Soil quality - Guidance on the ecotoxicological characterization of soils and soil materials

ISO 15799:2003 provides guidance on the selection of experimental methods for the assessment of the ecotoxic potential of soils and soil materials (e.g. excavated and remediated soils, refills, embankments) with respect to their intended use and possible adverse effects on aquatic and soil-dwelling organisms, and habitat maintenance and the retention function of the soil.

Qualité du sol — Lignes directrices relatives à la caractérisation écotoxicologique des sols et des matériaux du sol

L'ISO 15799:2003 fournit les lignes directrices relatives à la sélection des méthodes expérimentales permettant l'évaluation du potentiel écotoxique des sols et des matériaux du sol (par exemple terres excavées ayant fait l'objet d'une remédiation, remblais, talus) par rapport à leur utilisation prévue et aux effets éventuellement défavorables pour les organismes vivant dans l'eau et le sol, et le maintien des fonctions d'habitat et de rétention du sol.

Kakovost tal – Navodilo za ekotoksikološko karakterizacijo tal in talnih materialov

General Information

Status
Withdrawn
Publication Date
05-Nov-2003
Withdrawal Date
05-Nov-2003
Current Stage
9599 - Withdrawal of International Standard
Start Date
12-Mar-2019
Completion Date
13-Dec-2025

Relations

Standard
ISO 15799:2003 - Soil quality -- Guidance on the ecotoxicological characterization of soils and soil materials
English language
33 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 15799:2006
English language
38 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day
Standard
ISO 15799:2003 - Qualité du sol -- Lignes directrices relatives a la caractérisation écotoxicologique des sols et des matériaux du sol
French language
34 pages
sale 15% off
Preview
sale 15% off
Preview

Frequently Asked Questions

ISO 15799:2003 is a standard published by the International Organization for Standardization (ISO). Its full title is "Soil quality - Guidance on the ecotoxicological characterization of soils and soil materials". This standard covers: ISO 15799:2003 provides guidance on the selection of experimental methods for the assessment of the ecotoxic potential of soils and soil materials (e.g. excavated and remediated soils, refills, embankments) with respect to their intended use and possible adverse effects on aquatic and soil-dwelling organisms, and habitat maintenance and the retention function of the soil.

ISO 15799:2003 provides guidance on the selection of experimental methods for the assessment of the ecotoxic potential of soils and soil materials (e.g. excavated and remediated soils, refills, embankments) with respect to their intended use and possible adverse effects on aquatic and soil-dwelling organisms, and habitat maintenance and the retention function of the soil.

ISO 15799:2003 is classified under the following ICS (International Classification for Standards) categories: 13.080.99 - Other standards related to soil quality. The ICS classification helps identify the subject area and facilitates finding related standards.

ISO 15799:2003 has the following relationships with other standards: It is inter standard links to ISO 15799:2019. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.

You can purchase ISO 15799:2003 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of ISO standards.

Standards Content (Sample)


INTERNATIONAL ISO
STANDARD 15799
First edition
2003-11-15
Soil quality — Guidance on the
ecotoxicological characterization of soils
and soil materials
Qualité du sol — Lignes directrices relatives à la caractérisation
écotoxicologique des sols et des matériaux du sol

Reference number
©
ISO 2003
PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

©  ISO 2003
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
ii © ISO 2003 — All rights reserved

Contents Page
Foreword. iv
Introduction . v
1 Scope. 1
2 Terms and definitions. 1
2.1 Types of soil and other soil materials. 1
2.2 Terms relating to soil characteristics . 2
2.3 Land and sites . 2
3 Field of application . 3
3.1 Soils and areas of soil use where ecotoxicological tests should be considered:. 3
3.2 Soils and areas of soil use where ecotoxicological tests are not necessary (provided
groundwater contamination can be excluded): . 3
4 Selection of tests according to use/re-use of soils and soil materials and soil functions . 3
4.1 Usefulness of ecotoxicity tests . 3
4.2 General criteria for selection of tests . 4
4.3 Considerations for the examination of soil functions. 4
5 Sampling, transport, storage and sample preparation . 7
6 Limitations of proposed biotests for soils/soil materials . 7
Annex A (informative) Standardized forms of recommended test systems. 8
Bibliography . 31

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 15799 was prepared by Technical Committee ISO/TC 190, Soil quality, Subcommittee SC 7, Soil and site
assessment.
iv © ISO 2003 — All rights reserved

Introduction
The majority of existing ecotoxicological test methods (biotests) being internationally harmonized were
developed to describe the ecotoxic potential of a test substance when added to a soil or soil material. These
methods can be used, with some modification, for the ecotoxicological characterization of soils and soil
materials with respect to their function and depending on the intended use. However, in such cases, users of
the methods need to be aware that the validation of the methods is not complete.
For substances with properties resulting in toxic effects, biotests are a complement to conventional chemical
analysis. Results from chemical analysis can be used for ecotoxicological assessments based on information
on the substances identified, including properties of the chemicals, e.g. their bioaccumulation potential. This
information is often scarce (if it exists at all) and does not include possible interactions (synergy/antagonism)
between chemicals and the complex soil matrix. Furthermore, an exhaustive identification and quantification of
substances is impractical. Therefore, ecotoxicological testing of soils can be used for investigating the
potential toxicity of complex chemical mixtures. The extrapolation from laboratory tests to field conditions
requires adequate consideration of important environmental factors within the test conditions and the selection
of suitable ecotoxicological endpoints.
This International Standard is one of a series providing guidance on soils and soil materials in relation to
certain functions and uses, including wildlife conservation, and ought to be read in conjunction with those
other standards.
INTERNATIONAL STANDARD ISO 15799:2003(E)

Soil quality — Guidance on the ecotoxicological
characterization of soils and soil materials
1 Scope
This International Standard provides guidance on the selection of experimental methods for the assessment of
the ecotoxic potential of soils and soil materials (e.g. excavated and remediated soils, refills, embankments)
with respect to their intended use and possible adverse effects on aquatic and soil-dwelling organisms, and
habitat maintenance and the retention function of the soil.
It does not cover tests for bioaccumulation. Genotoxicity tests using eukaryotic organisms in soils are not yet
available. It is not applicable to the ecological assessment of uncontaminated soils with a view to natural,
agricultural or horticultural use, such soils being of possible interest where they can serve as a reference for
the assessment of soils from contaminated sites. Nor is the interpretation of the results gained by application
of the proposed methods within its scope.
2 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
2.1 Types of soil and other soil materials
2.1.1
soil
upper layer of the Earth’s crust composed of mineral particles, organic matter, water, air and organisms
[ISO 11074-1:1996, definition 5.4]
2.1.2
soil material
excavated soil, dredged materials, manufactured soils, treated soils and fill materials
[ISO 15176:2002, definition 3.1.4]
2.1.3
excavated soil
any natural material excavated from the ground, including top soil, sub soil, altered parent rock and parent
rock itself
NOTE Excavated soil typically arises during construction works.
[ISO 15176:2002, definition 3.1.5]
2.1.4
standard soil
field-collected soil whose main properties (e.g. pH, texture, organic matter content) are within a known range
[34]
EXAMPLE Eurosoils .
2.2 Terms relating to soil characteristics
2.2.1
habitat function
ability of soils/soil materials to serve as a habitat for micro-organisms, plants, soil-living animals and their
interactions (biocenoses)
2.2.2
retention function
ability of soils/soil materials to adsorb pollutants in such that they cannot be mobilized via the water pathway
and translocated into the food chain
NOTE The habitat and retention functions include the following soil functions according to ISO 11074-1:
 control of substance and energy cycles as components of ecosystems;
 basis for the life of plants, animals and humans;
 carrier of genetic reservoir;
 basis for the production of agricultural products;
 buffer inhibiting movement of water, contaminants or other agents into the ground water.
2.2.3
pollutant
substance or agent present in the soil which due to its properties, amount or concentration causes adverse
impact on soil functions or soil use
cf. contaminant (2.2.4), potentially harmful substance (2.2.5)
[ISO 15176:2002, definition 3.2.7]
NOTE See Introduction to ISO 11074-1:1996.
2.2.4
contaminant
substance or agent present in soil as a result of human activity
cf. pollutant (2.2.3), potentially harmful substance (2.2.5)
NOTE There is no assumption in this definition that harm results from the presence of the contaminant.
[ISO 15176:2002, definition 3.2.6]
2.2.5
potentially harmful substance
substance which, when present in sufficient concentration or amount, may be harmful to humans or the
environment
NOTE It may be present as a result of human activity [contaminant (2.2.4)] or naturally.
[ISO 15176:2002, definition 3.2.8]
2.3 Land and sites
2.3.1
re-use
useful and harmless utilization of soil materials
NOTE In the context of this International Standard the re-use means the transfer of soil materials to another location
for use in agriculture, horticulture, forestry, gardens, recreational areas and construction sites.
[ISO 15176:2002, term 3.4.1]
2 © ISO 2003 — All rights reserved

3 Field of application
3.1 Soils and areas of soil use where ecotoxicological tests should be considered:
 assessment of the ability of a soil to sustain a natural biocenosis or agriculture;
 assessment of the combined ecotoxicity of all bioavailable contaminants present in soils or soil materials;
 assessment of the ecotoxicity of potentially harmful substances in cases where the soil or soil material
can affect the ground and surface water;
 identification of soils or soil materials (refills, embankments) having a low degree of contamination —
usually within a depth of 1 m — and which can remain at the site without further treatment;
 detection of potential ecotoxicity which could not be traced by chemical analysis;
 monitoring and control of the success of soil treatment (off-site, on-site, in situ);
 monitoring and control of soils/soil materials that have been decontaminated and are to be applied at the
surface.
3.2 Soils and areas of soil use where ecotoxicological tests are not necessary (provided
groundwater contamination can be excluded):
 contaminated soils classified as hazardous waste or which can be characterized clearly by
chemical/analytical parameters, in which cases ecotoxicological testing could be useful for a final
investigation after remediation and for process control during biological remediation;
 commercially/industrially used areas with no prospect of horticultural/agricultural use;
 soil materials or backfilled materials in an area to be effectively sealed by covering with buildings or other
forms of low permeability cover such as concrete or tarmacadam or asphalt.
4 Selection of tests according to use/re-use of soils and soil materials and soil
functions
4.1 Use of ecotoxicity tests
Toxicants can affect different species (and in some cases genotypes) present within ecosystems at different
concentrations. The ideal approach for the precise ecotoxicological characterization of the soil toxicity is to
use a battery of tests with several species belonging to different taxonomic and trophic groups, in order to
avoid false negative results owing to an adaptation of a test system (genotypic shift) to a specific contaminant
as compared to uncontaminated soils. Studies using field or semi-field investigations are rarely carried out and
can be very expensive.
The ideal scheme can be rendered more practicable by the adoption of simpler testing strategies and the
application of safety factors to the results obtained. If, however, testing is performed on one species or
function only, the high diversity in the sensitivity of species to toxicants will result in a high level of uncertainty.
It is therefore recommended to test at least a microbial process, a species from the plant kingdom, and one
from the animal kingdom, usually a saprophagous/detritivorous species; if more than one animal species is
tested, a predatory species should be included in the test battery. The minimum number of species to be
tested depends on the regulations to which the test strategy must comply. This International Standard only
gives the basic principles for their use. Further considerations to the selection of tests using soil organisms are
given in 4.3.
4.2 General criteria for selection of tests
Criteria for the selection of ecotoxicity tests have been established in the context of hazard assessment and
classification of chemicals. These criteria should also apply for the ecotoxicological characterization of
contaminated soils. Criteria reviewed were: scientific validity, ecological significance, practicability and
acceptability. See [30] and [31].
The basic requirements that test protocols must meet in order to be established in international standards
include reproducibility, statistical validity, general acceptance and performance.
The importance of a criterion is relative to the specific situation. Decisions have to be made as to which
criteria are the most important or which tests may have to be modified, and choices made between these and
more practical considerations — for example, easy culturing of test organisms in the laboratory or the
availability of life stages required for a test throughout the year.
The test methods recommended here were originally designed for hazard assessment of chemicals and were
in most cases internationally harmonized (e.g. by OECD, EU or ISO). In most of the methods, provisions have
been made to adapt the test design to come within the scope of this International Standard. Nevertheless, in
many cases experience still has to be gained using the test methods for characterizing soil quality. In addition,
the selection of ecotoxicological test methods for the assessment of soils or soil materials depends on their
intended use or re-use and on the soil functions to be protected, in particular the retention and habitat
functions.
Table 1 gives an example of a decision scheme based on the relevant function.
Table 1 — Relevance for ecotoxicological testing to the intended re-use of the soil
Soil function
Retention function Habitat function
Re-use of soils
Aquatic organisms Plant growth Soil biocenoses
Detection of biological effects
a
Below sealed areas low low
low
Commercially and industrially used unsealed areas high low low
Landfill covering high high low
Green areas, parks and recreation areas high high high
Areas used in horticulture or agriculture high high high
a
Applies only to the unsaturated soil zone.
4.3 Considerations for the examination of soil functions
4.3.1 Retention function
Transport via water of soluble, colloidal or particle fractions plays a dominant role in the risk assessment of
contaminated soils. This is true not only because water may mobilize contaminants, but also because
contaminants and metabolites in the water phase potentially have a severe effect on micro-organisms, plants
and soil fauna.
Aqueous eluates are useful for testing ecotoxic effects on organisms exposed via the water-mediated
transport. It should be taken into account that substances mobilized via water could be subjected to different
types of changes, (e.g. metabolism or hydrolization) when transported into the groundwater and from there
into surface waters, and that their concentrations are reduced by dilution. Moreover, substances may be
mobilized over time due to environmental changes (e.g. pH, chemical and biological transformation). Eluates
4 © ISO 2003 — All rights reserved

