Water quality — Sampling — Part 14: Guidance on quality assurance and quality control of environmental water sampling and handling

ISO 5667-14:2014 provides guidance on the selection and use of various quality assurance and quality control techniques relating to the manual sampling of surface, potable, waste, marine and ground waters. NOTE The general principles outlined in this part of ISO 5667 might, in some circumstances, be applicable to sludge and sediment sampling.

Qualité de l'eau — Échantillonnage — Partie 14: Lignes directrices sur l'assurance qualité et le contrôle qualité pour l'échantillonnage et la manutention des eaux environnementales

ISO 5667-14:2014 fournit des lignes directrices sur le choix et l'utilisation de différentes techniques d'assurance qualité et de contrôle qualité liées à l'échantillonnage manuel des eaux de surface, potables, résiduaires, marines et souterraines. NOTE Dans certains cas, les principes généraux exposés dans la présente partie de l'ISO 5667 peuvent s'appliquer à l'échantillonnage de boues et de sédiments.

Kakovost vode - Vzorčenje - 14. del: Navodilo za zagotavljanje in kontrolo kakovosti vzorčenja vode v okolju ter ravnanje z vzorci

Ta del standarda ISO 5667 ponuja načela glede izbire in uporabe različnih tehnik za zagotavljanje in kontrolo kakovosti, ki so povezane z ročnim vzorčenjem površinske, pitne, odpadne in morske vode ter podtalnice.
OPOMBA Splošna načela, opisana v tem delu standarda ISO 5667 lahko v nekaterih okoliščinah veljajo za vzorčenje blata in usedlin.

General Information

Status
Published
Publication Date
11-Dec-2014
Current Stage
9060 - Close of review
Completion Date
02-Sep-2030

Relations

Standard
ISO 5667-14:2015
English language
40 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day
Standard
ISO 5667-14:2014 - Water quality -- Sampling
English language
34 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 5667-14:2014 - Qualité de l'eau -- Échantillonnage
French language
37 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 5667-14:2014
Russian language
35 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)


SLOVENSKI STANDARD
01-marec-2015
1DGRPHãþD
SIST ISO 5667-14:1999
.DNRYRVWYRGH9]RUþHQMHGHO1DYRGLOR]D]DJRWDYOMDQMHLQNRQWUROR
NDNRYRVWLY]RUþHQMDYRGHYRNROMXWHUUDYQDQMH]Y]RUFL
Water quality - Sampling - Part 14: Guidance on quality assurance and quality control of
environmental water sampling and handling
Qualité de l'eau - Échantillonnage - Partie 14: Lignes directrices pour le contrôle de la
qualité dans l'échantillonnage et la manutention des eaux environnementales
Ta slovenski standard je istoveten z: ISO 5667-14
ICS:
13.060.10 Voda iz naravnih virov Water of natural resources
13.060.45 Preiskava vode na splošno Examination of water in
general
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

INTERNATIONAL ISO
STANDARD 5667-14
Second edition
2014-12-15
Water quality — Sampling —
Part 14:
Guidance on quality assurance and
quality control of environmental
water sampling and handling
Qualité de l’eau — Échantillonnage —
Partie 14: Lignes directrices pour le contrôle de la qualité dans
l’échantillonnage et la manutention des eaux environnementales
Reference number
©
ISO 2014
© ISO 2014
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
ii © ISO 2014 – All rights reserved

Contents Page
Foreword .iv
Introduction .vi
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Sources of sampling error . 4
5 Sampling quality . 5
5.1 General . 5
5.2 Technical and personnel requirements . 6
5.3 Sampling manual . 6
5.4 Training of sampling staff . 7
6 Strategy and organization . 7
6.1 Time, duration and frequency of sampling. 7
6.2 Sampling collection locations . 8
7 Sample collection and handling . 8
7.1 Equipment and vehicle check prior to carrying out a sampling programme . 8
7.2 Preparation for sampling on-site . 9
7.3 Field measurements . 9
7.4 Taking the samples . 9
8 Sample identification .12
9 Field sample protocol .12
10 Transport and storage of samples .12
11 Sampling quality control techniques .13
11.1 General .13
11.2 Replicate quality control samples .15
11.3 Field blank samples .16
11.4 Rinsing of equipment (sampling containers) .17
11.5 Filtration recovery .18
11.6 Technique 1 — Spiked samples .20
11.7 Technique 2 — Spiked environmental samples .22
12 Analysis and interpretation of quality control data .22
12.1 Shewhart control charts.22
12.2 Construction of duplicate control charts .23
13 Independent audits.23
[7]
Annex A (informative) Common sources of sampling error .25
Annex B (informative) Control charts .27
Annex C (informative) Sub-sampling using a homogenizer .31
Bibliography .34
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any
patent rights identified during the development of the document will be in the Introduction and/or on
the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the meaning of ISO specific terms and expressions related to conformity
assessment, as well as information about ISO’s adherence to the WTO principles in the Technical Barriers
to Trade (TBT), see the following URL: Foreword — Supplementary information.
The committee responsible for this document is ISO/TC 147, Water quality, Subcommittee SC 6, Sampling
(general methods).
This second edition cancels and replaces the first edition (ISO 5667-14:1998), which has been
technically revised.
ISO 5667 consists of the following parts, under the general title Water quality — Sampling:
— Part 1: Guidance on the design of sampling programmes
— Part 3: Preservation and handling of water samples
— Part 4: Guidance on sampling from lakes
— Part 5: Guidance on sampling of drinking water
— Part 6: Guidance on sampling of rivers and streams
— Part 7: Guidance on sampling of water and steam in boiler plants
— Part 8: Guidance on sampling of wet deposition
— Part 9: Guidance on sampling from marine waters
— Part 10: Guidance on sampling of waste waters
— Part 11: Guidance on sampling of groundwaters
— Part 12: Guidance on sampling of bottom sediments;
— Part 13: Guidance on sampling of water, waste water and related sludges
— Part 14: Guidance on quality assurance and quality control of environmental water sampling and handling
— Part 15: Guidance on preservation and handling of sludge and sediment samples
iv © ISO 2014 – All rights reserved

— Part 16: Guidance on biotesting of samples
— Part 17: Guidance on sampling of suspended sediments
— Part 19: Guidance on sampling of marine sediments
— Part 20: Guidance on the use of sampling data for decision making – Compliance with thresholds and
classification systems
— Part 21: Guidance on sampling of drinking water distributed by tankers or means other than
distribution pipes
— Part 22: Guidance on design and installation of groundwater sample points
— Part 23: Guidance on passive sampling in surface waters
Introduction
Sampling is the first step in carrying out chemical, physical and biological examinations. Therefore, the
goal of sampling should be to obtain a representative sample for the research question and to supply it
to the laboratory in the correct manner. Errors caused by improper sampling, sample pre-treatment,
transport and storage cannot be corrected.
This part of ISO 5667 specifies quality assurance and quality control procedures and provides additional
guidance on sampling of the various types of water covered in the specific parts of ISO 5667.
Quality control procedures are necessary for the collection of environmental water samples for the
following reasons:
a) to monitor the effectiveness of sampling methodology;
b) to demonstrate that the various stages of the sample collection process are adequately controlled
and suited to the intended purpose, including adequate control over sources of error such as
sample contamination, loss of determinand and sample instability. To achieve this, quality control
procedures should provide a means of detecting sampling error, and hence a means of rejecting
invalid or misleading data resulting from the sampling process;
c) to quantify and control the sources of error which arise in sampling. Quantification gives a guide to
the significance that sampling plays in the overall accuracy of data; and
d) to provide information on suitably abbreviated quality assurance procedures that might be used for
rapid sampling operations such as pollution incidents or groundwater investigations.
This part of ISO 5667 is one of a group of International Standards dealing with the sampling of waters.
It should be read in conjunction with the other parts of ISO 5667 and in particular with parts 1 and 3.
The general terminology is in accordance with that published.
vi © ISO 2014 – All rights reserved

INTERNATIONAL STANDARD ISO 5667-14:2014(E)
Water quality — Sampling —
Part 14:
Guidance on quality assurance and quality control of
environmental water sampling and handling
WARNING — Consider and minimize any risks and obey safety rules. See ISO 5667-1 for certain
safety precautions, including sampling from boats and from ice-covered waters.
1 Scope
This part of ISO 5667 provides guidance on the selection and use of various quality assurance and quality
control techniques relating to the manual sampling of surface, potable, waste, marine and ground waters.
NOTE The general principles outlined in this part of ISO 5667 might, in some circumstances, be applicable to
sludge and sediment sampling.
2 Normative references
The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.
ISO 5667-1:2006, Water quality — Sampling — Part 1: Guidance on the design of sampling programmes and
sampling techniques
ISO 5667-3:2012, Water quality — Sampling — Part 3: Preservation and handling of water samples
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
3.1
accuracy
closeness of agreement between a test result or measurement result and the true value
Note 1 to entry: In practice, the accepted reference value is substituted for the true value.
Note 2 to entry: The term accuracy, when applied to a set of test or measurement results, involves a combination
of random components and a common systematic error or bias component.
Note 3 to entry: Accuracy refers to a combination of trueness and precision.
[SOURCE: ISO 3534-2:2006, 3.3.1]
3.2
bias
difference between the expectation of the test results or measurement result and a true value
Note 1 to entry: Bias is the total systematic error as contrasted to random error. There may be one or more
systematic error components contributing to the bias. A larger systematic difference from the true value is
reflected by a larger bias value.
Note 2 to entry: The bias of a measuring instrument is normally estimated by averaging the error of indication
over an appropriate number of repeated measurements. The error of indication is the: “indication of a measuring
instrument minus a true value of the corresponding input quantity”.
Note 3 to entry: In practice, the accepted reference value is substituted for the true value.
[SOURCE: ISO 3534-2:2006, 3.3.2]
3.3
precision
closeness of agreement between independent test/measurement results obtained under stipulated
conditions
Note 1 to entry: Precision depends only on the distribution of random errors and does not relate to the true value
or the specified value.
Note 2 to entry: The measure of precision is usually expressed in terms of imprecision and computed as a standard
deviation of the test results or measurement results. Less precision is reflected by a larger standard deviation.
Note 3 to entry: Quantitative measures of precision depend critically on the stipulated conditions. Repeatability
conditions and reproducibility conditions are particular sets of extreme stipulated conditions.
[SOURCE: ISO 3534-2:2006, 3.3.4]
3.4
representativeness
extent to which the condition of all the samples taken from the body of water reflects conditions in
water of interest
3.5
blank
observed value obtained when measurement is made on a sample identical to the sample of interest, but
in the absence of the determinand
Note 1 to entry: Deionised water; distilled water can be used as blank samples which are prepared in the laboratory
prior to sampling.
3.6
field blank
container prepared in the laboratory, using reagent water or other blank matrix, and sent with the sampling
personnel for exposure to the sampling environment to verify possible contamination during sampling
[SOURCE: ISO 11074:2005, 4.5.3]
3.7
spike
known quantity of determinand which is added to a sample, usually for the purpose of estimating the
systematic error of an analytical system by means of a recovery exercise
3.8
recovery
extent to which a known, added quantity of determinand in a sample can be measured by an
analytical system
Note 1 to entry: Recovery is calculated from the difference between results obtained from a spiked (3.7) and an
unspiked aliquot of sample and is usually expressed as a percentage.
3.9
control chart
chart on which some statistical measure of a series of samples is plotted in a particular order to steer
the process with respect to that measure and to control and reduce variation
Note 1 to entry: The particular order is usually based on time or sample number order.
2 © ISO 2014 – All rights reserved

Note 2 to entry: The control chart operates most effectively when the measure is a process variable which is
correlated with an ultimate product or service characteristic.
[SOURCE: ISO 3534-2:2006, 2.3.1]
3.10
Shewhart control chart
control chart with Shewhart control limits intended primarily to distinguish between the variation in
the plotted measure due to random causes and that due to special causes
Note 1 to entry: This could be a chart using attributes (for example, proportion nonconforming) for evaluating a
process, or it could be a chart using variables (for example, average and range) for evaluating a process. Examples are:
a) X-bar chart — the sample means are plotted in order to control the mean value of a variable;
b) R chart — the sample ranges are plotted in order to control the variability of a variable;
c) s chart — the sample standard deviations are plotted in order to control the variability of a variable;
d) s chart — the sample variances are plotted in order to control the variability of a variable;
e) C chart — the number of defectives (per batch, per day, per machine, etc.) is plotted.
[SOURCE: ISO 3534-2:2006, 2.3.2, modified — Note 1 to entry has been added.]
3.11
action limits
control limits between which the statistic under consideration lies with a very high probability when
the process is under statistical control
Note 1 to entry: Action lines are drawn on a control chart to represent action limits.
Note 2 to entry: When the measure plotted lies beyond an action limit, appropriate corrective action is taken
on the process.
Note 3 to entry: These limits are based on the assumption that only 0,3 % of normally distributed results will fall
outside these limits. Such an occurrence would strongly indicate that additional, assignable causes of variation
might be present and that action might be required to identify and reduce them.
[SOURCE: ISO 3534-2:2006, 2.4.4, modified — Note 3 to entry has been added.]
3.12
warning limits
control limits between which the statistic under consideration lies with a high probability when the
process is under statistical control
Note 1 to entry: Warning lines are drawn on a control chart to represent warning limits.
Note 2 to entry: When the value of the statistic plotted lies outside a warning limit, but within the action limit
(3.11), increased supervision of the process, to pre-specified rules, is generally required.
Note 3 to entry: The limits are calculated from the standard deviation of the statistic under consideration of at
least 10 samples. Warning and action control limits are applied to individual sampling results.
[SOURCE: ISO 3534-2:2006, 2.4.3, modified — Note 3 to entry has been added.]
3.13
uncertainty
measurement uncertainty
non-negative parameter characterizing the dispersion of the quantity values being attributed to a
measurand based on the information used
[SOURCE: ISO/IEC Guide 99:2007, 2.26, modified — The notes to entry are not included here.]
3.14
true value
value which characterizes a quantity or quantitative characteristic perfectly defined in the conditions
which exist when that quantity or quantitative characteristic is considered
Note 1 to entry: The true value of a quantity or quantitative characteristic is a theoretical concept and, in general,
cannot be known exactly.
[SOURCE: ISO 3534-2:2006, 3.2.5, modified — Note 2 to entry is not included here.]
3.15
accepted reference value
value that serves as an agreed-upon reference for comparison
Note 1 to entry: The accepted reference value is derived as:
a) a theoretical or established value, based on scientific principles;
b) an assigned or certified value, based on experimental work of some national or international organization;
c) a consensus or certified value, based on collaborative experimental work under the auspices of a scientific or
technical group;
d) the expectation, i.e. the mean of a specified set of measurements, when a), b) and c) are not available.
[SOURCE: ISO 3534-2:2006, 3.2.7]
4 Sources of sampling error
Sources of sampling errors include the following:
a) Contamination
Contamination can be caused by sampling equipment materials (sampling containers and sample
containers) by cross-contamination between samples and by sample preservation and inappropriate
storage and transport arrangements.
b) Sample instability
The type of sampling vessels and containers used can affect the stability of the determinand between
sampling and analysis due to the inherent instability of the sample itself and the conditions in which
samples are stored and transported.
c) Incorrect preservation
The choice of sampling vessels and containers affects the integrity of the determinand and the
options for preservation which may be available, as detailed in ISO 5667-3.
d) Incorrect sampling
Deviation from the sampling procedure, or the procedure itself, might be a source of error.
e) Sampling from non-homogenized water bodies
f) Sample transportation
Figure 1 illustrates various sources of sampling error: environment, personnel, materials, methods,
preservation and transportation. Further examples of common sources of sampling error are given in
Annex A.
4 © ISO 2014 – All rights reserved

