Fire protection equipment - Carbon dioxide extinguishing systems for use on premises - Design and installation

Équipement de protection contre l'incendie — Installations fixes d'extinction par dioxyde de carbone utilisées dans les bâtiments — Conception et installation

Oprema za požarno zaščito - Vgrajeni gasilni sistemi z ogljikovim dioksidom - Načrtovanje in vgradnja

General Information

Status
Withdrawn
Publication Date
27-Jun-1990
Withdrawal Date
27-Jun-1990
Current Stage
9599 - Withdrawal of International Standard
Start Date
09-Jun-2009
Completion Date
13-Dec-2025

Relations

Standard
ISO 6183:1995
English language
22 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day
Standard
ISO 6183:1990 - Fire protection equipment -- Carbon dioxide extinguishing systems for use on premises -- Design and installation
English language
22 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 6183:1990 - Équipement de protection contre l'incendie -- Installations fixes d'extinction par dioxyde de carbone utilisées dans les bâtiments -- Conception et installation
French language
22 pages
sale 15% off
Preview
sale 15% off
Preview

Frequently Asked Questions

ISO 6183:1990 is a standard published by the International Organization for Standardization (ISO). Its full title is "Fire protection equipment - Carbon dioxide extinguishing systems for use on premises - Design and installation". This standard covers: Fire protection equipment - Carbon dioxide extinguishing systems for use on premises - Design and installation

Fire protection equipment - Carbon dioxide extinguishing systems for use on premises - Design and installation

ISO 6183:1990 is classified under the following ICS (International Classification for Standards) categories: 13.220.10 - Fire-fighting. The ICS classification helps identify the subject area and facilitates finding related standards.

ISO 6183:1990 has the following relationships with other standards: It is inter standard links to ISO 6183:2009. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.

You can purchase ISO 6183:1990 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of ISO standards.

Standards Content (Sample)


SLOVENSKI STANDARD
01-december-1995
2SUHPD]DSRåDUQR]DãþLWR9JUDMHQLJDVLOQLVLVWHPL]RJOMLNRYLPGLRNVLGRP
1DþUWRYDQMHLQYJUDGQMD
Fire protection equipment -- Carbon dioxide extinguishing systems for use on premises --
Design and installation
Équipement de protection contre l'incendie -- Installations fixes d'extinction par dioxyde
de carbone utilisées dans les bâtiments -- Conception et installation
Ta slovenski standard je istoveten z: ISO 6183:1990
ICS:
13.220.10 Gašenje požara Fire-fighting
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

ISO
INTERNATIONAL
STANDARD
First edition
1990-07-01
Fire protection equipment - Carbon dioxide
extinguishing Systems for use on premises -
Design and installation
lnstala tions fixes d’extinc tion par
Equipement de protection contre Entendie -
dioxyde de carbone utilishes dans les batiments - Conception et installation
Reference number
ISO 6183 : 1990 (E)
ISO 6183 : 1990 (EI
Contents
Page
V
Introduction.
1 Scope. .
................................................ 1
2 Normative references
3 Definitions. .
.....................................................
4 Carbon dioxide
................................................. 2
5 Safety requirements
6 Warningalarms .
............................... 2
7 Automatic shut-down of plant equipment
............................................. 2
8 Automatic pressure relief
................................................... 2
9 Electrical earthing
........................ 2
10 Precautions for low-lying Parts of protected areas
11 Safetysigns .
................................. 3
12 Precautions during maintenance work.
................. 3
13 Discharge testing where there may be explosive mixtures.
..............................
14 Basis for design of carbon dioxide Systems
......................................
15 Design of total flooding Systems.
.................................... 6
16 Design of local application Systems
................................. 8
17 Quantity of carbon dioxide to be stored
........... 8
18 Quantity of carbon dioxide to be connected to System as reserve
................................. 8
19 Main items required for detailed design
0 ISO 1990
All rights reserved. No patt of this publication may be reproduced or utilized in any form or by any
means, electronie or mechanical, including photocopying and microfilm, without Permission in
writing from the publisher.
International Organization for Standardization
Case postale 56 l CH-121 1 Geneve 20 l Switzerland
Printed in Switzerland
ISO 6183 :1990 (EI
.......................................... 8
20 Carbon dioxide storage area
............................................
21 Carbon dioxide containers 9
22 Selectorvalves . 9
................................................
IO
23 Distribution Systems.
24 Nozzles .
25 Releasemechanisms .
........................................ 12
26 Inspection and commissioning
27 Functionaltest . 12
................................
28 12
Operating and maintenance instructions
Annexes
A Test procedure for determining carbon dioxide concentrations for
flammable liquids and gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
B Carbon dioxide System pipe and orifice size determination . . . . . . . . . . . . . . . . .
C Information on carbon dioxide and its application . . . . . . . . . . . . . . . . . . . . . . . .
D Calculation examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ISO 6183 : 1990 (EI
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of
national Standards bodies (ISO member bedies). The work of preparing International
Standards is normally carried out through ISO technical committees. Esch member
body interested in a subject for which a technical committee has been established has
the right to be represented on that committee. International organizations, govern-
mental and non-governmental, in liaison with ISO, also take patt in the work. ISO
collaborates closely with the International Electrotechnical Commission (IEC) on all
matters of electrotechnical standardization.
Draft International Standards adopted by the technical committees are circulated to
the member bodies for voting. Publication as an International Standard requires
approval by at least 75 % of the member bodies casting a vote.
International Standard ISO 6183 was prepared by Technical Committee ISO/TC 21,
Equipment for fire protection and fire fighting.
This International Standard is one of a series providing recommendations and require-
ments for the design, installation and maintenance of fire extinguishing Systems, in
Order that the System under consideration provides an adequate fire extinguishing
capability. The related International Standards, to be published, include
ISO 6182, Fire protection - Au toma tic Sprinkler s ys tems.
ISO 7075, Fire protection - Halogenated h ydrocarbon extinguishing s ystems.
ISO 7076, Fire protection - Foam extinguishing s ystems.
lt has been assumed in the drafting of this International Standard that the execution of
its provisions is entrusted to appropriately qualified and experienced personnel, for
whose guidance it has been prepared.
Annexes A and B form an Standard. Annexes C and D
integral patt of this International
are for information only.
iv
ISO 6183 : 1990 0
lntroduction
This International Standard is intended for use by those concerned with purchasing,
designing, installing, testing, inspecting, approving, operating and maintaining carbon
dioxide (CO,) extinguishing Systems, in Order that such equipment will function as
intended throughout its Iife.
Any automatic carbon dioxide fixed fire-extinguishing System designed and installed in
accordance with this International Standard may be expected to be effective in oper-
ation and reasonably safe in relation to its role. However, in some countries other re-
quirements may need to be met in Order to satisfy national or local regulations. Before
any installation is planned in detail, the Position regarding national or local regulations
should be checked. This tan normally be done by reference to the authority having
jurisdiction.
This International Standard applies only to fixed fire-extinguishing Systems in buildings
and other premises on land. Although the general principles may well apply to other
uses (e.g. maritime use), for these other uses additional considerations will almost cer-
tainly have to be taken into account and the application of the requirements in this
International Standard is therefore unlikely to be fully satisfactory.
General information about carbon dioxide as an extinguishing medium is given in
annex C. This may be useful background information for those unfamiliar with the
characteristics of this medium.
This International Standard does not include requirements for pipe fittings, Containers,
flange bolting, flexible connectors and topper pipes and fittings: these requirements
are covered in appropriate national Standards.
lt is a basic assumption of all technical Standards work that each International Standard
will be used only by persons competent in the field of application with which it deals.
This is of particular importante in fire protection. Accordingly it is emphasized that the
design requirements given are to be interpreted only by trained and experienced
designers. Similarly, competent technicians should be used in the installation and
testing of the equipment.
Unless otherwise stated, all pressures are pressures, expressed in bars, with
ww
equivalent pressures in Pascals.

This page intentionally left blank

ISO 6183: 1990 (E)
INTERNATIONAL STANDARD
Carbon dioxide extinguishing
Fire protection equipment -
Systems for use on premises - Design and installation
1 Scope discharge carbon dioxide into an enclosed space or enclosure
about the hazard so that the extinguishing concentration tan
This International Standard lays down requirements for the
be maintained.
design and installation of fixed carbon dioxide fire-extinguish-
ing Systems for use on premises. The requirements are not valid
3.3 local application System: Fixed supply of carbon
for extinguishing Systems on ships, in aircraft, on vehicles and
dioxide permanently connected to fixed piping with nozzles ar-
mobile fire appliances or for below ground Systems in the
ranged to discharge carbon dioxide directly on to the burning
mining industry, nor are they valid for carbon dioxide preiner-
material or identified hazard.
ting Systems.
Design of Systems where unclosable openingk) exceed a
3.4 automatic: Performing a function without the necessity
specified area and where the openingk) may be subject to the
of human intervention.
effect of wind is not specified in this International Standard.
General guidance on the procedure to be followed in such
cases is, however, given in 15.6.
. Device to control the sequence of
35 control device :
events leading to the release of carbon dioxide.
2 Normative references
manual: Requiring human intervention to accomplish a
function.
The following Standards contain provisions which, through
reference in this text, constitute provisions of this International
Standard. At the time of publication, the editions indicated
.
37 operating device : Any component involved between
were valid. All Standards are subject to revision, and Parties to
actuation of the System and the release of carbon dioxide.
agreements based on this International Standard are encouraged
to investigate the possibility of applying the most recent
editions of the Standards indicated below. Members of IEC and
38 . release of carbon dioxide: Opening of Container and
ISO maintain registers of currently valid International Stan-
selector valves leading to the physical discharge of carbon
dards.
dioxide into the protected area.
ISO 1182 : 1983, Fire tests - Building materials - Non-
combus tibilit y tes t. 3.9 inhibition time; holding time: Period during which the
carbon dioxide at the design concentration surrounds the
ISO 4200: 1985, Plain and steel tubes, welded and seamless -
hazard.
General tables of dimensions and masses per unit length.
ISO 5923 : 1984, Fire protection - Fire extinguishing media - 3.10 authority having jurisdiction : Organization, Office, or
individual responsible for approving equipment, an installation,
Carbon dioxide.
a procedure, or a System.
3 Definitions
3.11 selector valve: Device for controlling the passage of
carbon dioxide through a pipe manifold to direct it to a pre-
For the purposes of this International Standard, the following
selected area of protection.
definitions apply.
carbon dioxide fire-extinguishing System : Fixed
supply of carbon dioxide permanently connected to fixed pip-
4 Carbon dioxide
ing and nozzles arranged to discharge carbon dioxide into
the area being protected in such a manner that the design
The extinguishing medium used shall be carbon dioxide com-
extinguishing concentration is achieved.
plying with the requirements of ISO 5923.
3.2 total flooding System: Fixed supply of carbon dioxide Further information on carbon dioxide and its application is
permanently connected to fixed piping with nozzles arranged to contained in annex C.