may serve as early indicators for the contamination of pore and ground water prior to the exposure of surface
and drinking water.
With these aspects, the investigation of groundwater and eluates is of the utmost importance — regardless of
the proposed soil use.
4.3.2 Habitat function
4.3.2.1 Representativeness of organisms and processes
The suitability of the soil for living organisms can best be examined by means of test methods selected to
include organisms and processes representative of different taxonomic groups.
4.3.2.2 Soil material used as control for bioassays on solid matrices
As a general principle in ecotoxicological testing, any end points measured in a treatment are compared with
those measured in the control or controls.
When evaluating the suitability of the soil for soil-dwelling organisms, it is a prerequisite to compare the
contaminated soil or soil material with a control material, which may also be used for preparing dilution series
with the contaminated sample.
Several types of control material can be used:
 an uncontaminated soil with comparable pedological properties to the sample being tested;
 an inert material (e.g. quartz sand);
 a certified natural soil (e.g. standard soil);
 a standardized artificial soil (see ISO 11267, ISO 11268-1 and ISO 11268-2).
The choice between these control materials should be made depending entirely on the aims of the
ecotoxicological assessment, the type of biological test being carried out and the requirements of the test
organism. This recommendation cannot be generalized for all biological tests. Adding sand to a soil or a soil
material can create a compact mixture incompatible with the growth and development of many organisms (e.g.
plant growth tests). It is preferable to use a more complex control material (such as artificial soil) for dilution
where this would have the advantage of reproducing more closely the natural environment of the organisms
and even if it may interact with pollutants. Placing an organism in a medium that does not match the most
important characteristics of its natural habitat may cause stress.
 If a dose-response curve is needed, one of the control materials mentioned above may be used to dilute
the contaminated substrate.
 If the aim is to classify each sample of soil or soil materials in terms of ecotoxicity hazard, it is preferable
to use an inert material (e.g. quartz sand), which will not interact with the pollutants present in the sample
and whose composition and granulometry can be rigorously standardized.
The requirements of the control material must take into account the different soil uses and the type and origin
of the soil (e.g. undisturbed soil, refilling material, excavated soil, remediated soil). Nutrient deficiency, as well
as physical conditions, can cause differences in plant growth and animal behaviour that need not necessarily
be caused by the pollutant situation and the hazard potential.
 If the aim is to evaluate the ecotoxicity of a soil or soil material sample from a contaminated site, the
preferred method would be to use an uncontaminated control material similar to the sample being tested.
 If the aim is to evaluate the ecotoxicity of soils or soil materials which may be re-employed for certain
specific uses, the preferred method would be to use as a control material any material which may in
future be mixed with the soil or soil material.
4.3.2.3 Soil as substrate (medium) for soil micro-organisms
The soil microflora comprises on average 80 % of the mass of organisms living in soil. In combination with the
microfauna, the main functions of the microflora are the decomposition and degradation of complex organic
substances to easily available nutrients, thereby maintaining the natural substance cycles of carbon, nitrogen,
phosphorus and sulfur.
Substrate-induced respiration provides an indicator of the microbial population density.
Nitrifying bacteria, which are responsible for the oxidation of ammonium to nitrite and from nitrite to nitrate, are
a very sensitive group of micro-organisms. Reduced nitrification need not necessarily lead to significant
changes in the ecosystem but can be used as a sensitive indicator for the inhibition of an essential soil
process.
The purpose of determining the microbial biomass or other microbial processes in soils is to allow assessment
of the continued maintenance of soil fertility, the potential ability to degrade organic compounds, and the
effects of added materials on the soil microbial community.
4.3.2.4 Soil as substrate for plant growth
After micro-organisms, plant roots constitute the largest biological surface in soil. Their contact area with soil
particles is increased by the presence of root hairs and mycorrhizal associations (VA-mycorrhiza with
cultivated plants and additional ectomycoorhizae with woody plants).
As with the other bioassays proposed, tests with higher plants are designed to assess the bioavailability and
effects of pollutants detected or not detected by chemical analysis, respectively. By applying a test period of at
least 14 days, short-term changes in the soil by the test plant itself are included.
The accumulation of pollutants in plants, their metabolism and their effects on consumers are not investigated
in these tests. They do not apply to the assessment of soil fertility and productivity.
4.3.2.5 Soil as substrate for soil living fauna
Soil animals generally fulfil the following four functions:
a) mechanical activities (drainage, aeration, mixing, mechanical comminution);
b) chemical changes (enhanced availability of nitrate and phosphate from excrements and accelerated
formation of clay-humus complexes, after the substrate has passed the gut);
c) biological changes (distribution of micro-organisms in the soil matrix, synergistic effects through
stimulation of microbial activity and organic matter decomposition);
d) significant links in the food web.
Short-term and long-term tests are available for examination of the effects of pollutants on soil fauna. For
testing the habitat function, characterization by sublethal test parameters is particularly recommended.
Since a single test method cannot adequately represent the vast number of very diverse invertebrates, a test
battery should be used. When selecting the individual test species, the following criteria should be considered:
a) trophic level — e.e. saprophagous and predatory species should be included;
6 © ISO 2003 — All rights reserved

b) taxonomic/physiological groups — in order to cover the biodiversity of soil communities, at least
representatives of annelids and arthropoda have to be selected;
c) size class/exposure pathway: species of the micro-, meso- and macrofauna do not only represent various
size classes but also different life-styles and therefore exposure routes (e.g. pore water versus food
uptake);
d) ecological role — at least soil-dwelling and litter-inhabiting species are important to consider.
Only internationally standardized methods should be used.
5 Sampling, transport, storage and sample preparation
Before soil quality is assessed by any of the methods proposed, soil samples need to be collected from the
site under investigation. Soil sampling should be carried out by trained personnel with sufficient knowledge of
sampling, handling of samples and safety measures at contaminated sites and sampling locations. The
sampling strategy and handling should be determined by the site to be investigated, the kind of contamination
and the aim of the biological tests (e.g. quantities of soil samples could vary between 100 mg and 100 kg,
depending on the tests selected).
Record all data concerning sampling, transport and sample preparation. For instructions on the design of
sampling programmes, sampling techniques, safety, investigations of natural, cultivated, urban and industrial
sites and on the collection, handling and storage of soil for the assessment of aerobic/anaerobic microbial
processes in the laboratory, see ISO 10381-6.
6 Limitations of proposed biotests for soils/soil materials
Biological test systems are suitable for volatile pollutants only to a limited extent. Other methods should be
developed for this purpose. Similarly, the impact of organic contaminants, which are easily degradable under
aerobic conditions, may be detected incompletely by the methods described. In this case, alternative methods
for sampling and sample preparation should be applied.
NOTE The proposed terrestrial and aquatic test methods in A.1 and A.2 were developed to assess the ecotoxic
potential of chemicals. The characterization of soils or soil eluates was not their primary goal. Therefore, the methods
need to be adapted to the specific requirements of soil and site assessment.

Annex A
(informative)
Standardized forms of recommended test systems
A.1 Terrestrial test methods
A.1.1 Soil fauna
A.1.1.1 Collembola — Effects on reproduction
See Table A.1.
Table A.1
1. Title of test Soil quality — Inhibition of reproduction of Collembola (Folsomia candida) by
soil pollutants
2. Harmonization International
3. Reference ISO 11267
4. Principle Determination of the effect on reproduction of springtails incubated over a
4 weeks test period
5. Test type Static subchronic
6. Test organism Springtails
Breeding stocks Folsomia candida Willem 1902
Age 10 d to 12 d
Feeding Dry yeast
7. Test substrate Artificial soil, contaminated soil
Volume 30 g (wet mass)/container
8. Test conditions
Test chamber Enclosures
Temperature 20 °C ± 2 °C
pH 6 ± 0,5
Light intensity/quality Between 400 lx and 800 lx
Photoperiod 12 h:12 h or 16 h:8 h
Soil moisture 40 % to 60 % of total water holding capacity
9. No. replicates 4
10. Test duration/incubation 28 d
11. Neg. control/ dilution soil Artificial soil
12. Validity criteria Control: mortality < 20 %, min. reproduction 100 juveniles, CV u 30 %
13. Pos. control/reference toxicant E 605 forte (a.i. 507,5 g/l) Betanal plus (a.i. 160 g/l)
Mean EC50, CV LOEC: 0,18 mg/kg to 0,32 mg/kg; 100 mg/kg to 200 mg/kg
14. Statistics Multiple t-test, u-test, regression analysis
15. Test parameter(s) Mortality of adults, inhibition of reproduction
16. End points EC (x = % effect level, e.g. 10, 50), NOEC
x
17. Limitations/comments
The test was originally designed for testing substances added to an artificial soil. To compare or to monitor soil quality,
the method has to be adapted. Care should be taken that any control soil used meets the biological requirements of the
test species. The number of replicates might have to be increased because of the heterogeneity of field samples.
8 © ISO 2003 — All rights reserved

A.1.1.2 Earthworms — Acute toxicity
See Table A.2.
Table A.2
1. Title of test Soil quality — Effects of pollutants on earthworms (Eisenia fetida) —
Determination of acute toxicity using artificial soil substrate
2. Harmonization International
3. Reference ISO 11268-1
4. Principle
Determination of the percentage mortality of adult earthworms placed in a
defined substrate containing the test substance
5. Test type Acute, static
6. Test organism
Earthworm
Breeding stocks Eisenia fetida Savigny, E. andrei Bouché
Age
> 2 months
Feeding No
7. Test substrate Artificial soil
Volume 500 g (dry mass)
8. Test conditions
Test chamber Enclosure capable of being controlled.
Temperature
20 °C ± 2 °C
pH 6 ± 0,5
Light intensity/quality 400 lx to 800 lx
Photoperiod Between 12 h:12 h or 16 h:8 h
Soil moisture 40 % to 60 % water holding capacity
9. No. replicates
10. Test duration/incubation 14 d
11. Neg. control/ dilution soil Artificial soil
12. Validity criteria
Control: mortality < 10 %, biomass loss u 20 %
13. Pos. control/reference toxicant Chloroacetamide,
Mean EC50, CV LC50 20 mg/kg to 80 mg/kg
14. Statistics Multiple t-test
15. Testparameter(s) Mortality, biomass
16. End points
LC50 — 14 d
17. Limitations/comments
Same as for ISO 11267.
Also available as a test method in ASTM E1676-97 and as OECD Test Guideline 207.

A.1.1.3 Earthworms — Effects on reproduction
See Table A.3.
Table A.3
1. Title of the test: Soil quality — Effects of pollutants on earthworms (Eisenia fetida) —
Determination of effects on reproduction
2. Harmonization International
3. Reference ISO 11268-2
4. Principle
Determination of the percentage mortality, effects on growth and reproduction
of adult earthworms placed in a defined substrate containing the test substance
5. Test type Subchronic, static
6. Test organism
Earthworm
Breeding stocks Eisenia fetida Savigny, E. andrei Bouché
Age
> 2 months < 1 year
Feeding Cow dung
7. Test substrate Artificial soil
Volume 500 g to 600 g dry mass
8. Test conditions
Test chamber Enclosure capable of being controlled.
Temperature
20 °C ± 2 °C
pH 6 ± 0,5
Light intensity/quality 400 lx to 800 lx
Photoperiod Between 12 h:12 h or 16 h:8 h
Soil moisture 40 % to 60 % water holding capacity
9. No. replicates
10. Test duration/incubation 8 weeks
11. Neg. control/dilution soil Artificial soil
12. Validity criteria Control: 30 juveniles/container, CV u 30 %, adult mortality u 10 %
13. Pos. control/reference toxicant Carbendazim
Mean EC50, CV
LOEC 1 mg/ai to 5 mg/ai Carbendazim
14. Statistics Multiple t-test, u-test, regression analysis
15. Test parameter(s) Mortality, growth, reproduction
16. End points EC50, NOEC
17. Limitations/comments
Same as for ISO 11268-1.
10 © ISO 2003 — All rights reserved

A.1.1.4 Enchytraeid — Effects on reproduction
See Table A.4.
Table A.4
1. Title of test Enchytraeid reproduction test
2. Harmonization International ring test protocol, OECD Guideline and ISO Standard in
preparation
3. Reference [38]
4. Principle Adult enchytraeid worms are exposed to a test substance mixed in artificial soil.
After a test period of 6 weeks, the effect on the sublethal parameter
reproduction is determined. The test design includes the investigation of
possible lethal effects (mortality) on the parental enchytraeids.
5. Test type Subchronic, static
6. Test organism Enchytraeids
Breeding stocks Enchytraeus albidus Henle 1837 and other Enchytraeus sp.
Age Adult worms with eggs in the clitellum region
Feeding Rolled oats
7. Test substrate Artificial soil
Volume 20 g dry mass/container
8. Test conditions
Test chamber Enclosure capable of being controlled.
Temperature 20 °C ± 2 °C
pH 6 ± 0,5
Light intensity/quality 400 lx to 800 lx
Photoperiod Preferably 16 h:8 h
Soil moisture 40 % to 60 % water holding capacity
9. No. replicates 2 to 4 depending on the test design (NOEC/EC )
x
10. Test duration/incubation 6 weeks (final test)
11. Neg. control/dilution soil Artificial soil
12. Validity criteria Control: mort. u 20 %, min. no. of juveniles 25/vessel, CV u 50 %
13. Pos. control/reference toxicant Carbendazim EC50 1,2 mg a.i./kg ± 0,8 mg a.i./kg
Mean EC50, CV
14. Statistics Multiple t-test, regression analysis, probit analysis
15. Test parameter(s) Mortality, reproduction
16. End points LC50, NOEC, EC
x
17. Limitations/comments
Same as for ISO 11267.
A.1.1.5 Oxythyrea funesta — Acute effects
See Table A.5.
Table A.5
1. Title of test: Soil quality — Effects of pollutants on insect larvae (Oxythyrea funesta) —
Determination of acute toxicity using artificial soil substrate
2. Harmonization International
3. Reference ISO 20963
4. Principle
Determination of the percentage mortality of Cetoniidae larvae placed in a
defined substrate containing the test substance
5. Test type Acute, static
6. Test organism
Cetoniidae larvae (species Oxythyrea funesta)
Breeding stocks Oxythyrea funesta (Scarabaedoidae, Cetoniidae)
Age 15 d
Feeding Finely ground cow dung
7. Test substrate
Artificial soil
Volume 300 g (dry mass)
8. Test conditions
Test chamber Enclosure capable of being controlled.
Temperature 26 °C ± 1 °C
pH
6 ± 0,5
Light intensity/quality Darkness
Photoperiod —
Soil moisture 50 % water holding capacity
9. No. replicates 3
10. Test duration/incubation 10 d
11. Neg. control/dilution soil
Artificial soil
12. Validity criteria Control: mortality u 10 %, biomass loss u 20 %
13. Pos. control/reference toxicant Mercuric chloride, LC50 15 mg/kg to 45 mg/kg
Mean EC50, CV
14. Statistics Multiple t-test
15. Test parameter(s) Mortality, biomass
16. End points LC50 — 10 d
17. Limitations/comments
Same as for ISO 11267.
12 © ISO 2003 — All rights reserved