Figure 1 — Sources of sampling error
5 Sampling quality
5.1 General
A programme to establish sampling quality should be established for every series of sampling, so as to
ensure that data resulting from sampling programmes are both trustworthy and scientifically credible.
Mistakes in any step of the sampling procedure can result in substantial errors within the resulting data.
Laboratories that analyse collected samples usually have rigorous programmes of quality assurance and
quality control (QA/QC) as required by national regulation and conforming to ISO/IEC 17025. However,
such laboratory programmes of QA/QC cannot substitute for the rigorous sampling quality programmes
required for the collection and handling of samples prior to delivery to laboratories for analysis.
Sampling quality programmes comprise all the steps taken to ensure that valid results are produced.
Sampling quality programmes include documented evidence that the individuals who collect samples
are competent and well trained, that appropriate sample collection and sample handling methods were
employed, that equipment were maintained and calibrated, that correct practices were followed and
that records are both complete and secure. It is important to establish a quality assurance programme
and quality control effective for the characterization and reduction of errors. Depending on the objective
(e.g. to check for any contamination of the sample at different points in the sampling procedure, and
identify potential problems), the quality control set up will be different. See Table 1.
Table 1 — Means of quality control for different objectives
Objective Means to implement
Check the absence of contamination Blank environmental, Field blank, Transport blank, Equipment
blank, Filter blank
Calculate the sampling precision Duplicate sample
Check the stability of the sample Spiking
Particular importance should be given to careful measurement of analyses performed on-site and
to correct recording of determinand results. Reference should be made to ISO/TS 13530 regarding
analytical quality control for water analysis and to ISO 15839 regarding online sensors/analysing
equipment for water.
Since analysing laboratories have expertise regarding QA/QC, it is suggested they be actively involved
in the design and evaluation of sampling quality programmes.
5.2 Technical and personnel requirements
To take a sample correctly, adequate and cleaned equipment [such as sample containers, sampling devices,
filtration equipment, a homogenizer, an intermediate container (funnel, spoon), and measurement
equipment for on-site analysis] should be held in sufficient numbers. Regular maintenance of all
equipment should be guaranteed.
The sampling vehicle and the facility should be equipped in accordance with the requirements for
sampling (laboratory vehicle).
The sampling personnel should have relevant professional training, e.g. completed vocational education
as a chemical laboratory assistant or specialist for waste water engineering. An essential prerequisite
is appropriate initial job-training and regular training of sampling personnel. Participation in internal
and/or external training should be documented (see 5.4).
A regular exchange of information between client, sampling personnel and laboratory personnel
improves the quality of sampling and testing. All the necessary information for a sampling of ensured
[7]
quality should be placed at the sampling personnel’s disposal.
5.3 Sampling manual
5.3.1 For sampling, the general requirements related to the competence of testing and calibration
laboratories should be applied.
[7]
Procedures or operating instructions should be prepared and should include the following issues:
a) sampling (matrix-based);
b) on-site measurement;
c) pre-treatment of samples;
d) preservation of samples (parameter-based);
e) sample transport, storage and sample delivery/reception.
Each person responsible for collecting water samples should carry an up-to-date sampling manual on-
site. This manual should provide specific guidance regarding the sampling methods to be employed,
sample handling and preservation, analytical methods for measurements to be performed at the
sampling site, procedures to be followed when transporting samples to the laboratory and method
details pertaining to any online continuous sensor type equipment to be utilized. It is suggested that
the sampling manual should additionally detail all quality assurance procedures to be employed when
collecting samples, when taking on-site measurements, when transporting samples to laboratory and
when using or checking continuous monitoring equipment.
5.3.2 The sampling manual should specify:
a) the types of bottles or containers, their closures and the specific purposes for which they are to be used;
b) where relevant, the cleaning procedure and shelf life for bottles, containers and closures used for
each parameter, including the amount and type of preservative to be added (e.g. first draw, flushed,
stagnation) and the procedure for collecting samples for different parameters;
c) the sampling procedure for each parameter, including the type of sample to be collected;
6 © ISO 2014 – All rights reserved

d) the frequency and order of sampling;
e) the conditions of storage and transport of samples and the maximum time that can elapse before
analysis should commence for each parameter; and
f) the description of preservation reagents (including usual colour), plus appropriate safety measures
in case of spill, or contact with skin or eyes.
It is recommended that the manual additionally provide guidance as to appropriate sampling responses
when unusual conditions are identified, plus a contingency plan for emergency conditions.
NOTE If laptop computers are used in the field, it is convenient to have electronic versions of manuals.
Using electronic templates and spreadsheets can reduce errors in recording information and provide automatic
calculations.
5.4 Training of sampling staff
All sampling staff should be fully trained before being allowed to work unsupervised. Training should
include if relevant:
a) principles and practices of water supply and distribution;
b) principles and practices of water supply hygiene;
c) introductory knowledge in the field of interest, e.g. of water chemistry and of microbiology;
d) knowledge of water supply vulnerabilities to contamination including case studies of genuine
contamination events with emphasis upon faecal contamination;
e) experience in all aspects of sampling;
f) supervised experience with laboratory techniques if staff are expected to take analytical
measurements or to operate online monitoring equipment;
g) review of this part of ISO 5667 plus review of relevant clauses of reference standards; and
h) the full content of the sampling manual with special emphasis on identifying and safely coping with
or avoiding potential hazards.
Once trained, all sampling staff performance should be subject to regular review. Monitoring and review
procedures, criteria for satisfactory performance and policy on retraining should be documented.
This training should be updated on a regular basis. More detailed information about requirements for
training of personnel is given in ISO/IEC 17025.
A training record should be produced for each staff member detailing the training given, with dates and
assessment of competence, results of evaluation reviews, retraining or further training given and any
re-assessment of competence. An annual review of such training is considered the minimum.
6 Strategy and organization
6.1 Time, duration and frequency of sampling
The purpose of sampling is to obtain a representative sample for the study goal. This refers to:
a) the temporal representativeness;
b) the local representativeness; and
c) the applicable sampling technique.
This assumes that the sampling is carefully planned with respect to the expenditure of time, the
[7]
appropriate vehicle and equipment as well as the professionally qualified staff needed.
Time, duration and frequency can vary widely in the investigation of, for example, waste waters, surface
waters and groundwaters. Their appointments are based on legislation, issues or other circumstances.
For further information, see ISO 5667-1 and the type of water-specific standards of ISO 5667-series.
6.2 Sampling collection locations
To get a first idea of the sampling point, it is useful to review existing documentation. The documentation
is defined by the position coordinates (easting and northing values). It includes maps (overview and
detail), and photos (taken in different seasons if necessary). In practice, the GPS navigation handsets
[7]
with topographical maps have proved useful. For further information, see ISO 5667-1 and the type of
water-specific standards of ISO 5667-series.
It is absolutely necessary to check the sampling point according to the local circumstances. Only on-site
is it possible to assess whether a sampling point is representative for the area to be examined and the
research in question, and whether the sampling point is easily accessible.
7 Sample collection and handling
7.1 Equipment and vehicle check prior to carrying out a sampling programme
The sampling personnel should receive a clearly formulated sampling order. Then the sampling is
prepared on the basis of the operating instructions. To provide the materials and equipment as well as
their preparation for sampling, the responsibilities between client, laboratory and sampling personnel
[8]
should be clearly defined.
[7]
The main steps of preparation for sampling are:
a) provision of cleaned sampling equipment, intermediate container and devices for sample pre-
treatment (homogenization, filtration);
b) provision of cleaned sample containers and their seals in sufficient numbers according to the
examined parameters/parameter groups. It should be ensured that the containers are transported
closed; no changes can be allowed to occur to the parameters/parameter groups that are to be
examined due to the material of the containers by contamination, adsorption, diffusion or outgassing;
c) provision of material (e.g. labels for labelling the sample containers);
d) provision of material for sample preservation and the necessary dispensers;
e) provision of sampling documents consisting of sampling order, sampling protocol and sampling
point documentation;
f) provision of and preparation of equipment for on-site measurements (e.g. temperature, oxygen, pH-
value, conductivity, turbidity and test solutions required for on-site testing);
g) provision of appropriate protective and safety equipment;
h) provision of valid access authorizations (e.g. special permits, trafficability allowances, company ID
cards, keys);
i) preparation of the sampling vehicle with regard to operating and traffic safety; cleanliness, and
refrigeration unit of the vehicle
j) slip-resistant and damage-free loading of devices and equipment in the sampling vehicle-storage
devices (as equipment in situ, boxes, …) with good distribution in the vehicle.
8 © ISO 2014 – All rights reserved

7.2 Preparation for sampling on-site
It is important to:
a) verify the accuracy of sampling location (coordinates, sampling point number, exact position [e.g.
bank (left/right), river-centre];
b) monitor the sampling conditions (date, time, weather, specifics on and in the waters, if necessary
record water level and flow);
c) select sampling equipment and sample containers by type and material;
d) ensure that cleaned equipment is used at each sampling. It is useful to have a number of sampling
devices readily available. If this is not possible, the sampling devices should be cleaned by pre-
rinsing with sample material or deionized water to prevent any carryover of sample constituents. In
certain cases (e.g. high concentration of solid matters or visible presence of oils and fats), sampling
devices may not be pre-rinsed with sample material;
e) check the marked sample containers for correctness and completeness or to label permanently.
7.3 Field measurements
The on-site measurements should be performed before the actual sampling, since they might still be able
to give instructions that should be followed for sampling. The measurements can either be performed
directly in the medium to be sampled, or in a spot sample to be discarded after the measurement. In
scoop or sample collection containers, sensors or electrodes should not be used in combination because
[8]
the use of various sensors could contribute to the contamination of the sample.
It is important to ensure that on-site instruments are regularly calibrated. Functional tests and
calibrations as well as the type of documentation are set for each parameter in the operation instruction.
On-site verification of equipment in situ before and after series of measurement should be performed.
Measure and record the temperature of the sample on the site. Physical parameters (for example pH,
dissolved gases, suspended solids) should be determined on-site, or as soon as possible afterwards. The
pH-measurement in ion-poor waters with low buffering capacity or in saline waters requires special
measuring conditions. For certain oxygen sensors, a minimum flow or agitation should be guaranteed.
Provide alternative sensors in case of breakage.
The results of these operations (metrological control of field devices, management of calibration
solutions) should be recorded and stored.
7.4 Taking the samples
7.4.1 Spot samples
Spot samples are needed to capture the current state with regard to time and/or location from a body of
water. They should be taken in particular when a short-term change in the concentration of the analytes
to be determined is to be expected in the sample. The reasons for this can be strong outgassing, faster
degradation, adsorption or contamination. When scooping the sample by means of suitable devices,
these effects are reduced.
The direct filling of the spot sample into the sample container should be favoured. The material of the
vessel used should be selected according to the study parameters. Contamination of the sample by liquid
or solid deposits to the sampling equipment should be excluded.
For further information, see ISO 5667-1 and the specific standards appropriate to the type of water
under study in the ISO 5667-series.
In some cases, the sample container should be closed airtight and with no gas space above the liquid
after filling.
7.4.2 Composite samples
To collect a composite sample, several spot samples are taken over a certain period of time. These are
mixed by hand or by an automatic sampling device which collects samples continuously or discontinuously.
When using automatic sampling systems, care should be taken that no substances settle in the pipeline
systems. All the water-carrying parts of the pump, the hoses or pipes and associated sampling equipment
should be manufactured from a material that does not change the sample with respect to the analytes
to be determined.
Pressure side-acting pumps (submersible pumps) should be preferred to vacuum systems to minimize
an outgassing of volatile substances. The pump should be self-lubricating to prevent the leakage of
lubricant into the water or into the sample.
For automatic sampling with continuous and discontinuous working devices on-site, specific quality
[7]
assurance procedures should be set by the operator, e.g. as outlined below:
a) position of the water abstraction point;
b) type of pump (suction or pressure);
c) material of all water-carrying parts (pump, pipes/hoses including couplings, sampling device);
d) time intervals and sample volumes of increment samples;
e) cooling/freezing/preservation;
f) transferring the composite samples after homogenization into the sample containers; and
g) cleaning and maintenance of equipment.
7.4.3 Sampling pre-treatment
As water samples can be subject to very fast changes due to biological activity and chemical reaction
processes in terms of their ingredients, immediately after sampling, appropriate preservation or pre-
treatment measures should be performed. The type of sample pre-treatment and preservation should be set
for each parameter or parameter group in a ‘container and preservation plan” and included in the standard
operating procedure. Sampling staff should adhere to conservation guidelines provided by the laboratory.
7.4.4 Homogenization and subsampling
If the required sample volume is so large that several pumping removals are needed and/or different
sample containers have to be filled with one sample, the homogeneity of the sample should be ensured.
This is especially important in samples containing particles and for the determination of analytes, which
are enriched on solid particles.
For large sample volumes, homogenizers with transportable sample vessels and with magnetic stirrer
or mechanical stirrer should be used for waste water sampling
[7]
Depending on the scope of investigation, the following variants arise.
a) Subsampling from a bucket
In practice, sampling with a bucket has proven easy to do. A precondition is that all subsamples
can be filled out of it and there is no inhomogeneity in the spot sample. The sample is collected
using a suitable vessel and then distributed to the various sample containers. The subsamples for
the parameters in which a dependency from suspended matters exists (such as heavy metals, total
phosphorus) are bottled in priority. If necessary, the scooped sample should be gently homogenized
between the individual filling operations by means of an appropriate stirring rod.
10 © ISO 2014 – All rights reserved

b) Subsampling using a homogenizer
The single scoop samples are first placed in a sufficiently large collection vessel from which the
various sample containers (subsamples) will be filled after gentle, continuous and complete mixing
by a dispensing tap.
For collecting, mixing and filling large sample volumes, homogenizers with transportable sample
vessels and with a magnetic stirrer or a mechanic stirrer are well suited as they are
...


INTERNATIONAL ISO
STANDARD 5667-14
Second edition
2014-12-15
Water quality — Sampling —
Part 14:
Guidance on quality assurance and
quality control of environmental
water sampling and handling
Qualité de l’eau — Échantillonnage —
Partie 14: Lignes directrices pour le contrôle de la qualité dans
l’échantillonnage et la manutention des eaux environnementales
Reference number
©
ISO 2014
© ISO 2014
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
ii © ISO 2014 – All rights reserved

Contents Page
Foreword .iv
Introduction .vi
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Sources of sampling error . 4
5 Sampling quality . 5
5.1 General . 5
5.2 Technical and personnel requirements . 6
5.3 Sampling manual . 6
5.4 Training of sampling staff . 7
6 Strategy and organization . 7
6.1 Time, duration and frequency of sampling. 7
6.2 Sampling collection locations . 8
7 Sample collection and handling . 8
7.1 Equipment and vehicle check prior to carrying out a sampling programme . 8
7.2 Preparation for sampling on-site . 9
7.3 Field measurements . 9
7.4 Taking the samples . 9
8 Sample identification .12
9 Field sample protocol .12
10 Transport and storage of samples .12
11 Sampling quality control techniques .13
11.1 General .13
11.2 Replicate quality control samples .15
11.3 Field blank samples .16
11.4 Rinsing of equipment (sampling containers) .17
11.5 Filtration recovery .18
11.6 Technique 1 — Spiked samples .20
11.7 Technique 2 — Spiked environmental samples .22
12 Analysis and interpretation of quality control data .22
12.1 Shewhart control charts.22
12.2 Construction of duplicate control charts .23
13 Independent audits.23
[7]
Annex A (informative) Common sources of sampling error .25
Annex B (informative) Control charts .27
Annex C (informative) Sub-sampling using a homogenizer .31
Bibliography .34
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any
patent rights identified during the development of the document will be in the Introduction and/or on
the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the meaning of ISO specific terms and expressions related to conformity
assessment, as well as information about ISO’s adherence to the WTO principles in the Technical Barriers
to Trade (TBT), see the following URL: Foreword — Supplementary information.
The committee responsible for this document is ISO/TC 147, Water quality, Subcommittee SC 6, Sampling
(general methods).
This second edition cancels and replaces the first edition (ISO 5667-14:1998), which has been
technically revised.
ISO 5667 consists of the following parts, under the general title Water quality — Sampling:
— Part 1: Guidance on the design of sampling programmes
— Part 3: Preservation and handling of water samples
— Part 4: Guidance on sampling from lakes
— Part 5: Guidance on sampling of drinking water
— Part 6: Guidance on sampling of rivers and streams
— Part 7: Guidance on sampling of water and steam in boiler plants
— Part 8: Guidance on sampling of wet deposition
— Part 9: Guidance on sampling from marine waters
— Part 10: Guidance on sampling of waste waters
— Part 11: Guidance on sampling of groundwaters
— Part 12: Guidance on sampling of bottom sediments;
— Part 13: Guidance on sampling of water, waste water and related sludges
— Part 14: Guidance on quality assurance and quality control of environmental water sampling and handling
— Part 15: Guidance on preservation and handling of sludge and sediment samples
iv © ISO 2014 – All rights reserved

