unexpected surface-water pools or water-saturated ground,
the presence of fences, walls or earthworks designed to prevent access to the site,
the presence of tipped material above the level of the site, or material from the demolition of buildings,
location of water bodies at risk from contamination, including surface and ground water.
Extreme natural circumstances, such as permafrost, laterization, calcrete or other indurations, may occur which
require special techniques in order to obtain samples. This shall be known prior to the design of a sampling
programme.
To collect this information, a desk study or preliminary survey of the site is strongly recommended. When
investigating soils suspected of contamination, the preliminary survey is an essential part of the investigation
1) 1)
programme [see clause 6 of ISO 10381-1:— and clause 6 of ISO 10381-5:— ]. Its main relevant concerns are
a) to ensure an investigation which is both technically and cost effective;
b) to ensure the safety of personnel and to protect the environment.
The preliminary survey may comprise both desktop studies and site reconnaissance (field work). It does not
normally include taking samples, but in some circumstances limited sampling may be useful in relation to
determining the parameters for the site investigation, investigating some metholodical aspects, and identifying
possible hazards to the investigating personnel.
5.2 Type of sample
There are two basic types of sample which are collected for the purposes of investigating soil and ground
conditions. These are:
a) disturbed samples: samples obtained from the ground without any attempt to preserve the soil structure; that
is the soil particles are collected “loose” and are allowed to move in relation to each other;
b) undisturbed samples: samples obtained from the ground using a method designed to preserve the soil
structure; i.e. special sampling equipment is used so that the soil particles and voids cannot change from the
distribution which exists in the ground before sampling.
Disturbed samples are suitable for most purposes, except for some physical measurements, profiles and
microbiological examinations for which undisturbed samples may be required. Undisturbed samples should be
collected if it is intended to determine the presence and concentration of volatile organic compounds, since
disturbance will result in loss of these compounds to the atmosphere.
1)
To be published.
4 © ISO 2002 – All rights reserved
If undisturbed samples are required for soil sampling, these can be taken, for example, using a Kubiena Box, a
coring tool or coring cylinder. In each case the sampling device is pushed into the soil and subsequently removed
with the sample, so that the soil is collected in its original physical form.
There are different methods of taking samples from the ground for the purpose of investigating soil quality (see
clause 3).
If a slot sample (single sample) is small it may be taken for a spot sample. All other sampling methods produce
composite samples (average samples, aggregate samples). Composite samples are not useful to determine soil
characteristics that suffer changes during the composition process, such as concentrations of volatile compounds.
They also cannot be used if peak concentrations of any substance or variations of soil characteristics are to be
determined.
Spot samples can be readily collected using hand augers and other similar sampling techniques. Where
undisturbed samples are required, special equipment (see above) is necessary in order to collect the sample whilst
maintaining the original ground structure.
Cluster samples are appropriate when using machines for excavating ground to obtain samples. In these
circumstances, the samples should be formed by taking portions from locations within the bucket of excavated
material (e.g. nine-point sample).
Spatial samples or other composite samples can be collected using hand or powered augers, but care shall be
taken to ensure the auger repetitively collects the same amount of sample.
5.3 Selection of sampling technique
Within this International Standard, it is not possible to fix one sampling technique to every possible sampling
objective, because there are so many objectives and many of them are satisfied by more than one technique.
The following examples indicate some of the main rules that shall be followed.
Soil characteristics that are bound to soil horizons (which are most of them) require horizon-bound (stratified)
sampling.
If the spatial variation of soil characteristics is of interest, spot samples are required. If the required precision of
the results is low, other types of sample also may be accepted.
Samples taken to identify the distribution and concentration of particular elements or compounds are normally
spot samples, or perhaps slot or cluster samples within the area being examined.
Samples taken to assess the overall quality or nature of the ground in an area, e.g. for certain agricultural
purposes, are spatial samples.
Sample size shall be sufficiently large to enable all tests and analyses to be performed.
Sample size shall be sufficiently large to represent all soil characteristics of interest.
Samples shall not be too large to obscure variations in soil characteristics of interest.
Soil characteristics of interest shall not be affected by the sampling process, nor by the transportation and
storage of samples.
Representative sampling usually means that increments with different properties shall be (if applicable at all)
combined into a composite sample only according to their volume fraction of the parent population to be
sampled.
Cross-contamination shall be avoided, as well as the spread of contaminants.
5.4 Cross-contamination
Chemical soil properties, in particular, can be changed by the sampling procedure in many ways:
by transmission of substances fixed to sampling equipment or containers;
by uncontrolled transport of soil particles to the sampling point from adjacent points of a site or a soil profile,
especially by material dropping into the sample from higher up a bore hole, either during augering/drilling or
during withdrawal of the sample;
by transfer of substances from the sampling device or container;
by loss of volatile compounds, leakage of liquids or mechanical separation;
by contamination with auxiliary substances used to enable or facilitate the sampling (fuels, exhaust fumes,
greases, oils, lubricants, glues and others);
by contamination with wind-blown particles, spread liquids or precipitation.
Whatever method is used for obtaining the sample, it is important that the sampling system used and the material
from which the equipment is made do not contaminate the sample.
The sampling equipment should be kept clean so that parts of a previous sample are not transmitted to a
subsequent sample causing cross-contamination. Even for agricultural purposes, with repetitive sampling across a
field to form a composite sample, the sampling device should be cleaned between each location.
Where it is necessary to use lubrication, e.g. water, to ease formation of a borehole to enable sample collection,
only lubrication should be used which will not conflict with nor confound the analysis to be performed on the
samples in the sense of matrix effects or contribution to the contamination.
Only devices of controlled chemical quality and composition shall be used to handle samples. For example, a hand
trowel of stainless steel can be useful when investigating organic compounds, while plastics normally do not
interfere with heavy metals. Devices that have contact with samples shall never be painted, greased or have
otherwise chemically treated surfaces.
Lining the borehole can prevent cross-contamination from material dropping into the sample from higher up the
bore.
6 Safety and environmental protection in the investigation
In any soil-sampling investigation there is some disturbance of the ground. In areas of agricultural use, woodland
and semi-natural vegetation, this disturbance is usually minimal and unlikely to result in the creation of any hazard.
When carrying out investigations on highly contaminated sites, consideration should be given to using probehole,
borehole or similar techniques, rather than excavations, in order to minimize and reduce problems due to exposure,
disturbance and potential dispersal of the contamination.
When the site surface prior to the investigation is obviously contaminated, or presents a general environmental
problem due to exposure to humans or animals, and there is the possibility of dispersal of contaminated dust or
water pollution, in addition to taking precautions to minimize disturbance and dispersal of contamination during the
site investigation, the situation should be brought to the attention of the landowner and local authorities, so that
preventative measures can be implemented. National or local regulations on information procedures or obligations
shall be obeyed.
NOTE See also ISO 10381-3.
6 © ISO 2002 – All rights reserved
6.1 Personal protection
During a soil-sampling investigation there are different procedures that may influence human health and safety:
handling sampling instruments and machinery;
unstable ground or slopes, open holes or excavations;
exposure of contaminants to sampling personnel and people living near by or passing by;
exposure of sampling personnel to contaminants released from transport or storage containers or during
sample pretreatment;
inconveniences from noise, dust, odours and so on, resulting from heavy fieldwork.
Where there is the possibility of munitions or explosives residues, the assistance of a specialist may be necessary
to ensure that the site has been cleared and made safe before the commencement of any on-site work.
All possible hazardous effects of soil sampling on human health shall be considered when selecting appropriate
sampling methods. If this is done carefully, most adverse effects on other organisms, constructions and the
environment will be regarded automatically.
6.2 Protection of buildings and installations
Prior to the commencement of any intrusive survey, it is essential that the location of any below-ground services be
identified to prevent damage, and the location of any overhead cables (power lines and telecommunications) be
identified. In agricultural surveys, features such as irrigation and drainage lines should be identified.
Locations of services and other features which shall not be damaged can be identified by consultation with the
landowner (or tenant) and the service utilities. Even when service locations have been identified, the sampling
location should be checked with a services monitor before commencement of the intrusive investigation. If there is
doubt about the possibility of services being present, the initial 1,0 m to 1,5 m, or the maximum depth of the
services, should be dug by hand.
Excavations shall be planned with respect to slope stability, stability of the ground of adjacent buildings and
possible emissions of hazardous substances from contaminated ground. If problem is suspected, bores or drillings
should be used instead of excavations.