A.1.2 Soil flora
A.1.2.1 Soil flora — Inhibition of root growth
See Table A.6.
Table A.6
1. Title of test Soil quality — Determination of the effects of pollutants on soil flora — Method
for the measurement of inhibition of root growth
2. Harmonization International
3. Reference ISO 11269-1
4. Principle Growth of pregerminated seeds under controlled conditions. Differences in the
root lengths of seedlings grown in any test medium compared to the controls is
indicative of an effect.
5. Test type Acute, static
6. Test organism Barley (Hordeum vulgare L.)
Breeding stocks Variety CV Triumph or other varieties
Age Seeds
Feeding No
7. Test substrate Test soil, control soil, sand
Volume 500 g dry mass/container
8. Test conditions
Test chamber Growth cabinet
Temperature 20 °C ± 2 °C
Light intensity/quality 25 000 lm/m
Photoperiod 12 h:12 h or 16 h:8 h day/night
Soil moisture 70 % ± 5 % water holding capacity
9. No. replicates
10. Test duration/incubation < > 7 d
11. Neg. control/dilution soil Soil, sand
12. Validity criteria Not mentioned.
13. Pos. control/reference toxicant Not mentioned.
Mean EC50, CV
14. Statistics Multiple t-test
15. Test parameter(s) Root elongation
16. End points NOEC
17. Limitations/comments
The method is applicable to all soils, soil materials, waste or chemicals which can be applied to soil, except where the
contaminant is highly volatile or only affects photosynthesis. The method may be used to compare soils to monitor
changes in their activity or to determine the effect of added substances. The method is not intended for use as a
measure of the ability of the soil to support sustained plant growth. In the case of contaminated soil, it might be
necessary to dilute with uncontaminated soil or sand before testing.
The proposed plant test is not suitable for soil samples with a very disturbed structure (e.g. mixtures of soil and rubble).
In these cases, an inhibition may result without relevant contamination.

A.1.2.2 Soil flora — Effects on emergence and growth
See Table A.7.
Table A.7
1. Title of test Soil quality — Determination of the effects of pollutants on soil flora —
Effects of chemicals on the emergence and growth of higher plants
2. Harmonization International
3. Reference ISO 11269-2
4. Principle Emergence and early growth response of a variety of terrestrial plant
species to various concentrations of a chemical added to the test soil
5. Test type Subchronic, static
6. Test organism Monocotyledonous and dicot. plants
Breeding stocks Various species
Age Seeds
Feeding Does not apply to this test. See under 17.
7. Test substrate Soil
Volume 500 g
8. Test conditions
Test chamber Phytotron, plant growth room, green house
Temperature —
pH Suitable for normal growth.
Light intensity/quality —
Photoperiod —
Soil moisture —
9. No. replicates 4
10. Test duration/incubation 14 d to 21 d after 50 % emergence in the control pots
11. Neg. control/dilution soil Soil
12. Validity criteria 5 healthy seedlings per control pot
13. Pos. control/reference toxicant Sodium trichloroacetate
Mean EC50, CV
14. Statistics Multiple t-test
15. Test parameter(s) Emergence, growth
16. End points NOEC, LOEC
17. Limitations/comments
Same as for ISO 11269-1 (see A.1.2.1)
As with other bioassays proposed, tests with higher plants are designed to consider the pollutant situation and
bioavailability of pollutants not detected by chemical analysis. By applying a test period of at least 14 days, short-term
changes in soil by the test plant itself are included.
The accumulation of pollutants in soils, their metabolism and effects on consumers are not investigated in the test. They
also do not apply for assessment of soil fertility and productivity.
The requirements of the control soil must take into account the different soil uses and the type and origin of the soil (e.g.
undisturbed soil, refilling material, excavated soil, remediated soil). Different soil compaction and nutrient deficiency as
well as differences in the water-holding capacity and pore volume can cause differences in plant growth that need not
necessarily be caused by the pollutant load or hazard potential.
Also available as a test method: ASTM E 1598-94.
14 © ISO 2003 — All rights reserved

A.1.3 Soil micro-organisms
A.1.3.1 Mineralization and nitrification
See Table A.8.
Table A.8
1. Title of test Soil quality — Biological methods — Determination of nitrogen
mineralization and nitrification in soils and the influence of chemicals on
these processes
2 Harmonization International
3. Reference ISO 14238
4. Principle The rates or extent of N-mineralization in aerobic soils are determined by
measuring the concentrations of ammonium, nitrite and nitrate released
during mineralization of nitrogen contained in the soil organic matter, or
during mineralization of an added nitrogenous organic compound.
5. Test type —
6. Test organism Microbial organisms present in a test soil
Breeding stocks Does not apply to this test.
Age Does not apply to this test.
Feeding Does not apply to this test.
7. Test substrate Field soil treated according to ISO 10381-6.
Volume 50 g to 100 g recommended; or bulk incubation with sub-sampling
8. Test conditions
Test chamber Appropriate container; soil layer < 3 cm.
Temperature (20 ± 2) °C
pH Intrinsic pH of the soil
Light intensity/quality Dark (toxicity test)
Photoperiod —
Soil moisture
40 % to 60 % water holding capacity or approximately 0,02 MPa suction
pressure (toxicity test)
9. No. replicates 3
10. Test duration/incubation 28 d
11. Neg. control/dilution soil Soil
12. Validity criteria Not mentioned.
13. Pos. control/reference toxicant Not mentioned.
Mean EC50, CV
14. Statistics Regression analysis
15. Test parameter(s) Mineralization rate, nitrification rate
16. End points Concentration of mineral N; Inhibitory dose (ID %)
17. Limitations/comments
ISO 14238 describes laboratory procedures in different soils, or for comparison of N-mineralization in one soil collected
at different times of the year.
To determine the influence of chemicals on N-mineralization, a simplified test design can be used allowing for the
establishment of dose-response relationships.
The experience of monitoring the soil quality of polluted soils is limited. Care should be taken to collect unpolluted
control soil.
A.1.3.2 Biomass — SIR method
See Table A.9.
Table A.9
1. Title of test
Soil quality — Determination of soil microbial biomass — Substrate-induced
respiration method
2. Harmonization International
3. Reference ISO 14240-1
4. Principle
Soil is amended with a series of increasing concentrations of glucose until a
maximum respiration rate is reached. From this rate, the active biomass is
estimated.
5. Test type —
6. Test organism Microbial organisms present in a test soil.
Breeding stocks Does not apply to this test.
Age Does not apply to this test.
Feeding Does not apply to this test.
7. Test substrate Field soil treated according to ISO 10381-6.
Volume Not specified.
8. Test conditions
Test chamber An appropriate container of a respirometer
Temperature (22 ± 1) °C
pH Intrinsic pH of the test soil.
Light intensity/quality Not specified.
Photoperiod —
Soil moisture Intrinsic soil moisture of the test soil
9. No. replicates 3
10. Test duration/incubation 6 h
11. Neg. control/dilution soil Does not apply to this test.
12. Validity criteria None.
13. Pos. control/reference toxicant None.
Mean EC50, CV
14. Statistics None.
15. Test parameter(s) Respiration/CO evolution
16. End points Soil microbial carbon
17. Limitations/comments
The International Standard for the determination of microbial biomass offers different incubation systems.
ISO 14240-1 gives a method for the estimation of active microbial biomass in soil.
Methods for the determination of substrate-induced respiration are described in ISO 16072.

16 © ISO 2003 — All rights reserved

A.1.3.3 Biomass — FE method
See Table A.10.
Table A.10
1. Title of test
Soil quality — Determination of soil microbial biomass —
Fumigation-extraction method
2. Harmonizat
...


SLOVENSKI STANDARD
01-december-2006
Kakovost tal – Navodilo za ekotoksikološko karakterizacijo tal in talnih materialov
Soil quality -- Guidance on the ecotoxicological characterization of soils and soil
materials
Qualité du sol -- Lignes directrices relatives à la caractérisation écotoxicologique des
sols et des matériaux du sol
Ta slovenski standard je istoveten z: ISO 15799:2003
ICS:
13.080.99 Drugi standardi v zvezi s Other standards related to
kakovostjo tal soil quality
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

INTERNATIONAL ISO
STANDARD 15799
First edition
2003-11-15
Soil quality — Guidance on the
ecotoxicological characterization of soils
and soil materials
Qualité du sol — Lignes directrices relatives à la caractérisation
écotoxicologique des sols et des matériaux du sol

Reference number
©
ISO 2003
PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

©  ISO 2003
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
ii © ISO 2003 — All rights reserved

Contents Page
Foreword. iv
Introduction . v
1 Scope. 1
2 Terms and definitions. 1
2.1 Types of soil and other soil materials. 1
2.2 Terms relating to soil characteristics . 2
2.3 Land and sites . 2
3 Field of application . 3
3.1 Soils and areas of soil use where ecotoxicological tests should be considered:. 3
3.2 Soils and areas of soil use where ecotoxicological tests are not necessary (provided
groundwater contamination can be excluded): . 3
4 Selection of tests according to use/re-use of soils and soil materials and soil functions . 3
4.1 Usefulness of ecotoxicity tests . 3
4.2 General criteria for selection of tests . 4
4.3 Considerations for the examination of soil functions. 4
5 Sampling, transport, storage and sample preparation . 7
6 Limitations of proposed biotests for soils/soil materials . 7
Annex A (informative) Standardized forms of recommended test systems. 8
Bibliography . 31

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 15799 was prepared by Technical Committee ISO/TC 190, Soil quality, Subcommittee SC 7, Soil and site
assessment.
iv © ISO 2003 — All rights reserved

Introduction
The majority of existing ecotoxicological test methods (biotests) being internationally harmonized were
developed to describe the ecotoxic potential of a test substance when added to a soil or soil material. These
methods can be used, with some modification, for the ecotoxicological characterization of soils and soil
materials with respect to their function and depending on the intended use. However, in such cases, users of
the methods need to be aware that the validation of the methods is not complete.
For substances with properties resulting in toxic effects, biotests are a complement to conventional chemical
analysis. Results from chemical analysis can be used for ecotoxicological assessments based on information
on the substances identified, including properties of the chemicals, e.g. their bioaccumulation potential. This
information is often scarce (if it exists at all) and does not include possible interactions (synergy/antagonism)
between chemicals and the complex soil matrix. Furthermore, an exhaustive identification and quantification of
substances is impractical. Therefore, ecotoxicological testing of soils can be used for investigating the
potential toxicity of complex chemical mixtures. The extrapolation from laboratory tests to field conditions
requires adequate consideration of important environmental factors within the test conditions and the selection
of suitable ecotoxicological endpoints.
This International Standard is one of a series providing guidance on soils and soil materials in relation to
certain functions and uses, including wildlife conservation, and ought to be read in conjunction with those
other standards.
INTERNATIONAL STANDARD ISO 15799:2003(E)

Soil quality — Guidance on the ecotoxicological
characterization of soils and soil materials
1 Scope
This International Standard provides guidance on the selection of experimental methods for the assessment of
the ecotoxic potential of soils and soil materials (e.g. excavated and remediated soils, refills, embankments)
with respect to their intended use and possible adverse effects on aquatic and soil-dwelling organisms, and
habitat maintenance and the retention function of the soil.
It does not cover tests for bioaccumulation. Genotoxicity tests using eukaryotic organisms in soils are not yet
available. It is not applicable to the ecological assessment of uncontaminated soils with a view to natural,
agricultural or horticultural use, such soils being of possible interest where they can serve as a reference for
the assessment of soils from contaminated sites. Nor is the interpretation of the results gained by application
of the proposed methods within its scope.
2 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
2.1 Types of soil and other soil materials
2.1.1
soil
upper layer of the Earth’s crust composed of mineral particles, organic matter, water, air and organisms
[ISO 11074-1:1996, definition 5.4]
2.1.2
soil material
excavated soil, dredged materials, manufactured soils, treated soils and fill materials
[ISO 15176:2002, definition 3.1.4]
2.1.3
excavated soil
any natural material excavated from the ground, including top soil, sub soil, altered parent rock and parent
rock itself
NOTE Excavated soil typically arises during construction works.
[ISO 15176:2002, definition 3.1.5]
2.1.4
standard soil
field-collected soil whose main properties (e.g. pH, texture, organic matter content) are within a known range
[34]
EXAMPLE Eurosoils .
2.2 Terms relating to soil characteristics
2.2.1
habitat function
ability of soils/soil materials to serve as a habitat for micro-organisms, plants, soil-living animals and their
interactions (biocenoses)
2.2.2
retention function
ability of soils/soil materials to adsorb pollutants in such that they cannot be mobilized via the water pathway
and translocated into the food chain
NOTE The habitat and retention functions include the following soil functions according to ISO 11074-1:
 control of substance and energy cycles as components of ecosystems;
 basis for the life of plants, animals and humans;
 carrier of genetic reservoir;
 basis for the production of agricultural products;
 buffer inhibiting movement of water, contaminants or other agents into the ground water.
2.2.3
pollutant
substance or agent present in the soil which due to its properties, amount or concentration causes adverse
impact on soil functions or soil use
cf. contaminant (2.2.4), potentially harmful substance (2.2.5)
[ISO 15176:2002, definition 3.2.7]
NOTE See Introduction to ISO 11074-1:1996.
2.2.4
contaminant
substance or agent present in soil as a result of human activity
cf. pollutant (2.2.3), potentially harmful substance (2.2.5)
NOTE There is no assumption in this definition that harm results from the presence of the contaminant.
[ISO 15176:2002, definition 3.2.6]
2.2.5
potentially harmful substance
substance which, when present in sufficient concentration or amount, may be harmful to humans or the
environment
NOTE It may be present as a result of human activity [contaminant (2.2.4)] or naturally.
[ISO 15176:2002, definition 3.2.8]
2.3 Land and sites
2.3.1
re-use
useful and harmless utilization of soil materials
NOTE In the context of this International Standard the re-use means the transfer of soil materials to another location
for use in agriculture, horticulture, forestry, gardens, recreational areas and construction sites.
[ISO 15176:2002, term 3.4.1]
2 © ISO 2003 — All rights reserved