— Part 16: Guidance on biotesting of samples
— Part 17: Guidance on sampling of suspended sediments
— Part 19: Guidance on sampling of marine sediments
— Part 20: Guidance on the use of sampling data for decision making – Compliance with thresholds and
classification systems
— Part 21: Guidance on sampling of drinking water distributed by tankers or means other than
distribution pipes
— Part 22: Guidance on design and installation of groundwater sample points
— Part 23: Guidance on passive sampling in surface waters
Introduction
Sampling is the first step in carrying out chemical, physical and biological examinations. Therefore, the
goal of sampling should be to obtain a representative sample for the research question and to supply it
to the laboratory in the correct manner. Errors caused by improper sampling, sample pre-treatment,
transport and storage cannot be corrected.
This part of ISO 5667 specifies quality assurance and quality control procedures and provides additional
guidance on sampling of the various types of water covered in the specific parts of ISO 5667.
Quality control procedures are necessary for the collection of environmental water samples for the
following reasons:
a) to monitor the effectiveness of sampling methodology;
b) to demonstrate that the various stages of the sample collection process are adequately controlled
and suited to the intended purpose, including adequate control over sources of error such as
sample contamination, loss of determinand and sample instability. To achieve this, quality control
procedures should provide a means of detecting sampling error, and hence a means of rejecting
invalid or misleading data resulting from the sampling process;
c) to quantify and control the sources of error which arise in sampling. Quantification gives a guide to
the significance that sampling plays in the overall accuracy of data; and
d) to provide information on suitably abbreviated quality assurance procedures that might be used for
rapid sampling operations such as pollution incidents or groundwater investigations.
This part of ISO 5667 is one of a group of International Standards dealing with the sampling of waters.
It should be read in conjunction with the other parts of ISO 5667 and in particular with parts 1 and 3.
The general terminology is in accordance with that published.
vi © ISO 2014 – All rights reserved

INTERNATIONAL STANDARD ISO 5667-14:2014(E)
Water quality — Sampling —
Part 14:
Guidance on quality assurance and quality control of
environmental water sampling and handling
WARNING — Consider and minimize any risks and obey safety rules. See ISO 5667-1 for certain
safety precautions, including sampling from boats and from ice-covered waters.
1 Scope
This part of ISO 5667 provides guidance on the selection and use of various quality assurance and quality
control techniques relating to the manual sampling of surface, potable, waste, marine and ground waters.
NOTE The general principles outlined in this part of ISO 5667 might, in some circumstances, be applicable to
sludge and sediment sampling.
2 Normative references
The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.
ISO 5667-1:2006, Water quality — Sampling — Part 1: Guidance on the design of sampling programmes and
sampling techniques
ISO 5667-3:2012, Water quality — Sampling — Part 3: Preservation and handling of water samples
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
3.1
accuracy
closeness of agreement between a test result or measurement result and the true value
Note 1 to entry: In practice, the accepted reference value is substituted for the true value.
Note 2 to entry: The term accuracy, when applied to a set of test or measurement results, involves a combination
of random components and a common systematic error or bias component.
Note 3 to entry: Accuracy refers to a combination of trueness and precision.
[SOURCE: ISO 3534-2:2006, 3.3.1]
3.2
bias
difference between the expectation of the test results or measurement result and a true value
Note 1 to entry: Bias is the total systematic error as contrasted to random error. There may be one or more
systematic error components contributing to the bias. A larger systematic difference from the true value is
reflected by a larger bias value.
Note 2 to entry: The bias of a measuring instrument is normally estimated by averaging the error of indication
over an appropriate number of repeated measurements. The error of indication is the: “indication of a measuring
instrument minus a true value of the corresponding input quantity”.
Note 3 to entry: In practice, the accepted reference value is substituted for the true value.
[SOURCE: ISO 3534-2:2006, 3.3.2]
3.3
precision
closeness of agreement between independent test/measurement results obtained under stipulated
conditions
Note 1 to entry: Precision depends only on the distribution of random errors and does not relate to the true value
or the specified value.
Note 2 to entry: The measure of precision is usually expressed in terms of imprecision and computed as a standard
deviation of the test results or measurement results. Less precision is reflected by a larger standard deviation.
Note 3 to entry: Quantitative measures of precision depend critically on the stipulated conditions. Repeatability
conditions and reproducibility conditions are particular sets of extreme stipulated conditions.
[SOURCE: ISO 3534-2:2006, 3.3.4]
3.4
representativeness
extent to which the condition of all the samples taken from the body of water reflects conditions in
water of interest
3.5
blank
observed value obtained when measurement is made on a sample identical to the sample of interest, but
in the absence of the determinand
Note 1 to entry: Deionised water; distilled water can be used as blank samples which are prepared in the laboratory
prior to sampling.
3.6
field blank
container prepared in the laboratory, using reagent water or other blank matrix, and sent with the sampling
personnel for exposure to the sampling environment to verify possible contamination during sampling
[SOURCE: ISO 11074:2005, 4.5.3]
3.7
spike
known quantity of determinand which is added to a sample, usually for the purpose of estimating the
systematic error of an analytical system by means of a recovery exercise
3.8
recovery
extent to which a known, added quantity of determinand in a sample can be measured by an
analytical system
Note 1 to entry: Recovery is calculated from the difference between results obtained from a spiked (3.7) and an
unspiked aliquot of sample and is usually expressed as a percentage.
3.9
control chart
chart on which some statistical measure of a series of samples is plotted in a particular order to steer
the process with respect to that measure and to control and reduce variation
Note 1 to entry: The particular order is usually based on time or sample number order.
2 © ISO 2014 – All rights reserved

Note 2 to entry: The control chart operates most effectively when the measure is a process variable which is
correlated with an ultimate product or service characteristic.
[SOURCE: ISO 3534-2:2006, 2.3.1]
3.10
Shewhart control chart
control chart with Shewhart control limits intended primarily to distinguish between the variation in
the plotted measure due to random causes and that due to special causes
Note 1 to entry: This could be a chart using attributes (for example, proportion nonconforming) for evaluating a
process, or it could be a chart using variables (for example, average and range) for evaluating a process. Examples are:
a) X-bar chart — the sample means are plotted in order to control the mean value of a variable;
b) R chart — the sample ranges are plotted in order to control the variability of a variable;
c) s chart — the sample standard deviations are plotted in order to control the variability of a variable;
d) s chart — the sample variances are plotted in order to control the variability of a variable;
e) C chart — the number of defectives (per batch, per day, per machine, etc.) is plotted.
[SOURCE: ISO 3534-2:2006, 2.3.2, modified — Note 1 to entry has been added.]
3.11
action limits
control limits between which the statistic under consideration lies with a very high probability when
the process is under statistical control
Note 1 to entry: Action lines are drawn on a control chart to represent action limits.
Note 2 to entry: When the measure plotted lies beyond an action limit, appropriate corrective action is taken
on the process.
Note 3 to entry: These limits are based on the assumption that only 0,3 % of normally distributed results will fall
outside these limits. Such an occurrence would strongly indicate that additional, assignable causes of variation
might be present and that action might be required to identify and reduce them.
[SOURCE: ISO 3534-2:2006, 2.4.4, modified — Note 3 to entry has been added.]
3.12
warning limits
control limits between which the statistic under consideration lies with a high probability when the
process is under statistical control
Note 1 to entry: Warning lines are drawn on a control chart to represent warning limits.
Note 2 to entry: When the value of the statistic plotted lies outside a warning limit, but within the action limit
(3.11), increased supervision of the process, to pre-specified rules, is generally required.
Note 3 to entry: The limits are calculated from the standard deviation of the statistic under consideration of at
least 10 samples. Warning and action control limits are applied to individual sampling results.
[SOURCE: ISO 3534-2:2006, 2.4.3, modified — Note 3 to entry has been added.]
3.13
uncertainty
measurement uncertainty
non-negative parameter characterizing the dispersion of the quantity values being attributed to a
measurand based on the information used
[SOURCE: ISO/IEC Guide 99:2007, 2.26, modified — The notes to entry are not included here.]
3.14
true value
value which characterizes a quantity or quantitative characteristic perfectly defined in the conditions
which exist when that quantity or quantitative characteristic is considered
Note 1 to entry: The true value of a quantity or quantitative characteristic is a theoretical concept and, in general,
cannot be known exactly.
[SOURCE: ISO 3534-2:2006, 3.2.5, modified — Note 2 to entry is not included here.]
3.15
accepted reference value
value that serves as an agreed-upon reference for comparison
Note 1 to entry: The accepted reference value is derived as:
a) a theoretical or established value, based on scientific principles;
b) an assigned or certified value, based on experimental work of some national or international organization;
c) a consensus or certified value, based on collaborative experimental work under the auspices of a scientific or
technical group;
d) the expectation, i.e. the mean of a specified set of measurements, when a), b) and c) are not available.
[SOURCE: ISO 3534-2:2006, 3.2.7]
4 Sources of sampling error
Sources of sampling errors include the following:
a) Contamination
Contamination can be caused by sampling equipment materials (sampling containers and sample
containers) by cross-contamination between samples and by sample preservation and inappropriate
storage and transport arrangements.
b) Sample instability
The type of sampling vessels and containers used can affect the stability of the determinand between
sampling and analysis due to the inherent instability of the sample itself and the conditions in which
samples are stored and transported.
c) Incorrect preservation
The choice of sampling vessels and containers affects the integrity of the determinand and the
options for preservation which may be available, as detailed in ISO 5667-3.
d) Incorrect sampling
Deviation from the sampling procedure, or the procedure itself, might be a source of error.
e) Sampling from non-homogenized water bodies
f) Sample transportation
Figure 1 illustrates various sources of sampling error: environment, personnel, materials, methods,
preservation and transportation. Further examples of common sources of sampling error are given in
Annex A.
4 © ISO 2014 – All rights reserved

Figure 1 — Sources of sampling error
5 Sampling quality
5.1 General
A programme to establish sampling quality should be established for every series of sampling, so as to
ensure that data resulting from sampling programmes are both trustworthy and scientifically credible.
Mistakes in any step of the sampling procedure can result in substantial errors within the resulting data.
Laboratories that analyse collected samples usually have rigorous programmes of quality assurance and
quality control (QA/QC) as required by national regulation and conforming to ISO/IEC 17025. However,
such laboratory programmes of QA/QC cannot substitute for the rigorous sampling quality programmes
required for the collection and handling of samples prior to delivery to laboratories for analysis.
Sampling quality programmes comprise all the steps taken to ensure that valid results are produced.
Sampling quality programmes include documented evidence that the individuals who collect samples
are competent and well trained, that appropriate sample collection and sample handling methods were
employed, that equipment were maintained and calibrated, that correct practices were followed and
that records are both complete and secure. It is important to establish a quality assurance programme
and quality control effective for the characterization and reduction of errors. Depending on the objective
(e.g. to check for any contamination of the sample at different points in the sampling procedure, and
identify potential problems), the quality control set up will be different. See Table 1.
Table 1 — Means of quality control for different objectives
Objective Means to implement
Check the absence of contamination Blank environmental, Field blank, Transport blank, Equipment
blank, Filter blank
Calculate the sampling precision Duplicate sample
Check the stability of the sample Spiking
Particular importance should be given to careful measurement of analyses performed on-site and
to correct recording of determinand results. Reference should be made to ISO/TS 13530 regarding
analytical quality control for water analysis and to ISO 15839 regarding online sensors/analysing
equipment for water.
Since analysing laboratories have expertise regarding QA/QC, it is suggested they be actively involved
in the design and evaluation of sampling quality programmes.
5.2 Technical and personnel requirements
To take a sample correctly, adequate and cleaned equipment [such as sample containers, sampling devices,
filtration equipment, a homogenizer, an intermediate container (funnel, spoon), and measurement
equipment for on-site analysis] should be held in sufficient numbers. Regular maintenance of all
equipment should be guaranteed.
The sampling vehicle and the facility should be equipped in accordance with the requirements for
sampling (laboratory vehicle).
The sampling personnel should have relevant professional training, e.g. completed vocational education
as a chemical laboratory assistant or specialist for waste water engineering. An essential prerequisite
is appropriate initial job-training and regular training of sampling personnel. Participation in internal
and/or external training should be documented (see 5.4).
A regular exchange of information between client, sampling personnel and laboratory personnel
improves the quality of sampling and testing. All the necessary information for a sampling of ensured
[7]
quality should be placed at the sampling personnel’s disposal.
5.3 Sampling manual
5.3.1 For sampling, the general requirements related to the competence of testing and calibration
laboratories should be applied.
[7]
Procedures or operating instructions should be prepared and should include the following issues:
a) sampling (matrix-based);
b) on-site measurement;
c) pre-treatment of samples;
d) preservation of samples (parameter-based);
e) sample transport, storage and sample delivery/reception.
Each person responsible for collecting water samples should carry an up-to-date sampling manual on-
site. This manual should provide specific guidance regarding the sampling methods to be employed,
sample handling and preservation, analytical methods for measurements to be performed at the
sampling site, procedures to be followed when transporting samples to the laboratory and method
details pertaining to any online continuous sensor type equipment to be utilized. It is suggested that
the sampling manual should additionally detail all quality assurance procedures to be employed when
collecting samples, when taking on-site measurements, when transporting samples to laboratory and
when using or checking continuous monitoring equipment.
5.3.2 The sampling manual should specify:
a) the types of bottles or containers, their closures and the specific purposes for which they are to be used;
b) where relevant, the cleaning procedure and shelf life for bottles, containers and closures used for
each parameter, including the amount and type of preservative to be added (e.g. first draw, flushed,
stagnation) and the procedure for collecting samples for different parameters;
c) the sampling procedure for each parameter, including the type of sample to be collected;
6 © ISO 2014 – All rights reserved

d) the frequency and order of sampling;
e) the conditions of storage and transport of samples and the maximum time that can elapse before
analysis should commence for each parameter; and
f) the description of preservation reagents (including usual colour), plus appropriate safety measures
in case of spill, or contact with skin or eyes.
It is recommended that the manual additionally provide guidance as to appropriate sampling responses
when unusual conditions are identified, plus a contingency plan for emergency conditions.
NOTE If laptop computers are used in the field, it is convenient to have electronic versions of manuals.
Using electronic templates and spreadsheets can reduce errors in recording information and provide automatic
calculations.
5.4 Training of sampling staff
All sampling staff should be fully trained before being allowed to work unsupervised. Training should
include if relevant:
a) principles and practices of water supply and distribution;
b) principles and practices of water supply hygiene;
c) introductory knowledge in the field of interest, e.g. of water chemistry and of microbiology;
d) knowledge of water supply vulnerabilities to contamination including case studies of genuine
contamination events with emphasis upon faecal contamination;
e) experience in all aspects of sampling;
f) supervised experience with laboratory techniques if staff are expected to take analytical
measurements or to operate online monitoring equipment;
g) review of this part of ISO 5667 plus review of relevant clauses of reference standards; and
h) the full content of the sampling manual with special emphasis on identifying and safely coping with
or avoiding potential hazards.
Once trained, all sampling staff performance should be subject to regular review. Monitoring and review
procedures, criteria for satisfactory performance and policy on retraining should be documented.
This training should be updated on a regular basis. More detailed information about requirements for
training of personnel is given in ISO/IEC 17025.
A training record should be produced for each staff member detailing the training given, with dates and
assessment of competence, results of evaluation reviews, retraining or further training given and any
re-assessment of competence. An annual review of such training is considered the minimum.
6 Strategy and organization
6.1 Time, duration and frequency of sampling
The purpose of sampling is to obtain a representative sample for the study goal. This refers to:
a) the temporal representativeness;
b) the local representativeness; and
c) the applicable sampling technique.
This assumes that the sampling is carefully planned with respect to the expenditure of time, the
[7]
appropriate vehicle and equipment as well as the professionally qualified staff needed.
Time, duration and frequency can vary widely in the investigation of, for example, waste waters, surface
waters and groundwaters. Their appointments are based on legislation, issues or other circumstances.
For further information, see ISO 5667-1 and the type of water-specific standards of ISO 5667-series.
6.2 Sampling collection locations
To get a first idea of the sampling point, it is useful to review existing documentation. The documentation
is defined by the position coordinates (easting and northing values). It includes maps (overview and
detail), and photos (taken in different seasons if necessary). In practice, the GPS navigation handsets
[7]
with topographical maps have proved useful. For further information, see ISO 5667-1 and the type of
water-specific standards of ISO 5667-series.
It is absolutely necessary to check the sampling point according to the local circumstances. Only on-site
is it possible to assess whether a sampling point is representative for the area to be examined and the
research in question, and whether the sampling point is easily accessible.
7 Sample collection and handling
7.1 Equipment and vehicle check prior to carrying out a sampling programme
The sampling personnel should receive a clearly formulated sampling order. Then the sampling is
prepared on the basis of the operating instructions. To provide the materials and equipment as well as
their preparation for sampling, the responsibilities between client, laboratory and sampling personnel
[8]
should be clearly defined.
[7]
The main steps of preparation for sampling are:
a) provision of cleaned sampling equipment, intermediate container and devices for sample pre-
treatment (homogenization, filtration);
b) provision of cleaned sample containers and their seals in sufficient numbers according to the
examined parameters/parameter groups. It should be ensured that the containers are transported
closed; no changes can be allowed to occur to the parameters/parameter groups that are to be
examined due to the material of the containers by contamination, adsorption, diffusion or outgassing;
c) provision of material (e.g. labels for labelling the sample containers);
d) provision of material for sample preservation and the necessary dispensers;
e) provision of sampling documents consisting of sampling order, sampling protocol and sampling
point documentation;
f) provision of and preparation of equipment for on-site measurements (e.g. temperature, oxygen, pH-
value, conductivity, turbidity and test solutions required for on-site testing);
g) provision of appropriate protective and safety equipment;
h) provision of valid access authorizations (e.g. special permits, trafficability allowances, company ID
cards, keys);
i) preparation of the sampling vehicle with regard to operating and traffic safety; cleanliness, and
refrigeration unit of the vehicle
j) slip-resistant and damage-free loading of devices and equipment in the sampling vehicle-storage
devices (as equipment in situ, boxes, …) with good distribution in the vehicle.
8 © ISO 2014 – All rights reserved