6.3 Environmental protection
Material exposed on the surface can present a hazard to the environment due to the release of odours, fumes,
dust, liquid contaminants or contaminated water. For example, dust or contaminated water can wash into streams
or ponds or onto adjoining land. This can be difficult to control and can only be minimized by carrying out work
carefully. This is equally important on completion of the investigation; the backfilling of trial pits and cleanup of the
site after the investigation should ensure that such exposure does not occur.
When the arisings are a result of drilling and construction of boreholes, the amount is likely to be small and unlikely
to create any disposal problem outside the site. Such arisings should be collected together and disposed of to a
suitable location upon completion of the investigation.
If the water table is reached, trial pits will fill with groundwater that may be contaminated or covered with
non-aqueous fluids such as oils. In these situations, special care is required in backfilling in order to prevent the
escape or dispersal of the contaminated liquids onto the site surface or into uncontaminated soil.
Open water with contamination or oil sheets poses a danger to waterfowl and other animals.
If boreholes are installed or excavations penetrate impermeable strata, e.g. clay, new pathways can be created
which result in increased dispersion of contamination. In these situations, the excavations should avoid penetrating
the protective impermeable strata. For boreholes, it is possible to drill down to the impermeable strata, and insert
an impermeable protective plug of bentonite or similar material, through which a smaller-diameter inner borehole
can be drilled to greater depth. In this way a seal is established which prevents the dispersion of the contamination.
Increased dispersal can also result where contamination exists beneath a relatively impermeable layer, such as
tarmac or concrete hardstanding. If such a layer is broken through and the impermeable layer is not replaced, then
the resultant increased penetration of rainwater can result in greater percolation and dispersion of contamination
into the ground and groundwater. In such circumstances the borehole or excavation should be reinstated with an
appropriate low-permeability cover layer of appropriate thickness. Also, in such circumstances, because of the
possible settlement of the backfilled trial pits, a period of maintenance should be incorporated into the site
investigation specification, so that the possible effects of any settlement can be rectified.
6.4 Backfilling
Each soil-sampling process produces voids where the sample has been removed or access to the sampling point
was enabled. These voids can present new migratory pathways which shall be considered, especially in
contaminated ground. Big holes and excavations present a hazard to organisms and machines that may fall into
them and may influence the stability of the surrounding ground. If not used for installation of monitoring devices,
profiling or foundation holes, excavations originated from soil sampling therefore usually must be refilled.
When backfilling trial pits, the excavated material may be used, in which case it should be returned to the original
depth below ground level, ensuring that any obviously suspect material is buried well below the ground surface.
Where this method of backfilling could result in suspect material coming into contact with apparently
uncontaminated ground, it may be necessary to use clean material for backfilling at least part of the excavation.
Measures should be taken so that no additional contamination is left at the surface of the site on completion of the
investigation. It may be necessary to import clean material to form a surface layer over the excavation upon
completion of the backfilling process. It may also be considered appropriate to backfill with clean material and
dispose of the excavated material off-site to a suitable location.
Local regulations and national legislation shall be observed.
When backfilling boreholes where contamination is suspected, it is advisable to grout the borehole to prevent the
possible dispersal of contamination and dispose of the arisings off-site to a suitable location.
Any surplus excavated material should be collected for safe disposal.
7 Techniques
7.1 General
The selection of sampling techniques should be guided by the following consecutive questions:
a) What are the soil characteristics of interest?
b) What type of sample is therefore required?
c) What amount of sample is needed for the investigations planned?
d) What precision of results is required and therefore what method can be used?
e) What is the accessibility of the sampling site?
f) What sampling depth must be reached and what are the basic physical soil characteristics?
Additionally, costs, safety, availability of qualified staff, machinery or instruments, time and environmental aspects
will lead to the final selection of the appropriate sampling technique. The arguments for the final decision should be
documented.
8 © ISO 2002 – All rights reserved
Specialized tools and techniques may be required for collection of samples for physical, geological and biological
purposes. These forms of sampling should be carried out under the guidance of an appropriate expert.
Choices of sampling method include the use of machinery or manual methods. The sampling may be carried out
near the ground surface, at some depth below ground level or from locations deep below the ground surface.
Methods of achieving the desired depth for sampling are by formation of excavations (e.g. trial pits), by driven
probes, or by drilling (e.g. boreholes).
Table 1 gives guidance on the selection of appropriate sampling techniques for the circumstances anticipated in a
site investigation. It is not possible to include all possible circumstances in such a table, and on occasion
judgement will be necessary in determining the most appropriate sampling method.
The most commonly used methods of sampling and providing access to the sampling point are covered in annex A.
This does not preclude the use of other techniques which are suited to the problems of a particular location, e.g.
areas of permafrost, nor does it preclude the use of other methods which have been developed. Whatever
technique is used, the principles of sample collection and the approach to sampling to obtain an appropriately
representative sample should be adhered to.
The choice of sampling method is determined by taking into account all the needs of the investigation, including
distribution of sampling locations, size and type of sample (see 5.2), and the nature of the site including any
problems the site poses to carrying out the investigation.
Sampling during borehole construction allows the required integrity for the chemical, physical and biological
investigation of selected soil horizons. Gas and water sampling may also be undertaken for specific purposes
relating to the need to acquire information rapidly, for example monitoring the borehole for methane and carbon
dioxide or volatile organic compounds and on occasions when the rapid identification of chemical constituents in
groundwater is required. It is recommended that the monitoring over time, of groundwater horizons for
hydrogeological and chemical parameters as well as ground composition, is undertaken from cased wells or
standpipes installed in boreholes. The needs of the sampling strategy should identify the requirements of borehole
construction so that the design can be specified in line with the monitoring needs.
Table 1 — Applicability of ground excavation, drilling and sampling techniques
Suitability for ground type
Soil profile Depth of
Method of Normal Suitable Type of
Designa-
detail sampling
Method sample area/ below sampling Comments
tion Unsuitable Suitable for
extraction diameter water table possible
mm m
for soil type soil type
Manual methods
Hand auger Rotary With auger 50 mm to 50 Non- Clay, silt, No Disturbed 0 to 2,0 Sampling to
100 mm cohesive cohesive 5,0 m possible in
gravel, sand and cohesive sandy
stones, similar ground
rubble, lumps ground
of material
Hand Digging With 1 m ¥ 1 m 10 Solid All types No Disturbed or 0 to 1,5 In unstable
excavation sampling tool concrete or undisturbed ground the sides
similar may need
obstruction support
Power-driven sampling holes
Power auger Rotary With auger 50 mm 50 Non- Clay, silt, No Disturbed 0,05 to 2,0 Sampling to
cohesive cohesive and and 5,0 m possible in
gravel, large similar undisturbed cohesive sandy
stones, ground ground
lumps of
material
Pulse Ramming With sample 50 mm 25 Gravels, Clay, silt, Yes Disturbed 0,5 to 10
boring/ tool on large stones, cohesive and
dynamic machine lumps of sand and undisturbed
probe material similar
ground
Multi- Percussion Various bits > 30 mm 150 to 2 500 No natural All types Yes Disturbed 0 to 100 Suitable
function obstructions including and specially in
Rotary
drill glacial till and undisturbed glaciated terrain
bedrock
Pressure
Light cable Percussion With boring 150 mm to 100 Obstructions, Clay, silt, Yes Disturbed 0,5 to 30
tools 250 mm e.g. tyres, cohesive and
wood, sand and undisturbed
concrete similar
ground
Rotary driils Rotary Not possible. 150 mm to 300 to 500 Solid All soils No None 1,0 to 40 Suitable for
(Open hole) For borehole 500 mm obstructions passing through
formation top layers which
only are not of
interest
Rotary drills Rotary Retrieval of 150 mm to 300 to 500 Solid All soils No None 1,0 to 20
(Core drill) core 500 mm obstructions
Continuous Rotary Not possible 150 mm to 300 to 500 Solid All soils No None 1,0 to 20 Suitable for
flight auger 500 mm obstructions passing through
top layers which
are of interest
Hollow stem Rotary With 150 mm to 50 Solid All soils Yes Disturbed 1,0 to 20 Sampling down
auger sampling 500 mm obstructions and centre stem with
equipment undisturbed auger in situ
down stem
Driven Pressure Retrieval of 30 mm to 10 Solid All soils Yes Disturbed 0 to 30 Core obtained
probes core 150 mm obstructions and and in situ
undisturbed instruments
possible in some
cases
Machine excavations
Trial pit Digging With 3 m to 4 m ¥ 10 Large solid All soils and No Disturbed 0 to 6
sampling 1 m obstructions material and
tools undisturbed
7.2 Cross-contamination
Whatever method is used for obtaining the sample, it is important that the sampling system used and the material
from which the equipment is made does not contaminate the sample. This avoidance of contamination includes
avoiding contamination of the sample due to contact with the sampling equipment or containers and also avoiding
the loss of contaminants from the sample by adsorption or volatilization.