ISO 6183 : 1990 (E)
5 Safety requirements 7 Automatic shut-down of plant equipment
Before, or simultaneously with, the release of a carbon dioxide
In any proposed use of carbon dioxide extinguishing Systems
where there is a possibility that People may be trapped in or System, all equipment capable of causing reignition of flam-
enter into the protected area, suitable safeguards shall be pro- mable material such as heating installations, gas burners, infra-
vided to ensure prompt evacuation of the area, to restritt entry red lamps, etc. shall be automatically switched off.
into the area after discharge, except where necessary to pro-
vide means for prompt rescue of any trapped personnel. Such
safety aspects as personnel training, warning signs, discharge
Automatic pressure relief
alarms, and breaching apparatus shall be considered. The
following requirements shall be taken into account:
Automatic pressure relief shall be provided at the highest Point
of any room which is tightly closed and which would otherwise
r at all
a) Provision of exit routes which shall be kept clea
be subjected to a dangerous increase of pressure when carbon
times and the Provision of adequate direction signs;
dioxide is introduced.
b) Provision of alarms within such areas that are distinc-
NOTE - Leakage around doors, windows, ducts and dampers,
tive from all other alarm Signals and that will operate
though not apparent or easily determined, may provide sufficient ven-
immediately upon detection of the fire and release of the
ting relief for normal carbon dioxide Systems without special provisions
carbon dioxide (see clause 6);
being made.
For otherwise airtight enclosures, the area necessary for free ven-
c) Provision of only outward swinging self-closing doors
ting, X, (in Square millimetres) may be calculated from the following
which shall be openable from the inside even when locked
equation :
from the outside;
Q
x = 23,9 -
d) Provision of continuous visual and audible alarms at P
d-
entrances, until the atmosphere has been made saf e;
where
Q is the calculated carbon dioxide flow rate, in kilograms per
Provision for adding an odour to the carbon dioxide so
e)
minute;
recognized;
that hazardous atmospheres may be
P is the permissible strength (internal pressure) of enclosure (in
bar).
f) Provision of warning and instruction signs at entrances;
In many instances, particularly when hazardous materials are involved,
relief openings are already provided for explosion venting. These and
9) Provision of self-contai ned breathing equipment and
other available openings often provide adequate venting.
personnel trained in its use;
h) Provision of a means of ventilating the after ex-
9 Electrical earthing
tinguishing th e fire;
be provided with
Carbon d ioxide extinguishing sysems shall
i) Provision of any other safeguards that a careful study of
adequate electrical earthing connections.
each particular Situation indicates are necessary.
NOTE - Adequate earthing of the System will minimize the risk of
electrostatic discharge. Where the System protects electrical instal-
lations, or is housed near or in a building with electrical installations,
6 Warning alarms
the System metalwork should be efficiently connected to the main ear-
thing terminal of the electrical installation.
An audible alarm shall be provided on all total flooding Systems,
and on local flooding Systems where dispersal of the carbon
dioxide from the System into the room would give a concen-
10 Precautions for Iow-lying Parts of
tration of more than 5 %. The alarm shall Sound during any
delay period between fire detection and discharge and through- protected areas
out the discharge.
Where it is possible for carbon dioxide gas to collect in pits,
The Sound intensity of the alarm described in 5 b) shall be such wells, shaft bottoms or other low-lying areas, consideration
that it will be heard above the average local noise level; where
shall be given to adding an odoriferous substance to the carbon
this is abnormally high, visual indication shall also be provided. dioxide, and/or to providing additional Ventilation Systems to
remove the carbon dioxide after discharage.
Alarm devices shall be supplied from an energy Source suf-
NOTE -
The carbon dioxide should comply with the requirements of
ficient to allow continuous Operation of the warning alarm for a
ISO 5923 after addition of any odoriferous substance (sec clause 4).
minimum of 30 min.
For carbon dioxide Container Systems the odoriferous
NOTE - Alarms may not be necessary for local application Systems,
substance shall be introduced by proper means into the supply
unless the quantity of carbon dioxide discharged relative to the room
pipe to the protected zone.
volume is capable of producing a concentration in excess of 5 %.
ISO 6183 : 1990 (EI
11 Safety signs treated as a special application and may require a discharge test
to determine that the proper design concentration has been
For all total flooding Systems, and those local application obtained.
Systems which may Cause critical concentrations, a warning
notice shall be displayed on the inside and outside of every door
to the protected area. 15 Design of total flooding Systems
The notice shall warn that, in case of alarm or discharge of car-
15.1 Factors to be considered
bon dioxide, personnel should leave the room immediately and
not enter again before the room has been thoroughly ventilated
To determine the quantity of the carbon dioxide required, the
because of the danger of suffocation.
volume of the room or of the enclosure to be protected shall be
taken as a basis. From this volume only solid structural
members such as foundations, columns, beams and the like
shall be deducted.
12 Precautions during maintenance work
The following shall be taken into account:
On automatic total flooding Systems, protecting normally unoc-
cupied rooms, Provision shall be made for the prevention of
-
room size;
automatic discharge during periods of entry by personnel
where they may not be able to leave the room during any delay
-
material to be protected;
period (sec clause 6).
-
particular hazards;
NOTE - This precaution is not usually necessary for local application
Systems but should be provided where hazardous concentrations may
-
openings that cannot be shut;
be produced in any area which may be occupied.
-
Ventilation Systems which cannot be shut down.
13 Discharge testing where there may be
There shall be no openings in the floor.
explosive mixtures
15.2 Determination of carbon dioxide design
In circumstances where explosive air/vapour mixtures may be
quantity
present, the hazard area shall be carefully checked before test
discharges are made, due to the possibility of ignition by elec-
The design quantity of carbon dioxide, m, in kilog rams, shall be
trostatic discharge.
calculated using the following formula
m= K, x (0,2 A + 0,7 V)
14 Basis for design of carbon dioxide Systems
where
The construction of the enclosures to be protected by total
A =A,=30Aov
flooding carbon dioxide Systems shall be such that the carbon
dioxide cannot readily escape. The Walls and doors shall be
V= V” + vz - VG
capable of withstanding the effects of the fire for a sufficient
time so as to allow carbon dioxide discharge to be maintained
A, is the total surface area of all sides, floor and ceiling
at the design concentration during the inhibition time.
(including the openings Ao,) of the enclosure to be pro-
tected, in Square metres;
NOTE - ISO 834’) should be used for the assessment of fire
resistance of elements of construction.
Ao, is the total surface area of all openings which tan
be assumed will be open in the event of a fire, in Square
Where possible, openings shall be shut automatically and ven-
metres (sec 15.6);
tilation Systems shall be shut down automatically before or at
least simultaneously with the initiation of discharge of the car-
Vv is the volume of the enclosure to be protected, in
bon dioxide and remain closed.
cubic metres (sec 15.1);
Where openings cannot be shut and where there is an absence
Vz is the additional volume removed during the inhi-
of Walls and/or ceilings, additional carbon dioxide shall be pro-
bition time (see table 1) by Ventilation Systems which
vided as specified in 15.6.
cannot be shut down, in cubic metres (see 15.5);
When these openings are to the outside atmosphere, where
the bui
VG is the volu me of Iding structure which tan
wind conditions may greatly affect the carbon dioxide losses,
be ded ucted, in cubic metres (sec 15.1);
special precautions should be taken. These cases shall be
ISO 834 : 1975, Fire-resistance tests - Elements of building construction.
1)
ISO 6183 : 1990 (EI
K, is the factor for the material to be protected which 15.6 Effect of openings (see introduction)
shall be equal to or greater than one (sec 15.3 and
The effect of all openings, including explosion vents in Walls
table 1);
and ceiling which will not be shut during a fire, are included in
the formula in 15.2 by Ao,.
the number 0,2, in kilograms per Square metre, com-
prises the Portion of carbon dioxide that tan escape;
The porosity of the enclosure materials, or leaks around doors,
windows, shutters, etc., shall not be considered as openings,
the number 0,7, in kilograms per cubic metre, comprises
as they are already included in the formula.
the minimum quantity of carbon dioxide taken as a basis
for the formula.
Openings are not permitted when an inhibition time is required
unless additional carbon dioxide is applied to maintain the re-
For calculation examples, see annex D.
quired concentration during the specified inhibition period.
NOTE - The two numbers 0,2 and 0,7 take into account the effect
When the ratio R = AovlAv > 0,03 the System shall be
of room size, i.e. the ratio of the room volume (Vv) to room surface
designed as a local application System (see clause 16). This
area Mv).
does not preclude the use of a local application System when R
is less than 0,03.
15.3 K, factor
When R is greater than 0,03 and where the openings may be
subject to the effect of wind, then practical tests under the
The material factor K, shown in table 1 shall be taken into ac-
likely maximum adverse conditions should be carried out to the
count when designing for combustible materials and particular
satisfaction of the authority having jurisdiction.
risks that require a higher than normal concentration.
K, factors for hazards not listed in section A of table 1 shall be 15.7 Simultaneous flooding of interconnected
determined by using the cup burner apparatus described in
volumes
annex C or other test method giving equivalent results.
In two or more interconnected volumes where “free flow” of
carbon dioxide tan take place, or where the possibility of fire
15.4 Effect of materials with formation of glowing
spread from one area to the other could occur, the carbon
em bers
dioxide quantity shall be the sum of the quantities calculated
for each volume. If one volume requires greater than normal
For materials with the formation of glowing embers there are
concentration, the higher concentration shall be used in all in-
special conditions to be considered. Table 1 gives examples of
terconnected volumes.
such materials.
15.8 Duration of discharge
15.5 Effect of Ventilation System that cannot be
shut down The time taken substantially to discharge the calculated design
quantity of carbon dioxide, m (sec 15.2), shall be in accordance
To determine the quantity of carbon dioxide to be used, the with table 2. For fires involving solid materials, for example
volume of the room (V,,) shall be increased by the volume of those listed in table 1 as requiring an inhibition time, the design
the air Wz) which is charged into or expelled from the room quantity shall be discharged within 7 min but the rate shall be
not less than that necessary to develop a concentration of 30 %
whilst the room is being flooded with carbon dioxide and during
the inhibition time stated in table 1. in 2 min.
ISO 6183 : 1990 0
Table 1 - Material factors, design concentrations and inhibition times
Material Design CO2 Inhibition
time
Combustible material factor concentration
% min
KEl
A Fires involving gases and liquidsl)
acetone 1
34 -
acetylene
66 -
aviation fuel grades 115/ 145
1,06 36 -
benzol, benzene IJ 37
-
butadiene
1,26 41 -
butane
1 34
-
butene- 1
IJ 37 -
carbon disuifide 3,03
72 -
carbon monoxide
2,43 64 -
coal or natura1 gas IJ
37 -
cyclopropane
IJ 37 -
diese1 f uel
1 34 -
dimethyl ether
l,D 40 -
dowtherm
1,47 46 -
ethane
IZ 40
-
ethyl alcohol 1,34
43 -
ethyl ether
1,47 46
-
ethylene
116 49 -
ethylene dichloride
1 34
-
ethylene Oxide
1,8 53 -
gasoline
1 34 -
hexane
1,03 35 -
n-heptane
1,03 35
-
hydrogen
3,3 75 -
hydrogen sulf ide
1,06 36
-
isobutane
1,06 36 -
isobutylene
34 -
isobutyl formate
1 34 -
JP-4
1,06
36 -
kerosene
1 34 -
methane 1
34 -
methyl acetate
1,03 35 -
methyl alcohol LD
40 -
methyl butane-l
1,06 36
-
methyl ethyl ketone l,Z
40 -
methyl formate
1,18 39
-
n-octane
1,03 35 -
pentane
1,03 35 -
-
propane
1,06 36
propylene
1,06 36
-
quench, lube oils
1 34 -
B Fires involving solid materials2)
cellulosic material
2,25 62 20
cotton 2
58 20
Paper, corrugated Paper
2,25 62
plastics material (granular) 2
58 20
polystyrene
1 34
-
polyurethane, cured only
1 34 -
C Special application cases
cable rooms and cable ducts
1,5 47 10
data handling areas 2,25
62 20
electrical Computer installations
1,5 47 10
electrical switch and distribution rooms
12 40 10
2 58 until stopped
generators, including cooling Systems
oil filled transformers
2 58 -
output printing areas
2,25 62
paint Spray and drying installations
12 40 -
spinning machines 2
58 -
1) The figures given are a compilation of information from Bureau of Mines, Limits of Flammability of
Gases and Vapours, Bulletins 503 and 627.
2) Fire involving solid materials, usually of an organic nature in which combustion normally takes place
with the formation of glowing embers.