7.2 Preparation for sampling on-site
It is important to:
a) verify the accuracy of sampling location (coordinates, sampling point number, exact position [e.g.
bank (left/right), river-centre];
b) monitor the sampling conditions (date, time, weather, specifics on and in the waters, if necessary
record water level and flow);
c) select sampling equipment and sample containers by type and material;
d) ensure that cleaned equipment is used at each sampling. It is useful to have a number of sampling
devices readily available. If this is not possible, the sampling devices should be cleaned by pre-
rinsing with sample material or deionized water to prevent any carryover of sample constituents. In
certain cases (e.g. high concentration of solid matters or visible presence of oils and fats), sampling
devices may not be pre-rinsed with sample material;
e) check the marked sample containers for correctness and completeness or to label permanently.
7.3 Field measurements
The on-site measurements should be performed before the actual sampling, since they might still be able
to give instructions that should be followed for sampling. The measurements can either be performed
directly in the medium to be sampled, or in a spot sample to be discarded after the measurement. In
scoop or sample collection containers, sensors or electrodes should not be used in combination because
[8]
the use of various sensors could contribute to the contamination of the sample.
It is important to ensure that on-site instruments are regularly calibrated. Functional tests and
calibrations as well as the type of documentation are set for each parameter in the operation instruction.
On-site verification of equipment in situ before and after series of measurement should be performed.
Measure and record the temperature of the sample on the site. Physical parameters (for example pH,
dissolved gases, suspended solids) should be determined on-site, or as soon as possible afterwards. The
pH-measurement in ion-poor waters with low buffering capacity or in saline waters requires special
measuring conditions. For certain oxygen sensors, a minimum flow or agitation should be guaranteed.
Provide alternative sensors in case of breakage.
The results of these operations (metrological control of field devices, management of calibration
solutions) should be recorded and stored.
7.4 Taking the samples
7.4.1 Spot samples
Spot samples are needed to capture the current state with regard to time and/or location from a body of
water. They should be taken in particular when a short-term change in the concentration of the analytes
to be determined is to be expected in the sample. The reasons for this can be strong outgassing, faster
degradation, adsorption or contamination. When scooping the sample by means of suitable devices,
these effects are reduced.
The direct filling of the spot sample into the sample container should be favoured. The material of the
vessel used should be selected according to the study parameters. Contamination of the sample by liquid
or solid deposits to the sampling equipment should be excluded.
For further information, see ISO 5667-1 and the specific standards appropriate to the type of water
under study in the ISO 5667-series.
In some cases, the sample container should be closed airtight and with no gas space above the liquid
after filling.
7.4.2 Composite samples
To collect a composite sample, several spot samples are taken over a certain period of time. These are
mixed by hand or by an automatic sampling device which collects samples continuously or discontinuously.
When using automatic sampling systems, care should be taken that no substances settle in the pipeline
systems. All the water-carrying parts of the pump, the hoses or pipes and associated sampling equipment
should be manufactured from a material that does not change the sample with respect to the analytes
to be determined.
Pressure side-acting pumps (submersible pumps) should be preferred to vacuum systems to minimize
an outgassing of volatile substances. The pump should be self-lubricating to prevent the leakage of
lubricant into the water or into the sample.
For automatic sampling with continuous and discontinuous working devices on-site, specific quality
[7]
assurance procedures should be set by the operator, e.g. as outlined below:
a) position of the water abstraction point;
b) type of pump (suction or pressure);
c) material of all water-carrying parts (pump, pipes/hoses including couplings, sampling device);
d) time intervals and sample volumes of increment samples;
e) cooling/freezing/preservation;
f) transferring the composite samples after homogenization into the sample containers; and
g) cleaning and maintenance of equipment.
7.4.3 Sampling pre-treatment
As water samples can be subject to very fast changes due to biological activity and chemical reaction
processes in terms of their ingredients, immediately after sampling, appropriate preservation or pre-
treatment measures should be performed. The type of sample pre-treatment and preservation should be set
for each parameter or parameter group in a ‘container and preservation plan” and included in the standard
operating procedure. Sampling staff should adhere to conservation guidelines provided by the laboratory.
7.4.4 Homogenization and subsampling
If the required sample volume is so large that several pumping removals are needed and/or different
sample containers have to be filled with one sample, the homogeneity of the sample should be ensured.
This is especially important in samples containing particles and for the determination of analytes, which
are enriched on solid particles.
For large sample volumes, homogenizers with transportable sample vessels and with magnetic stirrer
or mechanical stirrer should be used for waste water sampling
[7]
Depending on the scope of investigation, the following variants arise.
a) Subsampling from a bucket
In practice, sampling with a bucket has proven easy to do. A precondition is that all subsamples
can be filled out of it and there is no inhomogeneity in the spot sample. The sample is collected
using a suitable vessel and then distributed to the various sample containers. The subsamples for
the parameters in which a dependency from suspended matters exists (such as heavy metals, total
phosphorus) are bottled in priority. If necessary, the scooped sample should be gently homogenized
between the individual filling operations by means of an appropriate stirring rod.
10 © ISO 2014 – All rights reserved

b) Subsampling using a homogenizer
The single scoop samples are first placed in a sufficiently large collection vessel from which the
various sample containers (subsamples) will be filled after gentle, continuous and complete mixing
by a dispensing tap.
For collecting, mixing and filling large sample volumes, homogenizers with transportable sample
vessels and with a magnetic stirrer or a mechanic stirrer are well suited as they are used for
waste water sampling. During filling of sample containers, gentle stirring should be continued, gas
exchange should thereby be avoided.
To demonstrate the homogeneity of the sample in the container, monitor the relevant physico-chemical
parameters (e.g. suspended matter, metals, organic compounds) on samples taken at different heights
in the container
— to determine the duration of homogenization to achieve a homogeneous composition of the effluent
into the container, and
— to ensure the representativeness of the sample.
The maximum difference between two measurements for the parameter chosen to satisfy the
homogeneity criterion should preferably be <20 %. For details, see the example in Annex C.
To avoid changes due to excessive air input, the sample containers for the determination of certain
volatile parameters should be filled until they are overflowing, allowing at least two volumes to overflow
and then immediately stoppered and checked to ensure the absence of air bubbles.
7.4.5 Filtration
In some cases, the goal of sampling is the determination of soluble components (e.g. metals, nutrients,
DOC). Some requirements are given in ISO 5667-3:2012, 6.2 (on-site filtration). For this, it is advisable
to separate the ‘dissolved’ component from the ‘particulate’ one already at the sampling site prior to
transport to the laboratory. In this way,
...


NORME ISO
INTERNATIONALE 5667-14
Deuxième édition
2014-12-15
Qualité de l’eau — Échantillonnage —
Partie 14:
Lignes directrices sur l’assurance
qualité et le contrôle qualité pour
l’échantillonnage et la manutention
des eaux environnementales
Water quality — Sampling —
Part 14: Guidance on quality assurance and quality control of
environmental water sampling and handling
Numéro de référence
©
ISO 2014
DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2014, Publié en Suisse
Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée
sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie, l’affichage sur
l’internet ou sur un Intranet, sans autorisation écrite préalable. Les demandes d’autorisation peuvent être adressées à l’ISO à
l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2014 – Tous droits réservés

Sommaire Page
Avant-propos .v
Introduction .vii
1 Domaine d’application . 1
2 Références normatives . 1
3 Termes et définitions . 1
4 Sources d’erreurs d’échantillonnage . 5
5 Qualité de l’échantillonnage . 6
5.1 Généralités . 6
5.2 Exigences techniques et humaines . 6
5.3 Manuel d’échantillonnage . 7
5.4 Formation de l’équipe d’échantillonnage . 8
6 Stratégie et organisation . 9
6.1 Date, durée et fréquence d’échantillonnage . 9
6.2 Points de prélèvement/échantillonnage . 9
7 Prélèvement et manipulation des échantillons . 9
7.1 Contrôle du véhicule et du matériel avant l’exécution du programme d’échantillonnage . 9
7.2 Préparation à l’échantillonnage sur site .10
7.3 Mesurages sur site .10
7.4 Prélèvement des échantillons .11
7.4.1 Échantillons ponctuels.11
7.4.2 Échantillons composites .11
7.4.3 Prétraitement d’échantillonnage .12
7.4.4 Homogénéisation et sous-échantillonnage .12
7.4.5 Filtration .13
7.4.6 Conservation des échantillons .13
8 Identification des échantillons .14
9 Protocole d’échantillonnage de terrain .14
10 Transport et stockage des échantillons .14
11 Contrôle qualité de l’échantillonnage .15
11.1 Généralités .15
11.2 Doubles échantillons .17
11.3 Blanc de terrain .19
11.4 Rinçage du matériel (matériel d’échantillonnage) .20
11.5 Filtration (blanc et dopage) .20
11.5.1 Généralités .20
11.5.2 Blanc de filtration (eau désionisée) .21
11.5.3 Échantillon d’assurance qualité dopé .22
11.6 Technique 1 — Échantillons dopés .23
11.6.1 Généralités .23
11.6.2 Échantillons d’eau désionisée dopés .23
11.7 Technique 2 — Échantillons environnementaux dopés .25
12 Analyse et interprétation des données de contrôle qualité .26
12.1 Cartes de contrôle de Shewhart .26
12.2 Construction des cartes de contrôle pour les doubles .26
13 Audits indépendants .27
[7]
Annexe A (informative) Sources courantes d’erreur d’échantillonnage .28
Annexe B (informative) Cartes de contrôle .30
Annexe C (informative) Sous-échantillonnage à l’aide d’un système d’homogénéisation .34
Bibliographie .37
iv © ISO 2014 – Tous droits réservés

Avant-propos
L’ISO (Organisation internationale de normalisation) est une fédération mondiale d’organismes
nationaux de normalisation (comités membres de l’ISO). L’élaboration des Normes internationales est
en général confiée aux comités techniques de l’ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l’ISO participent également aux travaux.
L’ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui
concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier, de prendre note des différents
critères d’approbation requis pour les différents types de documents ISO. Le présent document a été
rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2 (voir www.
iso.org/directives).
L’attention est portée sur le fait que certains des éléments du présent document peuvent faire l’objet de
droits de propriété intellectuelle ou de droits analogues. L’ISO ne saurait être tenue pour responsable
de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant
les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de
l’élaboration du document sont indiqués dans l’Introduction et/ou dans la liste des déclarations de
brevets reçues par l’ISO (voir www.iso.org/patents).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données
pour information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un
engagement.
Pour une explication de la signification des termes et expressions spécifiques de l’ISO liés à l’évaluation
de la conformité, ou pour toute information au sujet de l’adhésion de l’ISO aux principes de l’OMC
concernant les obstacles techniques au commerce (OTC), voir le lien suivant : Avant-propos —
Informations supplémentaires.
Le présent document a été élaboré par le comité technique ISO/TC 147, Qualité de l’eau, sous-comité
SC 6, Échantillonnage (méthodes générales).
Cette deuxième édition annule et remplace la première édition (ISO 5667-14:1998) qui a fait l’objet d’une
révision technique.
L’ISO 5667 comprend les parties suivantes, présentées sous le titre général Qualité de l’eau —
Échantillonnage :
— Partie 1 : Lignes directrices pour la conception des programmes et des techniques d’échantillonnage
— Partie 3 : Conservation et manipulation des échantillons d’eau
— Partie 4 : Guide pour l’échantillonnage des eaux des lacs naturels et des lacs artificiels
— Partie 5 : Lignes directrices pour l’échantillonnage de l’eau potable des usines de traitement et du réseau
de distribution
— Partie 6 : Lignes directrices pour l’échantillonnage des rivières et des cours d’eau
— Partie 7 : Guide général pour l’échantillonnage des eaux et des vapeurs dans les chaudières
— Partie 8 : Guide général pour l’échantillonnage des dépôts humides
— Partie 9 : Guide général pour l’échantillonnage des eaux marines
— Partie 10 : Guide pour l’échantillonnage des eaux résiduaires
— Partie 11 : Lignes directrices pour l’échantillonnage des eaux souterraines
— Partie 12 : Guide général pour l’échantillonnage des sédiments
— Partie 13 : Lignes directrices pour l’échantillonnage de boues
— Partie 14 : Lignes directrices sur l’assurance qualité et le contrôle qualité pour l’échantillonnage et la
manutention des eaux environnementales
— Partie 15 : Lignes directrices pour la conservation et le traitement des échantillons de boues et de
sédiments
— Partie 16 : Lignes directrices pour les essais biologiques des échantillons
— Partie 17 : Lignes directrices pour l’échantillonnage des matières solides en suspension
— Partie 19 : Lignes directrices pour l’échantillonnage des sédiments en milieu marin
— Partie 20 : Lignes directrices relatives à l’utilisation des données d’échantillonnage pour la prise de
décision — Conformité avec les limites et systèmes de classification
— Partie 21 : Lignes directrices pour l’échantillonnage de l’eau potable distribuée par camions-citernes ou
d’autres moyens que les tuyaux de distribution
— Partie 22 : Lignes directrices pour la conception et l’installation de points d’échantillonnage des eaux
souterraines
— Partie 23 : Lignes directrices pour l’échantillonnage passif dans les eaux de surface
vi © ISO 2014 – Tous droits réservés