10 © ISO 2002 – All rights reserved
The sampling equipment should be kept clean so that parts of a previous sample are not transmitted to a
subsequent sample causing cross-contamination. For agricultural purposes, even with repetitive sampling across a
field to form a composite sample, the sampling device should be cleaned between each location. For geological
and contamination investigations, all sampling equipment should be thoroughly cleaned between each sample.
Contamination of samples due to lubrication used to ease sample collection, or contamination due to lubricants and
oils, greases or fuels due to the machinery used for sampling, should be avoided. If it is necessary to use
lubrication, e.g. water, to ease formation of a borehole to enable sample collection, only lubrication should be used
which will not conflict with nor confound the analysis to be performed on the samples in the sense of matrix effects
or contribution to the contamination.
A hand trowel of stainless steel should be used to place samples into sample containers. The quality of the
stainless steel should however first be verified to ensure that cross-contamination of the samples will not occur or
interfere with the quality of the analytical data.
The most commonly used methods of drilling, excavation and sampling of the ground provide disturbed samples. If
undisturbed samples are required, special sampling equipment is required and extra care should be taken in
collecting such samples.
7.3 Undisturbed samples
If undisturbed samples are required for soil sampling, these can be taken using, for example, a sampling frame, a
coring tool or cylinder. In each case the sampling device is pushed into the soil and subsequently removed with the
sample so that the soil is collected in its original physical form.
8 Storage of samples
8.1 General
Methods of sampling and preservation of samples for physical, chemical and biological (including microbiological)
examination may differ greatly, therefore storage of samples including method and speed of transport to the
investigating laboratory should be carried out in accordance with the requirements of the aim of the investigation
and the desired accuracy of the analytical results. It is essential that the laboratory which will perform the analysis
is consulted prior to the commencement of the investigation, in order to ensure that the appropriate procedures are
followed.
It is usually preferable to maintain the samples in a cooled condition (below 5 °C) particularly during transport to the
laboratory, and ideally from the moment of sample collection. Use of recreational coolers for transport may not
provide adequately controlled conditions.
NOTE See also ISO 10381-1 and ISO 10381-5.
8.2 Sample containers
8.2.1 General
For sampling uncontaminated soils, containers made of polyethylene (such as buckets, wide-mouth bottles and
strong bags) may be
...
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.Qualité du sol -- Échantillonnage -- Partie 2: Lignes directrices pour les techniques d'échantillonnageSoil quality -- Sampling -- Part 2: Guidance on sampling techniques13.080.05Preiskava tal na splošnoExamination of soils in generalICS:Ta slovenski standard je istoveten z:ISO 10381-2:2002SIST ISO 10381-2:2006en01-september-2006SIST ISO 10381-2:2006SLOVENSKI
STANDARD
Reference numberISO 10381-2:2002(E)© ISO 2002
INTERNATIONAL STANDARD ISO10381-2First edition2002-11-01Soil quality — Sampling — Part 2: Guidance on sampling techniques Qualité du sol — Échantillonnage — Partie 2: Lignes directrices pour les techniques d'échantillonnage
©
ISO 2002 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel.
+ 41 22 749 01 11 Fax
+ 41 22 749 09 47 E-mail
copyright@iso.ch Web
www.iso.ch Printed in Switzerland
ii © ISO 2002 – All rights reserved
Manually and power-operated sampling tools.15 Bibliography.23
General principles to be applied in the design of sampling programmes for the purpose of characterization of soil and identification of sources and effects of pollution of soil and related material are given in ISO 10381-1. ISO 10381-1, ISO 10381-4 and ISO 10381-5 should be consulted regarding the appropriate equipment, information about where to sample, the tests to be conducted, the type of sample, the depth of sampling, soil type and the required representativeness of the sampling system.
INTERNATIONAL STANDARD ISO 10381-2:2002(E) © ISO 2002 – All rights reserved 1 Soil quality — Sampling — Part 2: Guidance on sampling techniques 1 Scope This part of ISO 10381 gives guidance on techniques for taking and storing soil samples so that these can subsequently be examined for the purpose of providing information on soil quality. This part of ISO 10381 gives information on typical equipment that is applicable in particular sampling situations to enable correct sampling procedures to be carried out and representative samples to be collected. Guidance is given on the selection of the equipment and the techniques to use to enable both disturbed and undisturbed samples to be correctly taken at different depths. The guidance provided is intended to assist in the collection of samples for soil quality for agricultural purposes and also provide guidance for the collection of samples for contamination investigations which will require different techniques and skills. This part of ISO 10381 makes reference to some aspects of the collection of samples of groundwater and soil gas as part of a soil sampling programme. This part of ISO 10381 specifically does not cover investigations for geotechnical purposes, though where redevelopment of a site is envisaged the soil quality investigation and the geotechnical investigation may be beneficially combined. This part of ISO 10381 is not applicable to the sampling of hard strata such as bedrock. Techniques to collect information on soil quality without taking samples, such as geophysical methods, are not covered by this part of ISO 10381. 2 Normative references The following normative documents contain provisions which, through reference in this text, constitute provisions of this part of ISO 10381. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this part of ISO 10381 are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards. ISO 11074-1, Soil quality — Vocabulary — Part 1: Terms and definitions relating to the protection and pollution of the soil ISO 11074-2, Soil quality — Vocabulary — Part 2: Terms and definitions relating to sampling ISO 11074-4, Soil quality — Vocabulary — Part 4: Terms and definitions related to rehabilitation of soils and sites SIST ISO 10381-2:2006
stratified sample sample obtained as a combination of spot samples from strata or subparts, putatively homogeneous
NOTE This is a disturbed sample. 3.4
cluster sample sample which is a composite of small incremental point samples taken close together NOTE This is a disturbed sample. 3.5
spatial sample sample which is a composite of small incremental point samples taken over an area (such as a field) NOTE This is a disturbed sample. 4 Principle 4.1 Sampling of soil Soil samples are collected and examined primarily to determine associated physical, chemical, biological and radiological parameters. This clause outlines the more general factors to be considered when selecting sampling equipment and its use. More detailed information is given in subsequent clauses. Whenever a volume of soil is to be characterized, it is generally impossible to examine the whole and it is therefore necessary to take samples. The samples collected need to be as fully representative as possible of the whole to be characterized, and all precautions should be taken to ensure that, as far as possible, the samples do not undergo any changes in the interval between sampling and analysis. The samples normally collected are described as disturbed samples, i.e. the soil particles become loosened and separated in the sampling process. If it is necessary to collect undisturbed samples, e.g. for microbiological or geotechnical purposes, the samples need to be collected in such a manner that the soil particles and pore structure remain unaltered in comparison with the original ground structure. The sampling of multiphase systems, such as soils containing water or gases which are not of natural origin (e.g. waste materials), can present special problems. The sampling technique should be selected to enable the collection of samples of ground material which can be presented to the laboratory for examination or analysis to establish basic information on the pedology and distribution of naturally occurring or manmade soils, their chemical, mineralogical and biological composition, and their physical properties at selected locations. SIST ISO 10381-2:2006
Thus certain information is needed to make this choice. This information may include the size and topography of the area to be sampled, the nature of the ground to be sampled, some indication of the possible lateral and vertical variations of soil type or strata, the geology of the site and surrounding area, the depth to groundwater and its direction of flow, the depths from which samples are to be taken, taking into consideration the future use of the site, including depth of excavations or foundations, previous usage or treatment of the site, SIST ISO 10381-2:2006
samples obtained from the ground without any attempt to preserve the soil structure; that is the soil particles are collected “loose” and are allowed to move in relation to each other; b) undisturbed samples:
samples obtained from the ground using a method designed to preserve the soil structure; i.e. special sampling equipment is used so that the soil particles and voids cannot change from the distribution which exists in the ground before sampling. Disturbed samples are suitable for most purposes, except for some physical measurements, profiles and microbiological examinations for which undisturbed samples may be required. Undisturbed samples should be collected if it is intended to determine the presence and concentration of volatile organic compounds, since disturbance will result in loss of these compounds to the atmosphere.