3 Field of application
3.1 Soils and areas of soil use where ecotoxicological tests should be considered:
 assessment of the ability of a soil to sustain a natural biocenosis or agriculture;
 assessment of the combined ecotoxicity of all bioavailable contaminants present in soils or soil materials;
 assessment of the ecotoxicity of potentially harmful substances in cases where the soil or soil material
can affect the ground and surface water;
 identification of soils or soil materials (refills, embankments) having a low degree of contamination —
usually within a depth of 1 m — and which can remain at the site without further treatment;
 detection of potential ecotoxicity which could not be traced by chemical analysis;
 monitoring and control of the success of soil treatment (off-site, on-site, in situ);
 monitoring and control of soils/soil materials that have been decontaminated and are to be applied at the
surface.
3.2 Soils and areas of soil use where ecotoxicological tests are not necessary (provided
groundwater contamination can be excluded):
 contaminated soils classified as hazardous waste or which can be characterized clearly by
chemical/analytical parameters, in which cases ecotoxicological testing could be useful for a final
investigation after remediation and for process control during biological remediation;
 commercially/industrially used areas with no prospect of horticultural/agricultural use;
 soil materials or backfilled materials in an area to be effectively sealed by covering with buildings or other
forms of low permeability cover such as concrete or tarmacadam or asphalt.
4 Selection of tests according to use/re-use of soils and soil materials and soil
functions
4.1 Use of ecotoxicity tests
Toxicants can affect different species (and in some cases genotypes) present within ecosystems at different
concentrations. The ideal approach for the precise ecotoxicological characterization of the soil toxicity is to
use a battery of tests with several species belonging to different taxonomic and trophic groups, in order to
avoid false negative results owing to an adaptation of a test system (genotypic shift) to a specific contaminant
as compared to uncontaminated soils. Studies using field or semi-field investigations are rarely carried out and
can be very expensive.
The ideal scheme can be rendered more practicable by the adoption of simpler testing strategies and the
application of safety factors to the results obtained. If, however, testing is performed on one species or
function only, the high diversity in the sensitivity of species to toxicants will result in a high level of uncertainty.
It is therefore recommended to test at least a microbial process, a species from the plant kingdom, and one
from the animal kingdom, usually a saprophagous/detritivorous species; if more than one animal species is
tested, a predatory species should be included in the test battery. The minimum number of species to be
tested depends on the regulations to which the test strategy must comply. This International Standard only
gives the basic principles for their use. Further considerations to the selection of tests using soil organisms are
given in 4.3.
4.2 General criteria for selection of tests
Criteria for the selection of ecotoxicity tests have been established in the context of hazard assessment and
classification of chemicals. These criteria should also apply for the ecotoxicological characterization of
contaminated soils. Criteria reviewed were: scientific validity, ecological significance, practicability and
acceptability. See [30] and [31].
The basic requirements that test protocols must meet in order to be established in international standards
include reproducibility, statistical validity, general acceptance and performance.
The importance of a criterion is relative to the specific situation. Decisions have to be made as to which
criteria are the most important or which tests may have to be modified, and choices made between these and
more practical considerations — for example, easy culturing of test organisms in the laboratory or the
availability of life stages required for a test throughout the year.
The test methods recommended here were originally designed for hazard assessment of chemicals and were
in most cases internationally harmonized (e.g. by OECD, EU or ISO). In most of the methods, provisions have
been made to adapt the test design to come within the scope of this International Standard. Nevertheless, in
many cases experience still has to be gained using the test methods for characterizing soil quality. In addition,
the selection of ecotoxicological test methods for the assessment of soils or soil materials depends on their
intended use or re-use and on the soil functions to be protected, in particular the retention and habitat
functions.
Table 1 gives an example of a decision scheme based on the relevant function.
Table 1 — Relevance for ecotoxicological testing to the intended re-use of the soil
Soil function
Retention function Habitat function
Re-use of soils
Aquatic organisms Plant growth Soil biocenoses
Detection of biological effects
a
Below sealed areas low low
low
Commercially and industrially used unsealed areas high low low
Landfill covering high high low
Green areas, parks and recreation areas high high high
Areas used in horticulture or agriculture high high high
a
Applies only to the unsaturated soil zone.
4.3 Considerations for the examination of soil functions
4.3.1 Retention function
Transport via water of soluble, colloidal or particle fractions plays a dominant role in the risk assessment of
contaminated soils. This is true not only because water may mobilize contaminants, but also because
contaminants and metabolites in the water phase potentially have a severe effect on micro-organisms, plants
and soil fauna.
Aqueous eluates are useful for testing ecotoxic effects on organisms exposed via the water-mediated
transport. It should be taken into account that substances mobilized via water could be subjected to different
types of changes, (e.g. metabolism or hydrolization) when transported into the groundwater and from there
into surface waters, and that their concentrations are reduced by dilution. Moreover, substances may be
mobilized over time due to environmental changes (e.g. pH, chemical and biological transformation). Eluates
4 © ISO 2003 — All rights reserved

may serve as early indicators for the contamination of pore and ground water prior to the exposure of surface
and drinking water.
With these aspects, the investigation of groundwater and eluates is of the utmost importance — regardless of
the proposed soil use.
4.3.2 Habitat function
4.3.2.1 Representativeness of organisms and processes
The suitability of the soil for living organisms can best be examined by means of test methods selected to
include organisms and processes representative of different taxonomic groups.
4.3.2.2 Soil material used as control for bioassays on solid matrices
As a general principle in ecotoxicological testing, any end points measured in a treatment are compared with
those measured in the control or controls.
When evaluating the suitability of the soil for soil-dwelling organisms, it is a prerequisite to compare the
contaminated soil or soil material with a control material, which may also be used for preparing dilution series
with the contaminated sample.
Several types of control material can be used:
 an uncontaminated soil with comparable pedological properties to the sample being tested;
 an inert material (e.g. quartz sand);
 a certified natural soil (e.g. standard soil);
 a standardized artificial soil (see ISO 11267, ISO 11268-1 and ISO 11268-2).
The choice between these control materials should be made depending entirely on the aims of the
ecotoxicological assessment, the type of biological test being carried out and the requirements of the test
organism. This recommendation cannot be generalized for all biological tests. Adding sand to a soil or a soil
material can create a compact mixture incompatible with the growth and development of many organisms (e.g.
plant growth tests). It is preferable to use a more complex control material (such as artificial soil) for dilution
where this would have the advantage of reproducing more closely the natural environment of the organisms
and even if it may interact with pollutants. Placing an organism in a medium that does not match the most
important characteristics of its natural habitat may cause stress.
 If a dose-response curve is needed, one of the control materials mentioned above may be used to dilute
the contaminated substrate.
 If the aim is to classify each sample of soil or soil materials in terms of ecotoxicity hazard, it is preferable
to use an inert material (e.g. quartz sand), which will not interact with the pollutants present in the sample
and whose composition and granulometry can be rigorously standardized.
The requirements of the control material must take into account the different soil uses and the type and origin
of the soil (e.g. undisturbed soil, refilling material, excavated soil, remediated soil). Nutrient deficiency, as well
as physical conditions, can cause differences in plant growth and animal behaviour that need not necessarily
be caused by the pollutant situation and the hazard potential.
 If the aim is to evaluate the ecotoxicity of a soil or soil material sample from a contaminated site, the
preferred method would be to use an uncontaminated control material similar to the sample being tested.
 If the aim is to evaluate the ecotoxicity of soils or soil materials which may be re-employed for certain
specific uses, the preferred method would be to use as a control material any material which may in
future be mixed with the soil or soil material.
4.3.2.3 Soil as substrate (medium) for soil micro-organisms
The soil microflora comprises on average 80 % of the mass of organisms living in soil. In combination with the
microfauna, the main functions of the microflora are the decomposition and degradation of complex organic
substances to easily available nutrients, thereby maintaining the natural substance cycles of carbon, nitrogen,
phosphorus and sulfur.
Substrate-induced respiration provides an indicator of the microbial population density.
Nitrifying bacteria, which are responsible for the oxidation of ammonium to nitrite and from nitrite to nitrate, are
a very sensitive group of micro-organisms. Reduced nitrification need not necessarily lead to significant
changes in the ecosystem but can be used as a sensitive indicator for the inhibition of an essential soil
process.
The purpose of determining the microbial biomass or other microbial processes in soils is to allow assessment
of the continued maintenance of soil fertility, the potential ability to degrade organic compounds, and the
effects of added materials on the soil microbial community.
4.3.2.4 Soil as substrate for plant growth
After micro-organisms, plant roots constitute the largest biological surface in soil. Their contact area with soil
particles is increased by the presence of root hairs and mycorrhizal associations (VA-mycorrhiza with
cultivated plants and additional ectomycoorhizae with woody plants).
As with the other bioassays proposed, tests with higher plants are designed to assess the bioavailability and
effects of pollutants detected or not detected by chemical analysis, respectively. By applying a test period of at
least 14 days, short-term changes in the soil by the test plant itself are included.
The accumulation of pollutants in plants, their metabolism and their effects on consumers are not investigated
in these tests. They do not apply to the assessment of soil fertility and productivity.
4.3.2.5 Soil as substrate for soil living fauna
Soil animals generally fulfil the following four functions:
a) mechanical activities (drainage, aeration, mixing, mechanical comminution);
b) chemical changes (enhanced availability of nitrate and phosphate from excrements and accelerated
formation of clay-humus complexes, after the substrate has passed the gut);
c) biological changes (distribution of micro-organisms in the soil matrix, synergistic effects through
stimulation of microbial activity and organic matter decomposition);
d) significant links in the food web.
Short-term and long-term tests are available for examination of the effects of pollutants on soil fauna. For
testing the habitat function, characterization by sublethal test parameters is particularly recommended.
Since a single test method cannot adequately represent the vast number of very diverse invertebrates, a test
battery should be used. When selecting the individual test species, the following criteria should be considered:
a) trophic level — e.e. saprophagous and predatory species should be included;
6 © ISO 2003 — All rights reserved

b) taxonomic/physiological groups — in order to cover the biodiversity of soil communities, at least
representatives of annelids and arthropoda have to be selected;
c) size class/exposure pathway: species of the micro-, meso- and macrofauna do not only represent various
size classes but also different life-styles and therefore exposure routes (e.g. pore water versus food
uptake);
d) ecological role — at least soil-dwelling and litter-inhabiting species are important to consider.
Only internationally standardized methods should be used.
5 Sampling, transport, storage and sample preparation
Before soil quality is assessed by any of the methods proposed, soil samples need to be collected from the
site under investigation. Soil sampling should be carried out by trained personnel with sufficient knowledge of
sampling, handling of samples and safety measures at contaminated sites and sampling locations. The
sampling strategy and handling should be determined by the site to be investigated, the kind of contamination
and the aim of the biological tests (e.g. quantities of soil samples could vary between 100 mg and 100 kg,
depending on the tests selected).
Record all data concerning sampling, transport and sample preparation. For instructions on the design of
sampling programmes, sampling techniques, safety, investigations of natural, cultivated, urban and industrial
sites and on the collection, handling and storage of soil for the assessment of aerobic/anaerobic microbial
processes in the laboratory, see ISO 10381-6.
6 Limitations of proposed biotests for soils/soil materials
Biological test systems are suitable for volatile pollutants only to a limited extent. Other methods should be
developed for this purpose. Similarly, the impact of organic contaminants, which are easily degradable under
aerobic conditions, may be detected incompletely by the methods described. In this case, alternative methods
for sampling and sample preparation should be applied.
NOTE The proposed terrestrial and aquatic test methods in A.1 and A.2 were developed to assess the ecotoxic
potential of chemicals. The characterization of soils or soil eluates was not their primary goal. Therefore, the methods
need to be adapted to the specific requirements of soil and site assessment.