ISO 6183 : 1990 (EI
15.9 Storage temperatures 16.12 Rate of discharge
Nozzle discharge rates shall be calculated by either the surface
High-pressure storage temperatures may range from - 20 OC
as covered in 16.2 and 16.3.
to + 50 OC without requiring special methods of compensating method or the volume method
for changing flow-rates.
The total rate of discharge for the System shall be the sum of
the individual rates of all the nozzles or discharge devices used
in the System.
16 Design of local application Systems
16.1.3 Duration of discharge
NOTE - Local application Systems are suitable for the extinguishment
of surface fires in flammable liquids, gases, and solids where the
The time taken substantially to discharge the calculated design
hazard is not enclosed or where the enclosure does not conform to the
quantity of carbon dioxide, m, shall be in accordance with
requirements for total flooding .
table 2. The minimum time shall be increased to compensate
for any hazard conditions that would require a longer cooling
period to ensure complete extinguishment.
16.1 Carbon dioxide requirements
Where there is a possibility that metal or other material may
become heated above the ignition temperature of the fuel, the
16.1 .l General
effective discharge time shall be increased to allow adequate
cooling time.
The basic carbon dioxide is that which
concentration factor
corresponds to a factor K, = 1, i.e. 34 %.
16.2 Rate by area method
For materials requiring a design concentration over 34 % the
basic quantity of carbon dioxide shall be increased by multiply-
16.2.1 General
ing this quantity by the appropriate material factor given in
table 1.
The area method of System design is used where the fire hazard
consists primarily of flat surfaces or low level objects associated
K, factors for hazards not listed in section A of table 1 shall be
with horizontal surfaces.
determined by using the cup burner apparatus described in
annex A, or any other method known to give equivalent
System design shall be based on listing or approval data for
results.
individual nozzles. Extrapolation of such data above or below
the upper or lower limits shall not be valid.
The design quantity of carbon dioxide required for local ap-
plication Systems shall be based on the total rate of discharge
For a calculation example see annex D, clause D.3.
needed to blanket the area or volume protected and the time
that the discharge needs to be maintained to ensure complete
16.2.2 Nozzle discharge rates
extinguishment.
The design discharge rate through individual nozzles shall be
For Systems with high-pressure storage, the design quantity of
carbon dioxide shall be increased by 40 % to determine determined on the basis of location or projection distance in ac-
cordante with specific approvals or listings.
nominal cylinder storage capacity, since only the liquid pottion
of the discharge is effective. This increase in cylinder storage
The discharge rate for overhead type nozzles shall be deter-
capacity is not required for the total flooding Portion of com-
mined solely on the basis of distance from the surface each
bined local application/total flooding Systems.
nozzle protects.
Where there are long pipelines or where the piping may be ex-
The discharge rate for tankside nozzles shall be determined
posed to higher than normal temperatures, the design quantity
solely on the basis of throw or projection required to cover the
shall be increased by an amount sufficient to compensate for
surface each nozzle protects.
liquid vaporized in cooling the piping.
Table 2 - Discharge times for surface fires
Values in seconds
Carbon dioxide low-pressure
installation
Carbon dioxide high-pressure
System Pre-liquid Liquid
installation liquid discharge
vapour flow discharge
time time
max. 60 max. 60 max. 60
Total flooding System
min. 30
, min. 30 max. 30
Local application System ,
I I I
ISO 6183 : 1990 (El
16.2.3 Area per nozzle Overhead type nozzles shall be installed perpendicular to the
hazard and centred over the area protected by the nozzle. Other
nozzles shall be installed at angles between 45O and 90° from
The maximum area protected by each nozzle shall be deter-
the plane of the hazard surface. The height/distance used in
mined on the basis of location or projection distance and the
determining the necessary flow-rate and area coverage shall be
design discharge rate in accordance with specific approvals or
listings. the distance from the aiming Point on the protected surface to
the face of the nozzle measured along the axis of the nozzle.
The same factors used to determine the design discharge rate
When installed at an angle, nozzles shall be aimed at a Point
shall be used to determine the maximum area to be protected
measured from the near side of the area protected by the
by each nozzle.
nozzle, the location of which is calculated by multiplying the
aiming factor in table 3 by the width of the area protected by
The area of the hazard protected by individual overhead type
nozzles shall be considered as a Square. the nozzle.
Nozzles shall be located so as to be free of possible obstruc-
The area of the hazard protected by individual tankside or linear
nozzles shall be either a rectangle or Square in accordance with tions that could interfere with the proper projection of the
discharged carbon dioxide.
spacing and discharge Iimitations stated in specific approvals or
listings.
- Aiming factors for angular placement
Table 3
Hazards involving deep layer flammable liquid fires shall have a
of nozzles, based on freeboard 150 mm
minimum freeboard of 150 mm in Order to prevent splashing
and to retain a surface concentration when carbon dioxide is
Discharge angle l) Aiming factor2)
applied.
45O to 60° 114
60° to 75O ll4to 318
16.2.4 Location and number of nozzles
7o” to 9o” 318 to 112
A sufficient number of nozzles shall be used to cover the entire 90° (perpendicular) 1/2 kentre)
hazard area adequately on the basis of the unit areas protected
1) Degrees from plane of hazard surface.
by each nozzle.
2) Fractional amount of nozzle coverage area.
Tankside or linear type nozzles shall be located in accordance
with spacing and discharge rate limitations stated in specific
For further information, see figure 1.
approvals or listings.
Dimensions in millimetres
Nozzle discbarging
NOTES
1 The diagram Shows nozzles discbarging at a) 90° with the aiming Point at the centre of the protected surface, and at 45O,
b) with the aiming Point at 0,25 of the width of the protected surface, into a tray containing fuel with a freeboard of 150 mm.
2 x is the preselected height used to determine the flow-rate required.
Figure 1 - Nozzle locations
ISO 6183 : 1990 (EI
16.3 Rate by volume method 16.5 Discharge nozzles
The nozzles used shall be listed or approved by the authority
16.3.1 General
having jurisdiction for rate of discharge, effective range, and
Pattern or area coverage.
The volume method of System design is used where the fire
hazard consists of three-dimensional irregular objects that can-
NOTE - The supporting data giving requirements and test methods
not be easily reduced to equivalent surface areas.
for nozzles is in preparation and will be shown in a future International
Standard.
For examples
of calculations, see annex D, clauses D.l and
D.2.
17 Quantity of carbon dioxide to be stored
16.3.2 Assumed enclosure
The determined carbon dioxide quantity required shall be
stored so as to be available at all times and not usable for other
The total discharge rate of the System shall be based on the
purposes. Extra quantities of carbon dioxide shall be stored for
volume of an assumed enclosure entirely surrounding the
use with carbon dioxide low-pressure installations in accord-
hazard.
ante with the following:
shall
If the flow is not completely closed special provisions be a) In Order to equalize Charge or drain tolerantes and gas
made to take care of bottom conditions. residues, the quantities of carbon dioxide to be stored for
low-pressure Systems as determined for the largest ex-
tinguishing zone shall be increased by at least 10 %.
The assumed Walls and ceiling of this enclosure shall be at least
0,6 m from the main hazard unless actual Walls are involved and
b) If there is a possibility that liquid carbon dioxide might
shall enclose all areas of possible leakage, splashing or spillage.
remain in the piping between storage Container and nozzle-
pipe System, the carbon dioxide store shall be increased by
No deductions shall be made for any objects within this
this remaining quantity, in addition to the 10 % increase
volume.
specified in item a) above.
A minimum dimension of 1 ,2 m shall be used in calculating the
volume of the assumed en closure.
Quantity of carbon dioxide to be
connected to System as reserve
16.3.3 System discharge rate
Under certain circumstances where carbon dioxide Systems
protect one or more locations, a reserve quantity of 100 % may
The total discharge rate for the basic System shall be not less
be required. The reserve supply shall be permanently con-
than 16 kg/min per cubic metre of assumed volume, unless the
nected to such Systems.
assumed enclosure has a closed floor and is partly defined by
permanent continuous Walls extending at least 0,6 m above the
The time needed to obtain carbon dioxide for replenishment to
hazard (where the Walls are not normally a part of the hazard),
restore Systems to the operating conditions shall be considered
in which case the discharge rate may be proportionately reduced
as a major factor in determining the reserve supply needed.
to not less than 4 kg/min per cubic metre for actual Walls com-
pletely surrounding the enclosure.
19 Main items required for detailed design
16.3.4 Location and number of nozzles
Carbon dioxide extinguishing Systems consist mainly of the
A sufficient number of nozzles shall be used to cover the entire
carbon dioxide storage either in one or several Containers, the
hazard volume adequately on the basis of the System discharge
selector valves, the release mechanisms and the connected
rate as determined by the assumed volume.
distribution piping and discharge nozzles.
Nozzles shall be located and directed relative to objects in the
20 Carbon dioxide storage area
enclosure so as to retain the discharged carbon dioxide in the
hazard volume.
20.1 General
The design discharge rates through individual nozzles shall be
determined on the basis of location or projection distance in ac- NOTE - For storing carbon dioxide, the appropriate national regula-
tions shall be observed.
cordante with specific approvals or listings for surface fires.
Storage of carbon dioxide with the proper valves, release
16.4 Storage temperatures
mechanisms and further equipment should, if possible, be ar-
ranged in one room which is not exposed to fire danger, but
Special methods of compensating for changing flow-rates shall which is situated near to the rooms or objects protected by the
System and is easily accessible. The storage area shall be pro-
be applied if the storage temperature of high-pressure con-
tainers is less than 0 OC or more than 49 OC. tected against the admittance of unauthorized persons.
ISO 6183 : 1990 (El
On the low-pressure Containers, an over-pressure alarm shall be
In certain cases, and when accepted by the authority having
jurisdiction, the storage may be located inside the protected provided which will Sound Prior to the Operation of the safety
valves.
rooms.
The Container shall have sufficient insulation to limit the loss of
20.2 High-pressure Systems
carbon dioxide to not more than 1,5 % (at 3 tonnes to 6 tonnes
Charge), not more than 0,8 % (over 6 tonnes to 10 tonnes
The Container storage area for a high-pressure System shall be
Charge) and not more than 0,5 % (over 10 tonnes Charge) in
so designed that the ambient temperature cannot exceed the
24 h in the event of a failure of the refrigerating System at the
appropriate temperature in table 4.
highest expected ambient temperature.
Maximum storage temperature
Table 4 -
Is shall be protected with metal sheeting to
Insulation materia
Maximum ambient avoid mechanical darnage.
Filling ratio
temperature
kg/1 OC
I I
The Container shall be f itted with a pressure gauge and a
40 valve.
0,75
o,=
0,55 65 NOTE - For low-pressure Systems care should be taken that the
temperature of the carbon dioxide, during the filling of the Containers,
corresponds to the value necessary for proper functioning of the
NOTE - If it is likely that the ambient storage temperature will be
System.
below 0 OC, then special measures may have to be taken in Order to
comply with the discharge times given in table 3.
21.3 Carbon dioxide high-pressure Container
batteries
20.3 Low-pressure Systems
Low-pressure Systems shall be designed so that the In general, the necessary carbon dioxide quantity shall be con-
tained in one battery. The supply to separate distinct hazards
temperature of the carbon dioxide in the Container is kept at a
temperature of approximately - 18 OC. may be made from a Single battery where there is no likelihood
of the fire spreading from one hazard to another. The total
NOTE - Suitable measures should be taken to ensure that this
quantity of the battery shall correspond to the largest quantity
temperature is maintained. This means insulating, cooling and/or
of carbon dioxide required to protect any one room or Object.
heating, dependent on the ambient temperature in the storage area. lt
may be necessary to extract the heat generated by the cooling System.
NOTE - The release Systems of the battery and the pipes should be
arranged in such a way that each protected zone individually may be
flooded with carbon dioxide.
21 Carbon dioxide Containers
The Containers of the battery shall be secured in a fixed Position
21 .l General
in such a way that no movement occurs when the System is
NOTE - Apart from the following requirements and the specific re- discbarging .
quirements for low-pressure Containers (sec 21.2), there are no further
requirements for the construction of gas Containers, other than those
Esch Container shall be replaceable, independently from the
given in appropriate national Standards.
other Containers. In each pipe connecting the Container valve to
the manifold, a non-return valve shall be fitted. Removal of any
Where the Container design does not incorporate a safety
of the Containers shall not prevent the remainder of the battery
pressure relief device then this shall be incorporated in the con-
from functioning properly.
tainer valve.
quantity in
Means shall be provided to measure the each con-
NOTE - This will form the subject of a future International Standard.
tainer.
21.2 Low-pressure Containers
22 Selector valves
The design shall ensure that the temperature of the carbon
dioxide in the Container shall be maintained at - 18 ‘g OC and
If several extinguishing zones are served by one carbon dioxide
battery or one Container System, a selector valve shall be pro-
at a pressure of approximately 20 bar? Means shall be pro-
vided for each extinguishing Zone.
vided continuously to indicate the quantity of carbon dioxide.
Selector valves for cylinder Systems shall open automatically
An automatic refrigerating System shall ensure that the
before or at the same time as the Operation of the cylinder
temperature and pressure of carbon dioxide are kept within the
valves.
required limits.
1) 1 bar = 0,l MPa
ISO6183:1990 EI
In Iow-pressure Systems, selector valves shall
open The pressure setting of the relief device shall be such that maxi-
automatically and close automatically after discharge of the mum pressure attainable does not exceed the criteria indicated
required quantity of carbon dioxide.
in 23.2 but is in excess of the pressure required to maintain nor-
mal discharge pressures in the Pipeline under flow conditions.
Selector valves shall be installed so as to be protected against
fire. At any time it shall be possible to check the correct func- Pressure relief devices shall be designed and so located that the
tioning of the selector valves and their controlling devices. discharge therefrom will not injure Personne1 or otherwise
Cause darnage.
NOTE - Relief device operating pressures are not specified in this
23 Distribution Systems
International Standard.
23.1 Piping shall be of materials that would be classified as
23.9 Where condensation water may form in the pipes,
non-combustible if tested to ISO 1182 and that have physical
suitable means shall be provided for drainage. These drainage
and Chemical characteristics such that its integrity under stress
Points shall not be accessible to unauthorized persons.
tan be predicted with reliability.
NOTES
23.10 Pipes shall be free from burrs, rust and other obstruc-
1 Speci
...


ISO
INTERNATIONAL
STANDARD
First edition
1990-07-01
Fire protection equipment - Carbon dioxide
extinguishing Systems for use on premises -
Design and installation
lnstala tions fixes d’extinc tion par
Equipement de protection contre Entendie -
dioxyde de carbone utilishes dans les batiments - Conception et installation
Reference number
ISO 6183 : 1990 (E)
ISO 6183 : 1990 (EI
Contents
Page
V
Introduction.
1 Scope. .
................................................ 1
2 Normative references
3 Definitions. .
.....................................................
4 Carbon dioxide
................................................. 2
5 Safety requirements
6 Warningalarms .
............................... 2
7 Automatic shut-down of plant equipment
............................................. 2
8 Automatic pressure relief
................................................... 2
9 Electrical earthing
........................ 2
10 Precautions for low-lying Parts of protected areas
11 Safetysigns .
................................. 3
12 Precautions during maintenance work.
................. 3
13 Discharge testing where there may be explosive mixtures.
..............................
14 Basis for design of carbon dioxide Systems
......................................
15 Design of total flooding Systems.
.................................... 6
16 Design of local application Systems
................................. 8
17 Quantity of carbon dioxide to be stored
........... 8
18 Quantity of carbon dioxide to be connected to System as reserve
................................. 8
19 Main items required for detailed design
0 ISO 1990
All rights reserved. No patt of this publication may be reproduced or utilized in any form or by any
means, electronie or mechanical, including photocopying and microfilm, without Permission in
writing from the publisher.
International Organization for Standardization
Case postale 56 l CH-121 1 Geneve 20 l Switzerland
Printed in Switzerland
ISO 6183 :1990 (EI
.......................................... 8
20 Carbon dioxide storage area
............................................
21 Carbon dioxide containers 9
22 Selectorvalves . 9
................................................
IO
23 Distribution Systems.
24 Nozzles .
25 Releasemechanisms .
........................................ 12
26 Inspection and commissioning
27 Functionaltest . 12
................................
28 12
Operating and maintenance instructions
Annexes
A Test procedure for determining carbon dioxide concentrations for
flammable liquids and gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
B Carbon dioxide System pipe and orifice size determination . . . . . . . . . . . . . . . . .
C Information on carbon dioxide and its application . . . . . . . . . . . . . . . . . . . . . . . .
D Calculation examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ISO 6183 : 1990 (EI
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of
national Standards bodies (ISO member bedies). The work of preparing International
Standards is normally carried out through ISO technical committees. Esch member
body interested in a subject for which a technical committee has been established has
the right to be represented on that committee. International organizations, govern-
mental and non-governmental, in liaison with ISO, also take patt in the work. ISO
collaborates closely with the International Electrotechnical Commission (IEC) on all
matters of electrotechnical standardization.
Draft International Standards adopted by the technical committees are circulated to
the member bodies for voting. Publication as an International Standard requires
approval by at least 75 % of the member bodies casting a vote.
International Standard ISO 6183 was prepared by Technical Committee ISO/TC 21,
Equipment for fire protection and fire fighting.
This International Standard is one of a series providing recommendations and require-
ments for the design, installation and maintenance of fire extinguishing Systems, in
Order that the System under consideration provides an adequate fire extinguishing
capability. The related International Standards, to be published, include
ISO 6182, Fire protection - Au toma tic Sprinkler s ys tems.
ISO 7075, Fire protection - Halogenated h ydrocarbon extinguishing s ystems.
ISO 7076, Fire protection - Foam extinguishing s ystems.
lt has been assumed in the drafting of this International Standard that the execution of
its provisions is entrusted to appropriately qualified and experienced personnel, for
whose guidance it has been prepared.
Annexes A and B form an Standard. Annexes C and D
integral patt of this International
are for information only.
iv
ISO 6183 : 1990 0
lntroduction
This International Standard is intended for use by those concerned with purchasing,
designing, installing, testing, inspecting, approving, operating and maintaining carbon
dioxide (CO,) extinguishing Systems, in Order that such equipment will function as
intended throughout its Iife.
Any automatic carbon dioxide fixed fire-extinguishing System designed and installed in
accordance with this International Standard may be expected to be effective in oper-
ation and reasonably safe in relation to its role. However, in some countries other re-
quirements may need to be met in Order to satisfy national or local regulations. Before
any installation is planned in detail, the Position regarding national or local regulations
should be checked. This tan normally be done by reference to the authority having
jurisdiction.
This International Standard applies only to fixed fire-extinguishing Systems in buildings
and other premises on land. Although the general principles may well apply to other
uses (e.g. maritime use), for these other uses additional considerations will almost cer-
tainly have to be taken into account and the application of the requirements in this
International Standard is therefore unlikely to be fully satisfactory.
General information about carbon dioxide as an extinguishing medium is given in
annex C. This may be useful background information for those unfamiliar with the
characteristics of this medium.
This International Standard does not include requirements for pipe fittings, Containers,
flange bolting, flexible connectors and topper pipes and fittings: these requirements
are covered in appropriate national Standards.
lt is a basic assumption of all technical Standards work that each International Standard
will be used only by persons competent in the field of application with which it deals.
This is of particular importante in fire protection. Accordingly it is emphasized that the
design requirements given are to be interpreted only by trained and experienced
designers. Similarly, competent technicians should be used in the installation and
testing of the equipment.
Unless otherwise stated, all pressures are pressures, expressed in bars, with
ww
equivalent pressures in Pascals.