1) To be published. SIST ISO 10381-2:2006
The sampling equipment should be kept clean so that parts of a previous sample are not transmitted to a subsequent sample causing cross-contamination. Even for agricultural purposes, with repetitive sampling across a field to form a composite sample, the sampling device should be cleaned between each location. Where it is necessary to use lubrication, e.g. water, to ease formation of a borehole to enable sample collection, only lubrication should be used which will not conflict with nor confound the analysis to be performed on the samples in the sense of matrix effects or contribution to the contamination. Only devices of controlled chemical quality and composition shall be used to handle samples. For example, a hand trowel of stainless steel can be useful when investigating organic compounds, while plastics normally do not interfere with heavy metals. Devices that have contact with samples shall never be painted, greased or have otherwise chemically treated surfaces. Lining the borehole can prevent cross-contamination from material dropping into the sample from higher up the bore. 6 Safety and environmental protection in the investigation In any soil-sampling investigation there is some disturbance of the ground. In areas of agricultural use, woodland and semi-natural vegetation, this disturbance is usually minimal and unlikely to result in the creation of any hazard. When carrying out investigations on highly contaminated sites, consideration should be given to using probehole, borehole or similar techniques, rather than excavations, in order to minimize and reduce problems due to exposure, disturbance and potential dispersal of the contamination. When the site surface prior to the investigation is obviously contaminated, or presents a general environmental problem due to exposure to humans or animals, and there is the possibility of dispersal of contaminated dust or water pollution, in addition to taking precautions to minimize disturbance and dispersal of contamination during the site investigation, the situation should be brought to the attention of the landowner and local authorities, so that preventative measures can be implemented. National or local regulations on information procedures or obligations shall be obeyed. NOTE See also ISO 10381-3. SIST ISO 10381-2:2006
Excavations shall be planned with respect to slope stability, stability of the ground of adjacent buildings and possible emissions of hazardous substances from contaminated ground. If problem is suspected, bores or drillings should be used instead of excavations. 6.3 Environmental protection Material exposed on the surface can present a hazard to the environment due to the release of odours, fumes, dust, liquid contaminants or contaminated water. For example, dust or contaminated water can wash into streams or ponds or onto adjoining land. This can be difficult to control and can only be minimized by carrying out work carefully. This is equally important on completion of the investigation; the backfilling of trial pits and cleanup of the site after the investigation should ensure that such exposure does not occur. When the arisings are a result of drilling and construction of boreholes, the amount is likely to be small and unlikely to create any disposal problem outside the site. Such arisings should be collected together and disposed of to a suitable location upon completion of the investigation. If the water table is reached, trial pits will fill with groundwater that may be contaminated or covered with non-aqueous fluids such as oils. In these situations, special care is required in backfilling in order to prevent the escape or dispersal of the contaminated liquids onto the site surface or into uncontaminated soil. Open water with contamination or oil sheets poses a danger to waterfowl and other animals. If boreholes are installed or excavations penetrate impermeable strata, e.g. clay, new pathways can be created which result in increased dispersion of contamination. In these situations, the excavations should avoid penetrating SIST ISO 10381-2:2006
Clay, silt, cohesive sand and similar ground No Disturbed 0 to 2,0 Sampling to 5,0 m possible in cohesive sandy ground Hand excavation Digging With sampling tool 1 m ¥ 1 m 10 Solid concrete or similar obstruction All types No Disturbed or undisturbed 0 to 1,5 In unstable ground the sides may need support Power-driven sampling holes Power auger Rotary With auger 50 mm 50 Non-cohesive gravel, large stones, lumps of material Clay, silt, cohesive and similar ground No Disturbed and undisturbed 0,05 to 2,0 Sampling to 5,0 m possible in cohesive sandy ground Pulse boring/ dynamic probe Ramming With sample tool on machine 50 mm 25 Gravels, large stones, lumps of material Clay, silt, cohesive sand and similar ground Yes Disturbed and undisturbed 0,5 to 10
Multi-function drill Percussion Rotary Pressure Various bits > 30 mm 150 to 2 500No natural obstructionsAll types including glacial till and bedrock Yes Disturbed and undisturbed 0 to 100 Suitable specially in glaciated terrainLight cable Percussion With boring tools 150 mm to 250 mm 100 Obstructions, e.g. tyres, wood, concrete Clay, silt, cohesive sand and similar ground Yes Disturbed and undisturbed 0,5 to 30
Rotary driils (Open hole) Rotary Not possible. For borehole formation only 150 mm to 500 mm 300 to 500 Solid obstructionsAll soils No None 1,0 to 40 Suitable for passing through top layers which are not of interest Rotary drills (Core drill) Rotary Retrieval of core 150 mm to 500 mm 300 to 500 Solid obstructionsAll soils No None 1,0 to 20
Continuous flight auger Rotary Not possible 150 mm to 500 mm 300 to 500 Solid obstructionsAll soils No None 1,0 to 20 Suitable for passing through top layers which are of interest Hollow stem auger Rotary With sampling equipment down stem 150 mm to 500 mm 50 Solid obstructionsAll soils Yes Disturbed and undisturbed 1,0 to 20 Sampling down centre stem with auger in situ Driven probes Pressure Retrieval of core 30 mm to 150 mm 10 Solid obstructionsAll soils Yes Disturbed and undisturbed 0 to 30 Core obtained and in situ instruments possible in some cases Machine excavations Trial pit Digging With sampling tools 3 m to 4 m ¥ 1 m 10 Large solid obstructionsAll soils and material No Disturbed and undisturbed 0 to 6
7.2 Cross-contamination Whatever method is used for obtaining the sample, it is important that the sampling system used and
the material from which the equipment is made does not contaminate the sample. This avoidance of contamination includes avoiding contamination of the sample due to contact with the sampling equipment or containers and also avoiding the loss of contaminants from the sample by adsorption or volatilization. SIST ISO 10381-2:2006
IS
...
NORME ISO
INTERNATIONALE 10381-2
Première édition
2002-11-01
Qualité du sol — Échantillonnage —
Partie 2:
Lignes directrices pour les techniques
d’échantillonnage
Soil quality — Sampling —
Part 2: Guidance on sampling techniques
Numéro de référence
©
ISO 2002
PDF – Exonération de responsabilité
Le présent fichier PDF peut contenir des polices de caractères intégrées. Conformément aux conditions de licence d'Adobe, ce fichier peut
être imprimé ou visualisé, mais ne doit pas être modifié à moins que l'ordinateur employé à cet effet ne bénéficie d'une licence autorisant
l'utilisation de ces polices et que celles-ci y soient installées. Lors du téléchargement de ce fichier, les parties concernées acceptent de fait la
responsabilité de ne pas enfreindre les conditions de licence d'Adobe. Le Secrétariat central de l'ISO décline toute responsabilité en la
matière.
Adobe est une marque déposée d'Adobe Systems Incorporated.
Les détails relatifs aux produits logiciels utilisés pour la création du présent fichier PDF sont disponibles dans la rubrique General Info du
fichier; les paramètres de création PDF ont été optimisés pour l'impression. Toutes les mesures ont été prises pour garantir l'exploitation de
ce fichier par les comités membres de l'ISO. Dans le cas peu probable où surviendrait un problème d'utilisation, veuillez en informer le
Secrétariat central à l'adresse donnée ci-dessous.
© ISO 2002
Droits de reproduction réservés. Sauf prescription différente, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque
forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l’ISO à
l’adresse ci-après ou du comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax. + 41 22 749 09 47
E-mail copyright@iso.ch
Web www.iso.ch
Imprimé en Suisse
ii © ISO 2002 – Tous droits réservés
Sommaire Page
Avant-propos . iv
Introduction. v
1 Domaine d'application . 1
2 Références normatives. 1
3 Termes et définitions . 2
4 Objectifs . 2
4.1 Échantillonnage du sol. 2
4.2 Échantillonnage de l’eau . 3
4.3 Échantillonnage des gaz du sol. 3
5 Choix des techniques d'échantillonnage . 3
5.1 Informations préliminaires . 3
5.2 Type d'échantillon. 5
5.3 Choix de la technique d’échantillonnage . 5
5.4 Contamination croisée. 6
6 Sécurité et protection de l'environnement pendant l'étude. 7
6.1 Protection des personnes . 7
6.2 Protection des bâtiments et des installations. 8
6.3 Protection de l’environnement . 8
6.4 Remblayage . 8
7 Techniques . 9
7.1 Généralités. 9
7.2 Contamination croisée. 10
7.3 Échantillons non remaniés. 12
8 Stockage des échantillons . 12
8.1 Généralités. 12
8.2 Conteneurs à échantillons . 12
8.3 Étiquetage . 14
8.4 Stockage des échantillons . 14
9 Rapport d’échantillonnage. 15
Annexe A (informative) Outils d’échantillonnage manuels et mécaniques. 16
Bibliographie. 25
Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux de
normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général confiée aux
comités techniques de l'ISO. Chaque comité membre intéressé par une étude a le droit de faire partie du comité
technique créé à cet effet. Les organisations internationales, gouvernementales et non gouvernementales, en
liaison avec l'ISO participent également aux travaux. L'ISO collabore étroitement avec la Commission
électrotechnique internationale (CEI) en ce qui concerne la normalisation électrotechnique.