Annex A
(informative)
Standardized forms of recommended test systems
A.1 Terrestrial test methods
A.1.1 Soil fauna
A.1.1.1 Collembola — Effects on reproduction
See Table A.1.
Table A.1
1. Title of test Soil quality — Inhibition of reproduction of Collembola (Folsomia candida) by
soil pollutants
2. Harmonization International
3. Reference ISO 11267
4. Principle Determination of the effect on reproduction of springtails incubated over a
4 weeks test period
5. Test type Static subchronic
6. Test organism Springtails
Breeding stocks Folsomia candida Willem 1902
Age 10 d to 12 d
Feeding Dry yeast
7. Test substrate Artificial soil, contaminated soil
Volume 30 g (wet mass)/container
8. Test conditions
Test chamber Enclosures
Temperature 20 °C ± 2 °C
pH 6 ± 0,5
Light intensity/quality Between 400 lx and 800 lx
Photoperiod 12 h:12 h or 16 h:8 h
Soil moisture 40 % to 60 % of total water holding capacity
9. No. replicates 4
10. Test duration/incubation 28 d
11. Neg. control/ dilution soil Artificial soil
12. Validity criteria Control: mortality < 20 %, min. reproduction 100 juveniles, CV u 30 %
13. Pos. control/reference toxicant E 605 forte (a.i. 507,5 g/l) Betanal plus (a.i. 160 g/l)
Mean EC50, CV LOEC: 0,18 mg/kg to 0,32 mg/kg; 100 mg/kg to 200 mg/kg
14. Statistics Multiple t-test, u-test, regression analysis
15. Test parameter(s) Mortality of adults, inhibition of reproduction
16. End points EC (x = % effect level, e.g. 10, 50), NOEC
x
17. Limitations/comments
The test was originally designed for testing substances added to an artificial soil. To compare or to monitor soil quality,
the method has to be adapted. Care should be taken that any control soil used meets the biological requirements of the
test species. The number of replicates might have to be increased because of the heterogeneity of field samples.
8 © ISO 2003 — All rights reserved

A.1.1.2 Earthworms — Acute toxicity
See Table A.2.
Table A.2
1. Title of test Soil quality — Effects of pollutants on earthworms (Eisenia fetida) —
Determination of acute toxicity using artificial soil substrate
2. Harmonization International
3. Reference ISO 11268-1
4. Principle
Determination of the percentage mortality of adult earthworms placed in a
defined substrate containing the test substance
5. Test type Acute, static
6. Test organism
Earthworm
Breeding stocks Eisenia fetida Savigny, E. andrei Bouché
Age
> 2 months
Feeding No
7. Test substrate Artificial soil
Volume 500 g (dry mass)
8. Test conditions
Test chamber Enclosure capable of being controlled.
Temperature
20 °C ± 2 °C
pH 6 ± 0,5
Light intensity/quality 400 lx to 800 lx
Photoperiod Between 12 h:12 h or 16 h:8 h
Soil moisture 40 % to 60 % water holding capacity
9. No. replicates
10. Test duration/incubation 14 d
11. Neg. control/ dilution soil Artificial soil
12. Validity criteria
Control: mortality < 10 %, biomass loss u 20 %
13. Pos. control/reference toxicant Chloroacetamide,
Mean EC50, CV LC50 20 mg/kg to 80 mg/kg
14. Statistics Multiple t-test
15. Testparameter(s) Mortality, biomass
16. End points
LC50 — 14 d
17. Limitations/comments
Same as for ISO 11267.
Also available as a test method in ASTM E1676-97 and as OECD Test Guideline 207.

A.1.1.3 Earthworms — Effects on reproduction
See Table A.3.
Table A.3
1. Title of the test: Soil quality — Effects of pollutants on earthworms (Eisenia fetida) —
Determination of effects on reproduction
2. Harmonization International
3. Reference ISO 11268-2
4. Principle
Determination of the percentage mortality, effects on growth and reproduction
of adult earthworms placed in a defined substrate containing the test substance
5. Test type Subchronic, static
6. Test organism
Earthworm
Breeding stocks Eisenia fetida Savigny, E. andrei Bouché
Age
> 2 months < 1 year
Feeding Cow dung
7. Test substrate Artificial soil
Volume 500 g to 600 g dry mass
8. Test conditions
Test chamber Enclosure capable of being controlled.
Temperature
20 °C ± 2 °C
pH 6 ± 0,5
Light intensity/quality 400 lx to 800 lx
Photoperiod Between 12 h:12 h or 16 h:8 h
Soil moisture 40 % to 60 % water holding capacity
9. No. replicates
10. Test duration/incubation 8 weeks
11. Neg. control/dilution soil Artificial soil
12. Validity criteria Control: 30 juveniles/container, CV u 30 %, adult mortality u 10 %
13. Pos. control/reference toxicant Carbendazim
Mean EC50, CV
LOEC 1 mg/ai to 5 mg/ai Carbendazim
14. Statistics Multiple t-test, u-test, regression analysis
15. Test parameter(s) Mortality, growth, reproduction
16. End points EC50, NOEC
17. Limitations/comments
Same as for ISO 11268-1.
10 © ISO 2003 — All rights reserved

A.1.1.4 Enchytraeid — Effects on reproduction
See Table A.4.
Table A.4
1. Title of test Enchytraeid reproduction test
2. Harmonization International ring test protocol, OECD Guideline and ISO Standard in
preparation
3. Reference [38]
4. Principle Adult enchytraeid worms are exposed to a test substance mixed in artificial soil.
After a test period of 6 weeks, the effect on the sublethal parameter
reproduction is determined. The test design includes the investigation of
possible lethal effects (mortality) on the parental enchytraeids.
5. Test type Subchronic, static
6. Test organism Enchytraeids
Breeding stocks Enchytraeus albidus Henle 1837 and other Enchytraeus sp.
Age Adult worms with eggs in the clitellum region
Feeding Rolled oats
7. Test substrate Artificial soil
Volume 20 g dry mass/container
8. Test conditions
Test chamber Enclosure capable of being controlled.
Temperature 20 °C ± 2 °C
pH 6 ± 0,5
Light intensity/quality 400 lx to 800 lx
Photoperiod Preferably 16 h:8 h
Soil moisture 40 % to 60 % water holding capacity
9. No. replicates 2 to 4 depending on the test design (NOEC/EC )
x
10. Test duration/incubation 6 weeks (final test)
11. Neg. control/dilution soil Artificial soil
12. Validity criteria Control: mort. u 20 %, min. no. of juveniles 25/vessel, CV u 50 %
13. Pos. control/reference toxicant Carbendazim EC50 1,2 mg a.i./kg ± 0,8 mg a.i./kg
Mean EC50, CV
14. Statistics Multiple t-test, regression analysis, probit analysis
15. Test parameter(s) Mortality, reproduction
16. End points LC50, NOEC, EC
x
17. Limitations/comments
Same as for ISO 11267.
A.1.1.5 Oxythyrea funesta — Acute effects
See Table A.5.
Table A.5
1. Title of test: Soil quality — Effects of pollutants on insect larvae (Oxythyrea funesta) —
Determination of acute toxicity using artificial soil substrate
2. Harmonization International
3. Reference ISO 20963
4. Principle
Determination of the percentage mortality of Cetoniidae larvae placed in a
defined substrate containing the test substance
5. Test type Acute, static
6. Test organism
Cetoniidae larvae (species Oxythyrea funesta)
Breeding stocks Oxythyrea funesta (Scarabaedoidae, Cetoniidae)
Age 15 d
Feeding Finely ground cow dung
7. Test substrate
Artificial soil
Volume 300 g (dry mass)
8. Test conditions
Test chamber Enclosure capable of being controlled.
Temperature 26 °C ± 1 °C
pH
6 ± 0,5
Light intensity/quality Darkness
Photoperiod —
Soil moisture 50 % water holding capacity
9. No. replicates 3
10. Test duration/incubation 10 d
11. Neg. control/dilution soil
Artificial soil
12. Validity criteria Control: mortality u 10 %, biomass loss u 20 %
13. Pos. control/reference toxicant Mercuric chloride, LC50 15 mg/kg to 45 mg/kg
Mean EC50, CV
14. Statistics Multiple t-test
15. Test parameter(s) Mortality, biomass
16. End points LC50 — 10 d
17. Limitations/comments
Same as for ISO 11267.
12 © ISO 2003 — All rights reserved

A.1.2 Soil flora
A.1.2.1 Soil flora — Inhibition of root growth
See Table A.6.
Table A.6
1. Title of test Soil quality — Determination of the effects of pollutants on soil flora — Method
for the measurement of inhibition of root growth
2. Harmonization International
3. Reference ISO 11269-1
4. Principle Growth of pregerminated seeds under controlled conditions. Differences in the
root lengths of seedlings grown in any test medium compared to the controls is
indicative of an effect.
5. Test type Acute, static
6. Test organism Barley (Hordeum vulgare L.)
Breeding stocks Variety CV Triumph or other varieties
Age Seeds
Feeding No
7. Test substrate Test soil, control soil, sand
Volume 500 g dry mass/container
8. Test conditions
Test chamber Growth cabinet
Temperature 20 °C ± 2 °C
Light intensity/quality 25 000 lm/m
Photoperiod 12 h:12 h or 16 h:8 h day/night
Soil moisture 70 % ± 5 % water holding capacity
9. No. replicates
10. Test duration/incubation < > 7 d
11. Neg. control/dilution soil Soil, sand
12. Validity criteria Not mentioned.
13. Pos. control/reference toxicant Not mentioned.
Mean EC50, CV
14. Statistics Multiple t-test
15. Test parameter(s) Root elongation
16. End points NOEC
17. Limitations/comments
The method is applicable to all soils, soil materials, waste or chemicals which can be applied to soil, except where the
contaminant is highly volatile or only affects photosynthesis. The method may be used to compare soils to monitor
changes in their activity or to determine the effect of added substances. The method is not intended for use as a
measure of the ability of the soil to support sustained plant growth. In the case of contaminated soil, it might be
necessary to dilute with uncontaminated soil or sand before testing.
The proposed plant test is not suitable for soil samples with a very disturbed structure (e.g. mixtures of soil and rubble).
In these cases, an inhibition may result without relevant contamination.

A.1.2.2 Soil flora — Effects on emergence and growth
See Table A.7.
Table A.7
1. Title of test Soil quality — Determination of the effects of pollutants on soil flora —
Effects of chemicals on the emergence and growth of higher plants
2. Harmonization International
3. Reference ISO 11269-2
4. Principle Emergence and early growth response of a variety of terrestrial plant
species to various concentrations of a chemical added to the test soil
5. Test type Subchronic, static
6. Test organism Monocotyledonous and dicot. plants
Breeding stocks Various species
Age Seeds
Feeding Does not apply to this test. See under 17.
7. Test substrate Soil
Volume 500 g
8. Test conditions
Test chamber Phytotron, plant growth room, green house
Temperature —
pH Suitable for normal growth.
Light intensity/quality —
Photoperiod —
Soil moisture —
9. No. replicates 4
10. Test duration/incubation 14 d to 21 d after 50 % emergence in the control pots
11. Neg. control/dilution soil Soil
12. Validity criteria 5 healthy seedlings per control pot
13. Pos. control/reference toxicant Sodium trichloroacetate
Mean EC50, CV
14. Statistics Multiple t-test
15. Test parameter(s) Emergence, growth
16. End points NOEC, LOEC
17. Limitations/comments
Same as for ISO 11269-1 (see A.1.2.1)
As with other bioassays proposed, tests with higher plants are designed to consider the pollutant situation and
bioavailability of pollutants not detected by chemical analysis. By applying a test period of at least 14 days, short-term
changes in soil by the test plant itself are included.
The accumulation of pollutants in soils, their metabolism and effects on consumers are not investigated in the test. They
also do not apply for assessment of soil fertility and productivity.
The requirements of the control soil must take into account the different soil uses and the type and origin of the soil (e.g.
undisturbed soil, refilling material, excavated soil, remediated soil). Different soil compaction and nutrient deficiency as
well as differences in the water-holding capacity and pore volume can cause differences in plant growth that need not
necessarily be caused by the pollutant load or hazard potential.
Also available as a test method: ASTM E 1598-94.
14 © ISO 2003 — All rights reserved

A.1.3 Soil micro-organisms
A.1.3.1 Mineralization and nitrification
See Table A.8.
Table A.8
1. Title of test Soil quality — Biological methods — Determination of nitrogen
mineralization and nitrification in soils and the influence of chemicals on
these processes
2 Harmonization International
3. Reference ISO 14238
4. Principle The rates or extent of N-mineralization in aerobic soils are determined by
measuring the concentrations of ammonium, nitrite and nitrate released
during mineralization of nitrogen contained in the soil organic matter, or
during mineralization of an added nitrogenous organic compound.
5. Test type —
6. Test organism Microbial organisms present in a test soil
Breeding stocks Does not apply to this test.
Age Does not apply to this test.
Feeding Does not apply to this test.
7. Test substrate Field soil treated according to ISO 10381-6.
Volume 50 g to 100 g recommended; or bulk incubation with sub-sampling
8. Test conditions
Test chamber Appropriate container; soil layer < 3 cm.
Temperature (20 ± 2) °C
pH Intrinsic pH of the soil
Light intensity/quality Dark (toxicity test)
Photoperiod —
Soil moisture
40 % to 60 % water holding capacity or approximately 0,02 MPa suction
pressure (toxicity test)
9. No. replicates 3
10. Test duration/incubation 28 d
11. Neg. control/dilution soil Soil
12. Validity criteria Not mentioned.
13. Pos. control/reference toxicant Not mentioned.
Mean EC50, CV
14. Statistics Regression analysis
15. Test parameter(s) Mineralization rate, nitrification rate
16. End points Concentration of mineral N; Inhibitory dose (ID %)
17. Limitations/comments
ISO 14238 describes laboratory procedures in different soils, or for comparison of N-mineralization in one soil collected
at different times of the year.
To determine the influence of chemicals on N-mineralization, a simplified test design can be used allowing for the
establishment of dose-response relationships.
The experience of monitoring the soil quality of polluted soils is limited. Care should be taken to collect unpolluted
control soil.
A.1.3.2 Biomass — SIR method
See Table A.9.
Table A.9
1. Title of test
Soil quality — Determination of soil microbial biomass — Substrate-induced
respiration method
2. Harmonization International
3. Reference ISO 14240-1
4. Principle
Soil is amended with a series of increasing concentrations of glucose until a
maximum respiration rate is reached. From this rate, the active biomass is
estimated.
5. Test type —
6. Test organism Microbial organisms present in a test soil.
Breeding stocks Does not apply to this test.
Age Does not apply t
...