Introduction
L’échantillonnage est la première étape en vue de la réalisation d’examens chimiques, physiques et
biologiques. Par conséquent, il convient que l’échantillon prélevé soit représentatif de l’objectif visé et
soit expédié au laboratoire de manière adaptée. Les erreurs dues à un prélèvement, un prétraitement,
un transport et un stockage incorrects des échantillons ne peuvent pas être corrigées.
La présente partie de l’ISO 5667 spécifie les modes opératoires d’assurance qualité et de contrôle
qualité et fournit des lignes directrices supplémentaires pour l’échantillonnage des différents types
d’eaux couverts dans les parties spécifiques de l’ISO 5667.
Les modes opératoires de contrôle qualité sont requis pour le prélèvement des échantillons d’eau
environnementale afin de :
a) contrôler l’efficacité de la méthodologie d’échantillonnage ;
b) démontrer que les différentes étapes du procédé de prélèvement d’échantillons sont correctement
contrôlées et adaptées à l’usage prévu, y compris le contrôle adéquat des sources d’erreur telles que
la contamination des échantillons, la perte de l’élément à doser et l’instabilité des échantillons. À
cet effet, il est recommandé que les modes opératoires de contrôle qualité permettent de détecter
les erreurs d’échantillonnage, et ainsi de rejeter les données non valides ou erronées résultant du
procédé d’échantillonnage ;
c) quantifier et contrôler les sources d’erreurs qui apparaissent lors de l’échantillonnage. La
quantification donne des indications sur l’importance que l’échantillonnage joue dans l’exactitude
globale des données ; et
d) fournir des informations sur les modes opératoires accélérés d’assurance qualité susceptibles
d’être utilisés pour les opérations d’échantillonnage rapides telles que les incidents de pollution ou
les analyses d’eaux souterraines.
La présente partie de l’ISO 5667 fait partie d’un groupe de Normes internationales relatives à
l’échantillonnage des eaux. Il convient de la lire conjointement avec les autres parties de l’ISO 5667, en
particulier avec les parties 1 et 3.
La terminologie générale est conforme à celle publiée.
NORME INTERNATIONALE ISO 5667-14:2014(F)
Qualité de l’eau — Échantillonnage —
Partie 14:
Lignes directrices sur l’assurance qualité et le contrôle
qualité pour l’échantillonnage et la manutention des eaux
environnementales
AVERTISSEMENT — Tous les risques doivent être pris en compte et réduits le plus possible, et
les règles de sécurité doivent être appliquées. Se reporter à l’ISO 5667-1 pour les précautions de
sécurité spécifiques, y compris l’échantillonnage effectué à partir de bateaux et l’échantillonnage
d’eaux couvertes de glace.
1 Domaine d’application
La présente partie de l’ISO 5667 fournit des lignes directrices sur le choix et l’utilisation de différentes
techniques d’assurance qualité et de contrôle qualité liées à l’échantillonnage manuel des eaux de
surface, potables, résiduaires, marines et souterraines.
NOTE Dans certains cas, les principes généraux exposés dans la présente partie de l’ISO 5667 peuvent
s’appliquer à l’échantillonnage de boues et de sédiments.
2 Références normatives
Les documents ci-après, dans leur intégralité ou non, sont des références normatives indispensables à
l’application du présent document. Pour les références datées, seule l’édition citée s’applique. Pour les
références non datées, la dernière édition du document de référence s’applique (y compris les éventuels
amendements).
ISO 5667-1:2006, Qualité de l’eau — Échantillonnage — Partie 1: Lignes directrices pour la conception des
programmes et des techniques d’échantillonnage
ISO 5667-3:2012, Qualité de l’eau — Échantillonnage — Partie 3: Conservation et manipulation des
échantillons d’eau
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions suivants s’appliquent.
3.1
exactitude
étroitesse de l’accord entre le résultat d’essai ou résultat de mesure et la valeur vraie
Note 1 à l’article: Dans la pratique, la valeur de référence acceptée remplace la valeur vraie.
Note 2 à l’article: Le terme « exactitude », appliqué à un ensemble de résultats d’essai ou de mesure, implique une
combinaison de composantes aléatoires et d’une erreur systématique commune ou d’une composante de biais.
Note 3 à l’article: L’exactitude fait référence à une combinaison de justesse et de fidélité.
[SOURCE: ISO 3534-2:2006, 3.3.1]
3.2
biais
différence entre l’espérance mathématique d’un résultat d’essai ou résultat de mesure et une valeur vraie
Note 1 à l’article: Le biais est une erreur systématique totale par opposition à l’erreur aléatoire. Il peut y avoir
une ou plusieurs composantes d’erreurs systématiques qui contribuent au biais. Une différence systématique
importante par rapport à la valeur vraie est reflétée par une grande valeur du biais.
Note 2 à l’article: Le biais (erreur de justesse) d’un instrument de mesure est normalement estimé en prenant
la moyenne de l’erreur d’indication sur un nombre approprié d’observations répétées. L’erreur d’indication est
«l’indication d’un instrument de mesure moins une valeur vraie de la grandeur d’entrée correspondante».
Note 3 à l’article: Dans la pratique, la valeur de référence acceptée remplace la valeur vraie.
[SOURCE: ISO 3534-2:2006, 3.3.2]
3.3
fidélité
étroitesse d’accord entre des résultats d’essai/de mesure indépendants obtenus sous des conditions
stipulées
Note 1 à l’article: La fidélité dépend uniquement de la distribution des erreurs aléatoires et n’a aucune relation
avec la valeur vraie ou la valeur spécifiée.
Note 2 à l’article: La mesure de la fidélité est généralement exprimée en termes d’infidélité et est calculée à
partir de l’écart-type des résultats d’essai ou des résultats de mesure. Une fidélité faible est reflétée par un grand
écart-type.
Note 3 à l’article: Les mesures quantitatives de la fidélité dépendent de façon critique des conditions stipulées.
Les conditions de répétabilité et de reproductibilité sont des ensembles particuliers de conditions extrêmes
stipulées.
[SOURCE: ISO 3534-2:2006, 3.3.4]
3.4
représentativité
situation dans laquelle l’état de tous les échantillons prélevés dans la masse d’eau reflète celui de l’eau
analysée
3.5
blanc
valeur observée lorsque le mesurage est réalisé sur un échantillon identique à l’échantillon étudié, mais
en l’absence de l’élément à doser
Note 1 à l’article: L’eau désionisée ou distillée peut être utilisée pour les échantillons à blanc qui sont préparés au
laboratoire avant l’échantillonnage.
3.6
blanc de terrain
récipient préparé dans le laboratoire, utilisant comme réactif de l’eau ou toute autre matrice de
blanc, et destiné à être emporté par le personnel d’échantillonnage sur le terrain, pour être exposé à
l’environnement dans lequel l’échantillonnage est effectué afin de vérifier l’absence de contamination
au cours de l’échantillonnage
[SOURCE: ISO 11074:2005, 4.5.3]
3.7
échantillon dopé
quantité connue d’élément à doser ajoutée à un échantillon, en général pour les besoins de l’estimation
de l’erreur systématique d’un système analytique au moyen d’une récupération
2 © ISO 2014 – Tous droits réservés

3.8
récupération
opération au moyen de laquelle un système analytique peut mesurer une quantité ajoutée, connue, d’un
élément à doser dans un échantillon
Note 1 à l’article: La récupération est calculée à partir la différence entre les résultats obtenus à partir d’un
échantillon dopé (3.7) et une aliquote non dopée de l’échantillon, généralement exprimée en pourcentage.
3.9
carte de contrôle
graphique sur lequel sont reportées les valeurs d’une mesure statistique faite sur une série
d‘échantillons dans un ordre particulier pour orienter le processus en fonction de cette mesure et pour
contrôler et réduire la variation
Note 1 à l’article: L’ordre particulier est généralement fondé sur un ordre chronologique ou de numéro
d’échantillon.
Note 2 à l’article: La carte de contrôle est plus efficace lorsque la mesure concerne une variable du processus
corrélée à un produit final ou à une caractéristique de service.
[SOURCE: ISO 3534-2:2006, 2.3.1]
3.10
carte de contrôle de Shewhart
carte de contrôle avec des limites de contrôle de Shewart principalement utilisée pour différencier une
variation sur la mesure reportée due à des causes aléatoires et celle due à des causes spéciales
Note 1 à l’article: Cette carte pourrait utiliser des attributs (par exemple, une proportion de non-conformités) ou
des variables (par exemple, une moyenne et une étendue) pour évaluer un processus. Exemples :
a) carte X barre — les moyennes des échantillons sont reportées afin de contrôler la valeur moyenne d’une
variable ;
b) carte R — les étendues des échantillons sont reportées afin de contrôler la variabilité d’une variable ;
c) carte s — les écarts-types des échantillons sont reportés afin de contrôler la variabilité d’une variable ;
d) carte s — les variances des échantillons sont reportées afin de contrôler la variabilité d’une variable ;
e) carte C — le nombre d’individus défectueux (par lot, par jour, par machine, etc.) est représenté.
[SOURCE: ISO 3534-2:2006, 2.3.2, modifiée — La Note 1 à l’article a été ajoutée]
3.11
limites d’action
limites de contrôle entre lesquelles la valeur statistique considérée se situe avec une probabilité très
élevée quand le processus est en état de maîtrise statistique
Note 1 à l’article: Les lignes d’action sont tracées sur une carte de contrôle pour représenter les limites d’action.
Note 2 à l’article: Quand la mesure reportée est au-delà d’une limite d’action, une action corrective appropriée est
réalisée sur le processus.
Note 3 à l’article: Ces limites sont fondées sur l’hypothèse que seul 0,3 % des résultats suivant une distribution
normale seront en dehors de ces limites. Une telle occurrence suggèrerait l’existence très probable de causes de
variation systématiques, supplémentaires, nécessitant une action visant à les identifier et les réduire.
[SOURCE: ISO 3534-2:2006, 2.4.4, modifiée — La Note 3 à l’article a été ajoutée]
3.12
limites de surveillance
limites de contrôle entre lesquelles la valeur statistique considérée se situe avec une probabilité élevée
quand le processus est en état de maîtrise statistique
Note 1 à l’article: Les lignes de surveillance sont tracées sur une carte de contrôle pour représenter les limites de
surveillance.
Note 2 à l’article: Quand la valeur statistique reportée est en dehors des limites de surveillance mais à l’intérieur
des limites d’action (3.11), une surveillance accrue du processus, conforme à des règles pré-spécifiées, est
généralement nécessaire.
Note 3 à l’article: Les limites sont calculées à partir de l’écart-type de la valeur statistique considérée d’au
moins 10 échantillons. Les limites de surveillance et d’action sont appliquées aux résultats d’échantillonnage
individuels.
[SOURCE: ISO 3534-2:2006, 2.4.3, modifiée — La Note 3 à l’article a été ajoutée]
3.13
incertitude
incertitude de mesure
paramètre non négatif qui caractérise la dispersion des valeurs attribuées à un mesurande, à partir des
informations utilisées
[SOURCE: Guide ISO/IEC 99:2007, 2.26, modifiée — Les notes à l’article ne sont pas incluses ici]
3.14
valeur vraie
valeur qui caractérise une grandeur ou une caractéristique quantitative parfaitement définie dans les
conditions qui existent lorsque cette grandeur ou caractéristique quantitative est considérée
Note 1 à l’article: La valeur vraie d’une grandeur ou d’une caractéristique quantitative est une notion théorique
et, en général, ne peut pas être connue exactement.
[SOURCE: ISO 3534-2:2006, 3.2.5, modifiée — La Note 2 à l’article n’est pas incluse ici]
3.15
valeur de référence acceptée
valeur qui sert de référence, selon un agrément pour une comparaison
Note 1 à l’article: La valeur de référence acceptée résulte :
a) d’une valeur théorique ou établie, fondée sur des principes scientifiques ;
b) d’une valeur assignée ou certifiée, fondée sur les travaux d’une organisation nationale ou internationale ;
c) d’une valeur de consensus ou certifiée, fondée sur un travail expérimental en collaboration et placé sous les
auspices d’un groupe scientifique ou technique ;
d) de l’espérance, c’est-à-dire la moyenne de la population spécifiée de mesures, dans les cas où a), b) et c) ne
sont pas applicables.
[SOURCE: ISO 3534-2:2006, 3.2.7]
4 © ISO 2014 – Tous droits réservés

4 Sources d’erreurs d’échantillonnage
Les erreurs d’échantillonnage peuvent provenir des sources suivantes :
a) contamination ;
La contamination peut être due aux matériaux constituant l’équipement d’échantillonnage (matériel
d’échantillonnage et flacons), à la contamination croisée entre échantillons, à la conservation des
échantillons et à des mesures de stockage et de transport inadaptées.
b) instabilité des échantillons ;
Le type de flacons et de matériel d’échantillonnage utilisés peut affecter la stabilité de l’élément à
doser entre l’échantillonnage et l’analyse en raison de l’instabilité inhérente de l’échantillon ainsi
que de ses conditions de stockage et de transport.
c) conservation incorrecte ;
Le choix des flacons et du matériel d’échantillonnage a un impact sur l’intégrité de l’élément à doser
ainsi que les conditions de conservation. Se référer à l’ISO 5667-3.
d) échantillonnage incorrect ;
Tout écart par rapport au mode opératoire d’échantillonnage, ou le mode opératoire en lui-même,
peut être source d’erreurs.
e) échantillonnage à partir de masses d’eau non homogénéisées ;
f) transport des échantillons.
La Figure 1 illustre différentes sources d’erreurs d’échantillonnage : environnement, personnel,
matériaux, méthodes, conservation et transport. L’Annexe A donne d’autres exemples de sources
d’erreurs courantes lors de l’échantillonnage.
Figure 1 — Sources d’erreurs d’échantillonnage
5 Qualité de l’échantillonnage
5.1 Généralités
Il convient d’élaborer un programme permettant d’établir la qualité de chaque série d’échantillonnages
afin de s’assurer que les données résultant des programmes d’échantillonnage soient fiables et
scientifiquement crédibles. Toute erreur commise à une étape quelconque du mode opératoire
d’échantillonnage peut engendrer des erreurs significatives dans les données résultantes.
Les laboratoires qui analysent les échantillons prélevés appliquent généralement de rigoureux
programmes d’assurance qualité et de contrôle qualité (AQ/CQ) conformément aux exigences de
la réglementation nationale et à l’ISO/IEC 17025. Cependant, ces programmes d’AQ/CQ ne peuvent
remplacer les rigoureux programmes de qualité d’échantillonnage requis pour le prélèvement et la
manipulation des échantillons avant la livraison aux laboratoires pour analyse.
Les programmes de qualité d’échantillonnage comprennent toutes les étapes destinées à garantir la
production de résultats valides. Ces programmes fournissent la preuve documentée que les personnes
en charge du prélèvement des échantillons sont compétentes et correctement formées, que les méthodes
employées pour le prélèvement et la manipulation des échantillons sont adaptées, que le matériel
a été entretenu et étalonné, que les bonnes pratiques ont été appliquées et que les enregistrements
sont complets et fiables. Il est important de mettre en œuvre un programme d’assurance qualité et
de contrôle qualité efficace pour caractériser et réduire les erreurs. Le contenu du contrôle qualité
diffèrera en fonction de l’objectif (par exemple, pour vérifier l’absence de pollution de l’échantillon à
différents stades du mode opératoire d’échantillonnage et identifier les problèmes potentiels). Voir
Tableau 1.
Tableau 1 — Moyens à mettre en œuvre pour le contrôle qualité en fonction de
l’objectif recherché
Objectif Moyens à mettre en œuvre
Vérifier l’absence de contamination Blanc ambiance, blanc de terrain, blanc de transport, blanc de matériel
d’échantillonnage, blanc de filtration
Évaluer la fidélité de l’échantillonnage Doubles échantillons
Vérifier l’intégrité de l’échantillon Dopage
Il est recommandé d’apporter le plus grand soin aux mesurages réalisés sur site et d’enregistrer
correctement les résultats concernant l’élément à doser. Il convient de se reporter à l’ISO/TS 13530
pour ce qui concerne le contrôle de la qualité analytique pour l’analyse de l’eau, et à l’ISO 15839 pour le
matériel d’analyse et les capteurs directs pour l’eau.
Du fait de l’expertise des laboratoires d’analyse en matière d’AQ/CQ, il est suggéré de les impliquer
activement dans la conception et l’évaluation des programmes de qualité de l’échantillonnage.
5.2 Exigences techniques et humaines
Pour prélever correctement un échantillon, il est recommandé de disposer d’un nombre suffisant
d’équipements adaptés et propres [tels que des flacons, du matériel d’échantillonnage, des équipements
de filtration, un système d’homogénéisation, un matériel intermédiaire (entonnoir, cuillère) et des
équipements de mesure pour l’analyse sur site]. Il convient d’assurer un entretien régulier de tous les
équipements.
Il y a lieu d’aménager le véhicule de prélèvement conformément aux exigences d’échantillonnage
(véhicule de laboratoire).
Il convient que l’équipe d’échantillonnage ait reçu une formation professionnelle pertinente, par
exemple un enseignement technique complet en tant qu’assistant de laboratoire de chimie ou spécialiste
du traitement des eaux résiduaires. Un prérequis essentiel est une formation professionnelle initiale
6 © ISO 2014 – Tous droits réservés