Les Normes internationales sont rédigées conformément aux règles données dans les Directives ISO/CEI,
Partie 3.
La tâche principale des comités techniques est d'élaborer les Normes internationales. Les projets de Normes
internationales adoptés par les comités techniques sont soumis aux comités membres pour vote. Leur publication
comme Normes internationales requiert l'approbation de 75 % au moins des comités membres votants.
L'attention est appelée sur le fait que certains des éléments de la présente partie de l'ISO 10381 peuvent faire
l'objet de droits de propriété intellectuelle ou de droits analogues. L'ISO ne saurait être tenue pour responsable de
ne pas avoir identifié de tels droits de propriété et averti de leur existence.
L'ISO 10381-2 a été élaborée par le comité technique ISO/TC 190, Qualité du sol, sous-comité SC 2,
Échantillonnage.
L'ISO 10381 comprend les parties suivantes, présentées sous le titre général Qualité du sol — Échantillonnage:
Partie 1: Lignes directrices pour l'établissement des programmes d'échantillonnage
Partie 2: Lignes directrices pour les techniques d’échantillonnage
Partie 3: Lignes directrices relatives à la sécurité
Partie 4: Lignes directrices pour les procédures d’investigation des sites naturels, quasi naturels et cultivés
Partie 5: Lignes directrices relatives à l’investigation des sols pollués en sites urbains et industriels
Partie 6: Lignes directrices pour la collecte, la manipulation et la conservation de sols destinés à une étude en
laboratoire des processus microbiens aérobies
Les parties suivantes sont en préparation:
Partie 7: Lignes directrices pour l’investigation et l’échantillonnage des gaz du sol
Partie 8: Lignes directrices pour l’échantillonnage des stocks de réserve
L‘annexe A de la présente partie de l’ISO 10381 est donnée uniquement à titre d’information.
iv © ISO 2002 – Tous droits réservés
Introduction
La présente partie de l’ISO 10381 fait partie d’une série de normes destinées à être utilisées conjointement en
fonction des besoins. Elle traite des divers aspects de l'échantillonnage pour les besoins de l'étude du sol, y
compris les études agricoles et de contamination, mais ne couvre pas les études à des fins géotechniques.
Les principes généraux à appliquer à la conception des programmes d'échantillonnage pour les besoins de la
caractérisation du sol et de l'identification des causes et des effets de la pollution du sol et du matériau associé
sont donnés dans l'ISO 10381-1. Il convient de consulter l’ISO 10381-1, l’ISO 10381-4 et l’ISO 10381-5 pour ce qui
concerne l'équipement adapté, les informations sur les emplacements d'échantillonnage, les essais à réaliser, le
type d'échantillon, la profondeur d'échantillonnage, le type de sol et la représentativité requise du système
d'échantillonnage.
NORME INTERNATIONALE ISO 10381-2:2002(F)
Qualité du sol — Échantillonnage —
Partie 2:
Lignes directrices pour les techniques d’échantillonnage
1 Domaine d'application
La présente partie de l’ISO 10381 donne des lignes directrices relatives aux techniques de prélèvement et de
stockage des échantillons de sol en vue d’examiner ceux-ci ultérieurement pour obtenir des informations sur la
qualité du sol.
La présente partie de l’ISO 10381 fournit des informations sur les équipements types qui peuvent être utilisés dans
des situations d'échantillonnage particulières pour mettre en œuvre des modes opératoires d'échantillonnage
corrects et recueillir des échantillons représentatifs. Des lignes directrices sont fournies concernant la sélection des
équipements et des techniques à utiliser pour prélever correctement des échantillons remaniés et non remaniés à
différentes profondeurs.
Les lignes directrices fournies visent à faciliter le prélèvement d’échantillons pour déterminer la qualité du sol à des
fins agricoles et donnent également des indications pour le prélèvement d’échantillons pour des études de
contamination qui nécessiteront des techniques et des compétences distinctes.
La présente partie de l’ISO 10381 fait référence à certains aspects de la collecte d'échantillons d'eau souterraine et
de gaz présents dans le sol dans le cadre d'un programme d'échantillonnage des sols.
Les présentes lignes directrices ne couvrent pas spécifiquement les études à des fins géotechniques, même si les
études de qualité du sol et les études géotechniques peuvent être avantageusement associées lorsque l’on
envisage le redéveloppement d’un site.
La présente partie de l’ISO 10381 n’est pas applicable à l'échantillonnage des strates dures, telles que le socle
rocheux.
Les techniques de collecte d’informations sur la qualité du sol sans prélèvement d’échantillons, telles que les
méthodes géophysiques, ne sont pas couvertes par la présente partie de l’ISO 10381.
2 Références normatives
Les documents normatifs suivants contiennent des dispositions qui, par suite de la référence qui y est faite,
constituent des dispositions valables pour la présente partie de l’ISO 10381. Pour les références datées, les
amendements ultérieurs ou les révisions de ces publications ne s’appliquent pas. Toutefois, les parties prenantes
aux accords fondés sur la présente partie de l’ISO 10381 sont invitées à rechercher la possibilité d'appliquer les
éditions les plus récentes des documents normatifs indiqués ci-après. Pour les références non datées, la dernière
édition du document normatif en référence s’applique. Les membres de l'ISO et de la CEI possèdent le registre des
Normes internationales en vigueur.
ISO 11074-1, Qualité du sol — Vocabulaire — Partie 1: Termes et définitions relatifs à la protection et à la pollution
du sol
ISO 11074-2, Qualité du sol — Vocabulaire — Partie 2: Termes et définitions relatifs à l'échantillonnage
ISO 11074-4, Qualité du sol — Vocabulaire — Partie 4: Termes et définitions relatifs à la réhabilitation des sols et
sites
3 Termes et définitions
Pour les besoins de la présente partie de l’ISO 10381, les termes et définitions donnés dans l'ISO 11074-1,
l’ISO 11074-2 et l'ISO 11074-4, ainsi que les termes et définitions suivants s'appliquent.
3.1
échantillon ponctuel
échantillon unique
échantillon de matériau recueilli en un point unique
NOTE Il peut s’agir d’un échantillon remanié ou non remanié.
3.2
échantillon vertical
échantillon prélevé sous forme de bande verticale dans une strate ou dans une autre sous-partie, supposé
homogène
NOTE Il s’agit d’un échantillon remanié.
3.3
échantillon stratifié
échantillon obtenu sous forme d’une combinaison d’échantillons ponctuels, prélevés dans les strates ou dans les
sous-parties, supposé homogène
NOTE Il s’agit d’un échantillon remanié.
3.4
échantillon en grappes
échantillon composé d'une série de prélèvements élémentaires, effectués à proximité les uns des autres
NOTE Il s’agit d’un échantillon remanié.
3.5
échantillon spatial
échantillon composé d'une série de prélèvements élémentaires, effectués sur une certaine superficie (par exemple
un champ)
NOTE Il s’agit d’un échantillon remanié.
4 Objectifs
4.1 Échantillonnage du sol
Les échantillons de sol sont prélevés et examinés essentiellement pour déterminer les paramètres physiques,
chimiques, biologiques et radiologiques qui leurs sont associés. Le présent article indique de manière générale les
facteurs à prendre en compte pour décider du choix d'un équipement et de son utilisation. Des informations plus
détaillées sont fournies dans les articles suivants.
Il est généralement impossible, pour caractériser un volume de sol, d’en examiner la totalité. C’est la raison pour
laquelle il est nécessaire de prélever des échantillons. Les échantillons prélevés doivent être aussi représentatifs
que possible de la quantité totale à caractériser et il convient que toutes les précautions soient prises pour
s’assurer, dans la mesure du possible, que les échantillons ne subissent pas de modifications entre le moment de
l’échantillonnage et celui de l'analyse. Les échantillons collectés normalement sont qualifiés d'échantillons
remaniés, c'est-à-dire que les particules de sol s'écartent et se séparent au cours du processus d'échantillonnage.
2 © ISO 2002 – Tous droits réservés
S'il est nécessaire de collecter des échantillons non remaniés, par exemple à des fins microbiologiques ou
géotechniques, les échantillons doivent être collectés de manière que les particules de sol et la structure
interstitielle ne subissent pas d'altération par rapport à la structure d'origine du sol. L’échantillonnage de systèmes
polyphasiques, comme les sols contenant de l’eau ou des gaz ne faisant pas naturellement partie du sol (par
exemple des déchets) peut poser des problèmes spécifiques.