NORME ISO
INTERNATIONALE 15799
Première édition
2003-11-15
Qualité du sol — Lignes directrices
relatives à la caractérisation
écotoxicologique des sols et des
matériaux du sol
Soil quality — Guidance on the ecotoxicological characterization of soils
and soil materials
Numéro de référence
©
ISO 2003
PDF – Exonération de responsabilité
Le présent fichier PDF peut contenir des polices de caractères intégrées. Conformément aux conditions de licence d'Adobe, ce fichier
peut être imprimé ou visualisé, mais ne doit pas être modifié à moins que l'ordinateur employé à cet effet ne bénéficie d'une licence
autorisant l'utilisation de ces polices et que celles-ci y soient installées. Lors du téléchargement de ce fichier, les parties concernées
acceptent de fait la responsabilité de ne pas enfreindre les conditions de licence d'Adobe. Le Secrétariat central de l'ISO décline toute
responsabilité en la matière.
Adobe est une marque déposée d'Adobe Systems Incorporated.
Les détails relatifs aux produits logiciels utilisés pour la création du présent fichier PDF sont disponibles dans la rubrique General Info
du fichier; les paramètres de création PDF ont été optimisés pour l'impression. Toutes les mesures ont été prises pour garantir
l'exploitation de ce fichier par les comités membres de l'ISO. Dans le cas peu probable où surviendrait un problème d'utilisation,
veuillez en informer le Secrétariat central à l'adresse donnée ci-dessous.

©  ISO 2003
Droits de reproduction réservés. Sauf prescription différente, aucune partie de cette publication ne peut être reproduite ni utilisée sous
quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit
de l'ISO à l'adresse ci-après ou du comité membre de l'ISO dans le pays du demandeur.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax. + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Publié en Suisse
ii © ISO 2003 — Tous droits réservés

Sommaire Page
Avant-propos. iv
Introduction . v
1 Domaine d'application. 1
2 Termes et définitions . 1
2.1 Types des sols et autres matériaux du sol. 1
2.2 Termes relatifs aux caractéristiques du sol. 2
2.3 Terrain et sites. 3
3 Applications des essais écotoxicologiques.3
3.1 Utilisation des sols et zones de sols où il convient d’envisager des essais
écotoxicologiques: . 3
3.2 Utilisation de sols et zones de sols où les essais écotoxicologiques ne sont pas
nécessaires (sous réserve de pouvoir exclure toute contamination des eaux
souterraines): . 3
4 Choix des essais suivant l’utilisation/la réutilisation des sols et des matériaux du sol et
selon les fonctions du sol. 4
4.1 Utilisation d’essais d’écotoxicité . 4
4.2 Critères généraux pour le choix des essais. 4
4.3 Considérations relatives à l’examen des fonctions du sol. 5
5 Échantillonnage, transport, stockage et préparation des échantillons . 8
6 Limites des essais biologiques proposés pour les sols/matériaux du sol. 8
Annexe A (informative) Formes normalisées des systèmes d'essai recommandés. 9
Bibliographie . 32

Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux de
normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général confiée
aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude a le droit de faire partie du
comité technique créé à cet effet. Les organisations internationales, gouvernementales et non
gouvernementales, en liaison avec l'ISO participent également aux travaux. L'ISO collabore étroitement avec
la Commission électrotechnique internationale (CEI) en ce qui concerne la normalisation électrotechnique.
Les Normes internationales sont rédigées conformément aux règles données dans les Directives ISO/CEI,
Partie 2.
La tâche principale des comités techniques est d'élaborer les Normes internationales. Les projets de Normes
internationales adoptés par les comités techniques sont soumis aux comités membres pour vote. Leur
publication comme Normes internationales requiert l'approbation de 75 % au moins des comités membres
votants.
L'attention est appelée sur le fait que certains des éléments du présent document peuvent faire l'objet de
droits de propriété intellectuelle ou de droits analogues. L'ISO ne saurait être tenue pour responsable de ne
pas avoir identifié de tels droits de propriété et averti de leur existence.
L'ISO 15799 a été élaborée par le comité technique ISO/TC 190, Qualité du sol, sous-comité SC 7, Évaluation
des sols et des sites.
iv © ISO 2003 — Tous droits réservés

Introduction
La plupart des méthodes d’essai écotoxicologique existantes (essais biologiques) en cours d’harmonisation
au plan international ont été mises au point pour décrire le potentiel écotoxique d’une substance lorsqu’on
l’ajoute à un sol/matériau du sol. Ces méthodes peuvent être utilisées sous réserve de quelques modifications
pour la caractérisation écotoxicologique des sols/matériaux du sol pour ce qui concerne leur fonction, suivant
l’utilisation prévue. Néanmoins, dans ce contexte, il convient que les utilisateurs des présentes méthodes
gardent à l’esprit que la validation de celles-ci n’est pas terminée.
Les essais biologiques complètent les analyses chimiques classiques pour les substances ayant des
propriétés toxiques. Les résultats obtenus par une analyse chimique peuvent être utilisés pour effectuer des
évaluations écotoxicologiques à partir de données relatives aux substances identifiées, y compris
les propriétés des produits chimiques telles que leur potentiel de bioaccumulation. Ces données sont
souvent rares (pour autant qu’elles existent) et ne comprennent pas les éventuelles interactions
(synergie/antagonisme) entre les produits chimiques et la matrice complexe du sol. En outre, une
identification et une quantification exhaustives des substances sont irréalisables. Par conséquent, pour
étudier l’éventuelle toxicité de mélanges chimiques complexes dans les sols, il est possible d’utiliser les
essais écotoxicologiques des sols. L’extrapolation des essais de laboratoire aux conditions de terrain
nécessite une prise en compte adéquate des facteurs environnementaux essentiels dans les conditions
d’essai ainsi que le choix de critères d’effet écotoxicologiques appropriés.
La présente Norme internationale fait partie d’une série de normes qui donnent des recommandations
relatives aux sols et aux matériaux du sol eu égard à certaines fonctions et utilisations, y compris la
préservation des organismes vivants. Il convient de la lire conjointement avec ces autres normes.
NORME INTERNATIONALE ISO 15799:2003(F)

Qualité du sol — Lignes directrices relatives à la caractérisation
écotoxicologique des sols et des matériaux du sol
1 Domaine d'application
La présente Norme internationale fournit les lignes directrices relatives à la sélection des méthodes
expérimentales permettant l’évaluation du potentiel écotoxique des sols et des matériaux du sol (par exemple
terres excavées ayant fait l’objet d’une remédiation, remblais, talus) par rapport à leur utilisation prévue et aux
effets éventuellement défavorables pour les organismes vivant dans l’eau et le sol, et le maintien des
fonctions d’habitat et de rétention du sol.
La présente Norme internationale ne traite pas des essais relatifs à la bioaccumulation. Les essais de
génotoxicité utilisant des organismes eucaryotes du sol ne sont pas encore disponibles. La présente Norme
internationale ne s’applique pas à l’évaluation écologique des sols non contaminés en vue d’une utilisation
naturelle, agricole ou horticole, de tels sols pouvant être intéressants s’ils peuvent servir de référence pour
l’évaluation de sols provenant de sites contaminés. De même, elle ne concerne pas l’interprétation des
résultats obtenus d’après les méthodes proposées dans son domaine d’application.
2 Termes et définitions
Pour les besoins du présent document, les termes et définitions suivants s'appliquent.
2.1 Types des sols et autres matériaux du sol
2.1.1
sol
couche supérieure de la croûte terrestre composée de particules minérales, de matière organique, d’eau, d’air
et d’organismes
[ISO 11074-1:1996, définition 5.4]
2.1.2
matériau du sol
ensemble des terres excavées, des matériaux de dragage, des sols artificiels, des sols traités et des
matériaux de remblai
[ISO 15176:2002, définition 3.1.4]
2.1.3
terre excavée
tout type de matériau naturel extrait du sol, y compris le sol superficiel, le sous-sol, la roche mère altérée et la
roche mère elle-même
NOTE La terre excavée est généralement mise à jour lors de travaux de construction.
[ISO 15176:2002, définition 3.1.5]
2.1.4
sol étalon
sol prélevé sur le terrain dont les propriétés principales (par exemple pH, texture, teneur en matières

organiques) se situent dans une plage connue
[34]
EXEMPLE Euro-sols .
2.2 Termes relatifs aux caractéristiques du sol
2.2.1
fonction d’habitat
aptitude des sols/matériaux du sol à assurer l’habitat des micro-organismes, des plantes, des animaux vivant
dans le sol, et leurs interactions (biocénoses)
2.2.2
fonction de rétention
aptitude des sols/matériaux du sol à adsorber les polluants de manière à ce qu’ils ne soient pas mobilisés via
l’eau et transférés vers la chaîne alimentaire
NOTE Les fonctions d’habitat et de rétention comprennent les fonctions du sol suivantes conformément à
l’ISO 11074-1:
 contrôle des cycles des substances et de l’énergie en tant que compartiments d’écosystèmes;
 base de la vie pour les plantes, les animaux et l’homme;
 vecteur de réserve génétique;
 base de production de produits agricoles;
 tampon empêchant le transfert via l’eau, de contaminants ou d’autres agents vers les nappes phréatiques.
2.2.3
polluant
substance ou agent présent dans le sol et qui, de par ses propriétés, quantités ou concentration, a des effets
négatifs (nocifs) sur les fonctions du sol ou l’utilisation du sol
cf. contaminant (2.2.4), substance potentiellement dangereuse (2.2.5)
[ISO 15176:2002, définition 3.2.7]
NOTE Voir l’Introduction de l’ISO 11074-1:1996.
2.2.4
contaminant
substance ou agent présent dans le sol résultant de l’activité humaine
cf. polluant (2.2.3), substance potentiellement dangereuse (2.2.5)
NOTE Cette définition n’implique nullement que la présence de contaminant a un effet négatif.
[ISO 15176:2002, définition 3.2.6]
2 © ISO 2003 — Tous droits réservés

2.2.5
substance potentiellement dangereuse
substance pouvant être dangereuse pour les êtres humains ou l’environnement lorsqu’elle est présente en
quantité ou concentration suffisante
NOTE Sa présence peut être due à l’activité humaine [contaminant (2.2.4)] ou à une cause naturelle.
[ISO 15176:2002, définition 3.2.8]
2.3 Terrain et sites
2.3.1
réutilisation
utilisation sans risque et avec profit des matériaux du sol
NOTE Dans le cadre de la présente Norme internationale, le terme «réutilisation» signifie le transfert des matériaux
du sol vers d’autres lieux pour une utilisation dans l’agriculture, l’horticulture, l’exploitation forestière, les jardins, les zones
de loisirs et les chantiers.
[ISO 15176:2002, définition 3.4.1]
3 Applications des essais écotoxicologiques
3.1 Utilisation des sols et zones de sols où il convient d’envisager des essais
écotoxicologiques:
 évaluation de l’aptitude d’un sol à supporter la biocénose naturelle ou l’agriculture;
 évaluation de l’écotoxicité cumulée de tous les contaminants biodisponibles présents dans les sols ou les
matériaux du sol;
 évaluation de l’écotoxicité des substances potentiellement dangereuses dans les cas où le sol/les
matériaux du sol peuvent affecter les eaux souterraines et superficielles;
 identification des sols ou des matériaux du sol (remblais, talus) faiblement contaminés (généralement
jusqu’à une profondeur de 1 m) qui peuvent demeurer sur le site sans traitement supplémentaire;
 détection de l’écotoxicité potentielle n’ayant pu être mise en évidence par une analyse chimique;
 surveillance et contrôle du succès du traitement d’un sol (hors site, sur site, in situ);
 surveillance et contrôle des sols/matériaux du sol décontaminés et devant être mis en place sous forme
de remblais.
3.2 Utilisation de sols et zones de sols où les essais écotoxicologiques ne sont pas
nécessaires (sous réserve de pouvoir exclure toute contamination des eaux souterraines):
 sols contaminés classés comme déchets dangereux ou pouvant être clairement caractérisés par des
paramètres analytiques/chimiques; dans de tels cas, les essais écotoxicologiques peuvent être utiles en
vue d’une étude finale après remédiation et pour le contrôle du procédé pendant la remédiation
biologique;
 zones à usage commercial/industriel sans perspective d’utilisation horticole/agricole;
 matériaux du sol ou matériaux de remblayage sur un terrain qui devra être rendu imperméable car il sera
recouvert de bâtiments ou de toute autre forme de revêtement à faible perméabilité comme le béton, le
macadam ou l’asphalte.
4 Choix des essais suivant l’utilisation/la réutilisation des sols et des matériaux du
sol et selon les fonctions du sol
4.1 Utilisation d’essais d’écotoxicité
Les toxiques peuvent altérer différentes espèces (et dans certains cas, les génotypes) présentes dans les
écosystèmes à diverses concentrations. L’approche idéale pour effectuer une caractérisation
écotoxicologique précise de la toxicité du sol consiste à utiliser une batterie d’essais faisant intervenir
plusieurs espèces appartenant à différents groupes taxonomiques et trophiques et ce, afin d’éviter des
résultats négatifs erronés dus à une adaptation d’un système d’essai (décalage génotypique) à un
contaminant spécifique par comparaison avec des sols non contaminés. Des études de terrain ou mixtes sont
rarement effectuées et peuvent s’avérer très onéreuses.
La réalisation d’un programme idéal peut être facilitée par l’adoption de stratégies d’essai simples et par
l’application de coefficients de sécurité aux résultats obtenus. Cependant, la diversité de la sensibilité des
espèces aux toxiques est telle qu’elle engendre un degré élevé d’incertitude si les essais ne portent que sur
une seule espèce ou fonction. Il est donc recommandé de soumettre à l’essai au moins un processus
microbien, une espèce du règne végétal et une du règne animal, généralement une espèce
saprophage/détritivore ; si plusieurs espèces animales font l’objet d’essais, il convient d’inclure une espèce
prédatrice dans la batterie d’essais. Le nombre minimal d’espèces à étudier dépend des réglementations
auxquelles la stratégie d’essai doit satisfaire. La présente Norme internationale n’indique que les principes de
base en vue de leur utilisation. On trouvera en 4.3 d’autres critères de choix d’essais utilisant des organismes
vivant dans le sol.
4.2 Critères généraux pour le choix des essais
Les critères de choix des essais d’écotoxicologie ont été établis dans le contexte de l’évaluation des dangers
et de la classification des produits chimiques. Il convient que ces critères s’appliquent également à la
caractérisation écotoxicologique des sols contaminés. Les critères étudiés sont les suivants: validité
scientifique, importance écologique, faisabilité et acceptabilité (voir [30] et [31]).
Les exigences fondamentales que les protocoles d’essai doivent satisfaire afin d’être stipulés dans des
Normes internationales comprennent la reproductibilité, la validité statistique, l’acceptation générale et les
performances.
L'importance d'un critère est spécifique à chaque situation. Selon le cas, des règles de sélection des critères
les plus importants doivent être déterminées, de même que doivent être définis les essais qui nécessitent des
ajustements en fonction de considérations pratiques telles que la facilité de mise en culture des organismes
au laboratoire, ou la disponibilité continue des stades de croissance appropriés à la réalisation des essais tout
au long de l'année.
Les méthodes d’essai recommandées dans le présent document ont été conçues initialement pour
l’évaluation des dangers liés aux produits chimiques et ont été, dans la plupart des cas, harmonisées au
niveau international (par exemple par l’ISO, l’OCDE ou l’UE). Dans la plupart d’entre elles, des dispositions
ont été prises pour adapter la conception de l’essai aux besoins énoncés dans le domaine d’application de la
présente Norme internationale. Cependant, dans de nombreux cas, il faut encore acquérir de l’expérience en
ce qui concerne l’application de ces méthodes d’essai à la caractérisation de la qualité du sol. En outre, le
choix des méthodes d’essai écotoxicologique pour l’évaluation des sols/matériaux du sol dépend de
l’utilisation/de la réutilisation prévue et des fonctions du sol à protéger, en particulier ses fonctions de rétention
et d’habitat.
Le Tableau 1 donne un exemple de programme décisionnel fondé sur la fonction pertinente.
4 © ISO 2003 — Tous droits réservés