This page intentionally left blank

ISO 6183: 1990 (E)
INTERNATIONAL STANDARD
Carbon dioxide extinguishing
Fire protection equipment -
Systems for use on premises - Design and installation
1 Scope discharge carbon dioxide into an enclosed space or enclosure
about the hazard so that the extinguishing concentration tan
This International Standard lays down requirements for the
be maintained.
design and installation of fixed carbon dioxide fire-extinguish-
ing Systems for use on premises. The requirements are not valid
3.3 local application System: Fixed supply of carbon
for extinguishing Systems on ships, in aircraft, on vehicles and
dioxide permanently connected to fixed piping with nozzles ar-
mobile fire appliances or for below ground Systems in the
ranged to discharge carbon dioxide directly on to the burning
mining industry, nor are they valid for carbon dioxide preiner-
material or identified hazard.
ting Systems.
Design of Systems where unclosable openingk) exceed a
3.4 automatic: Performing a function without the necessity
specified area and where the openingk) may be subject to the
of human intervention.
effect of wind is not specified in this International Standard.
General guidance on the procedure to be followed in such
cases is, however, given in 15.6.
. Device to control the sequence of
35 control device :
events leading to the release of carbon dioxide.
2 Normative references
manual: Requiring human intervention to accomplish a
function.
The following Standards contain provisions which, through
reference in this text, constitute provisions of this International
Standard. At the time of publication, the editions indicated
.
37 operating device : Any component involved between
were valid. All Standards are subject to revision, and Parties to
actuation of the System and the release of carbon dioxide.
agreements based on this International Standard are encouraged
to investigate the possibility of applying the most recent
editions of the Standards indicated below. Members of IEC and
38 . release of carbon dioxide: Opening of Container and
ISO maintain registers of currently valid International Stan-
selector valves leading to the physical discharge of carbon
dards.
dioxide into the protected area.
ISO 1182 : 1983, Fire tests - Building materials - Non-
combus tibilit y tes t. 3.9 inhibition time; holding time: Period during which the
carbon dioxide at the design concentration surrounds the
ISO 4200: 1985, Plain and steel tubes, welded and seamless -
hazard.
General tables of dimensions and masses per unit length.
ISO 5923 : 1984, Fire protection - Fire extinguishing media - 3.10 authority having jurisdiction : Organization, Office, or
individual responsible for approving equipment, an installation,
Carbon dioxide.
a procedure, or a System.
3 Definitions
3.11 selector valve: Device for controlling the passage of
carbon dioxide through a pipe manifold to direct it to a pre-
For the purposes of this International Standard, the following
selected area of protection.
definitions apply.
carbon dioxide fire-extinguishing System : Fixed
supply of carbon dioxide permanently connected to fixed pip-
4 Carbon dioxide
ing and nozzles arranged to discharge carbon dioxide into
the area being protected in such a manner that the design
The extinguishing medium used shall be carbon dioxide com-
extinguishing concentration is achieved.
plying with the requirements of ISO 5923.
3.2 total flooding System: Fixed supply of carbon dioxide Further information on carbon dioxide and its application is
permanently connected to fixed piping with nozzles arranged to contained in annex C.

ISO 6183 : 1990 (E)
5 Safety requirements 7 Automatic shut-down of plant equipment
Before, or simultaneously with, the release of a carbon dioxide
In any proposed use of carbon dioxide extinguishing Systems
where there is a possibility that People may be trapped in or System, all equipment capable of causing reignition of flam-
enter into the protected area, suitable safeguards shall be pro- mable material such as heating installations, gas burners, infra-
vided to ensure prompt evacuation of the area, to restritt entry red lamps, etc. shall be automatically switched off.
into the area after discharge, except where necessary to pro-
vide means for prompt rescue of any trapped personnel. Such
safety aspects as personnel training, warning signs, discharge
Automatic pressure relief
alarms, and breaching apparatus shall be considered. The
following requirements shall be taken into account:
Automatic pressure relief shall be provided at the highest Point
of any room which is tightly closed and which would otherwise
r at all
a) Provision of exit routes which shall be kept clea
be subjected to a dangerous increase of pressure when carbon
times and the Provision of adequate direction signs;
dioxide is introduced.
b) Provision of alarms within such areas that are distinc-
NOTE - Leakage around doors, windows, ducts and dampers,
tive from all other alarm Signals and that will operate
though not apparent or easily determined, may provide sufficient ven-
immediately upon detection of the fire and release of the
ting relief for normal carbon dioxide Systems without special provisions
carbon dioxide (see clause 6);
being made.
For otherwise airtight enclosures, the area necessary for free ven-
c) Provision of only outward swinging self-closing doors
ting, X, (in Square millimetres) may be calculated from the following
which shall be openable from the inside even when locked
equation :
from the outside;
Q
x = 23,9 -
d) Provision of continuous visual and audible alarms at P
d-
entrances, until the atmosphere has been made saf e;
where
Q is the calculated carbon dioxide flow rate, in kilograms per
Provision for adding an odour to the carbon dioxide so
e)
minute;
recognized;
that hazardous atmospheres may be
P is the permissible strength (internal pressure) of enclosure (in
bar).
f) Provision of warning and instruction signs at entrances;
In many instances, particularly when hazardous materials are involved,
relief openings are already provided for explosion venting. These and
9) Provision of self-contai ned breathing equipment and
other available openings often provide adequate venting.
personnel trained in its use;
h) Provision of a means of ventilating the after ex-
9 Electrical earthing
tinguishing th e fire;
be provided with
Carbon d ioxide extinguishing sysems shall
i) Provision of any other safeguards that a careful study of
adequate electrical earthing connections.
each particular Situation indicates are necessary.
NOTE - Adequate earthing of the System will minimize the risk of
electrostatic discharge. Where the System protects electrical instal-
lations, or is housed near or in a building with electrical installations,
6 Warning alarms
the System metalwork should be efficiently connected to the main ear-
thing terminal of the electrical installation.
An audible alarm shall be provided on all total flooding Systems,
and on local flooding Systems where dispersal of the carbon
dioxide from the System into the room would give a concen-
10 Precautions for Iow-lying Parts of
tration of more than 5 %. The alarm shall Sound during any
delay period between fire detection and discharge and through- protected areas
out the discharge.
Where it is possible for carbon dioxide gas to collect in pits,
The Sound intensity of the alarm described in 5 b) shall be such wells, shaft bottoms or other low-lying areas, consideration
that it will be heard above the average local noise level; where
shall be given to adding an odoriferous substance to the carbon
this is abnormally high, visual indication shall also be provided. dioxide, and/or to providing additional Ventilation Systems to
remove the carbon dioxide after discharage.
Alarm devices shall be supplied from an energy Source suf-
NOTE -
The carbon dioxide should comply with the requirements of
ficient to allow continuous Operation of the warning alarm for a
ISO 5923 after addition of any odoriferous substance (sec clause 4).
minimum of 30 min.
For carbon dioxide Container Systems the odoriferous
NOTE - Alarms may not be necessary for local application Systems,
substance shall be introduced by proper means into the supply
unless the quantity of carbon dioxide discharged relative to the room
pipe to the protected zone.
volume is capable of producing a concentration in excess of 5 %.
ISO 6183 : 1990 (EI
11 Safety signs treated as a special application and may require a discharge test
to determine that the proper design concentration has been
For all total flooding Systems, and those local application obtained.
Systems which may Cause critical concentrations, a warning
notice shall be displayed on the inside and outside of every door
to the protected area. 15 Design of total flooding Systems
The notice shall warn that, in case of alarm or discharge of car-
15.1 Factors to be considered
bon dioxide, personnel should leave the room immediately and
not enter again before the room has been thoroughly ventilated
To determine the quantity of the carbon dioxide required, the
because of the danger of suffocation.
volume of the room or of the enclosure to be protected shall be
taken as a basis. From this volume only solid structural
members such as foundations, columns, beams and the like
shall be deducted.
12 Precautions during maintenance work
The following shall be taken into account:
On automatic total flooding Systems, protecting normally unoc-
cupied rooms, Provision shall be made for the prevention of
-
room size;
automatic discharge during periods of entry by personnel
where they may not be able to leave the room during any delay
-
material to be protected;
period (sec clause 6).
-
particular hazards;
NOTE - This precaution is not usually necessary for local application
Systems but should be provided where hazardous concentrations may
-
openings that cannot be shut;
be produced in any area which may be occupied.
-
Ventilation Systems which cannot be shut down.
13 Discharge testing where there may be
There shall be no openings in the floor.
explosive mixtures
15.2 Determination of carbon dioxide design
In circumstances where explosive air/vapour mixtures may be
quantity
present, the hazard area shall be carefully checked before test
discharges are made, due to the possibility of ignition by elec-
The design quantity of carbon dioxide, m, in kilog rams, shall be
trostatic discharge.
calculated using the following formula
m= K, x (0,2 A + 0,7 V)
14 Basis for design of carbon dioxide Systems
where
The construction of the enclosures to be protected by total
A =A,=30Aov
flooding carbon dioxide Systems shall be such that the carbon
dioxide cannot readily escape. The Walls and doors shall be
V= V” + vz - VG
capable of withstanding the effects of the fire for a sufficient
time so as to allow carbon dioxide discharge to be maintained
A, is the total surface area of all sides, floor and ceiling
at the design concentration during the inhibition time.
(including the openings Ao,) of the enclosure to be pro-
tected, in Square metres;
NOTE - ISO 834’) should be used for the assessment of fire
resistance of elements of construction.
Ao, is the total surface area of all openings which tan
be assumed will be open in the event of a fire, in Square
Where possible, openings shall be shut automatically and ven-
metres (sec 15.6);
tilation Systems shall be shut down automatically before or at
least simultaneously with the initiation of discharge of the car-
Vv is the volume of the enclosure to be protected, in
bon dioxide and remain closed.
cubic metres (sec 15.1);
Where openings cannot be shut and where there is an absence
Vz is the additional volume removed during the inhi-
of Walls and/or ceilings, additional carbon dioxide shall be pro-
bition time (see table 1) by Ventilation Systems which
vided as specified in 15.6.
cannot be shut down, in cubic metres (see 15.5);
When these openings are to the outside atmosphere, where
the bui
VG is the volu me of Iding structure which tan
wind conditions may greatly affect the carbon dioxide losses,
be ded ucted, in cubic metres (sec 15.1);
special precautions should be taken. These cases shall be
ISO 834 : 1975, Fire-resistance tests - Elements of building construction.
1)
ISO 6183 : 1990 (EI
K, is the factor for the material to be protected which 15.6 Effect of openings (see introduction)
shall be equal to or greater than one (sec 15.3 and
The effect of all openings, including explosion vents in Walls
table 1);
and ceiling which will not be shut during a fire, are included in
the formula in 15.2 by Ao,.
the number 0,2, in kilograms per Square metre, com-
prises the Portion of carbon dioxide that tan escape;
The porosity of the enclosure materials, or leaks around doors,
windows, shutters, etc., shall not be considered as openings,
the number 0,7, in kilograms per cubic metre, comprises
as they are already included in the formula.
the minimum quantity of carbon dioxide taken as a basis
for the formula.
Openings are not permitted when an inhibition time is required
unless additional carbon dioxide is applied to maintain the re-
For calculation examples, see annex D.
quired concentration during the specified inhibition period.
NOTE - The two numbers 0,2 and 0,7 take into account the effect
When the ratio R = AovlAv > 0,03 the System shall be
of room size, i.e. the ratio of the room volume (Vv) to room surface
designed as a local application System (see clause 16). This
area Mv).
does not preclude the use of a local application System when R
is less than 0,03.
15.3 K, factor
When R is greater than 0,03 and where the openings may be
subject to the effect of wind, then practical tests under the
The material factor K, shown in table 1 shall be taken into ac-
likely maximum adverse conditions should be carried out to the
count when designing for combustible materials and particular
satisfaction of the authority having jurisdiction.
risks that require a higher than normal concentration.
K, factors for hazards not listed in section A of table 1 shall be 15.7 Simultaneous flooding of interconnected
determined by using the cup burner apparatus described in
volumes
annex C or other test method giving equivalent results.
In two or more interconnected volumes where “free flow” of
carbon dioxide tan take place, or where the possibility of fire
15.4 Effect of materials with formation of glowing
spread from one area to the other could occur, the carbon
em bers
dioxide quantity shall be the sum of the quantities calculated
for each volume. If one volume requires greater than normal
For materials with the formation of glowing embers there are
concentration, the higher concentration shall be used in all in-
special conditions to be considered. Table 1 gives examples of
terconnected volumes.
such materials.
15.8 Duration of discharge
15.5 Effect of Ventilation System that cannot be
shut down The time taken substantially to discharge the calculated design
quantity of carbon dioxide, m (sec 15.2), shall be in accordance
To determine the quantity of carbon dioxide to be used, the with table 2. For fires involving solid materials, for example
volume of the room (V,,) shall be increased by the volume of those listed in table 1 as requiring an inhibition time, the design
the air Wz) which is charged into or expelled from the room quantity shall be discharged within 7 min but the rate shall be
not less than that necessary to develop a concentration of 30 %
whilst the room is being flooded with carbon dioxide and during
the inhibition time stated in table 1. in 2 min.
ISO 6183 : 1990 0
Table 1 - Material factors, design concentrations and inhibition times
Material Design CO2 Inhibition
time
Combustible material factor concentration
% min
KEl
A Fires involving gases and liquidsl)
acetone 1
34 -
acetylene
66 -
aviation fuel grades 115/ 145
1,06 36 -
benzol, benzene IJ 37
-
butadiene
1,26 41 -
butane
1 34
-
butene- 1
IJ 37 -
carbon disuifide 3,03
72 -
carbon monoxide
2,43 64 -
coal or natura1 gas IJ
37 -
cyclopropane
IJ 37 -
diese1 f uel
1 34 -
dimethyl ether
l,D 40 -
dowtherm
1,47 46 -
ethane
IZ 40
-
ethyl alcohol 1,34
43 -
ethyl ether
1,47 46
-
ethylene
116 49 -
ethylene dichloride
1 34
-
ethylene Oxide
1,8 53 -
gasoline
1 34 -
hexane
1,03 35 -
n-heptane
1,03 35
-
hydrogen
3,3 75 -
hydrogen sulf ide
1,06 36
-
isobutane
1,06 36 -
isobutylene
34 -
isobutyl formate
1 34 -
JP-4
1,06
36 -
kerosene
1 34 -
methane 1
34 -
methyl acetate
1,03 35 -
methyl alcohol LD
40 -
methyl butane-l
1,06 36
-
methyl ethyl ketone l,Z
40 -
methyl formate
1,18 39
-
n-octane
1,03 35 -
pentane
1,03 35 -
-
propane
1,06 36
propylene
1,06 36
-
quench, lube oils
1 34 -
B Fires involving solid materials2)
cellulosic material
2,25 62 20
cotton 2
58 20
Paper, corrugated Paper
2,25 62
plastics material (granular) 2
58 20
polystyrene
1 34
-
polyurethane, cured only
1 34 -
C Special application cases
cable rooms and cable ducts
1,5 47 10
data handling areas 2,25
62 20
electrical Computer installations
1,5 47 10
electrical switch and distribution rooms
12 40 10
2 58 until stopped
generators, including cooling Systems
oil filled transformers
2 58 -
output printing areas
2,25 62
paint Spray and drying installations
12 40 -
spinning machines 2
58 -
1) The figures given are a compilation of information from Bureau of Mines, Limits of Flammability of
Gases and Vapours, Bulletins 503 and 627.
2) Fire involving solid materials, usually of an organic nature in which combustion normally takes place
with the formation of glowing embers.