Il convient de choisir une technique d'échantillonnage permettant de collecter des échantillons de sol qui pourront
être transmis au laboratoire pour examen ou analyse afin d'établir des informations de base sur la pédologie et la
distribution des sols naturels et artificiels, leur composition chimique, minéralogique et biologique ainsi que leurs
propriétés physiques à des emplacements donnés.
Le choix de la technique d'échantillonnage dépend, en outre, de la précision requise pour les résultats, laquelle
dépend à son tour des plages de concentration des composants, des modes opératoires d'échantillonnage et du
type d'analyse.
Il convient de sélectionner soigneusement l'équipement d'échantillonnage en fonction des différents matériaux
pouvant être présents dans le sol et en fonction de l'analyse à effectuer. Il convient de prendre un maximum de
précautions pour éviter toute contamination croisée, la perte de composés volatils, une modification de la
composition due à l'exposition à l'air et d'autres modifications pouvant survenir entre le prélèvement et la mise à
l'essai de l'échantillon.
Toute technique d’échantillonnage de sol comprend généralement deux étapes distinctes:
a) l’accès au point d’échantillonnage (retrait de la couverture ou de la couche de scellement, creusement ou
forage d’un trou pour atteindre la profondeur d’échantillonnage souhaitée), et
b) le prélèvement de l’échantillon de sol.
Ces deux étapes dépendent l’une de l’autre et doivent satisfaire aux exigences associées aux principes de
l’échantillonnage.
4.2 Échantillonnage de l’eau
Les programmes d'étude des sols, en particulier ceux mis en œuvre sur des sites contaminés, peuvent aussi
nécessiter le prélèvement d'échantillons d'eau. Il convient de prélever ces échantillons conformément aux Normes
internationales appropriées relatives à l'échantillonnage des eaux souterraines ou de surface dans le cadre de
l'étude des sols. Pour plus d’informations, voir l'ISO 10381-1.
4.3 Échantillonnage des gaz du sol
Les programmes d’étude des sols peuvent inclure l’évaluation de la composition gazeuse du sol, qu’il s’agisse des
composants gazeux caractéristiques de décharges, comme le méthane et le gaz carbonique, ou, dans le cas de
sites contaminés, de la présence suspectée de solvants ou de combustibles. Une Norme internationale
(ISO 10381-7) est en cours d'élaboration pour couvrir ce type d’études et un certain nombre d’indications sont
incluses dans la présente partie de l'ISO 10381.
5 Choix des techniques d'échantillonnage
5.1 Informations préliminaires
Le choix de la technique et de l'équipement d'échantillonnage ainsi que celui de la méthode de prélèvement des
échantillons de sol dépendent des objectifs de l’échantillonnage, des strates à échantillonner, de la nature d’une
contamination éventuelle et de l'examen ou de l'analyse à effectuer sur les échantillons.
Certaines informations sont donc nécessaires pour pouvoir effectuer ce choix, notamment
l’étendue et la topographie de la zone à échantillonner,
la nature du sol à échantillonner,
des indications sur les éventuelles variations latérales et verticales du type de sol ou des strates,
la géologie du site et de la zone environnante,
la profondeur à laquelle se trouve la nappe souterraine et le sens d’écoulement de cette dernière,
les profondeurs auxquelles les échantillons doivent être prélevés, en prenant également en compte l’utilisation
future du site et notamment la profondeur des excavations ou des fondations à réaliser,
l’utilisation ou le traitement antérieur du site,
la présence de bâtiments et d’obstacles, par exemple présence de fondations ou de surfaces en dur, de
réservoirs enterrés, de canalisations et de câbles souterrains (par exemple câbles électriques, conduites
d’égout, secteur, câbles),
des indications sur la présence de réservoirs souterrains, de canalisations et de câbles (par exemple trappes
de visite, chambres de contrôle, conduits de ventilation),
la présence de voies en béton ou en macadam, de routes ou de surfaces en dur,
la sécurité du personnel travaillant sur le site et la protection de l’environnement,
une croissance de la végétation entraînant un développement important des racines,
la présence de mares d’eau en surface non prévues ou d’un sol saturé d’eau,
la présence de clôtures, de murs ou d’ouvrages en terre destinés à empêcher l’accès au site,
la présence de remblais dépassant le niveau du site ou la présence de matériaux résultant de la destruction
des bâtiments,
l’emplacement des étendues d’eau soumises à des risques de contamination, y compris les eaux de surface et
les nappes phréatiques.
Dans certaines conditions environnementales extrêmes, telles que le pergélisol, la latérisation, le calcrète ou
autres consolidations, il peut être nécessaire de recourir à des techniques spéciales pour obtenir des échantillons.
Cela doit être mis en évidence avant la phase de conception d’un programme d’échantillonnage.
Pour recueillir ces informations, il est fortement recommandé de réaliser une étude sur dossier ou une enquête
préliminaire du site. Lors de l’étude de sols présumés contaminés, l’enquête préliminaire constitue une partie
1) 1)
essentielle du programme d’étude (voir l’article 6 de l’ISO 10381-1:— et l’article 6 de l’ISO 10381-5:— ). Ses
principaux objectifs sont les suivants:
a) garantir l’efficacité technique et la rentabilité de l’étude;
b) assurer la sécurité du personnel et protéger l'environnement.
L’enquête préliminaire peut inclure des études sur dossier et une visite du site (travail sur le terrain). En règle
générale, elle ne comprend pas le prélèvement d'échantillons mais, dans certaines circonstances, il peut être utile
1) À publier.
4 © ISO 2002 – Tous droits réservés
de procéder à un échantillonnage limité afin de déterminer les paramètres utiles pour l'étude du site, d’étudier
certains aspects méthodologiques et d’identifier les dangers possibles pour le personnel de recherche.
5.2 Type d'échantillon
Il existe deux principaux types d'échantillons prélevés pour les besoins de l'étude du sol et des conditions du sol, à
savoir:
a) les échantillons remaniés: échantillons de sol prélevés sans tenter de préserver la structure du sol; les
particules du sol sont «meubles» et peuvent se déplacer les unes par rapport aux autres;
b) les échantillons non remaniés: échantillons de sol prélevés selon une méthode conçue pour préserver la
structure du sol; un matériel d'échantillonnage spécial est utilisé pour que les particules et les vides du sol
conservent la même distribution dans le sol qu’avant l'échantillonnage.
Les échantillons remaniés conviennent à la plupart des besoins, sauf pour certains mesurages physiques, profils et
examens microbiologiques, qui peuvent nécessiter des échantillons non remaniés. Il convient de collecter des
échantillons non remaniés lorsqu'il s'agit de déterminer la présence et la concentration de composés organiques
volatils, puisqu'un remaniement entraînerait la perte de ces composés dans l'atmosphère.
Si des échantillons non remaniés sont nécessaires pour l'échantillonnage du sol, ceux-ci peuvent être prélevés par
exemple à l'aide d'une boîte de Kubiena, d'un carottier ou d'un cylindre. Le dispositif d'échantillonnage est chaque
fois enfoncé dans le sol puis retiré avec l'échantillon, ce qui fait que le sol est prélevé sous sa forme physique
d’origine.
Il existe différentes méthodes de prélèvement des échantillons dans le sol pour les besoins de l'étude de la qualité
du sol (voir l’article 3).
Un échantillon vertical de petite taille peut être considéré comme un échantillon ponctuel. Toutes les autres
méthodes d’échantillonnage produisent des échantillons composites (échantillons moyens, échantillons agrégés).
Les échantillons composites ne permettent pas de déterminer les caractéristiques du sol soumises à des variations
au cours du processus de composition, notamment les concentrations des composés volatils. Ils ne peuvent pas
non plus être utilisés pour déterminer les concentrations maximales d’une substance ou les variations des
caractéristiques du sol.
Les échantillons ponctuels peuvent être facilement prélevés à l'aide de tarières manuelles ou d'autres techniques
d'échantillonnage similaires. Si des échantillons non remaniés sont requis, il est nécessaire d'utiliser un
équipement spécial (voir ci-dessus) pour prélever l'échantillon tout en préservant la structure d’origine du sol.
Des échantillons en grappes conviennent lorsqu'il s'agit de pratiquer des excavations dans le sol avec des
machines afin d'obtenir des échantillons. Il convient, dans ce cas, de constituer les échantillons en prélevant des
portions provenant de divers emplacements à l'intérieur du conteneur de matériau excavé (échantillon sur neuf
points, par exemple).