Tableau 1 — Pertinence des essais écotoxicologiques vis-à-vis de la réutilisation du sol prévue
Fonction du sol
Fonction de rétention Fonction d’habitat
Réutilisation des sols
organismes aquatiques croissance des végétaux biocénoses du sol
Détection des effets biologiques
a
Sous les zones imperméables faible faible faible
Dans les zones non imperméables, à élevé faible faible
usage commercial et industriel
Couverture de décharge élevé élevé faible
Zones vertes, parcs et zones de élevé élevé élevé
loisirs
Zones utilisées en horticulture ou élevé élevé élevé
agriculture
a
S’applique uniquement à une zone non saturée du sol.
4.3 Considérations relatives à l’examen des fonctions du sol
4.3.1 Fonction de rétention
Le transport de fractions solubles, colloïdales ou particulaires par l’eau joue un rôle prédominant dans
l’évaluation des risques induits par les sols contaminés. En effet, non seulement l’eau peut mobiliser les
contaminants mais ces derniers et leurs métabolites peuvent avoir de graves effets sur les micro-organismes,
les plantes et la faune du sol.
Les éluats aqueux sont utiles pour déterminer les effets écotoxiques sur les organismes exposés du fait d’un
transport par l’eau. Il convient de tenir compte, d’une part, du fait que les substances mobilisées par l’eau
peuvent être soumises à différents types de modifications, par exemple le métabolisme ou l’hydrolyse,
lorsqu’elles sont transportées vers les eaux souterraines ou les eaux superficielles et d’autre part, du fait que
leur concentration peut également diminuer au cours du temps par dilution. De plus, des substances peuvent
être mobilisées dans le temps en raison de variations environnementales (par exemple pH, transformation
chimique et biologique). Les éluats peuvent servir d’indicateurs précoces de la contamination des eaux
interstitielles et souterraines avant que cette contamination atteigne les eaux de surface et les eaux potables.
Au vu de ces considérations, l’étude des eaux souterraines et des éluats est de la plus haute importance,
quelle que soit l’utilisation prévue pour le sol.
4.3.2 Fonction d’habitat
4.3.2.1 Représentativité des processus et organismes
La meilleure façon d’étudier l’aptitude d’un sol à héberger des organismes vivants consiste à mettre en œuvre
des méthodes d’essai comprenant des processus et organismes représentatifs des différents groupes
taxonomiques.
4.3.2.2 Matériaux du sol utilisés comme témoins pour les essais biologiques effectués sur des
matrices solides
Comme principe général de tous les essais écotoxicologiques, tous les critères d’effet mesurés lors d’un
traitement sont comparés à ceux mesurés sur le ou les témoins.
Pour évaluer l’aptitude du sol à héberger des organismes vivants, il est d’abord nécessaire de comparer le sol
ou les matériaux du sol contaminés avec un matériau témoin qui peut également servir à préparer les séries
de dilution avec l’échantillon contaminé.
Il est possible d’utiliser différents types de matériaux témoins:
 un sol non contaminé ayant des propriétés pédologiques comparables à celles de l’échantillon étudié;
 un matériau inerte (par exemple, du sable quartzeux);
 un sol naturel certifié (par exemple un sol étalon);
 un sol artificiel normalisé (voir l’ISO 11267, l’ISO 11268-1 et l’ISO 11268-2).
Le choix entre ces matériaux témoins dépend entièrement des objectifs de l’évaluation écotoxicologique, du
type d’essai biologique effectué et des exigences de l’organisme d’essai. Cette recommandation ne peut pas
être généralisée à tous les essais biologiques. L’ajout de sable à un sol ou à des matériaux du sol peut créer
un mélange compact incompatible avec le développement et la croissance de nombreux organismes (par
exemple des essais de croissance de plante). Il est préférable d’utiliser un matériau témoin plus complexe (tel
que du sol artificiel) pour la dilution, si cela peut offrir l’avantage de reproduire de manière plus fidèle
l’environnement naturel des organismes, même s’il peut interagir avec les polluants. L’introduction d’un
organisme dans un milieu qui ne correspond pas aux principales caractéristiques de son habitat naturel peut
engendrer un stress.
 Si l’on a besoin d’une courbe dose-réponse, il est permis d’utiliser l’un des matériaux témoins
susmentionnés pour diluer le substrat contaminé.
 Si l’objectif est de classer chaque échantillon de sol ou de matériaux du sol en termes de risque
d’écotoxicité, il est préférable d’utiliser un matériau inerte (par exemple du sable quartzeux) qui
n’interagira pas avec les polluants présents dans l’échantillon et dont la composition et la granulométrie
peuvent être rigoureusement normalisées.
Les exigences du matériau témoin doivent tenir compte des différentes utilisations du sol ainsi que de son
type et de son origine (par exemple sol non perturbé, matériau de remblayage, terre excavée, sol ayant fait
l’objet d’une remédiation). Une carence en nutriments, de même que des conditions physiques inadaptées,
peut engendrer des différences de croissance entre les végétaux et des différences de comportement entre
les animaux qui ne sont pas nécessairement dues à la situation liée aux polluants et au potentiel de danger.
 Si l’objectif est d’évaluer l’écotoxicité d’un échantillon de sol ou de matériaux du sol, prélevé dans un site
contaminé, il serait préférable d’utiliser un matériau témoin non contaminé similaire à l’échantillon étudié.
 Si l’objectif est d’évaluer l’écotoxicité de sols ou de matériaux du sol pouvant être réemployés pour
certaines utilisations spécifiques, il serait préférable d’utiliser comme matériau témoin tout matériau apte
à être ultérieurement mélangé avec le sol ou les matériaux du sol en question.
4.3.2.3 Sol utilisé comme substrat (milieu) pour les micro-organismes présents dans le sol
La microflore du sol représente en moyenne 80 % de la masse des organismes qui vivent dans le sol. En
combinaison avec la microfaune, les principales fonctions de la microflore sont la décomposition et la
dégradation des substances organiques complexes en nutriments facilement disponibles, maintenant ainsi les
cycles naturels des substances carbonée, azotée, phosphorée et soufrée.
La respiration induite par le substrat fournit un indicateur de la densité de la population microbienne.
Les bactéries nitrifiantes, qui sont responsables de l’oxydation de l’ammonium en nitrites et des nitrites en
nitrates, constituent un groupe très sensible de micro-organismes. Une réduction de la nitrification ne conduit
pas nécessairement à des changements significatifs dans l’écosystème. Toutefois, elle peut être utilisée
comme un indicateur sensible de l’inhibition d’un processus essentiel du sol.
6 © ISO 2003 — Tous droits réservés

La détermination de la biomasse microbienne ou de tout autre processus microbien dans les sols a pour objet
de permettre l’évaluation du maintien en continu de la fertilité du sol, de l’aptitude potentielle à dégrader les
composés organiques et des effets induits par les matériaux ajoutés sur la communauté microbienne
tellurique.
4.3.2.4 Sol utilisé comme substrat pour la croissance de végétaux
Après les micro-organismes, les racines des plantes représentent la plus grande surface biologique dans le
sol. Leur surface de contact avec les particules du sol est accrue par la présence de filaments racinaires et
d’associations mycorhiziennes (mycorhizes à vésicules et arbuscules avec les plantes cultivées et
ectomycorhizes supplémentaires avec les plantes ligneuses).
Comme dans le cas des autres essais biologiques proposés, les essais effectués avec des plantes
supérieures sont conçus pour permettre l’évaluation de la biodisponibilité et des effets des polluants,
respectivement décelés ou non par une analyse chimique. En retenant une période d’essai d’au moins
14 jours, les modifications à court terme produites dans le sol par la plante en essai proprement dite sont
prises en compte.
L’accumulation des polluants dans les plantes, leur métabolisme et leurs effets sur les consommateurs ne
sont pas étudiés dans le cadre de ces essais. Ils ne s’appliquent pas à l’évaluation de la fertilité et de la
productivité du sol.
4.3.2.5 Sol utilisé comme substrat pour la faune vivant dans le sol
La faune du sol remplit généralement les quatre fonctions suivantes:
a) activités mécaniques (drainage, aération, mélange, fragmentation mécanique);
b) modifications chimiques (augmentation de la disponibilité des nitrates et phosphates provenant des
excréments et formation accélérée de complexes argilo-humiques une fois que le substrat est issu de la
digestion);
c) modifications biologiques (répartition des micro-organismes dans la matrice du sol, effets synergiques par
stimulation de l’activité microbienne et décomposition de la matière organique);
d) maillons significatifs de la chaîne alimentaire.
On dispose d’essais à court et long terme pour examiner les effets des polluants sur la faune du sol. Pour
contrôler la fonction d’habitat, il est particulièrement recommandé de procéder à une caractérisation au moyen
de paramètres d’essais sublétaux.
Il convient d’utiliser une batterie d’essais car une seule méthode d’essai ne peut représenter correctement la
multitude des invertébrés extrêmement différents. Lors du choix d’une espèce particulière pour essai, il
convient de prendre en compte les critères suivants:
a) niveau trophique — il convient d’inclure, par exemple, les espèces saprophages et prédatrices;
b) groupes taxonomiques/physiologiques — il faut au moins choisir des représentants des annélides et des
arthropodes afin de couvrir la biodiversité des communautés du sol;
c) classe de taille/voie d’exposition: les espèces de la micro-, méso- et macro-faune ne représentent pas
seulement diverses classes de tailles mais également des styles de vie différents et donc des voies
d’exposition différentes (par exemple eau interstitielle par rapport à la consommation d’aliments);
d) rôle écologique — il est important de prendre au moins en compte les espèces hébergées dans le sol et
celles vivant dans la litière.
Il convient d’appliquer uniquement des méthodes normalisées au niveau international.
5 Échantillonnage, transport, stockage et préparation des échantillons
Avant de pouvoir évaluer la qualité du sol selon l’une des méthodes proposées, il est nécessaire de prélever
des échantillons de sol sur le site étudié. Il convient que l’échantillonnage du sol soit effectué par du
personnel compétent, ayant une connaissance suffisante de l’échantillonnage, de la manipulation des
échantillons et des mesures de sécurité sur les sites contaminés et les emplacements d’échantillonnage. Il
convient que la stratégie d’échantillonnage et la manipulation soient déterminées par les caractéristiques du
site à étudier, le type de contamination et les contraintes des essais biologiques (par exemple les quantités
d’échantillons de sol peuvent varier entre 100 mg et 100 kg, en fonction des essais choisis).
Enregistrer toutes les données relatives à l’échantillonnage, au transport et à la préparation des échantillons.
L’ISO 10381-6 donne des instructions concernant la conception des programmes d’échantillonnage, les
techniques d’échantillonnage, la sécurité, l’étude des sites naturels, cultivés, urbains et industriels, ainsi que
la collecte, la manipulation et le stockage du sol pour l’évaluation des processus microbiens aérobies et
anaérobies en laboratoire.
6 Limites des essais biologiques proposés pour les sols/matériaux du sol
Les systèmes d’essais biologiques sont peu adaptés aux polluants volatils. Il convient de développer d’autres
méthodes à ces fins. De même, il se peut que l’impact des contaminants organiques, facilement dégradables
dans des conditions aérobies, soit incomplètement décelé au moyen des méthodes décrites. Dans ce cas, il
convient d’appliquer d’autres méthodes d’échantillonnage et de préparation des échantillons.
NOTE Les méthodes d’essai terrestres et aquatiques proposées en A.1 et A.2 ont été mises au point pour évaluer le
potentiel écotoxique des produits chimiques. La caractérisation des sols ou des éluats de sol n’est pas leur objectif
premier. De ce fait, il est nécessaire d’adapter ces méthodes aux exigences spécifiques de l’évaluation du sol et du site.
8 © ISO 2003 — Tous droits réservés