appropriée et une formation régulière de l’équipe d’échantillonnage. Il convient de consigner par écrit
la participation aux formations internes et/ou externes (voir 5.4).
Un échange régulier d’informations entre le client, l’équipe d’échantillonnage et le personnel travaillant
en laboratoire améliore la qualité de l’échantillonnage et des essais. Il convient de mettre à la
disposition de l’équipe d’échantillonnage toutes les informations nécessaires afin de garantir la qualité
[7]
de l’échantillonnage .
5.3 Manuel d’échantillonnage
5.3.1 Pour l’échantillonnage, il convient d’appliquer les exigences générales relatives à la compétence
des laboratoires d’essais et d’étalonnages.
Il est recommandé d’élaborer des modes opératoires ou des consignes d’utilisation traitant des
[7]
questions suivantes :
a) échantillonnage (en fonction de la matrice) ;
b) mesurage sur site ;
c) prétraitement des échantillons ;
d) conservation des échantillons (en fonction des paramètres) ;
e) transport, stockage et livraison/réception des échantillons.
Il est conseillé à toute personne chargée du prélèvement des échantillons d’eau d’avoir à sa disposition
sur le site un manuel d’échantillonnage à jour. Il convient que ce manuel donne des lignes directrices
spécifiques sur les méthodes d’échantillonnage à utiliser, la manipulation et la conservation des
échantillons, les méthodes d’analyse pour les mesurages à réaliser sur le site de prélèvement, les modes
opératoires à appliquer pour le transport des échantillons jusqu’au laboratoire et la méthode détaillée
concernant tout équipement de type capteur direct continu à utiliser. Il est suggéré d’y inclure également
tous les modes opératoires d’assurance qualité à appliquer pour le prélèvement d’échantillons, la
réalisation de mesurages sur site, le transport d’échantillons jusqu’au laboratoire et l’utilisation ou le
contrôle des équipements de surveillance en continu.
5.3.2 Il convient que le manuel d’échantillonnage précise :
a) les types de flacons ou de conteneurs, leurs fermetures (bouchons) et les buts spécifiques dans
lesquels ils doivent être utilisés ;
b) le cas échéant, le mode opératoire de nettoyage et la durée de conservation pour chaque paramètre,
les flacons, conteneurs et bouchons à utiliser, la quantité et le type d’agent de préservation à ajouter
(par exemple premier prélèvement, rincé, stagnation) et le mode opératoire de prélèvement des
échantillons pour différents paramètres ;
c) les modes opératoires d’échantillonnage pour chaque paramètre, y compris le type d’échantillon à
prélever ;
d) la fréquence et l’ordre d’échantillonnage ;
e) les conditions de stockage et de transport des échantillons et, pour chaque paramètre, le temps
d’attente maximal avant le début de l’analyse ; et
f) la description des réactifs de stabilisation (y compris la couleur habituelle), ainsi que les mesures
de sécurité appropriées en cas de déversement ou de contact avec les yeux ou la peau.
Il est également recommandé d’inclure dans le manuel des lignes directrices sur les réponses appropriées
en cas de détection de conditions inhabituelles, ainsi qu’un plan d’urgence pour les situations d’urgence.
NOTE Si des ordinateurs portables sont utilisés sur le terrain, il est pratique de disposer de la version
électronique de ces manuels. L’utilisation de modèles électroniques et de tableurs peut contribuer à réduire les
erreurs d’enregistrement des informations et à automatiser les calculs.
5.4 Formation de l’équipe d’échantillonnage
Avant d’être autorisé à travailler sans supervision, il convient que l’ensemble de l’équipe
d’échantillonnage ait reçu une formation exhaustive incluant notamment, le cas échéant :
a) les principes et pratiques en matière d’adduction et de distribution d’eau ;
b) les principes et pratiques en matière d’hygiène pour l’adduction d’eau ;
c) les connaissances de base dans le domaine concerné, par exemple la chimie de l’eau et la
microbiologie ;
d) les connaissances des vulnérabilités de l’adduction d’eau à la pollution, y compris les études de cas
de pollution avérés en mettant l’accent sur la contamination fécale ;
e) l’expérience dans tous les aspects de l’échantillonnage ;
f) l’expérience supervisée des techniques de laboratoire s’il est prévu que l’équipe effectue des
mesurages analytiques ou utilise des équipements de mesure en ligne ;
g) l’examen de la présente partie de l’ISO 5667 ainsi que des articles pertinents des normes de
référence ; et
h) tout le contenu du manuel d’échantillonnage en mettant notamment l’accent sur l’identification et le
traitement sûr ou la prévention des risques potentiels.
À l’issue de la formation, il convient de soumettre toute l’équipe d’échantillonnage à des contrôles
réguliers. Il est recommandé de consigner par écrit les modes opératoires de formation initiale et de
maintien des compétences ainsi que les critères d’habilitation associés. Il convient que cette formation
soit régulièrement actualisée. Pour obtenir des détails sur les exigences de formation du personnel, se
reporter à l’ISO/IEC 17025.
Il y a lieu de produire un dossier de formation pour chaque membre de l’équipe, détaillant la formation
dispensée, les dates et l’évaluation des compétences, les résultats aux examens d’évaluation, le recyclage
professionnel ou la formation complémentaire suivie et toute réévaluation de compétences. Un examen
annuel de cette formation est considéré comme un minimum.
8 © ISO 2014 – Tous droits réservés

6 Stratégie et organisation
6.1 Date, durée et fréquence d’échantillonnage
L’objectif de l’échantillonnage est d’obtenir un échantillon représentatif de l’objectif visé, en se référant à :
a) la représentativité temporelle ;
b) la représentativité locale ; et
c) la technique d’échantillonnage applicable.
L’atteinte de cet objectif suppose que l’échantillonnage soit soigneusement planifié en tenant compte
du temps nécessaire, du véhicule et du matériel appropriés ainsi que de la disponibilité du personnel
[7]
qualifié.
La date, la durée et la fréquence peuvent considérablement varier selon que l’analyse porte, par exemple,
sur des eaux résiduaires, des eaux de surface ou des eaux souterraines. Leurs définitions sont basées
sur la législation, les problèmes rencontrés ou d’autres circonstances. Pour obtenir des informations
complémentaires, se reporter à l’ISO 5667-1 et aux normes spécifiques de la série ISO 5667 selon le type
d’eau considéré.
6.2 Points de prélèvement/échantillonnage
Pour se forger une première idée du point d’échantillonnage, il est utile d’examiner la documentation
existante. Cette documentation est définie par les coordonnées (valeurs d’abscisse et d’ordonnée)
incluant des cartes (vue d’ensemble et détail) et des photos (prises à différentes saisons, si nécessaire).
[7]
Dans la pratique, les téléphones mobiles GPS à cartes topographiques se sont avérés utiles. Pour
obtenir des informations complémentaires, se reporter à l’ISO 5667-1 et aux normes spécifiques de la
série ISO 5667 selon le type d’eau considéré.
Il est impératif de vérifier le point d’échantillonnage en fonction des circonstances locales. Seule la
visite sur le site permet d’évaluer si un point d’échantillonnage est représentatif de la zone à examiner
et de l’étude en question, et s’il est facilement accessible.
7 Prélèvement et manipulation des échantillons
7.1 Contrôle du véhicule et du matériel avant l’exécution du programme
d’échantillonnage
Il convient de remettre, à l’équipe d’échantillonnage, une demande clairement formulée.
L’échantillonnage est ensuite préparé sur la base des consignes communiquées. Pour obtenir les flacons
et le matériel d’échantillonnage ainsi que leur préparation pour l’échantillonnage, les responsabilités
[8]
entre le client, le laboratoire et le personnel d’échantillonnage doivent être clairement définies .
[7]
Les principales étapes de préparation de l’échantillonnage sont :
a) fourniture du matériel d’échantillonnage nettoyé, du matériel intermédiaire et des dispositifs de
prétraitement des échantillons (système d’homogénéisation, système de filtration) ;
b) fourniture de flacons nettoyés et de leurs bouchons en nombre suffisant en fonction des
paramètres/groupes de paramètres examinés. Il convient de s’assurer que les flacons sont
transportés fermés ; il ne doit se produire aucune évolution des paramètres/groupes de paramètres
à examiner due à une contamination, une adsorption, une diffusion ou un dégazage du matériau
des flacons ;
c) fourniture du matériel requis (par exemple des étiquettes pour le marquage des flacons) ;
d) fourniture du matériel pour la conservation des échantillons et des systèmes de distribution
d’agents de conservation nécessaires ;
e) fourniture de documentation sur l’échantillonnage indiquant l’ordre d’échantillonnage, le protocole
d’échantillonnage et documentation sur les points d’échantillonnage ;
f) fourniture et préparation des équipements pour les mesurages sur site (par exemple température,
oxygène, pH, conductivité, turbidité et solutions de contrôle requises pour les essais sur site) ;
g) fourniture des équipements individuels de protection (EPI) appropriés ;
h) fourniture des autorisations d’accès valides (par exemple permis spéciaux, autorisations de
circulation, badges d’entreprise, clés) ;
i) préparation du véhicule de prélèvement en tenant compte de la sécurité, de la propreté et du groupe
frigorifique du véhicule ;
j) chargement en toute sécurité (sans choc ni glissement) des équipements dans les divers
compartiments de stockage prévus au sein du véhicule de prélèvement (équipements in situ,
boîtes, …) en vue d’optimiser la répartition à l’intérieur du véhicule.
7.2 Préparation à l’échantillonnage sur site
Il est important de :
a) vérifier l’exactitude du lieu d’échantillonnage (coordonnées, nombre de points d’échantillonnage,
position exacte [par exemple rive (gauche/droite), centre de la rivière]) ;
b) surveiller les conditions d’échantillonnage (date, heure, météo, spécificités sur et dans les eaux,
enregistrement de la hauteur d’eau et du débit d’eau, si nécessaire) ;
c) sélectionner le matériel et les flacons par type et par matériau ;
d) s’assurer que le matériel utilisé à chaque échantillonnage a été nettoyé. Il est utile que le matériel
d’échantillonnage soit constitué de plusieurs dispositifs à disposition immédiate. Si cela s’avère
impossible, il convient de nettoyer le matériel d’échantillonnage par pré-rinçage avec l’eau du milieu
ou à l’eau désionisée afin d’empêcher toute contamination croisée. Dans certains cas (par exemple
une forte concentration de matières en suspension ou la présence visible d’huiles et de graisses), le
matériel d’échantillonnage peut ne pas être pré-rincé avec l’eau du milieu ;
e) vérifier l’exactitude et l’exhaustivité du marquage des flacons ou les étiqueter de manière
permanente.
7.3 Mesurages sur site
Il convient de réaliser les mesurages sur site avant l’échantillonnage effectif car ils pourraient fournir
des informations utiles en vue de l’échantillonnage. Les mesurages peuvent être effectués soit
directement dans le milieu à échantillonner, soit dans un échantillon ponctuel dédié au m
...


МЕЖДУНАРОДНЫЙ ISO
СТАНДАРТ 5667-14
Второе издание
2014-12-15
Качество воды. Отбор проб.
Часть 14.
Руководство по обеспечению и
контролю качества при отборе проб и
обработке проб природных вод
Water quality — Sampling —
Part 14: Guidance on quality assurance and quality control of
environmental water sampling and handling

Ответственность за подготовку русской версии несёт GOST R
(Российская Федерация) в соответствии со статьёй 18.1 Устава ISO

Ссылочный номер
©
ISO 2014
ДОКУМЕНТ ЗАЩИЩЕН АВТОРСКИМ ПРАВОМ

©  ISO 2014
Все права сохраняются. Если не указано иное, никакую часть настоящей публикации нельзя копировать или использовать в
какой-либо форме или каким-либо электронным или механическим способом, включая фотокопии и микрофильмы, без
предварительного письменного согласия ISO по соответствующему адресу, указанному ниже, или комитета-члена ISO в стране
заявителя.
ISO copyright office
Case postale 56  CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Опубликовано в Швейцарии
ii © ISO 2014 – Все права сохраняются

Содержание Страница
Предисловие . iv
Введение . vi
1 Область применения . 1
2 Нормативные ссылки . 1
3 Термины и определения. 1
4 Источники погрешности при отборе проб . 5
5 Качество отбора проб . 6
5.1 Общие вопросы . 6
5.2 Требования к оборудованию и персоналу . 7
5.3 Инструкция по отбору проб . 7
5.4 Обучение персонала для отбора проб . 8
6 Стратегия и организация . 9
6.1 Время, продолжительность и частота отбора проб . 9
6.2 Места для обора проб . 9
7 Отбор проб и обращение с пробами . 9
7.1 Проверка оборудования и транспортных средств перед выполнением программы
по отбору проб . 9
7.2 Подготовка к отбору проб на месте . 10
7.3 Полевые измерения . 11
7.4 Взятие проб . 11
8 Идентификация пробы . 14
9 Протокол отбора проб в полевых условиях . 14
10 Транспортировка и хранение проб . 15
11 Методы контроля качества отбора проб . 15
11.1 Общие вопросы . 15
11.2 Дублированные пробы для контроля качества . 17
11.3 Холостые пробы, отбираемые в полевых условиях . 18
11.4 Промывка оборудования (пробоотборные контейнеры) . 19
11.5 Восстановление фильтрацией . 20
11.6 Метод 1. Обогащенные пробы . 23
11.7 Метод 2. Обогащенные природные пробы . 25
12 Анализ и интерпретация данных контроля качества . 26
12.1 Контрольные карты Шухарта. 26
12.2 Построение дублированных контрольных карт . 26
13 Независимые аудиты . 26
[7]
Приложение А (информативное) Типичные источники погрешности пробоотбора . 28
Приложение В (информативное) Контрольные карты . 30
Приложение С (информативное) Отбор подпроб с использованием гомогенизатора . 34
Библиография . 37

Предисловие
Международная организация по стандартизации (ISO) является всемирной федерацией национальных
организаций по стандартизации (комитетов-членов ISO). Разработка международных стандартов
обычно осуществляется техническими комитетами ISO. Каждый комитет-член, заинтересованный в
деятельности, для которой был создан технический комитет, имеет право быть представленным в этом
комитете. Международные правительственные и неправительственные организации, имеющие связи с
ISO, также принимают участие в работах. ISO осуществляет тесное сотрудничество с международной
электротехнической комиссией (IEC) по всем вопросам стандартизации в области электротехники.
Процедуры, используемые для разработки этого документа и для его дальнейшего ведения, описаны в
Части 1 Директив ISO/IEC. В частности, следует отметить различные критерии, необходимые для
одобрения различных типов документов ISO. Настоящий документ был подготовлен в соответствии с
редакционными правилами, указанными в Части 2 Директив ISO/IEC (см. www.iso.org/directives).
Обращается внимание на то, что некоторые элементы данного документа могут быть объектом
патентных прав. ISO не несет ответственности за идентификацию какого-либо одного или всех таких
патентных прав. Детали любых патентных прав, идентифицированных при разработке настоящего
документа, будут указаны во введении и/или в списке патентных заявок, полученных ISO
(см. www.iso.org/patents).
Любое фирменное название, используемое в этом документе, указывается только как информация для
удобства пользователей и не является рекомендацией.
Объяснение значения специфических терминов ISO и выражений, относящихся к оценке соответствия,
а также информацию о строгом соблюдении ISO принципов WTO относительно Технических барьеров
в торговле (ТВТ) см. по URL: Foreword - Supplementary information (Предисловие – Дополнительная
информация)
ISO 5667 был разработан Техническим Комитетом ISO/TC 147, Качество воды, Подкомитетом SC 6,
Отбор проб.
Настоящее второе издание отменяет и заменяет первое издание (ISO 5667-14:2005), которое было
технически пересмотрено.
ISO 5667 состоит из следующих частей под общим заглавием Качество воды. Отбор проб:
― Часть 1. Качество воды. Отбор проб. Часть 1. Руководство по составлению программ и
методикам отбора проб
― Часть 3. Руководство по хранению и обращению с пробами воды
― Часть 4. Руководство по отбору проб из естественных и искусственных озер
― Часть 5. Руководство по отбору проб питьевой воды из очистных сооружений и
трубопроводных распределительных систем
― Часть 6. Руководство по отбору проб из рек и потоков
― Часть 7. Руководство по отбору проб воды и пара из котельных установок
― Часть 8. Руководство по отбору проб влажных осаждений
― Часть 9. Руководство по отбору проб морской воды
iv © ISO 2014 – Все права сохраняются