Les échantillons spatiaux ou autres échantillons composites peuvent être collectés à l'aide de tarières manuelles
ou mécaniques, mais il faut s'assurer que la tarière collecte chaque fois la même quantité d'échantillon.
5.3 Choix de la technique d’échantillonnage
Dans le cadre de la présente Norme internationale, il est impossible de définir une technique d’échantillonnage
correspondant à chaque objectif possible de l’échantillonnage, car ces objectifs sont très nombreux et plusieurs
techniques d’échantillonnage permettent souvent de répondre à un même objectif.
Les exemples suivants indiquent les principales règles à observer.
Les caractéristiques du sol liées aux horizons du sol (le cas le plus fréquent) requièrent un échantillonnage lié
à l’horizon (stratifié).
S’il faut tenir compte de la variation spatiale des caractéristiques du sol, des échantillons ponctuels sont
nécessaires. Si la précision requise pour les résultats est faible, d’autres types d’échantillons sont également
acceptables.
Les échantillons prélevés afin d’identifier la distribution et la concentration d’éléments ou de composés
particuliers sont généralement des échantillons ponctuels ou éventuellement des échantillons verticaux ou en
grappes au sein de la zone examinée.
Les échantillons prélevés pour évaluer la qualité globale ou la nature du sol sur une zone donnée, par
exemple pour les besoins de l’agriculture, sont des échantillons spatiaux.
La taille de l’échantillon doit être suffisante pour permettre l’exécution de tous les essais et de toutes les
analyses.
La taille de l’échantillon doit être suffisante pour représenter toutes les caractéristiques du sol présentant un
intérêt.
La taille de l’échantillon ne doit pas être trop importante au point de masquer les variations des
caractéristiques du sol à prendre en compte.
Les caractéristiques du sol à prendre en compte ne doivent pas être affectées par le processus
d’échantillonnage, ni par le transport et le stockage des échantillons.
L’échantillonnage représentatif signifie généralement qu’il faut combiner des échantillons élémentaires
présentant différentes propriétés (si applicable) pour former un échantillon composite, en tenant compte
uniquement de leur fraction volumique respective dans la population d’origine à échantillonner.
La contamination croisée doit être évitée, de même que la dispersion des contaminants.
5.4 Contamination croisée
De par le processus d’échantillonnage, les propriétés chimiques du sol, en particulier, peuvent être modifiées de
diverses manières:
par transmission de substances fixées au matériel d’échantillonnage ou aux conteneurs;
par transport involontaire de particules du sol vers le point d’échantillonnage à partir de points adjacents d’un
site ou d’un profil de sol, notamment en faisant tomber des matériaux dans l'échantillon depuis le haut du trou
de forage au cours du sondage/forage ou lors du retrait de l'échantillon;
par transfert de substances provenant des appareils d’échantillonnage ou des conteneurs;
par perte de composants volatils, fuite de liquides ou séparation mécanique;
par contamination avec des substances auxiliaires utilisées pour permettre ou faciliter l’échantillonnage
(carburants, gaz d’échappement, graisses, huiles, lubrifiants, colles et autres);
par contamination avec les particules apportées par le vent, des liquides répandus ou des précipitations.
Quelle que soit la méthode utilisée pour obtenir l'échantillon, il est important que le système d'échantillonnage
utilisé et le matériau de l'équipement ne contaminent pas l'échantillon.
Il convient de préserver la propreté de l'équipement d'échantillonnage de manière que des éléments d'un
échantillon précédent ne soient pas transmis à un échantillon ultérieur, engendrant ainsi une contamination
croisée. Pour les besoins de l'agriculture, même pour effectuer des prélèvements élémentaires répétitifs dans un
champ afin de constituer un échantillon composite, il convient de nettoyer le dispositif d'échantillonnage avant de
passer d’un emplacement à un autre.
6 © ISO 2002 – Tous droits réservés
Si une lubrification est nécessaire, par exemple avec de l'eau, pour faciliter le forage d’un trou afin de prélever des
échantillons, il convient d’utiliser exclusivement un lubrifiant qui ne contribue pas à la contamination et qui n'entre
pas en conflit avec, ni ne fausse, les analyses à effectuer sur les échantillons par des effets de matrice.
Seuls les dispositifs de qualité chimique et de composition contrôlées doivent être utilisés pour manipuler les
échantillons. Ainsi, une truelle en acier inoxydable peut être adaptée pour l’étude des composés organiques, tandis
que les instruments en plastique ne provoquent généralement aucune interférence avec les métaux lourds. Les
dispositifs appelés à entrer en contact avec les échantillons ne doivent jamais être peints, graissés ou recevoir un
traitement chimique de surface.
Le fait de garnir le trou de forage d’une gaine en plastique permet d’éviter la contamination croisée engendrée par
la chute de matériaux dans l’échantillon depuis le haut du trou de forage.
6 Sécurité et protection de l'environnement pendant l'étude
Toute étude d'échantillonnage de sol occasionne un remaniement du sol. Dans les zones agricoles, boisées et à
végétation semi-naturelle, ce remaniement est habituellement minimal et il est peu vraisemblable qu'il présente un
danger pour l'environnement.
Pour effectuer des études sur des sites fortement contaminés, il convient de privilégier l'usage exclusif de trous de
forage ou de techniques similaires plutôt que d'excavations, afin de minimiser et de réduire les problèmes dus aux
remaniements et à la propagation possible de la contamination.
Lorsqu'il est évident, avant même le début de l'étude, que le site est contaminé en surface ou pose un problème
environnemental général du fait de l'exposition d'animaux ou de personnes, et s'il existe une possibilité de
propagation de poussières contaminées ou de pollution de l'eau, il convient de prendre des précautions pour
minimiser les remaniements et la propagation de la contamination pendant l'étude du site. Il convient en outre de
porter ces faits à la connaissance du propriétaire du terrain et des autorités locales, de manière que des mesures
préventives puissent être prises. Il convient ici d’observer les réglementations nationales ou locales sur les
procédures ou les obligations en matière d’information.
NOTE Voir aussi l'ISO 10381-3.
6.1 Protection des personnes
Au cours d’une étude d’échantillonnage du sol, plusieurs facteurs peuvent influer sur la santé et la sécurité des
personnes:
la manipulation des instruments et des machines utilisés lors de l’échantillonnage;
un sol instable ou en pente, excavations ou trous ouverts;
l’exposition aux contaminants du personnel d’échantillonnage et des personnes vivant ou passant à proximité
du site;
l’exposition du personnel d’échantillonnage aux contaminants libérés par les conteneurs de transport ou de
stockage, ou au cours du prétraitement de l’échantillon;
les nuisances provoquées au cours du travail sur le terrain par, entre autres, le bruit, la poussière, les odeurs.
Lorsqu’il y a un risque de présence de munitions ou de résidus d’explosifs, il peut être nécessaire de recourir à
l’assistance d’un spécialiste afin de s’assurer que le site a été nettoyé et sécurisé avant le début des travaux.
Tout effet éventuellement dangereux de l’échantillonnage du sol sur la santé humaine doit être pris en compte lors
de la sélection des méthodes d’échantillonnage appropriées. Si ce point est respecté, la plupart des effets néfastes
pour d’autres organismes, pour les constructions et pour l’environnement seront automatiquement pris en compte.
6.2 Protection des bâtiments et des installations
Avant de commencer une enquête intrusive, il est essentiel d’identifier l’emplacement des conduits et des câbles
souterrains éventuels afin de prévenir tout risque d’endommagement, ainsi que l’emplacement des lignes
aériennes éventuelles (lignes de transport d’énergie et lignes de télécommunications). Pour les études de sites
agricoles, il convient d’identifier les éléments tels que les lignes d’irrigation et de vidange.
L’emplacement des canalisations et d’autres éléments qui ne doivent pas être endommagés peut être identifié en
consultant le propriétaire (ou locataire) du terrain, ainsi que les entreprises du secteur public. Même après avoir
identifié ces emplacements, il convient de contrôler l’emplacement d’échantillonnage avec un spécialiste des
canalisations avant de commencer l’étude intrusive. Si un doute persiste concernant la présence de canalisations,
il convient de creuser à la main sur 1,0 m à 1,5 m de profondeur, ou sur une profondeur correspondant à la
profondeur maximale des canalisations.
Les excavations doivent être planifiées en tenant compte de la stabilité de la pente, de la stabilité du sol des
bâtiments adjacents et des éventuelles émissions dangereuses à partir du sol contaminé. En cas de doute, il
convient de pratiquer des trous de forage plutôt que des excavations.