Annexe A
(informative)
Formes normalisées des systèmes d'essai recommandés
A.1 Méthodes d’essai terrestres
A.1.1 Faune du sol
A.1.1.1 Collembola — Effets sur la reproduction
Voir Tableau A.1.
Tableau A.1
1 Titre de l’essai Qualité du sol — Inhibition de la reproduction de Collembola (Folsomia
candida) par des polluants du sol
2 Harmonisation
Internationale
3 Référence
ISO 11267
4 Principe Détermination de l’effet sur la reproduction des collemboles incubés
pendant une période d’essai de 4 semaines
5 Type d’essai Statique subchronique
6 Organisme d’essai Collemboles
espèce élevée Folsomia candida Willem 1902
âge De 10 d à 12 d
alimentation Levure sèche
7 Substrat d’essai Sol artificiel, sol contaminé
volume 30 g (masse à l’état humide)/récipient
8 Conditions d’essai
chambre d’essai Enceintes
température
(20 ± 2) °C
pH 6 ± 0,5
qualité/intensité lumineuse Entre 400 lx et 800 lx
durée d’illumination 12 h:12 h ou 16 h:8 h
humidité du sol Entre 40 % et 60 % de la capacité de rétention d’eau totale
9 Nombre de réplicats 4
10 Durée d’essai/incubation 28 d
11 Témoin négatif/sol utilisé pour la Sol artificiel
dilution
12 Critères de validité
Contrôle: mortalité < 20 %, reproduction minimale de 100 jeunes,
CV u 30 %
13 Témoin positif/toxique de référence E 605 forte (a. i. 507,5 g/l) Bétanal plus (a.i. 160 g/l)
CE50, CV
CNEO: de 0,18 mg/kg à 0,32 mg/kg; de 100 mg/kg à 200 mg/kg
14 Statistique Test t multiple, test u, analyse par régression
15 Critères d’effet
Mortalité des adultes, inhibition de la reproduction
16 Expression des résultats
CE (x = niveau d’effet en %, par exemple 10, 50), CSEO
x
17 Limites/commentaires:
L’essai a initialement été conçu pour déterminer les effets des substances ajoutées à un sol artificiel. Pour comparer ou
contrôler la qualité du sol, la méthode doit faire l’objet d’une adaptation. Il convient de s’assurer que tout sol témoin
utilisé satisfait aux exigences biologiques de l’espèce soumise à l’essai. Il peut s’avérer nécessaire d’augmenter le
nombre de réplicats du fait de l’hétérogénéité des échantillons prélevés sur le terrain.
A.1.1.2 Vers de terre — Toxicité aiguë
Voir Tableau A.2.
Tableau A.2
1 Titre de l’essai Qualité du sol — Effets des polluants vis-à-vis des vers de terre (Eisenia
fetida) — Détermination de la toxicité aiguë en utilisant des substrats de
sol artificiel.
2 Harmonisation Internationale
3 Référence
ISO 11268-1
4 Principe Détermination du pourcentage de mortalité des vers de terreau adultes
placés dans un substrat défini contenant la substance d’essai
5 Type d’essai Aigu, statique
6 Organisme d’essai Vers de terreau
espèce élevée Eisenia fetida Savigny, E. andrei Bouché
âge > 2 mois
alimentation Aucune
7 Substrat d’essai Sol artificiel
volume 500 g (masse à sec)
8 Conditions d’essai
chambre d’essai Enceinte pouvant être contrôlée
température (20 ± 2) °C
pH
6 ± 0,5
qualité/intensité lumineuse De 400 lx à 800 lx
durée d’illumination Entre 12 h:12 h ou 16 h:8 h
humidité du sol De 40 % à 60 % de la capacité de rétention d’eau
9 Nombre de réplicats
10 Durée d’essai/incubation
14 d
11 Témoin négatif/sol utilisé pour la
Sol artificiel
dilution
12 Critères de validité Contrôle: mortalité < 10 %, perte de biomasse u 20 %
13 Témoin positif/toxique de référence chloroacétamide,
CE50, CV CL50 de 20 mg/kg à 80 mg/kg
14 Statistique Test t multiple
15 Critères d’effet Mortalité, biomasse
16 Expression des résultats CL50 — 14 d
17 Limites/commentaires:
Comme pour l’ISO 11267.
Existe aussi comme méthode d’essai dans l’ASTM E1676-97 et comme ligne directrice 207 de l’OCDE pour les essais
des produits chimiques.
10 © ISO 2003 — Tous droits réservés

A.1.1.3 Vers de terre — Effets sur la reproduction
Voir Tableau A.3.
Tableau A.3
1 Titre de l’essai Qualité du sol — Effets des polluants vis-à-vis des vers de terre (Eisenia
fetida) — Détermination des effets sur la reproduction
2 Harmonisation Internationale
3 Référence ISO 11268-2
4 Principe Détermination du pourcentage de mortalité et des effets sur la croissance
et la reproduction des vers de terreau adultes placés dans un substrat
défini contenant la substance d’essai
5 Type d’essai Subchronique, statique
6 Organisme d’essai Vers de terreau
espèce élevée Eisenia fetida Savigny, E. andrei Bouché
âge > 2 mois < 1 an
alimentation Bouse de vache
7 Substrat d’essai Sol artificiel
volume De 500 g à 600 g (masse à sec)
8 Conditions d’essai
chambre d’essai Enceinte pouvant être contrôlée
température (20 ± 2) °C
pH
6 ± 0,5
qualité/intensité lumineuse De 400 lx à 800 lx
durée d’illumination Entre 12 h:12 h ou 16 h:8 h
humidité du sol De 40 % à 60 % de la capacité de rétention d’eau
9 Nombre de réplicats
10 Durée d’essai/incubation
8 semaines
11 Témoin négatif/sol utilisé pour la
Sol artificiel
dilution
12 Critères de validité Contrôle: 30 jeunes/récipient, CV u 30 %, mortalité adulte u 10 %
13 Témoin positif/toxique de référence
Carbendazime
CE50, CV CNEO: de 1 mg/ai à 5 mg/ai Carbendazime
14 Statistique Test t multiple, test u, analyse par régression
15 Critères d’effet Mortalité, croissance, reproduction
16 Expression des résultats CE50, CSEO
17 Limites/commentaires:
Comme pour l’ISO 11268-1.
A.1.1.4 Enchytraeidae — Effets sur la reproduction
Voir Tableau A.4.
Tableau A.4
1 Titre de l’essai Essai de reproduction d’Enchytraeidae
2 Harmonisation Rapport d’essai circulaire international, Recommandation de l’OCDE et
Norme ISO en préparation
3 Référence [38]
4 Principe Des vers Enchytraeidae adultes sont exposés à une substance d’essai
mélangée avec un sol artificiel. Au bout d’une période d’essai de
6 semaines, on détermine l’effet induit sur le paramètre sublétal
reproduction. La conception de l’essai inclut l’étude des éventuels effets
létaux (mortalité) sur les enchytraeides adultes.
5 Type d’essai Subchronique, statique
6 Organisme d’essai Enchytraeidae
espèce élevée Enchytraeus albidus Henle 1837 et autres espèces d’Enchytraeus
âge Vers adultes ayant des œufs dans la région du clitellum.
alimentation Flocons d’avoine
7 Substrat d’essai Sol artificiel
volume 20 g de masse à sec/récipient
8 Conditions d’essai
chambre d’essai Enceinte pouvant être contrôlée
température (20 ± 2) °C
pH
6 ± 0,5
qualité/intensité lumineuse De 400 lx à 800 lx
durée d’illumination De préférence 16 h:8 h
humidité du sol De 40 % à 60 % de la capacité de rétention d’eau
9 Nombre de réplicats De 2 à 4 selon la conception de l’essai (CSEO/CE )
x
10 Durée d’essai/incubation
6 semaines (essai final)
11 Témoin négatif/sol utilisé pour la Sol artificiel
dilution
12 Critères de validité Contrôle: mortalité u 20 %, nombre minimal de jeunes de 25/récipient,
CV u 50 %
13 Témoin positif/toxique de référence
Carbendazime CE50 1,2 mg a.i /kg ± 0,8 mg a.i /kg.
CE50, CV
14 Statistique Test t multiple, analyse par régression, analyse en «probits»
15 Critères d’effet Mortalité, reproduction
16 Expression des résultats CL50, CSEO, CE
x
17 Limites/commentaires:
Comme pour l’ISO 11267.
12 © ISO 2003 — Tous droits réservés

A.1.1.5 Oxythyrea funesta — Effets aigus
Voir Tableau A.5.
Tableau A.5
1 Titre de l’essai
Qualité du sol — Effets des polluants vis-à-vis les larves d’insectes
(Oxythyrea funesta) — Détermination de la toxicité aiguë au moyen des
substrats de sol
2 Harmonisation Internationale
3 Référence
ISO 20963
4 Principe Détermination du pourcentage de mortalité des Cetoniidae larvae placées
dans un substrat déterminé contenant la substance d’essai
5 Type d’essai Aigu, statique
6 Organisme d’essai Cetoniidae larvae (espèce Oxythyrea funesta)
espèce élevée Oxythyrea fuensta (Scarabaedoidae, Cetoniidae)
âge 15 d
alimentation Bouse de vache finement moulue
7 Substrat d’essai Sol artificiel
volume 300 g (masse à sec)
8 Conditions d’essai
chambre d’essai Enceinte pouvant être contrôlée
température (26 ± 1) °C
pH
6 ± 0,5
qualité/intensité lumineuse Obscurité
durée d’illumination —
humidité du sol 50 % de la capacité de rétention d’eau
9 Nombre de réplicats 3
10 Durée d’essai/incubation 10 d
11 Témoin négatif/sol utilisé pour la Sol artificiel
dilution
12 Critères de validité
Contrôle: mortalité u 10 %, perte de biomasse u 20 %
13 Témoin positif/toxique de référence, Chlorure mercurique, CL50 de 15 mg/kg à 45 mg/kg
CE50, CV
14 Statistique Test t multiple
15 Critères d’effet Mortalité, biomasse
16 Expression des résultats
CL50 — 10 d
17 Limites/commentaires:
Comme pour l’ISO 11267.
A.1.2 Flore du sol
A.1.2.1 Flore du sol — Inhibition de la croissance des racines
Voir Tableau A.6.
Tableau A.6
1 Titre de l’essai Qualité du sol — Détermination des effets des polluants sur la flore du sol
— Méthode de mesurage de l’inhibition de la croissance des racines
2 Harmonisation Internationale
3 Référence ISO 11269-1
4 Principe
Croissance de graines prégermées dans des conditions contrôlées. Les
différences de longueur des racines des pousses qui ont émergé dans le
milieu d’essai en comparaison avec celle des témoins montrent l’existence
d’un effet.
5 Type d’essai Aigu, statique
6 Organisme d’essai Orge (Hordeum vulgare L.)
espèce élevée Variété CV Triumph ou autres
âge Graines
alimentation Aucune
7 Substrat d’essai Sol d’essai, sol témoin, sable
volume 500 g de masse à sec/récipient
8 Conditions d’essai
chambre d’essai Chambre de croissance
température (20 ± 2) °C
qualité/intensité lumineuse 25 000 lm/m
durée d’illumination 12 h:12 h ou 16 h:8 h jour/nuit
humidité du sol
70 % ± 5 % de la capacité de rétention d’eau
9 Nombre de réplicats 3
10 Durée d’essai/incubation < > 7 d
11 Témoin négatif/sol utilisé pour la
Sol, sable
dilution
12 Critères de validité Non mentionnés
13 Témoin positif/toxique de référence Non mentionnés
CE50, CV
14 Statistique Test t multiple
15 Critères d’effet
Allongement des racines
16 Expression des résultats
CSEO
17 Limites/commentaires:
La présente méthode est applicable à tous les sols, matériaux du sol, déchets ou produits chimiques susceptibles d’être
appliqués au sol, sauf lorsque le polluant est hautement volatil ou n’affecte que la photosynthèse. Elle peut être utilisée
pour comparer des sols, contrôler les modifications de leur activité ou déterminer l’effet induit par l’ajout de substances.
Elle n’est pas destinée à être utilisée pour mesurer la capacité du sol à supporter une croissance soutenue de plantes.
En cas de sol pollué, il peut s’avérer nécessaire de procéder à une dilution avant les essais avec du sol non pollué ou
du sable.
L’essai de plante proposé n’est pas adapté aux échantillons de sol ayant une structure très perturbée (par exemple
mélanges de sol et de pierraille). Dans ces cas, il peut s’ensuivre une inhibition sans pollution importante.
14 © ISO 2003 — Tous droits réservés

A.1.2.2 Flore du sol – Effets sur l’émergence et la croissance
Voir Tableau A.7.
Tableau A.7
1 Titre de l’essai
Qualité du sol — Détermination des effets des polluants sur la flore du
sol — Effets des substances chimiques sur l’émergence et la croissance
des végétaux supérieurs
2 Harmonisation Internationale
3 Référence ISO 11269-2
4 Principe Réponse en matière d’émergence et de croissance précoce de plusieurs
espèces de plantes terrestres à l’ajout dans le sol d’un produit chimique à
différentes concentrations
5 Type d’essai Subchronique, statique
6 Organisme d’essai Plantes monocotylédones et dicotylédones
espèce élevée Espèces variées
âge Graines
alimentation Ne s’appli
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...