― Часть 10. Руководство по отбору проб из сточных вод
― Часть 11. Руководство по отбору проб грунтовых вод
― Часть 12. Руководство по отбору проб из донных отложений
― Часть 13. Рекомендации по отбору проб шлама сточных вод и на сооружениях водоочистки
― Часть 14. Руководство по обеспечению качества при отборе проб природных вод и обращении
с ними
― Часть 15. Руководство по консервированию и обработке проб осадка и отложений
― Часть 16. Руководство по биотестированию проб
― Часть 17. Руководство по отбору валовых проб взвешенных твердых частиц
― Часть 18. Руководство по отбору проб подземных вод на загрязненных участках
― Часть 19. Руководство по отбору проб в морских отложениях
― Часть 20. Руководство по использованию данных об образцах для принятия решения.
Соответствие с пороговыми и классификационными системами
― Часть 21. Руководство по отбору проб питьевой воды, распределяемой цистернами или
другими средствами, кроме водопроводных труб
― Часть 22. Руководство по проектированию и размещению мест для отбора проб грунтовых
вод
― Часть 23. Определение значительных загрязнений в поверхностных водах методом пассивного
отбора проб
Введение
Отбор проб является первым шагом при проведении химических, физических и биологических
испытаний. Следовательно, целью отбора проб является получение представительной пробы для
требуемого анализа и её правильная отправка в лабораторию. Ошибки, полученные из-за неправильно
проведенных отбора проб, предварительной обработки, транспортировки и хранения, не могут быть
исправлены.
В настоящей части ISO 5667 устанавливаются процедуры обеспечения качества и контроля качества и
даются дополнительные руководящие указания по отбору проб разных типов воды, рассматриваемых
в соответствующих частях ISO 5667.
Процедуры контроля качества необходимы для сбора проб природных вод по следующим причинам:
a) отслеживать эффективность методов отбора проб;
b) демонстрировать, что разные стадии процесса отбора проб надлежащим образом контролируются
и соответствуют назначенной цели, включая адекватный контроль над источниками погрешностей,
такими как загрязнение пробы, потеря определяемых компонентов и неустойчивость пробы. Для
достижения этих целей процедуры контроля качества должны обеспечивать средство
обнаружения погрешностей при отборе проб и, следовательно, средство отбраковки
недостоверных или дезориентирующих данных, получаемых в процессе отбора проб;
c) измерять и контролировать источники погрешности, которые возникают при отборе проб. Такое
измерение служит руководством к определению значимости выборки для общей точности данных;
и
d) получать информацию о соответственно сокращенных процедурах по обеспечению качества,
которые можно использовать для быстрых операций по отбору проб, например информацию о
случаях загрязнения или об исследовании грунтовых вод.
Эта часть ISO 5667 является одной из серии международных стандартов по отбору проб воды. Её
следует читать вместе с другими частями ISO 5667 и, в частности, с частями 1 и 3.
Общая терминология соответствует терминологии, которая была опубликована.

vi © ISO 2014 – Все права сохраняются

МЕЖДУНАРОДНЫЙ СТАНДАРТ ISO 5667-14:2014(R)

Качество воды. Отбор проб.
Часть 14.
Руководство по обеспечению и контролю качества при
отборе проб и обработке проб природных вод
ПРЕДУПРЕЖДЕНИЕ — Необходимо рассмотреть и свести к минимуму любые риски и
соблюдать правила безопасности. См. в ISO 5667-1 конкретные меры предосторожности,
включая отбор проб с судов и из воды, покрытой льдом.
1 Область применения
В настоящей части ISO 5667 дается руководство по выбору и использованию различных методов
обеспечения качества и контроля качества для ручного отбора проб поверхностной, питьевой, сточной
и грунтовой воды.
ПРИМЕЧАНИЕ Общие принципы, изложенные в этой части ISO 5667, могут в некоторых обстоятельствах
применяться для сбора проб шламов и отложений.
2 Нормативные ссылки
Следующие ссылочные нормативные документы являются обязательными при применении данного
документа. Для жестких ссылок применяется только цитированное издание документа. Для плавающих
ссылок необходимо использовать самое последнее издание нормативного ссылочного документа
(включая любые изменения).
ISO 5667-1:2006, Качество воды — Отбор проб — Часть 1: Руководство по составлению программ
и методикам отбора проб
ISO 5667-3, Качество воды — Отбор проб — Часть 3: Руководство по хранению и обращению с
пробами воды
3 Термины и определения
Применительно к этому документу используются следующие термины и определения.
3.1
точность
accuracy
близость между результатом испытания или измерения и истинным значением
Примечание 1 к записи: На практике истинное значение заменяется принятым опорным значением.
Примечание 2 к записи: Термин точность, применяемый для оценки полученных результатов испытания или
измерения, включает совокупность случайных составляющих и обычной систематической погрешности или
составляющей смещения.
Примечание 3 к записи: Точность относится к совокупности правильности и прецизионности.
[ИСТОЧНИК: ISO 3534-2:2006, 3.3.1]
3.2
смещение
bias
разность между ожиданием результата испытания или измерения и истинным значением
Примечание 1 к записи: Смещение является суммарной систематической погрешностью в противоположность
случайной погрешности. Одна или более составляющих систематической погрешности могут вносить вклад в
смещение. Чем больше систематическое расхождение с истинным значением, тем выше значение смещения.
Примечание 2 к записи: Смещение обычно оценивается как усреднение погрешности показания для
соответствующего числа повторных измерений. Погрешность показания: это “показание измерительного прибора
минус истинное значение соответствующей входной величины”.
Примечание 3 к записи: На практике истинное значение заменяется принятым опорным значением.
[ИСТОЧНИК: ISO 3534-2:2006, 3.3.2]
3.3
прецизионность
precision
близость между независимыми результатами испытания/измерения, полученными в заданных
условиях
Примечание 1 к записи: Прецизионность зависит только от распределения случайных погрешностей и не связана
с истинным значением заданной величины.
Примечание 2 к записи: Меру прецизионности обычно выражают посредством непрецизионности и вычисляют как
стандартное отклонение результатов испытания или результатов измерения. Чем больше стандартное
отклонение, тем меньше прецизионность.
Примечание 3 к записи: Количественные показатели прецизионности критически зависят от заданных условий.
Условия повторяемости и условия воспроизводимости являются специальными совокупностями предельных
заданных условий.
[ИСТОЧНИК: ISO 3534-2:2006, 3.3.4]
3.4
репрезентативность
представительность
representativeness
степень, в которой состояние всех проб, собранных из водоема, отражает состояния соответствующей
воды
3.5
холостое значение
blank
наблюдаемая величина, получаемая при измерении пробы, идентичной анализируемой пробе, но в
которой отсутствует определяемое вещество
Примечание к записи 1: Деионизированная вода; дистиллированная вода может быть использована в
качестве холостых проб, которые приготовляют в лаборатории перед отбором проб.
3.6
холостая проба для полевых испытаний
field blank
контейнер, приготовленный в лаборатории с использованием реактивной воды или другой холостой
матрицы и отправленный с персоналом по отбору проб в поле для воздействия окружающей среды
пробоотбора, чтобы проверить возможное загрязнение во время отбора проб
[ИСТОЧНИК: ISO 11074:2005, 4.5.3]
2 © ISO 2014 – Все права сохраняются

3.7
контрольная добавка
spike
известное количество определяемого вещества, которое добавляют к пробе обычно в целях оценки
систематической погрешности аналитической системы посредством реакции восстановления
3.8
восстановление
recovery
степень, в которой известное добавленное количество определяемого вещества в пробе может быть
измерено посредством аналитической системы
Примечание 1 к записи: Восстановление вычисляют из разности между результатами, полученными для
обогащенной (3.7) и необогащенной аликвот пробы, и обычно выражают в процентном отношении.
3.9
контрольная карта
control chart
график, на который наносится статистический критерий для ряда проб в определенном порядке для
регулирования процесса относительно этого критерия и для контроля и уменьшения вариаций
Примечание 1 к записи: Определенный порядок основан на времени или количестве проб.
Примечание 2 к записи: Контрольная карта функционирует наиболее эффективно, когда критерием является
регулируемый параметр процесса, который коррелирован с характеристикой конечного продукта или услуги.
[ИСТОЧНИК: ISO 3534-2:2006, 2.3.1]
3.10
контрольная карта Шухарта
Shewhart control chart
Контрольная карта с пределами Шухарата, предназначенная главным образом для установления
различия между вариацией графического критерия по случайным причинам и вариацией, вызванной
неслучайными причинами
Примечание 1 к записи: Это может быть график, использующий атрибуты (например, несоответствие
соотношения) для оценивания процесса, или график, использующий переменные (например, среднее и диапазон)
для оценивания процесса. Примеры:
a) контрольная карта для средних — выборочные средние значения наносятся на график, чтобы
контролировать среднее значение переменных;
b) карта диапазона — размах выборки откладывается на графике, для того чтобы контролировать изменчивость
переменной;
c) карта выборочного стандартного отклонения — выборочные стандартные отклонения наносятся на график,
для того чтобы контролировать изменчивость переменной;
d) карта дисперсии — выборочные дисперсии наносятся на график, для того чтобы контролировать
изменчивость переменной;
e) счетная карта — количество дефектов (на партию, в день, на машину и т.д.) наносится на график.
[ИСТОЧНИК: ISO 3534-2:2006, 2.3.2, с изменением — Добавлено Примечание 1 к записи.]
3.11
границы регулирования
action limits
контрольные границы, между которыми находится рассматриваемая статистическая характеристика с
очень высокой вероятностью, когда процесс подлежит статистическому контролю
Примечание 1 к записи: Контрольные линии проводятся на графике для представления границ регулирования.
Примечание 2 к записи: Когда графический критерий лежит вне границы регулирования, предпринимается
соответствующее корректирующее действие по процессу.
Примечание 3 к записи: Эти границы основаны на допущении, что только 0,3 % нормально распределенных
результатов будут вне этих границ. Такое местонахождение явно показывает, что, возможно, имеются
дополнительные выявляемые причины вариации и может потребоваться действие для их идентификации и
уменьшения.
[ИСТОЧНИК: ISO 3534-2:2006, 2.4.4, с изменением — Добавлено Примечание 3 к записи.]
3.12
предупредительные границы
warning limits
контрольные границы, между которыми находится рассматриваемая статистическая характеристика с
очень высокой вероятностью, когда процесс подлежит статистическому контролю
Примечание 1 к записи: Контрольные линии проводятся на графике для представления предупредительных
границ.
Примечание 2 к записи: Когда значение графического статистического критерия лежит вне предупредительных
границ, но в пределах границ регулирования (3.11), обычно требуется повышение контроля над процессом
согласно предварительно заданным правилам.
Примечание 3 к записи: Эти границы вычисляют из стандартного отклонения рассматриваемого статистического
критерия как минимум для 10 выборок. Контрольные границы для предупреждения и регулирования применяются
к индивидуальным результатам выборки.
[ИСТОЧНИК: ISO 3534-2:2006, 2.4.3, с изменением — Добавлено Примечание 3 к записи.]
3.13
неопределенность
uncertainty
неопределенность измерения
measurement uncertainty
неотрицательный параметр, характеризующий дисперсию количественных значений, приписываемых
измеряемому параметру на основе используемой информации
[ИСТОЧНИК: ISO/IEC Guide 99:2007, 2.26, с изменением — Примечания к записи здесь не включены.]
3.14
истинное значение
true value
значение, которое характеризует величину или количественную характеристику, определенную в
идеальных условиях, существующих при рассмотрении этой величины или количественной
характеристики
Примечание 1 к записи: Истинное значение величины или количественной характеристики является
теоретическим понятием и, в общем, не может быть известно точно.
[ИСТОЧНИК: ISO 3534-2:2006, 3.2.5, с изменением — Примечание 2 к записи здесь не включено.]
3.15
принятое опорное значение
accepted reference value
значение, которое служит в качестве согласованного репера для сравнения
Примечание 1 к записи: Принятое опорное значение получают как:
a) теоретическое или установленное значение, основанное на научных принципах;
4 © ISO 2014 – Все права сохраняются

b) приписываемое или аттестованное значение, основанное на экспериментальной работе какой-нибудь
национальной или международной организации;
c) согласованное или аттестованное значение, основанное на совместной экспериментальной работе под
эгидой научной или технической группы;
d) ожидание, т.е. среднее для определенной серии измерений, когда a), b) и c) отсутствуют.
[ИСТОЧНИК: ISO 3534-2:2006, 3.2.7]
4 Источники погрешности при отборе проб
Источники погрешности при отборе проб включают следующее:
a) Загрязнение
Загрязнение может быть вызвано материалами пробоотборного оборудования (контейнеры для
отбора и содержания проб) в результате перекрестного загрязнения между пробами, консервации,
неподходящего хранения и организации транспортировки проб.
b) Неустойчивость пробы
Тип используемых пробоотборных резервуаров и контейнеров может влиять на устойчивость
определяемого вещества за период между отбором пробы и анализом из-за неустойчивости,
присущей самой пробе, и условий, в которых пробы хранятся и транспортируются.
c) Неправильная консервация
Выбор резервуаров и контейнеров для отбора проб влияет на целостность определяемого
вещества и на выбор имеющихся средств для консервации согласно ISO 5667-3.
d) Неправильный отбор проб
Отклонение от процедуры отбора проб или от применения процедуры как таковой может быть
источником погрешности.
e) Отбор проб из негомогенизированных водоемов
f) Транспортировка пробы
На Рис. 1 представлены различные источники погрешности отбора проб: окружающие условия,
персонал, материалы, методы, консервация и транспортировка. Дополнительные примеры обычных
источников погрешности отбора проб приведены в Приложении A.
Рисунок 1 — Источники погрешности при отборе проб
5 Качество отбора проб
5.1 Общие вопросы
Программа обеспечения качества отбора проб должна устанавливаться для каждой серии
пробоотбора таким образом, чтобы гарантировать надежность и научную достоверность данных,
полученных по этим программам. Ошибки на любом этапе процедуры отбора проб могут привести к
существенным погрешностям в полученных данных.
Лаборатории, в которых анализируются собранные пробы, имеют тщательно разработанные
программы обеспечения качества и контроля качества (QA/QC) согласно требованиям национального
регламента и в соответствии с ISO/IEC 17025. Однако такие лабораторные программы QA/QC не могут
заменить детально разработанных программ качества отбора проб, требуемых для сбора и обработки
проб до их отправки в лабораторию для анализа.
Программы качества отбора проб включают все шаги, предпринимаемые для обеспечения валидных
результатов. Программы качества отбора проб имеют документированное подтверждение
относительно компетентности и хорошей подготовки персонала, относительно применения
подходящих методов отбора и обработки проб, технического обслуживания и калибровки
оборудования, относительно соблюдения правил и инструкций и полноты и надежности записей.
Важно, чтобы была принята программа гарантии качества и контроля качества, которая будет
эффективной для описания и уменьшения погрешностей. В зависимости от цели (например,
контролирование любого загрязнения пробы в различных точках в процедуре отбора проб и
идентификация потенциальных проблем) средства для контроля качества будет различными. См.
Таблицу 1.
6 © ISO 2014 – Все права сохраняются