6.3 Protection de l’environnement
Le matériau exposé en surface peut constituer un danger pour l'environnement du fait de l’émission d'odeurs, de
fumées, de poussières, de contaminants liquides ou d'eau contaminée. Par exemple, les poussières ou l’eau
contaminée peuvent se déverser dans les mares, les cours d'eau ou sur les terrains adjacents. Il peut être difficile
de maîtriser une situation de ce type et ce risque ne peut être minimisé qu'en travaillant avec soin. Il est également
important d'en tenir compte à l'issue de l'étude et il convient de s'assurer que le remblayage des puits d'exploration
et le nettoyage du site après l'étude empêchent toute exposition de ce type.
Lorsque les remontées sont occasionnées par des forages et la construction de trous de forage, leur importance
est généralement réduite et il est peu probable qu'ils engendrent des problèmes à l'extérieur du site. Il convient de
collecter ces remontées, de les regrouper et de les éliminer en un lieu prévu à cet effet à l'issue de l'étude.
Lorsque la nappe phréatique est atteinte, les puits d'exploration peuvent contenir de l'eau souterraine contaminée
ou des fluides non aqueux tels que des huiles. Il convient dans ce cas de prendre des précautions particulières lors
du remblayage pour éviter des écoulements ou la dispersion des liquides contaminés à la surface du site ou dans
le sol non contaminé.
Les nappes d’eau libre contaminées ou les nappes d’huile représentent une menace pour les oiseaux aquatiques
et d’autres animaux.
Lorsque des trous de forage sont pratiqués ou lorsque des excavations entament des strates imperméables,
d'argile, par exemple, il peut se créer de nouvelles voies de propagation de la contamination. Il convient, dans ce
cas, que les excavations n'entament pas la strate protectrice imperméable. Il est possible, pour les trous de forage,
de forer jusqu'à la strate imperméable et d'insérer un bouchon de bentonite ou d'un matériau similaire à travers
lequel il est possible de forer à plus grande profondeur un trou de plus petit diamètre. On obtient de cette manière
un joint d'étanchéité qui empêche la propagation de la contamination.
Une dispersion accrue peut également se produire s'il existe une contamination en dessous d'une couche
relativement imperméable comme du macadam ou une surface en dur. Si une couche de ce type est traversée et
si la couche imperméable n'est pas remplacée, la pénétration accrue d'eau de pluie qui en résulte peut provoquer
une augmentation des infiltrations et une propagation de la contamination dans le sol et dans l'eau souterraine. Il
convient, dans ce cas, de rétablir au-dessus du trou de forage ou de l'excavation une couche protectrice adaptée,
à faible perméabilité et d'épaisseur appropriée. Étant donné qu'il existe alors une possibilité de tassement des puits
d’exploration remblayés, il convient d'intégrer aux spécifications d'étude du site une période de maintenance afin
de pouvoir corriger les effets d'un tassement éventuel.
6.4 Remblayage
Tout processus d’échantillonnage du sol produit des vides, à l’endroit où les échantillons ont été prélevés et où
l’accès au point d’échantillonnage a été ménagé. Ces vides peuvent représenter de nouvelles voies de migration
8 © ISO 2002 – Tous droits réservés
dont il faut tout particulièrement tenir compte dans le cas de sols contaminés. Les trous et excavations de grande
taille représentent un danger pour les organismes et les machines, qui peuvent tomber dedans et de ce fait affecter
la stabilité du sol environnant. Si elles ne sont pas utilisées pour l’installation de dispositifs de surveillance, pour
l’établissement du profil du sol ou pour des trous de fondation, les excavations pratiquées pour l’échantillonnage du
sol doivent donc généralement être remblayées.
Pour remblayer les puits d'exploration, il est possible d'utiliser le matériau excavé, auquel cas il convient de le
replacer dans le sol à la profondeur initiale, en s'assurant que tout matériau manifestement suspect est enterré loin
de la surface. Si cette méthode de remblayage est susceptible de mettre en contact un matériau suspect et un sol
apparemment non contaminé, il peut être nécessaire d'utiliser un matériau sain pour remblayer au moins une partie
de l'excavation. Il convient de prendre des mesures pour qu'aucune contamination supplémentaire ne subsiste à la
surface du site à l'issue de l'étude. Il peut se révéler nécessaire d'importer un matériau sain pour former une
couche à la surface de l'excavation à l'issue du processus de remblayage. Une autre solution qui peut être jugée
convenable consiste à remblayer avec un matériau sain et à mettre au rebut le matériau excavé à l'extérieur du
site, en un lieu adapté.
Les réglementations locales et la législation nationale doivent ici être respectées.
Lors du remblayage de trous de forage où une contamination est suspectée, il est conseillé d'injecter du mortier
liquide dans le trou de forage pour empêcher une dispersion possible de la contamination et mettre au rebut les
remontées à l'extérieur du site, en un lieu approprié.
Il convient de collecter tout matériau excavé en surplus et de le mettre au rebut en toute sécurité.
7 Techniques
7.1 Généralités
Il convient que la sélection des techniques d’échantillonnage soit guidée par les questions suivantes, dans l’ordre
présenté ci-après:
a) Quelles sont les caractéristiques du sol à prendre en compte?
b) Quel type d’échantillon est donc requis?
c) Quelle quantité d’échantillon est nécessaire pour les études prévues?
d) Quelle est la précision requise pour les résultats et quelle méthode peut par conséquent être utilisée?
e) Quel est le niveau d’accessibilité du site d’échantillonnage?
f) Quelle est la profondeur d’échantillonnage à atteindre et quelles sont les principales caractéristiques
physiques du sol?
En outre, la prise en compte des aspects relatifs aux coûts, à la sécurité, à la disponibilité de l’équipe spécialisée,
aux machines et aux instruments, au facteur temps et à l’environnement permettra de sélectionner la technique
d’échantillonnage appropriée. Il convient de consigner les raisons justifiant la décision finale.
Des outils et des techniques spécifiques peuvent s’avérer nécessaires pour la collecte des échantillons à des fins
d’analyses physique, géologique et biologique. Il convient d'effectuer ces types d'échantillonnage en suivant les
indications d'un expert en la matière.
Il est possible de choisir entre des méthodes d'échantillonnage mécaniques ou manuelles. L'échantillonnage peut
être effectué près de la surface du sol, à une certaine profondeur ou à partir d'emplacements situés bien
au-dessous de la surface du sol. Les méthodes permettant d'atteindre la profondeur d'échantillonnage voulue sont
le creusement d'excavations (par exemple puits d'exploration), les sondes contrôlées ou le forage (par exemple
trous de forage).
Le Tableau 1 donne des indications sur la manière de sélectionner les techniques d'échantillonnage adaptées aux
conditions que l'on s'attend à rencontrer pour une étude sur site. Il est impossible de faire figurer dans un tel
tableau toutes les conditions pouvant être rencontrées. Il sera parfois nécessaire de juger dans l'instant de la
méthode d'échantillonnage le plus appropriée.
Les méthodes les plus couramment mises en œuvre en matière d’échantillonnage et d’ouverture de l’accès
jusqu’au point d’échantillonnage sont présentées à l’annexe A. Elles n’excluent toutefois pas le recours à d'autres
techniques adaptées aux problèmes d'un emplacement spécifique, par exemple dans les zones de pergélisol, ni à
d'autres méthodes ayant pu être mises au point. Quelles que soient les techniques utilisées, il convient de
respecter les principes de collecte des échantillons et l'approche de l'échantillonnage pour obtenir un échantillon
suffisamment représentatif.
Le choix de la méthode d'échantillonnage se fait en tenant compte de tous les besoins de l'étude, parmi lesquels la
distribution des emplacements d'échantillonnage, la taille et le type d'échantillons (voir 5.2) et la nature du site,
y compris tous les problèmes posés par le site pour la conduite de l'étude.
L’échantillonnage pendant la construction d’un trou de forage garantit l’intégrité nécessaire à l’étude chimique,
physique et biologique des horizons de sol sélectionnés. L’échantillonnage des gaz et de l’eau peut également être
effectué pour des besoins spécifiques liés à la nécessité d’obtenir rapidement des informations. Par exemple,
lorsqu’il s’agit de surveiller le trou de forage afin de détecter la présence de méthane et de dioxyde de carbone ou
de composants organiques volatils, ou, occasionnellement, lorsqu’il est nécessaire d’identifier rapidement les
composants chimiques de l’eau souterraine. Il est recommandé que la surveillance prolongée de nappes
souterraines pour les paramètres hydrogéologiques et chimiques ainsi que pour la composition du
...














Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...