ISO 6183 : 1990 (EI
15.9 Storage temperatures 16.12 Rate of discharge
Nozzle discharge rates shall be calculated by either the surface
High-pressure storage temperatures may range from - 20 OC
as covered in 16.2 and 16.3.
to + 50 OC without requiring special methods of compensating method or the volume method
for changing flow-rates.
The total rate of discharge for the System shall be the sum of
the individual rates of all the nozzles or discharge devices used
in the System.
16 Design of local application Systems
16.1.3 Duration of discharge
NOTE - Local application Systems are suitable for the extinguishment
of surface fires in flammable liquids, gases, and solids where the
The time taken substantially to discharge the calculated design
hazard is not enclosed or where the enclosure does not conform to the
quantity of carbon dioxide, m, shall be in accordance with
requirements for total flooding .
table 2. The minimum time shall be increased to compensate
for any hazard conditions that would require a longer cooling
period to ensure complete extinguishment.
16.1 Carbon dioxide requirements
Where there is a possibility that metal or other material may
become heated above the ignition temperature of the fuel, the
16.1 .l General
effective discharge time shall be increased to allow adequate
cooling time.
The basic carbon dioxide is that which
concentration factor
corresponds to a factor K, = 1, i.e. 34 %.
16.2 Rate by area method
For materials requiring a design concentration over 34 % the
basic quantity of carbon dioxide shall be increased by multiply-
16.2.1 General
ing this quantity by the appropriate material factor given in
table 1.
The area method of System design is used where the fire hazard
consists primarily of flat surfaces or low level objects associated
K, factors for hazards not listed in section A of table 1 shall be
with horizontal surfaces.
determined by using the cup burner apparatus described in
annex A, or any other method known to give equivalent
System design shall be based on listing or approval data for
results.
individual nozzles. Extrapolation of such data above or below
the upper or lower limits shall not be valid.
The design quantity of carbon dioxide required for local ap-
plication Systems shall be based on the total rate of discharge
For a calculation example see annex D, clause D.3.
needed to blanket the area or volume protected and the time
that the discharge needs to be maintained to ensure complete
16.2.2 Nozzle discharge rates
extinguishment.
The design discharge rate through individual nozzles shall be
For Systems with high-pressure storage, the design quantity of
carbon dioxide shall be increased by 40 % to determine determined on the basis of location or projection distance in ac-
cordante with specific approvals or listings.
nominal cylinder storage capacity, since only the liquid pottion
of the discharge is effective. This increase in cylinder storage
The discharge rate for overhead type nozzles shall be deter-
capacity is not required for the total flooding Portion of com-
mined solely on the basis of distance from the surface each
bined local application/total flooding Systems.
nozzle protects.
Where there are long pipelines or where the piping may be ex-
The discharge rate for tankside nozzles shall be determined
posed to higher than normal temperatures, the design quantity
solely on the basis of throw or projection required to cover the
shall be increased by an amount sufficient to compensate for
surface each nozzle protects.
liquid vaporized in cooling the piping.
Table 2 - Discharge times for surface fires
Values in seconds
Carbon dioxide low-pressure
installation
Carbon dioxide high-pressure
System Pre-liquid Liquid
installation liquid discharge
vapour flow discharge
time time
max. 60 max. 60 max. 60
Total flooding System
min. 30
, min. 30 max. 30
Local application System ,
I I I
ISO 6183 : 1990 (El
16.2.3 Area per nozzle Overhead type nozzles shall be installed perpendicular to the
hazard and centred over the area protected by the nozzle. Other
nozzles shall be installed at angles between 45O and 90° from
The maximum area protected by each nozzle shall be deter-
the plane of the hazard surface. The height/distance used in
mined on the basis of location or projection distance and the
determining the necessary flow-rate and area coverage shall be
design discharge rate in accordance with specific approvals or
listings. the distance from the aiming Point on the protected surface to
the face of the nozzle measured along the axis of the nozzle.
The same factors used to determine the design discharge rate
When installed at an angle, nozzles shall be aimed at a Point
shall be used to determine the maximum area to be protected
measured from the near side of the area protected by the
by each nozzle.
nozzle, the location of which is calculated by multiplying the
aiming factor in table 3 by the width of the area protected by
The area of the hazard protected by individual overhead type
nozzles shall be considered as a Square. the nozzle.
Nozzles shall be located so as to be free of possible obstruc-
The area of the hazard protected by individual tankside or linear
nozzles shall be either a rectangle or Square in accordance with tions that could interfere with the proper projection of the
discharged carbon dioxide.
spacing and discharge Iimitations stated in specific approvals or
listings.
- Aiming factors for angular placement
Table 3
Hazards involving deep layer flammable liquid fires shall have a
of nozzles, based on freeboard 150 mm
minimum freeboard of 150 mm in Order to prevent splashing
and to retain a surface concentration when carbon dioxide is
Discharge angle l) Aiming factor2)
applied.
45O to 60° 114
60° to 75O ll4to 318
16.2.4 Location and number of nozzles
7o” to 9o” 318 to 112
A sufficient number of nozzles shall be used to cover the entire 90° (perpendicular) 1/2 kentre)
hazard area adequately on the basis of the unit areas protected
1) Degrees from plane of hazard surface.
by each nozzle.
2) Fractional amount of nozzle coverage area.
Tankside or linear type nozzles shall be located in accordance
with spacing and discharge rate limitations stated in specific
For further information, see figure 1.
approvals or listings.
Dimensions in millimetres
Nozzle discbarging
NOTES
1 The diagram Shows nozzles discbarging at a) 90° with the aiming Point at the centre of the protected surface, and at 45O,
b) with the aiming Point at 0,25 of the width of the protected surface, into a tray containing fuel with a freeboard of 150 mm.
2 x is the preselected height used to determine the flow-rate required.
Figure 1 - Nozzle locations
ISO 6183 : 1990 (EI
16.3 Rate by volume method 16.5 Discharge nozzles
The nozzles used shall be listed or approved by the authority
16.3.1 General
having jurisdiction for rate of discharge, effective range, and
Pattern or area coverage.
The volume method of System design is used where the fire
hazard consists of three-dimensional irregular objects that can-
NOTE - The supporting data giving requirements and test methods
not be easily reduced to equivalent surface areas.
for nozzles is in preparation and will be shown in a future International
Standard.
For examples
of calculations, see annex D, clauses D.l and
D.2.
17 Quantity of carbon dioxide to be stored
16.3.2 Assumed enclosure
The determined carbon dioxide quantity required shall be
stored so as to be available at all times and not usable for other
The total discharge rate of the System shall be based on the
purposes. Extra quantities of carbon dioxide shall be stored for
volume of an assumed enclosure entirely surrounding the
use with carbon dioxide low-pressure installations in accord-
hazard.
ante with the following:
shall
If the flow is not completely closed special provisions be a) In Order to equalize Charge or drain tolerantes and gas
made to take care of bottom conditions. residues, the quantities of carbon dioxide to be stored for
low-pressure Systems as determined for the largest ex-
tinguishing zone shall be increased by at least 10 %.
The assumed Walls and ceiling of this enclosure shall be at least
0,6 m from the main hazard unless actual Walls are involved and
b) If there is a possibility that liquid carbon dioxide might
shall enclose all areas of possible leakage, splashing or spillage.
remain in the piping between storage Container and nozzle-
pipe System, the carbon dioxide store shall be increased by
No deductions shall be made for any objects within this
this remaining quantity, in addition to the 10 % increase
volume.
specified in item a) above.
A minimum dimension of 1 ,2 m shall be used in calculating the
volume of the assumed en closure.
Quantity of carbon dioxide to be
connected to System as reserve
16.3.3 System discharge rate
Under certain circumstances where carbon dioxide Systems
protect one or more locations, a reserve quantity of 100 % may
The total discharge rate for the basic System shall be not less
be required. The reserve supply shall be permanently con-
than 16 kg/min per cubic metre of assumed volume, unless the
nected to such Systems.
assumed enclosure has a closed floor and is partly defined by
permanent continuous Walls extending at least 0,6 m above the
The time needed to obtain carbon dioxide for replenishment to
hazard (where the Walls are not normally a part of the hazard),
restore Systems to the operating conditions shall be considered
in which case the discharge rate may be proportionately reduced
as a major factor in determining the reserve supply needed.
to not less than 4 kg/min per cubic metre for actual Walls com-
pletely surrounding the enclosure.
19 Main items required for detailed design
16.3.4 Location and number of nozzles
Carbon dioxide extinguishing Systems consist mainly of the
A sufficient number of nozzles shall be used to cover the entire
carbon dioxide storage either in one or several Containers, the
hazard volume adequately on the basis of the System discharge
selector valves, the release mechanisms and the connected
rate as determined by the assumed volume.
distribution piping and discharge nozzles.
Nozzles shall be located and directed relative to objects in the
20 Carbon dioxide storage area
enclosure so as to retain the discharged carbon dioxide in the
hazard volume.
20.1 General
The design discharge rates through individual nozzles shall be
determined on the basis of location or projection distance in ac- NOTE - For storing carbon dioxide, the appropriate national regula-
tions shall be observed.
cordante with specific approvals or listings for surface fires.
Storage of carbon dioxide with the proper valves, release
16.4 Storage temperatures
mechanisms and further equipment should, if possible, be ar-
ranged in one room which is not exposed to fire danger, but
Special methods of compensating for changing flow-rates shall which is situated near to the rooms or objects protected by the
System and is easily accessible. The storage area shall be pro-
be applied if the storage temperature of high-pressure con-
tainers is less than 0 OC or more than 49 OC. tected against the admittance of unauthorized persons.
ISO 6183 : 1990 (El
On the low-pressure Containers, an over-pressure alarm shall be
In certain cases, and when accepted by the authority having
jurisdiction, the storage may be located inside the protected provided which will Sound Prior to the Operation of the safety
valves.
rooms.
The Container shall have sufficient insulation to limit the loss of
20.2 High-pressure Systems
carbon dioxide to not more than 1,5 % (at 3 tonnes to 6 tonnes
Charge), not more than 0,8 % (over 6 tonnes to 10 tonnes
The Container storage area for a high-pressure System shall be
Charge) and not more than 0,5 % (over 10 tonnes Charge) in
so designed that the ambient temperature cannot exceed the
24 h in the event of a failure of the refrigerating System at the
appropriate temperature in table 4.
highest expected ambient temperature.
Maximum storage temperature
Table 4 -
Is shall be protected with metal sheeting to
Insulation materia
Maximum ambient avoid mechanical darnage.
Filling ratio
temperature
kg/1 OC
I I
The Container shall be f itted with a pressure gauge and a
40 valve.
0,75
o,=
0,55 65 NOTE - For low-pressure Systems care should be taken that the
temperature of the carbon dioxide, during the filling of the Containers,
corresponds to the value necessary for proper functioning of the
NOTE - If it is likely that the ambient storage temperature will be
System.
below 0 OC, then special measures may have to be taken in Order to
comply with the discharge times given in table 3.
21.3 Carbon dioxide high-pressure Container
batteries
20.3 Low-pressure Systems
Low-pressure Systems shall be designed so that the In general, the necessary carbon dioxide quantity shall be con-
tained in one battery. The supply to separate distinct hazards
temperature of the carbon dioxide in the Container is kept at a
temperature of approximately - 18 OC. may be made from a Single battery where there is no likelihood
of the fire spreading from one hazard to another. The total
NOTE - Suitable measures should be taken to ensure that this
quantity of the battery shall correspond to the largest quantity
temperature is maintained. This means insulating, cooling and/or
of carbon dioxide required to protect any one room or Object.
heating, dependent on the ambient temperature in the storage area. lt
may be necessary to extract the heat generated by the cooling System.
NOTE - The release Systems of the battery and the pipes should be
arranged in such a way that each protected zone individually may be
flooded with carbon dioxide.
21 Carbon dioxide Containers
The Containers of the battery shall be secured in a fixed Position
21 .l General
in such a way that no movement occurs when the System is
NOTE - Apart from the following requirements and the specific re- discbarging .
quirements for low-pressure Containers (sec 21.2), there are no further
requirements for the construction of gas Containers, other than those
Esch Container shall be replaceable, independently from the
given in appropriate national Standards.
other Containers. In each pipe connecting the Container valve to
the manifold, a non-return valve shall be fitted. Removal of any
Where the Container design does not incorporate a safety
of the Containers shall not prevent the remainder of the battery
pressure relief device then this shall be incorporated in the con-
from functioning properly.
tainer valve.
quantity in
Means shall be provided to measure the each con-
NOTE - This will form the subject of a future International Standard.
tainer.
21.2 Low-pressure Containers
22 Selector valves
The design shall ensure that the temperature of the carbon
dioxide in the Container shall be maintained at - 18 ‘g OC and
If several extinguishing zones are served by one carbon dioxide
battery or one Container System, a selector valve shall be pro-
at a pressure of approximately 20 bar? Means shall be pro-
vided for each extinguishing Zone.
vided continuously to indicate the quantity of carbon dioxide.
Selector valves for cylinder Systems shall open automatically
An automatic refrigerating System shall ensure that the
before or at the same time as the Operation of the cylinder
temperature and pressure of carbon dioxide are kept within the
valves.
required limits.
1) 1 bar = 0,l MPa
ISO6183:1990 EI
In Iow-pressure Systems, selector valves shall
open The pressure setting of the relief device shall be such that maxi-
automatically and close automatically after discharge of the mum pressure attainable does not exceed the criteria indicated
required quantity of carbon dioxide.
in 23.2 but is in excess of the pressure required to maintain nor-
mal discharge pressures in the Pipeline under flow conditions.
Selector valves shall be installed so as to be protected against
fire. At any time it shall be possible to check the correct func- Pressure relief devices shall be designed and so located that the
tioning of the selector valves and their controlling devices. discharge therefrom will not injure Personne1 or otherwise
Cause darnage.
NOTE - Relief device operating pressures are not specified in this
23 Distribution Systems
International Standard.
23.1 Piping shall be of materials that would be classified as
23.9 Where condensation water may form in the pipes,
non-combustible if tested to ISO 1182 and that have physical
suitable means shall be provided for drainage. These drainage
and Chemical characteristics such that its integrity under stress
Points shall not be accessible to unauthorized persons.
tan be predicted with reliability.
NOTES
23.10 Pipes shall be free from burrs, rust and other obstruc-
1 Special corrosion-resistant materials or coatings may be required in
tions. Care shall be taken to ensure proper protection against
severely corrosive atmospheres.
corrosion. Before installing the pipes, they shall be cleaned in-
2 Flexible piping, tubing or hoses (including connections) will form
side. After installation and before fitting the nozzles, they shall
the subject of a future International Standard.
be blown through carefully.
23.2
Pipes and pipe connections for low-pressure Systems
23.11 The following formula and the curves developed
shall be designed for test pressures of 40 bar gaugell.
therefrom, or any other method acceptable to the authority
having jurisdiction, shall be used to determine the pressure
NOTES
drop in the Pipeline.
1 High pressure Systems will form the subject of a future International
Standard. Fittings should comply with appropriate national Standards.
The flow-rate, Q, in kilograms per minute, may be calculated as
Preferably, fittings should be screwed or flanged. Where compression
fittings are used, pat-ticular care. should be taken to ensure correct follows :
assem
...