Таблица 1. Средства контроля качества для различных целей
Цель Средства для выполнения
Проверка отсутствия загрязнения Холостая проба природной воды, холостая проба для полевых
условий, холостая проба для транспортировки, холостая проба для
оборудования, холостая проба для фильтрования
Вычисление прецизионности отбора проб Дублированные пробы
Проверка устойчивости пробы Контрольная добавка
Подчеркивается особая важность тщательного измерения результатов исследований, проводимых на
месте, и правильной записи результатов анализа определяемых параметров. Дается ссылка на
ISO/TS 13530 относительно аналитического контроля качества для анализа воды и на ISO 15839
относительно датчиков/оборудования для анализа воды в реальном масштабе времени.
Поскольку аналитические лаборатории имеют экспертов по QA/QC, предлагается активно вовлекать их
в разработку и оценку программ качества отбора проб.
5.2 Требования к оборудованию и персоналу
Для правильного отбора проб следует иметь достаточное количество подходящего и очищенного
оборудования [такого как контейнеры для проб, пробоотборники, фильтровальное оборудование,
гомогенизатор, промежуточный контейнер (воронка, черпак) и измерительное оборудование для
анализа на месте]. Регулярное техническое обслуживание всего оборудования должно быть
гарантировано.
Транспортные и технические средства для отбора проб должны быть оборудованы согласно
требованиям к отбору проб (лабораторный транспорт).
Персонал по отбору проб должен иметь профессиональную подготовку, например законченное
профессиональное образование лаборанта химика или специалиста по очистке сточных вод. Важным
предварительным условием является соответствующая первоначальная производственная подготовка
и регулярное обучение персонала, занятого отбором проб. Участие во внутреннем и/или внешнем
обучении должно быть документировано (см. 5.4).
Регулярный обмен информацией между заказчиком, персоналом по отбору проб и сотрудниками
лаборатории улучшает качество отбора проб и испытаний. В распоряжение персонала должна быть
[ ]
предоставлена вся необходимая информация для отбора проб гарантированного качества.
5.3 Инструкция по отбору проб
5.3.1 Для отбора проб следует выполнять общие требования, относящиеся к компетенции
испытательных и калибровочных лабораторий.
[ ]
Должны быть подготовлены процедуры или рабочие инструкции по следующим вопросам:
a) отбор проб (на основе матрицы);
b) измерение на участке;
c) предварительная обработка проб;
d) консервация проб (на основе параметров);
e) транспортировка, хранение и поставка/приемка проб.
Каждый работник, ответственный за сбор проб воды, должен иметь при себе на участке
актуализированную инструкцию по отбору проб. Эта инструкция должна давать конкретные
руководящие указания по применению методов отбора проб, по обслуживанию и консервации проб, по
аналитическим методам для измерений на участке отбора проб, по процедурам, применяемым при
транспортировке проб в лабораторию, и по применению оборудования сенсорного типа в непрерывном
режиме реального времени. Предлагается, чтобы в инструкции дополнительно было дано детальное
описание всех процедур по обеспечению качества, применяемых при отборе проб, при измерениях на
участке, при транспортировке проб в лабораторию и при использовании или проверке оборудования
для непрерывного мониторинга.
5.3.2 В руководстве по отбору проб должны быть определены:
a) типы бутылок или контейнеров, их крышки и конкретные цели, для которых они должны
использоваться;
b) в соответствующих случаях процедура очистки и срок хранения для бутылок, контейнеров и
крышек, используемых для контроля каждого параметра, включая количество и тип добавляемого
консерванта, (например, первая выборка, промытая и застойная пробы) и процедура для сбора
проб для различных параметров;
c) процедура отбора проб для каждого параметра, включая тип отбираемой пробы;
d) частота и порядок отбора проб;
e) условия хранения и транспортировка проб, а также максимальный период времени, который
допускается, прежде чем начнется анализ для каждого параметра; и
f) описание реактива для консервации (включая обычный краситель), а также подходящие меры
безопасности в случае расплескивания или соприкосновения с кожей или с глазами.
Рекомендуется, чтобы инструкция дополнительно давала руководство относительно соответствующих
ответных реакций при отборе проб, когда идентифицируются необычные условия, а также план
действий в непредвиденных случаях.
ПРИМЕЧАНИЕ Если используются портативные компьютеры типа лэптоп в полевых условиях, удобно иметь
электронные версии инструкций. Использование электронных шаблонов и таблиц может уменьшить погрешности
в записи информации и обеспечить автоматические вычисления.
5.4 Обучение персонала для отбора проб
Все сотрудники, которые будут заниматься отбором проб, должны пройти полный курс обучения,
прежде чем им будет разрешено работать без надзора. Обучение включает следующие дисциплины,
если они являются подходящими:
a) принципы и практика водоснабжения;
b) принципы и практика гигиены водоснабжения;
c) вводный курс знаний по вопросам, представляющим интерес, например химия и микробиология
воды;
d) знание о восприимчивости водоснабжения к загрязнению, включая конкретные случаи реального
загрязнения, особенно фекального;
e) практический опыт по всем аспектам отбора проб;
f) поднадзорная лабораторная практика для персонала, который должен будет заниматься
аналитическими измерениями или управлять оборудованием для мониторинга в реальном
масштабе времени;
8 © ISO 2014 – Все права сохраняются

g) изучение этой части ISO 5667 вместе с соответствующими разделами ссылочных стандартов; и
h) совершенное знание инструкции по отбору проб с особым вниманием к идентификации и
устранению или предотвращению потенциальных опасностей.
Работа подготовленного персонала по отбору проб должна регулярно проверяться. Процедуры
мониторинга и проверок, критерии удовлетворительной работы и политика переподготовки должны
подтверждаться документально. Эта подготовка должна подлежать актуализации на регулярной
основе. Подробная информация и требования к обучению персонала представлены в ISO/IEC 17025.
Запись обучения следует делать для каждого сотрудника, подробно описывая предоставляемое
обучение, с указанием дат и оценки компетентности, результаты анализа оценок, предоставляемую
переподготовку или дальнейшую подготовку и любую переоценку компетенции. Пересмотр подготовки
должен проходить как минимум раз в год.
6 Стратегия и организация
6.1 Время, продолжительность и частота отбора проб
Целью отбора проб является получение репрезентативной пробы для исследования. Это касается:
a) временной репрезентативности;
b) локальной репрезентативности; и
c) применяемого метода отбора проб.
Предполагается, что отбор проб тщательно планируется относительно затраты времени, подходящих
транспортных средств и оборудования, а также необходимого профессионального
[7]
квалифицированного персонала.
Время, продолжительность и частота могут сильно различаться в исследованиях, например, сточных,
поверхностных и грунтовых вод. Их установки основаны на законодательстве, предметах обсуждения
или других обстоятельствах. Дополнительную информацию см. в ISO 5667-1 и в серии стандартов по
типам воды ISO 5667.
6.2 Места для отбора проб
Чтобы получить первое представление о точке отбора проб, полезно рассмотреть существующую
документацию. Документация определяется координатами места (значения северного и восточного
положений). Она включает карты (общие и детализированные) и фото (сделанные в разное время года,
если необходимо). На практике полезными оказались микротелефонные трубки GPS (Глобальная
.[7]
система навигации) с топографическими картами Дополнительную информацию см. в ISO 5667-1 и в
серии стандартов по типам воды ISO 5667.
Обязательно нужно проверять точку отбора проб согласно локальным обстоятельствам. Только на
месте можно оценить репрезентативность точки отбора проб для исследуемой области и данного
исследования, а также доступность точки отбора проб.
7 Отбор проб и обращение с пробами
7.1 Проверка оборудования и транспортных средств перед выполнением программы
по отбору проб
Персонал, занятый отбором проб, должен получить ясно сформулированное распоряжение
относительно отбора проб. Затем проводится подготовка к отбору проб на основе рабочих инструкций.
Для обеспечения материалов, оборудования и подготовки к отбору проб должны быть четко
[ ]
определены обязанности между заказчиком, лабораторией и персоналом.
[7]
Основные шаги подготовки к отбору проб:
a) поставка очищенных пробоотборников, промежуточных контейнеров и устройств для
предварительной обработки проб (гомогенизация, фильтрация);
b) поставка очищенных контейнеров для проб с прокладками в достаточном количестве согласно
исследуемым параметрам или группам параметров. Должна быть обеспечена транспортировка
контейнеров в закрытом виде; недопустимо, чтобы произошли какие-либо изменения
анализируемых параметров или групп параметров из-за воздействия на материал контейнеров
загрязнения, адсорбции, диффузии или дегазации;
c) предоставление расходного материала (например этикеток для маркировки пробоотборных
контейнеров);
d) предоставление материала для консервации проб и необходимых дозаторов;
e) предоставление документов, включающих распоряжение относительно отбора проб, протокола
отбора проб и документации для точки отбора проб;
f) поставка и подготовка оборудования для измерений на месте (например, температуры, кислорода,
значения pH, удельной проводимости, мутности и испытательных растворов, требуемых для
испытаний на месте);
g) предоставление подходящего защитного снаряжения и оборудования, обеспечивающего
безопасность;
h) предоставление официальных разрешений на доступ (например, особые разрешения, скидки на
проходимость, идентификационные карты компаний, ключи);
i) подготовка транспортных средств для отбора проб относительно эксплуатации и дорожной
безопасности, чистоты и холодильной установки транспортного средства
j) противобуксовочная и бездефектная погрузка устройств и оборудования в транспортные средства-
хранилища (например, оборудование in situ, ящики, …) с хорошим распределением в
транспортном средстве.
7.2 Подготовка к отбору проб на месте
Важно:
a) удостовериться в точности места для отбора проб (координаты, количество точек отбора проб,
точное размещение [например, берег (левый/правый), центр реки];
b) провести мониторинг условий отбора проб (дата, время, погода, специфика на воде и в воде, при
необходимости записать уровень воды и течение);
c) отобрать оборудование и контейнеры для проб по типу и материалу;
d) обеспечить использование очищенного оборудования для каждого отбора проб. Полезно иметь
наготове некоторое количество пробоотборных устройств. Если это невозможно, пробоотборные
устройства следует очищать путем предварительной промывки материалом пробы или
деионизированной водой для предотвращения переноса остатков составляющих пробы. В
некоторых случаях (например, высокая концентрация твердых веществ или заметное присутствие
масел и жиров) пробоотборные устройства нельзя промывать материалом пробы;
10 © ISO 2014 – Все права сохраняются

e) проверить маркированные контейнеры для проб на точность и полноту этикеток или этикетировать
их постоянно.
7.3 Полевые измерения
Измерения на месте следует проводить до фактического начала работ, поскольку они могут дать
дополнительные инструкции для отбора проб. Измерения могут выполняться или непосредственно в
среде, из которой будут брать пробы, или в точечной пробе, которую выбрасывают после измерения. В
черпаке или в пробоотборных контейнерах не следует использовать различные комбинации датчиков
[ ]
или электродов, потому что это может способствовать загрязнению пробы.
Важно обеспечить регулярную калибровку приборов, используемых непосредственно на участке.
Функциональные испытания и калибровки, так же как и тип документации, устанавливаются в рабочей
инструкции для каждого анализируемого параметра. Верификация оборудования in situ должна
выполняться до и после измерения.
Измеряют и записывают температуру пробы на участке. Физические параметры (например, pH,
растворенные газы, твердая взвесь) должны определяться на месте по возможности сразу же после
испытания. Для измерения pH в бедных ионами водах с низкой буферной способностью или в
минерализованных водах требуются специальные измерительные условия. Для некоторых
кислородных датчиков минимальное течение или перемешивание должно быть гарантировано. На
случай поломки должны быть предусмотрены резервные датчики.
Результаты этих операций (метрологический контроль полевых устройств, менеджмент калибровочных
растворов) следует записывать и сохранять.
7.4 Взятие проб
7.4.1 Точечные пробы
Точечные пробы необходимы, чтобы уловить текущее состояние относительно времени и/или места от
водного объекта. Их следует брать, когда определяется краткосрочное изменение концентрации
аналита, ожидаемое в пробе. Причинами этого могут быть сильная дегазация, быстрая деградация,
адсорбция или загрязнение. При зачерпывании пробы с помощью подходящих устройств эти эффекты
уменьшаются.
Непосредственное заполнение точечной пробой контейнера для проб должно быть предпочтительным.
Материал для используемого резервуара следует отбирать согласно параметрам изучения.
Загрязнение пробы жидкими или твердыми осаждениями в пробоотборном оборудовании следует
исключать.
Дополнительную информацию см. в ISO 5667-1 и конкретных стандартах, соответствующих типу воды,
изучаемой в серии ISO 5667.
В некоторых случаях контейнер для проб должен быть герметически замкнутым и без воздушного
пространства над жидкостью после наполнения.
7.4.2 Смешанные пробы
Чтобы собрать смешанную пробу, отбирают несколько точечных проб за определенный период
времени. Их смешивают вручную или посредством автоматического пробоотборника, который
собирает пробы непрерывно или прерывисто. При использовании автоматических пробоотборных
систем надо следить, чтобы вещества не оседали в трубопроводных системах. Все водонесущие части
насоса, рукава или трубы и связанное пробоотборное оборудование должны быть изготовлены из
материала, который не изменяет пробу относительно определяемых аналитов.
Предпочтительнее применять нагнетательные насосы бокового действия (погружные насосы) вместо
вакуумных систем, чтобы минимизировать дегазацию летучих веществ. Насос должен быть
самосмазывающимся, чтобы предотвращать утечку смазки в воду или в пробу.
Для автоматического отбора проб с непрерывными или прерывистыми рабочими устройствами на
месте оператор должен устанавливать конкретные процедуры обеспечения качества, например, как
[ ]
описано ниже:
a) местоположение точки извлечения воды;
b) тип насоса (всасывающий или нагнетательный);
c) материал всех водонесущих частей (насос, трубы/рукава, включая муфты, пробоотборное
устройство);
d) интервалы времени и объемы приращения проб;
e) охлаждение/замораживание/консервация;
f) передача смешанных проб после гомогенизации в контейнеры; и
g) очистка и техническое обслуживание оборудования.
7.4.3 Предварительная обработка при отборе проб
Так как водные пробы могут быть подвержены очень быстрым изменениям, обусловленным
процессами биологической деятельности и химическими реакциями их ингредиентов, непосредственно
после отбора проб следует принять соответствующие меры по консервации и предварительной
обработке. Тип предварительной обработки пробы и консервации следует устанавливать для каждого
параметра или группы параметров в “плане для контейнеров и консервации” и включать в стандартную
рабочую процедуру. Персонал по отбору проб должен следовать указаниям по консервации,
предоставляемым лабораторией.
7.4.4 Гомогенизация и взятие подпроб
Если требуется такой большой объем пробы, что для его извлечения необходимо несколько
откачиваний и/или заполнение нескольких контейнеров одной пробой, то должна быть обеспечена
однородность пробы. Это особенно важно для проб, содержащих твердые частицы, и для определения
аналитов, которые обогащаются на твердых частицах.
Для отбора проб больших объемов из сточных вод следует использовать гомогенизаторы с
транспортируемыми резервуарами и с магнитной или механической мешалкой.
[ ]
В зависимости от области исследования возникают следующие варианты.
a) Взятие подпроб из ковша
На практике отбор проб с использованием ковша или черпака является достаточно простым для
исполнения. Предварительным условием является возможность налива подпроб из черпака и
отсутствие неоднородностей в точечной пробе. Пробу отбирают, используя подходящий
резервуар, и затем распределяют по разным контейнерам. Подпробы для анализа параметров, в
которых существует зависимость от суспендированных веществ (таких как тяжелые металлы,
общий фосфор), разливают по бутылкам в порядке первоочередности. В случае необходимости
зачерпнутую пробу следует мягко гомогенизировать между отдельными операциями наполнения,
используя подходящую мешалку.
b) Взятие подпроб с использованием гомогенизатора
12 © ISO 2014 – Все права сохраняются

Отдельные пробы из черпака помещают сначала в достаточно большой пробоотборный
резервуар, из которого разные контейнеры для проб (подпроб) будут заполняться посредством
сливной дозирующей пробки после мягкого, непрерывного и полного перемешивания
Для сбора, перемешивания и наполнения проб больших объемов наиболее подходят
гомогенизаторы с транспортируемыми резервуарами для проб и с магнитной или механической
мешалкой, когда они используются для отбора проб сточных вод. Во время заполнения
контейнеров следует продолжать мягкое перемешивание, тем самым предотвращая газообмен.
Для демонстрации однородности пробы в контейнере следует прово
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...