NORME
ISO
INTERNATIONALE
Première édition
1990-07-01
Équipement de protection contre l’incendie -
Installations fixes d’extinction par dioxyde de
carbone utilisées dans les bâtiments -
Conception et installation
Carbon dioxide extinguishing systems for use on
Fire protection equipmen t -
premises - Design and installation
Numéro de référence
ISO 6183 : 1990 (FI
ISO 6183 :1990 (FI
Sommaire
Page
Introduction. v
............................................... 1
1 Domaine d’application
..............................................
2 Références normatives. 1
3 Définitions . 1
4 Dioxydedecarbone . 1
5 Exigencesdesécurité . 2
6 Alarmes .
.......................... 2
7 Arrêt automatique de l’équipement permanent
................................
8 Soupapes automatiques de surpression 2
9 Miseàlaterre . 2
10 Précautions concernant les parties basses des zones protégées. . 2
11 Signauxdesécurité . 3
12 Précautions lors des travaux de maintenance . 3
13 Précautions dans le cas de mélanges explosifs . 3
14 3
Bases pour la conception des systèmes au dioxyde de carbone .
.......... 3
15 Conception des systèmes d’extinction par protection d’ambiance.
........................
16 Conception des systémes par protection localisée 6
...............................
17 Quantité de dioxyde de carbone à stocker 8
18 Quantité de dioxyde de carbone à connecter au système pour reconstituer
uneréserve . 9
........................
19 Principaux points requis pour une étude détaillée. 9
0 ISO 1990
Droits de reproduction réservés. Aucune partie de cette publication ne peut être reproduite ni
utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique,
y compris la photocopie et les microfilms, sans l’accord écrit de l’éditeur.
Organisation internationale de normalisation
Case postale 56 l CH-1211 Genève 20 l Suisse
Imprimé en Suisse
ii
60 6183 : 1990 (FI
...................
........... 9
20 Zone de stockage du dioxyde de carbone
................ ................... 9
21 Conteneurs de dioxyde de carbone.
........................... ................... 10
22 Vannes directionnelles
......................... ................... 10
23 Systémes de distribution
................... 11
24 Diffuseurs .
................... ................... 11
25 Mécanismes de déclenchement
....................... ................... 12
26 Contrôle et mise en service
......................... ................... 12
27 Essai de fonctionnement
................... 12
28 Instructions pour le fonctionnement et la maintenance
Annexes
Méthode d’essai pour la détermination des concentrations de dioxyde
de carbone nécessaires pour l’extinction de flammes pour les liquides
et gaz inflammables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Calcul des tuyauteries et de la dimensions des orifices d’un système
audioxydedecarbone.
Information sur le dioxyde de carbone et sur son application . . . . . . . . . . . . . . .
Exemplesdecalcul. 21
. . .
III
ISO 6183 : 1990 (FI
Avant-propos
L’ISO (Organisation internationale de normalisation) est une fédération mondiale
d’organismes nationaux de normalisation (comités membres de I’ISO). L’élaboration
des Normes internationales est en général confiée aux comités techniques de I’ISO.
Chaque comité membre intéressé par une étude a le droit de faire partie du comité
technique créé à cet effet. Les organisations internationales, gouvernementales et non
gouvernementales, en liaison avec I’ISO participent également aux travaux. L’ISO col-
labore étroitement avec la Commission électrotechnique internationale (CEI) en ce qui
concerne la normalisation électrotechnique.
Les projets de Normes internationales adoptés par les comités techniques sont soumis
aux comites membres pour vote. Leur publication comme Normes internationales
requiert l’approbation de 75 % au moins des comités membres votants.
La Norme internationale ISO 6183 a été élaborée par le comité technique ISO/TC 21,
Équipement de protection et de lutte contre l’incendie.
La présente Norme internationale fait partie d’une série de normes qui donnent des
règles et recommandations pour la conception, l’installation et la maintenance des
systémes d’extinction, afin que le système considéré présente une capacité d’extinc-
tion appropriée. Les Normes internationales connexes devant être publiées sont les sui-
vantes :
ISO 6182, Protection contre l’incendie - Systèmes d’extinction automatiques du
type sprinkler.
ISO 7075, Protection contre l’incendie - Systèmes d’extinction automatiques pour
hydrocarbures halogénés.
ISO 7076, Protection contre l’incendie - Systèmes d’extinction à mousse.
On suppose, dans l’élaboration de la présente Norme internationale, que l’exécution de
ses dispositions est confiée à des personnes qualifiées et expérimentées dans le
domaine pour les directives desquelles elle a été préparée.
Les annexes A et B font partie intégrante de la présente Norme internationale. Les
annexes C et D sont données uniquement à titre d’information.
iv
ISO 6183 : 1990 (FI
Introduction
La présente Norme internationale est prévue pour être utilisée par les personnes res-
ponsables de l’achat, de la conception, de l’installation, des essais, du contrôle, de
l’approbation, du fonctionnement et de la maintenance des systèmes d’extinction au
dioxyde de carbone (CO,) afin que cet équipement fonctionne comme prévu pendant
toute sa durée de vie.
On peut s’attendre à ce que tout système d’extinction automatique par dioxyde de car-
bone concu et installé conformément à la présente Norme internationale soit efficace
et suffisamment sûr. Toutefois, dans certains pays, il peut être nécessaire de répondre
à d’autres exigences pour être conforme aux réglementations nationales ou locales.
Avant de concevoir en détail une installation, il est donc nécessaire de vérifier quelles
sont les règles nationales ou locales. Ceci peut normalement se faire auprès de I’auto-
rité compétente.
Comme indiqué à l’article 1, la présente Norme internationale est applicable seulement
aux systèmes d’extinction installés dans des bâtiments ou autres locaux sur terre. Bien
que les principes généraux puissent également s’appliquer à d’autres utilisations (par
exemple à bord des navires), il sera dans ce cas certainement nécessaire de prendre en
compte d’autres facteurs et, de ce fait, l’application de la présente Norme internatio-
nale ne sera certainement pas tout à fait satisfaisante.
L’annexe informative C donne des informations générales sur le dioxyde de carbone en
tant qu’agent extincteur. Elle correspond à une information de base utile aux person-
nes n’ayant pas une connaissance approfondie des caractéristiques de cet agent.
La présente Norme internationale ne contient aucune exigence concernant les raccords
de tuyauteries, les conteneurs, la boulonnerie, les raccords flexibles, les canalisations
et accessoires en cuivre; ces exigences sont traitées dans les normes nationales appli-
cables.
De facon générale, toutes les Normes internationales sont supposées n’être utilisées
que par des personnes compétentes dans le domaine d’application considéré. Ceci est
d’une importance particulière dans le domaine de la protection contre l’incendie. De
même, il est vivement recommandé que les exigences de conception spécifiées ne
soient interprétées que par des concepteurs expérimentés ayant une bonne formation.
II en va de même pour l’installation et la vérification de l’équipement qui devraient être
effectuées par des techniciens compétents.
Sauf indication contraire, toutes les pressions manométriques sont données en bars,
avec les pressions équivalentes en pascals.

Page blanche
~-~
NORME INTERNATIONALE
ISO 6183 : 1990 (F)
Équipement de protection contre l’incendie -
Installations fixes d’extinction par dioxyde de carbone
utilisées dans les bâtiments - Conception et installation
1 Domaine d’application bone reliée en permanence à une tuyauterie fixe équipée de dif-
fuseurs disposés de facon à émettre le dioxyde de carbone dans
La présente Norme internationale prescrit les exigences concer-
un espace clos ou une enceinte délimitant le risque afin de
nant la conception et l’installation des systèmes fixes d’extinc-
maintenir la concentration de produit d’extinction.
tion d’incendie par dioxyde de carbone utilisés dans les bâti-
ments. Les exigences ne concernent ni les installations fixes
33 système par protection localisée : Système constitué
utilisées à bord des navires, des avions, des véhicules, ni les
d’une alimentation fixe de dioxyde de carbone reliée en perma-
installations mobiles, ni celles utilisées dans l’industrie minière
nence à une tuyauterie fixe équipée de diffuseurs disposés de
souterraine; de même, elles ne s’appliquent pas aux installa-
facon à émettre le dioxyde de carbone directement sur le maté-
tions d’inertage par dioxyde de carbone.
ria’u en feu ou sur le risque identifié.
La conception de systèmes dans lesquels les ouvertures non
obturables dépassent une surface spécifiée et peuvent subir les
3.4 automatique: Qui réalise une fonction ne nécessitant
effets du vent n’est pas spécifiée dans la présente Norme inter-
pas d’intervention humaine.
nationale. Une méthode générale concernant la procédure à
suivre dans ces cas-là est toutefois donnée en 15.6.
3.5 dispositif de commande: Dispositif qui commande la
séquence d’événements conduisant à l’émission du dioxyde de
carbone.
2 Références normatives
Les normes suivantes contiennent des dispositions qui, par
manuel: Qui nécessite une intervention de l’homme
suite de la référence qui en est faite, constituent des disposi-
pour accomplir une fonction.
tions valables pour la présente Norme internationale. Au
moment de la publication, les éditions indiquées étaient en
3.7 dispositif de mise en œuvre: Tout composant con-
vigueur. Toute norme est sujette à révision et les parties pre-
cerné entre le déclenchement du système et l’émission de
nantes des accords fondés sur la présente Norme internationale
dioxyde de carbone.
sont invitées à rechercher la possibilité d’appliquer les éditions
les plus récentes des normes indiquées ci-après. Les membres
de la CEI et de I’ISO possédent le registre des Normes interna-
3.8 émission de dioxyde de carbone: Ouverture des van-
tionales en vigueur à un moment donné. nes du conteneur et des vannes directionnelles conduisant à
l’émission physique du dioxyde de carbone dans la zone pro-
ISO 1182: 1983, Essais au feu - Matériaux de construction -
tégée.
Essai de non- combustibilité.
ISO 4200: 1985, Tubes lisses en acier, soudés et sans soudure
3.9 temps d’imprégnation; durée d’inhibition : Durée
-
Tableaux généraux des dimensions et des masses linéiques.
pendant laquelle le dioxyde de carbone, à la concentration
requise, cerne le danger.
ISO 5923: 1984, Protection contre l’incendie - Agents extinc-
teurs - Dioxyde de carbone.
3.10 autorité compétente : Organisme, administration ou
personne responsable de l’approbation d’un équipement, d’une
3 Définitions
installation, d’une procédure ou d’un système.
Pour les besoins de la présente Norme internationale, les défini-
3.11 vanne directionnelle : Dispositif commandant le pas-
tions suivantes s’appliquent.
sage du dioxyde de carbone dans un collecteur afin de le diriger
vers une zone de protection présélectionnée.
3.1 système d’extinction par dioxyde de carbone: Ali-
mentation fixe de dioxyde de carbone reliée en permanence à
une tuyauterie et à des diffuseurs fixes disposés de facon à
4 Dioxyde de carbone
émettre le dioxyde de carbone dans la zone protégée afin
L’agent extincteur utilisé doit être du dioxyde de carbone con-
d’obtenir la concentration de produit d’extinction requise.
forme aux spécifications de I’ISO 5923.
L’annexe C contient d’autres informations sur le dioxyde de
3.2 système par protection d’ambiance (noyage total):
carbone et son application.
Systéme constitué d’une alimentation fixe de dioxyde de car-
ISO 6183 : 1990 (FI
5 Exigences de sécurité 30 s au maximum, temps pendant lequel le dispositif d’alarme
préviendra les gens pour qu’ils quittent la zone.
Pour toute utilisation prévue de systémes d’extinction au
dioxyde de carbone, où des personnes pourraient se trouver
NOTE - II se peut que les alarmes ne soient pas nécessaires pour les
piégées dans la zone protégée ou y entrer, il faut prévoir des systèmes par protection localisée à moins que la quantité de dioxyde de
carbone par rapport au volume de la pièce puisse atteindre une concen-
protections appropriées afin d’assurer une évacuation rapide de
tration supérieure à 5 %.
la zone, afin de limiter l’entrée dans cette zone après l’émission,
à moins qu’il soit nécessaire de fournir des moyens de sauve-
tage rapide du personnel piégé. II faut envisager les aspects de
7 Arrêt automatique de l’équipement
la sécurité tels que la formation du personnel, des panneaux
permanent
avertisseurs, des alarmes d’émission et des appareils respiratoi-
res. Les exigences suivantes doivent être prises en compte:
Avant ou au moment de l’émission de dioxyde de carbone par
a) prévoir des itinéraires de sortie qui doivent toujours être
le système, tous les équipements qui pourraient provoquer le
dégagés ainsi que des signaux de direction adéquats;
réallumage de matériaux inflammables tels que les installations
de chauffage, les brûleurs à gaz, les lampes à infra-rouges, etc.
b) prévoir des alarmes, à l’intérieur de ces zones, qui doi-
doivent être mis hors service automatiquement.
vent être distinctes de tous les autres signaux d’alarme et
qui fonctionneront immédiatement après la détection de
l’incendie et après l’émission du dioxyde de carbone voir
8 Soupapes automatiques de surpression
article 6);
Des soupapes de surpression à ouverture automatique doivent
c) prévoir des portes munies de ferme-portes et éventuel-
être prévues à l’endroit le plus élevé de tout local hermétique-
lement à fermeture automatique, s’ouvrant uniquement vers
ment clos dans lequel l’introduction du dioxyde de carbone
l’extérieur et qui doivent pouvoir s’ouvrir de l’intérieur même
pourrait créer une augmentation de pression dangereuse.
lorsqu’elles sont verrouillées de l’extérieur;
NOTE - Des fuites au niveau des portes, des fenêtres, des conduits et
d) prévoir des alarmes visuelles et sonores continues aux
des registres, bien que non apparentes ou facilement déterminées,
entrées, jusqu’à ce que l’atmosphère ait été rendue sûre;
peuvent constituer une décharge suffisante pour des systèmes cou-
rants au dioxyde de carbone, sans qu’il soit nécessaire de prévoir des
e) ajouter une odeur au dioxyde de carbone afin de pou-
dispositifs spéciaux.
voir reconnaître les atmosphères dangereuses;
Pour des enceintes, par ailleurs étanches à l’air, l’aire nécessaire pour
une ventilation libre, X, en millimètres carrés, peut être calculée au
f) prévoir des panneaux avertisseurs et des panneaux
moyen de l’équation suivante:
d’instruction aux entrées;
Q
x = 23,9 T
P
g) prévoir un équipement respiratoire autonome et un per- J
sonnel formé à son utilisation;

Q est le débit calculé de dioxyde de carbone, en kilogrammes par
h) prévoir un moyen de ventiler les zones après l’extinction
minute;
du feu;
P est la résistance admissible (pression inerne) de l’enceinte, en
bars.
i) prévoir toute autre protection qu’une étude soigneuse
Dans un grand nombre de cas, notamment lorsqu’on se trouve en pré-
de chaque cas particulier jugera nécessaire.
sence de produits dangereux, des ouvertures de décharge sont déjà
prévues pour la ventilation en cas d’explosion. Celles-ci et d’autres
ouvertures disponibles fournissent souvent une ventilation appropriée.
6 Alarmes
Une alarme sonore doit être prévue pour les systèmes par pro-
9 Mise à la terre
tection d’ambiance et pour les systèmes par protection locali-
sée où la dispersion du dioxyde de carbone provenant du
Les systèmes d’extinction par dioxyde de carbone devraient
système dans le local donnerait une concentration supérieure à
être équipés de connexions adéquates de mise à terre.
5 %. L’alarme doit retentir dans un délai compris entre la détec-
tion de l’incendie et l’émission et pendant toute l’émission.
NOTE - Une mise à la terre adéquate du système minimise le risque
de décharge électrostatique. Lorsque le système protège des installa-
L’intensité sonore de l’alarme décrite en 5 b) doit être telle
tions électriques, ou est logé à proximité ou à l’intérieur d’un bâtiment
qu’on puisse l’entendre au-dessus du niveau du bruit local comportant des installations électriques, les parties métalliques seront
connectées efficacement au pôle principal de mise à la terre de I’instal-
moyen; lorsque celui-ci est anormalement élevé, une indication
lation électrique.
visuelle doit également être prévue.
Les systémes d’alarme doivent être alimentés par une source
10 Précautions concernant les parties basses
d’énergie suffisante pour permettre un fonctionnement continu
des zones protégées
de l’alarme pendant au moins 30 min.
Lorsqu’il est possible que le dioxyde de carbone s’accumule
Lorsque les circonstantes l’exigent, il faudra envisager de retar-
dans des excavations, cages, fonds de puits ou autres parties
der l’émission de dioxyde de carbone, de préférence pendant
ISO 6183 : 1990 (FI
souterraines, il faut envisager d’ajouter une substance odorifére
NOTE - L’ISO 934’) devra être utilisé pour l’estimation de la résis-
au dioxyde de carbone, etlou de prévoir des systèmes de venti- tance au feu des éléments de construction.
lation supplémentaires pour éliminer le dioxyde de carbone
Si cela est possible, les ouvertures doivent être fermees auto-
après emission.
matiquement et les systémes de ventilation doivent être arrêtés
NOTE - Le dioxyde de carbone devra être conforme aux prescriptions
automatiquement au plus tard lors de l’émission du dioxyde de
de I’ISO 5923 après addition d’une substance odorifère quelconque
carbone et rester fermés.
(voir article 4).
L’existence d’ouvertures qui ne pourraient se fermer et
Dans le cas des systèmes de conteneurs de dioxyde de car-
l’absence de murs et/ou de plafonds nécessitent l’utilisation de
bone, cette substance odorifère doit être introduite par des
quantités supplémentaires de dioxyde de carbone telles que
moyens appropriés dans la tuyauterie d’alimentation de la zone
spécifiées en 15.6.
protégée.
Des précautions particuliéres devraient être prises lorsque ces
ouvertures donnent à l’air libre et lorsque les conditions de vent
11 Signaux de sécurité
sont susceptibles d’influer nettement sur les pertes de dioxyde
de carbone. Ces cas doivent être considérés comme des appli-
Pour tous les systèmes d’extinction par protection d’ambiance
cations spéciales et peuvent nécessiter un essai d’émission de
et les systemes par protection localisée susceptibles de donner
facon à vérifier que la concentration appropriée est obtenue.
,
lieu a des taux de concentration critiques, un écriteau de signa-
lisation doit être appliqué sur les faces intérieure et extérieure
de toutes les portes de la zone protégée.
15 Conception des systèmes d’extinction
protection d’ambiance
L’écriteau de signalisation doit avertir qu’en cas d’alarme incen-
Par
die ou de dégagement de dioxyde de carbone, il y a lieu de quit-
51 . Facteurs à prendre en compte
ter immédiatement le local et de ne réoccuper les locaux
qu’après ventilation complète à cause du danger d’asphyxie.
Pour la détermination de la quantité de dioxyde de carbone
requise, le volume du local ou de l’enceinte à protéger doit être
pris comme base. De ce volume, doivent être retranchés uni-
12 Prhautions lors des travaux de
quement les éléments solides de la structure tels que fonda-
maintenance
tions, poteaux, poutres et équivalents.
Pour les systémes automatiques par noyage total protégeant
Les facteurs suivants doivent être pris en compte:
des locaux habituellement inoccupés, des dispositions doivent
être prises pour empêcher qu’une émission automatique se pro-
- les dimensions du local,
duise lorsque des personnes pénètrent dans un local alors
qu’elles ne sont pas en mesure de quitter ce local dans un délai
- les matériaux à protéger,
quelconque (voir article 6).
- les risques particuliers,
NOTE - Ces précautions ne sont habituellement pas nécessaires pour
- les ouvertures ne pouvant être obturées,
des systémes par protection localisée, mais devraient être prévues dans
1 le cas où des concentrations dangereuses peuvent se présenter dans
- les systémes de ventilation ne pouvant être arrêtés.
une zone quelconque susceptible d’être occupée.
II ne doit y avoir aucune ouverture dans le plancher.
13 Prhautions dans le cas de mélanges
explosifs
15.2 DAtermination de la quantite de base de
dioxyde de carbone
Dans le cas où l’on peut se trouver en présence d’un mélange
air/vapeur explosif, la zone dangereuse doit être inspectée avec
La quantité de base de dioxyde de carbone, m, en kilogram-
soin avant que des émissions d’essai aient lieu, du fait du risque
mes, doit être calculée à partir de la formule suivante:
d’allumage par décharge électrostatique.
m = K, x (0,2 A + 0,7 V)
14 Bases pour la conception des systèmes

au dioxyde de carbone
A =A,+30A,,
Les structures des enceintes à protéger par protection d’am-
biance (noyage total) doivent être telles que l’agent extincteur V= V” + vz - VG
ne puisse s’échapper facilement. Les murs et les portes doivent
pouvoir résister aux effets du feu pendant une durée suffisante A, est la surface totale de toutes les parois, du plafond
pour permettre à l’émission de dioxyde de carbone d’être main- et plancher (y compris la surface des ouvertures, A,)
tenue a la concentration requise pendant le temps d’inhibition. de l’enceinte à protéger, en mètres carrés;
1) ISO 834: 1975, Essais de résistance au feu - &ments de construction,
ISO6183:1990 (FI
15.4 Influence des mathiaux donnant lieu B la
A,, est la surface totale de toutes les ouvertaures pré-
formation de braises
sumées ouvertes en cas d’incendie, en metres carrés
(voir 15.6);
Pour les matériaux dont la combustion se fait avec formation de
i/v est le volume de l’enceinte a protéger, en métres braises, les conditions doivent être considerées comme particu-
cubes (voir 15.1); lières. Le tableau 1 donne des exemples de ces matériaux.
vz est le volume supplémentaire retiré pendant les
15.5 Influence des systemes de ventilation qui ne
durees d’inhibition (voir tableau 1) par des systèmes de
peuvent 80-e arr&h
ventilation qui ne peuvent être arrêtés, en métres cubes
(voir 15.5);
Pour déterminer la quantité de dioxyde de carbone à utiliser, le
volume du local, Q,, doit être augmenté du volume de l’air, vz,
I/c est le volume des éléments de structure qui peut
admis dans la pièce ou éliminé pendant la durée d’émission du
être déduit, en métres cubes (voir 15.1);
dioxyde de carbone et le temps d’inhibition indiqué dans le
tableau 1.
K, est le facteur tenant compte du matériau à proté-
ger, qui doit toujours être supérieur ou égal à 1 (voir 15.3
et tableau 1);
15.6 Influence des ouvertures (voir également
l’introduction)
le coefficient 0,2, en kilogrammes par mètre carré, tient
compte de la quantité relative de dioxyde de carbone qui
L’influence de toutes les ouvertures y compris les évents anti-
peut s’échapper;
explosion dans les murs et plafonds, qui, dans le cas d’un feu,
ne seront pas fermés, est prise en compte dans la formule don-
le coefficient 0’7, en kilogrammes par metre cube, tient
née en 15.2 par A ov.
compte de la quantité minimale de dioxyde de carbone
prise comme base de la formule.
La porosité des matériaux de l’enceinte et les defauts d’étan-
chéité des portes, fenêtres et volets ne doivent pas être consi-
Voir exemples de calcul en annex B.
dérés comme ouvertures, étant donné qu’ils sont déjà pris en
compte dans la formule.
NOTE - Les deux coefficients 0,2 et 0,7 tiennent compte de
l’influence des dimensions du local, c’est-à-dire du rapport entre le
Les ouvertures ne sont pas autorisées lorsqu’un temps d’inhi-
volume de la pièce, Vv, et la sut-face de la pièce, Av.
bition est requis, à moins qu’une quantité additionnelle de
dioxyde de carbone ne soit appliquée pendant le temps d’inhibi-
15.3 Facteur K, tion spécifié.
Lorsque le coefficient R = AovlAv est supérieur à 0’03, le
Le facteur K,, suivant le tableau 1, doit être utilisé pour tenir
compte lors du dimensionnement de la combustibilité des système doit être concu pour une protection localisée (voir arti-
cle 16). Ceci ne limite pas l’utilisation du système par protection
matériaux et des risques particuliers qui nécessitent une con-
centration de dioxyde de carbone plus élevée que la normale. localisée à un rapport R inférieur à 0’03.
Lorsque R est supérieur à 0,03 et lorsque les ouvertures peu-
Les facteurs K,, pour les risques non énumérés dans la partie A
vent subir l’effet du vent, il faudrait alors effectuer les essais
du tableau 1, doivent être déterminés à l’aide de l’appareillage
pratiques dans les conditions les plus défavorables possibles
décrit en annexe C ou de toute autre méthode d’essai donnant
des résultats équivalents. selon les exigences des autorités compétentes.
ISO6183:1990 (FI
Tableau 1 - Facteurs K,, concentrations de calcul et durées d’inhibition
,
Concentration Durée
Facteur
d’inhibition
Materiau combustible de calcul de CO2
KE4
% min
A Feux de gaz et de liquidesl)
-
1 34
acétone
-
257 66
acétylène
-
1,06 36
essence avion qualité 115/ 145
-
benzol, benzène
1’1
-
butadiène 1,26 41
-
1 34
butane
-
butène-l If1
-
disulphure de carbone 3,03
-
2,43 64
monoxyde de carbone
-
charbon ou gaz naturel 37
Ll
-
cyclopropane Ll
-
essence diesel 1 34
-
diméthyl éther 1’22
-
dowtherm 1,47 46
-
éthane 1’22
-
1,34 43
éthanol
-
1,47 46
éther éthylique
-
éthylène 1,6
-
1 34
dichlorure d’éthylène
-
oxyde d’éthylène 13
-
1 34
essence
-
hexane 1,03 35
-
1,03 35
n-heptane
-
hydrogène
3,3
-
1,06 36
sulphure d’hydrogène
-
isobutane 1,06 36
-
1 34
isobutylène
-
formiate d’isobutyl 1 34
-
1,06 36
JP-4
-
kérosène 1 34
-
1 34
méthane
-
1,03 35
acétate de méthyle
-
alcool méthylique 1,~
-
méthyl butane-l 36
1,m
-
méthyl éthyl cétone IZ
-
1,18 39
formiate de méthyle
-
n-octane 1,03
-
1,03 35
pentane
-
propane 1,06
-
1,06 36
propylène
-
1 34
huiles d’isolation, huiles de graissage
B Feux de matières solides*)
2,25 62
matiére cellulosique
2 58 20
coton
2,25 62 20
papier, carton ondulé
58 20
matière plastique (granulaire) 2
-
1 34
polystyréne
-
polyuréthane vulcanisé uniquement 1
C Cas spéciaux d’application
locaux et gaines contenant des câbles 1,5
2,25 62 20
zone de traitement de l’information
47 10
ordinateurs 1,5
40 10
interrupteurs électriques et pièces de distribution
générateurs y compris systèmes de refroidissement 2 58 jusqu’à l’arrêt
-
transformateurs à bains d’huile 2
2,25 62 20
zones d’imprimantes
-
pulvérisateurs de peinture et installations de séchage 40
-
2 58
métiers à tisser
1)
Les chiffres indiqués sont une compilation d’informations provenant du Bureau of Mines, Limits of
Flammability of Gases and Vapours, Bulletins 503 et 627.
2) Feux de matières solides, généralement de nature organique, dont la combustion se fait normale-
ment avec formation de braises.
ISO 6183 : 1990 (FI
15.7 Noyage simultanb de plusieurs volumes
Les facteurs K, de risques non énumérés dans le tableau 1,
communiquant entre eux
section A, doivent être déterminés en utilisant l’appareillage
décrit en annexe C, ou toute autre méthode connue pour don-
Dans le cas de deux ou plusieurs volumes reliés entre eux et
ner des résultats équivalents.
entre lequels un «écoulement libre» de dioxyde de carbone peut
La quantité requise de dioxyde de carbone pour les systèmes
se produire, ou lorsque le feu peut se propager d’une zone vers
par protection localisée doit être fondée sur le débit total
l’autre, la quantité de dioxyde de carbone doit être égale à la
d’émission nécessaire pour couvrir la surface ou le volume pro-
somme des quantités calculées pour chaque volume. Si une
tégé, ainsi que sur le temps pendant lequel l’émission doit être
concentration supérieure à la normale est requise pour l’un des
maintenue pour assurer une extinction complète.
volumes, le taux de concentration le plus élevé doit être utilisé
pour tous les volumes communiquant entre eux.
Dans le cas de système à stockage à haute pression, la capacité
nominale de stockage des bouteilles est obtenue en augmen-
15.8 Du&e d’6mission
tant de 40 % la quantité requise de dioxyde de carbone, du fait
que seule la partie émise en phase liquide est efficace. Dans
La durée nécessaire pour décharger la quantité de base de cal-
le cas de systèmes combinés protection localisée/ protection
cul, m (voir 15.21, de dioxyde de carbone doit être conforme
d’ambiance, cette augmentation de la capacité de stockage
aux valeurs du tableau 2. Pour les feux de matières solides, par
n’est pas exigée pour la partie correspondant à la protection
exemple ceux indiqués au tableau 1 qui nécessitent un temps
d’ambiance.
d’inhibition, la quantité de calcul doit être émise en 7 min, mais
la vitesse ne doit pas être inférieure à celle qui est nécessaire Lorsqu’on se trouve en présence de canalisations de grande
pour obtenir une concentration de 30 % en 2 min. longueur ou lorsque les tuyauteries sont susceptibles d’être
exposées à des températures supérieures à la normale, la quan-
tité requise de dioxyde de carbone doit être augmentée d’une
15.9 Températures de stockage
valeur suffisante pour compenser la quantité liquide qui est
vaporisée pour refroidir la tuyauterie.
Les températures de stockage à haute pression peuvent aller de
-
20 OC à + 50 OC sans nécessiter de méthodes spéciales de
compensation des débits variables. 16.1.2 Débit
Les débits des diffuseurs doivent être calculés soit d’après la
méthode des surfaces (voir 16.2)’ soit d’après la méthode des
16 Conception des systèmes par protection
volumes (voir 16.3).
localisée
Le débit total du système doit être égal à la somme des débits
NOTE - Les systèmes par protection localisée conviennent pour
individuels des diffuseurs ou autres dispositifs d’émission utili-
l’extinction de feux de surface de liquides et de gaz inflammables et de
sés dans le système.
solides, lorsque le risque n’est pas dans une enceinte fermée, ou lors-
que l’enceinte ne répond pas aux exigences de la protection
d’ambiance.
16.1.3 Durée d’émission
Le temps nécessaire pour émettre la quantité de calcul, m, de
16.1 Exigences concernant le dioxyde de carbone
dioxyde de carbone doit être conforme au tableau 2. La durée
minimale doit être augmentée pour tenir compte de toute
16.1 .l Ghéralités
caractéristique du risque qui nécessiterait une durée plus lon-
gue de refroidissement, pour garantir une extinction complète.
La concentration de base de dioxyde de carbone est celle cor-
respondant à un facteur K, = 1, c’est-à-dire 34 %.
Dans le cas où il est possible que du métal ou un autre matériau
puisse s’échauffer à une température supérieure à celle de la
Pour les matériaux nécessitant une concentration de calcul température d’allumage du matériau, la durée réelle d’émission
supérieure à 34 %, il faut augmenter la quantité de base de
doit être augmentée pour tenir compte du temps nécessaire à
dioxyde de carbone en multipliant cette quantité par le facteur
un refroidissement adéquat.
approprié K, indiqué au tableau 1.
Tableau 2 - Durée d’émission pour des feux de surface
Valeurs en secondes
\
Installation de dioxyde
de carbone à basse pression
t
Installation de dioxyde
Système
Émission Émission
de carbone à haute pression
sous forme
à l’état
de vapeur liquide
Système par protection
max. 60 max. 60 max. 60
d’ambiance
Systéme par protection
min. 30 max. 30 min. 30
localisée
ISO 6183 : 1990 (FI
16.2 D6bit par la m&hode des surfaces
Les diffuseurs des types «latéraux» ou «linéaires» doivent être
placés en respectant les limites d’espacement et le débit indi-
qués dans les agréments ou documents spécifiques.
16.2.1 Généralités
Les diffuseurs du type «suspendu» doivent être installés per-
La méthode des surfaces est utilisée pour le calcul du système
pendiculairement au risque, et au centre de la surface protégée
lorsque le signal d’incendie porte essentiellement sur des surfa-
par chaque diffuseur. Tous les autres diffuseurs doivent être
ces planes ou d’objets de faible hauteur associés à des surfaces
placés de facon à former un angle de 45’ à 90° par rapport au
horizontales.
plan de la surface protégée. La hauteur prise en compte dans la
détermination du débit nécessaire et de la surface couverte doit
Le calcul du système doit se fonder sur les documents ou don-
correspondre à la distance entre le point visé de la surface pro-
nées approuvés correspondant à chaque diffuseur. Une extra-
tégée et la face du diffuseur, mesurée suivant l’axe du diffu-
polation de ces données, en deca ou en delà des limites infé-
seur.
rieures et supérieures, ne doit pas être rendue valable.
L’annexe D, article 0.3 donne un exemple de calcul. Lorsque les diffuseurs sont installés avec un certain angle, ils
doivent être dirigés vers un point, mesuré à partie du côté le
plus proche de la zone protégée par le diffuseur, dont I’empla-
16.2.2 Débits des diffuseurs
cernent est calculé en multipliant le facteur de visée donné au
tableau 3 par la largeur de la zone protégée par le diffuseur.
Le débit nominal s’écoulant par chaque diffuseur doit être
déterminé sur la base de son emplacement ou de sa portée (dis-
Les diffuseurs doivent être placés de facon à être autant, que
tance de projection) conformément aux agréments ou docu-
possible exempts de toute obstruction susceptible de gêner la
ments spécifiques.
bonne projection du dioxyde de carbone.
Le débit des diffuseurs du type «suspendu)) doit être déterminé
sur la seule base de la distance entre le diffuseur et la surface Tableau 3 - Facteurs de visée en fonction de l’angle
qu’il protège. de positionnement des diffuseurs, pour une zone
dégagée de 150 mm
Le débit des diffuseurs «latéraux» doit être déterminé sur la
t
seule base de la distance entre le diffuseur et la surface proté- Angle d’émission l) Facteur de visée*)
gée par chaque diffuseur.
45O à 60°
60° à 75O 1/4à 3/8
16.2.3 Surface par diffuseur
7o” à 9o” 3/8à 1/2
La surface maximale protégée par chaque diffuseur doit être 90° (perpendiculaire) 1/2 (centre)
déterminée sur la base de son emplacement ou de sa portée,
1) Degrés par rapport au plan de la surface du risque.
ainsi que selon le débit nominal d’émission, conformément aux
agréments ou catalogues spécifiques.
2) Fraction de la surface de couverture du diffuseur.
Les facteurs utilisés pour la détermination de la surface maxi-
male protégée par chaque diffuseur doivent être les mêmes que
Pour plus d’information, voir figure 1.
ceux utilisés pour fixer le débit d’émission.
16.3 Débit par la méthode des volumes
La surface du risque, protégée par les diffuseurs individuels du
type «suspendu)) doit être considérée comme une surface car-
rée.
16.3.1 Généralités
La surface du risque protégée par des diffuseurs ((latéraux» ou
La méthode des volumes est utilisée pour le calcul du système
linéaires doit être une surface soit rectangulaire, soit carrée,
lorsque le risque est constitué d’objets tri-dimensionnels irrégu-
selon les limites d’espacement ou d’émission indiquées dans les
liers, qui ne peuvent aisément être assimilés à des surfaces pla-
agréments ou documents spécifiques.
nes équivalentes.
Pour les risques faisant intervenir des feux de liquides inflam-
Les articles D.l et 0.2 dans l’annexe D donnent des exemples
mables en couches d’épaisseur importante, il faudrait ménager
de calcul.
une zone dégagée d’au moins 150 mm, de facon à éviter des
éclaboussures et à maintenir la concentration de surface lors de
l’application du dioxyde de carbone. 16.3.2 Enceinte fictive
Le débit total du système doit être fondé sur le volume d’une
16.2.4 Emplacement et nombre de diffuseurs
enceinte fictive englobant complétement le risque.
Un nombre suffisant de diffuseurs (déterminé sur la base des
surfaces unitaires protégées par chaque diffuseur) doit être uti- Si le plancher n’est pas complètement fermé, des mesures par-
lisé, de facon à couvrir convenablement la totalité de la surface ticulières doivent être prises pour tenir compte des conditions
du risque. d’embase.
ISO 6183 : 1990 (FI
Dimensions en millimètres
Diffuseur émettant
avec un débit et
une pression t
présélectionnés
,,,600-
NOTES
le point de visée se trouvant au centre de la surface protégée, et à 45’
1 Le schéma présente des diffuseurs émettant à 9Oo,
lorsque le point de visée se trouve à 0,25 fois la largeur de la surface protégée, dans un plateau contenant du carburant avec
une zone dégagée de 150 mm.
2 x est la hauteur présélectionnée utilisée pour déterminer le débit requis.
Figure 1 - Emplacements du diffuseur
Le débit de calcul de chaque diffuseur doit être déterminé sur la
Les parois et le plafond de cette enceinte fictive doivent être
distants d’au moins 0,6 m du risque principal, à moins qu’il base de son emplacement ou de sa portée, conformément aux
agréments ou documents spécifiques, pour des feux de sur-
n’existe de véritables parois; ils doivent de plus englober toutes
face.
les zones possibles de fuites, d’éclaboussures ou d’écoulement.
Aucune déduction ne doit être faite des objets contenus dans
16.4 Températures de stockage
ce volume.
Des méthodes spéciales de compensation des variations de
Une dimension minimale de 1,2 m doit être utilisée dans le cal-
débit doivent être appliquées si la température de stockage des
cul du volume de l’enceinte fictive.
conteneurs à haute pression est inférieure à 0 OC ou supérieure
à 49 OC.
16.3.3 Débit du système
Le débit total du système de base ne doit pas être inférieur à
16.5 Diffuseurs
16 kg/min par mètre cube du volume fictif, si l’enceinte fictive
ne possède pas un plancher fermé et est partiellement définie
Les diffuseurs utilisés doivent être répertoriés ou approuvés par
par des parois permanentes et continues qui vont jusqu’à au
l’autorité compétente avec les données suivantes: débit, plage
moins 0,6 m au-dessus du risque (lorsque ces parois ne font
d’efficacité, volume ou surface de couverture.
normalement pas partie du risque); dans ce cas, le débit peut
être réduit en proportion avec un minimum de 4 kg/min par
NOTE - Les spécifications et essais relatifs aux diffuseurs sont en pré-
mètre cube pour les murs réels entourant complètement paration et seront indiquées dans une Norme internationale ultérieure.
l’enceinte.
16.3.4 Emplacement et nombre de diffuseurs
17 Quantité de dioxyde de carbone à stocker
Les diffuseurs utilisés doivent être en nombre suffisant pour
La quantité déterminée de dioxyde de carbone requis doit être
couvrir correctement le volume de risque dans sa totalité, sur la
entreposée de telle sorte qu’elle soit disponible à tout moment,
base du débit du système déterminé à partir du volume fictif.
mais ne soit pas utilisable pour d’autres emplois. Dans la déter-
mination de la quantité à stocker de dioxyde de carbone sous
Les diffuseurs doivent être placés et orientés par rapport aux
objets dans l’enceinte, de facon telle que le dioxyde de carbone basse pression, des quantités additionnelles doivent être pré-
vues, conformément aux exigences suivantes.
émis soit retenu dans le volume du risque.

ISO 6183 : 1990 (FI
Température maximale de stockage
a) Afin de compenser les tolérances de charge ou d’éva- Tableau 4 -
cuation et les résidus de gaz, la quantité de dioxyde de car-
Température ambiante
bone à stocker pour les installations à basse pression déter- Taux de remplissage
maximale
minée pour la zone d’extinction la plus étendue doit être kg/1
OC
augmentée d’au moins 10 %.
0,75 40
b) S’il est possible, dans le cas des installations à dioxyde
o,m
de carbone sous basse pression, que du dioxyde de carbone
0,55 65
sous forme liquide soit piégé dans la canalisation reliant le
réservoir de stockage et le réseau de tuyauteries sur lesquel-
les sont branchés les diffuseurs, la quantité de dioxyde de
NOTE - S’il est probable que la température ambiante sera inférieure
carbone à stocker doit être augmentée de cette quantité
à 0 OC, des mesures particulières pourront être prises pour respecter les
susceptible d’être piégée, en plus des 10 % cités au point a). durées d’émission spécifiées au tableau 3.
20.3 Système à basse pression
18 Quantité de dioxyde de carbone à
connecter au système pour reconstituer
Les sytèmes à basse pression doivent être concus de facon que
une réserve
la température du dioxyde de carbone dans le conteneur soit
maintenue à environ - 18 OC.
Dans certaines circonstances, lorsque les systèmes d’extinction
par dioxyde de carbone protègent un ou plusieurs emplace-
NOTE - Toutes dispositions devraient être prises pour maintenir cette
ments, une quantité de secours égale à 100 % de la réserve nor-
température, c’est-à-dire isolation, refroidissement et / ou chauffage,
male peut être requise. La réserve de secours doit être reliée en
suivant la température ambiante dans le lieu de stockage. L’extraction
permanence au sytème.
de la chaleur produite par le système de refroidissement peut être
nécessaire.
Le délai nécessaire pour obtenir du dioxyde de carbone de rem-
placement pour réapprovisionner le système doit être considéré
comme un facteur primordial dans la détermination de la réserve
21 Conteneurs de dioxyde de carbone
de secours nécessaire.
21 .l Généralités
19 Principaux points requis pour une étude
NOTE - Aucune autre exigence n’est fixée pour les conteneurs de gaz
détaillée
autre que celles figurant ci-après et celles spécifiques aux conteneurs
basse pression (voir 21.2), ainsi que celles données dans les normes
Les systèmes de dioxyde de carbone sont constitués principale-
nationales appropriées.
ment du stockage de dioxyde de carbone, en un ou plusieurs
conteneurs, des vannes directionnelles, des mécanismes de
Lorsque la conception du conteneur ne comprend pas de dis-
déclenchement et des tuyauteries de distribution et des diffu-
positif de surpression de sécurité, celui-ci doit être incorporé
seurs associés.
dans la vanne du conteneur.
20 Zone de stockage du dioxyde de carbone NOTE - Ceci fera l’objet d’une Norme internationale ultérieure.
20.1 GAndralités
21.2 Conteneurs basse pression
NOTE - Le stockage du dioxyde de carbone doit être réalisé confor-
Leur conception doit garantir que la température du dioxyde de
mément aux réglementations nationales.
carbone est maintenue à ( - 18 ‘0) OC, sous une pression
Le st
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...