ISO 16075-4:2021
(Main)Guidelines for treated wastewater use for irrigation projects — Part 4: Monitoring
Guidelines for treated wastewater use for irrigation projects — Part 4: Monitoring
This document provides recommendations regarding: — monitoring the quality of treated wastewater (TWW) for irrigation; — monitoring irrigated plants; — monitoring the soil with regard to salinity; — monitoring natural water sources in neighbouring environments; — monitoring the quality of water in storage reservoirs. It puts emphasis on sampling methods and their frequency. Regarding the methods of analysis, this document refers to standard methods or, where not available, to other bibliographical references. NOTE In cases where a monitoring plan already exists, these recommendations can be integrated into this plan. This is notably the case when a broader approach of risk management is implemented, such as the water safety plans (serving as a model for sanitation safety plans) developed by WHO[16].
Lignes directrices pour l'utilisation des eaux usées traitées en irrigation — Partie 4: Surveillance
Le présent document fournit des recommandations concernant: — la surveillance de la qualité des eaux usées traitées (abrégées en EUT) pour l’irrigation; — la surveillance des cultures irriguées; — la surveillance de la salinité du sol; — la surveillance des sources d’eau naturelle dans les environs; — la surveillance de la qualité de l’eau dans les réservoirs de stockage. Le présent document met l’accent sur les méthodes et la fréquence d’échantillonnage. Concernant les méthodes d’analyse, il se réfère à des méthodes normalisées ou, lorsque celles-ci font défaut, à d’autres références bibliographiques. NOTE Dans les cas où un plan de surveillance existe déjà, les présentes recommandations peuvent être intégrées à ce plan. C’est le cas notamment lorsqu’une approche de gestion du risque de plus grande portée est mise en œuvre, par exemple les plans de gestion de la sécurité sanitaire de l’eau (qui servent de modèle aux plans de sécurité sanitaire de l’assainissement) élaborés par l’Organisation mondiale de la Santé[16].
General Information
Relations
Standards Content (Sample)
INTERNATIONAL ISO
STANDARD 16075-4
Second edition
2021-05
Guidelines for treated wastewater use
for irrigation projects —
Part 4:
Monitoring
Lignes directrices pour l'utilisation des eaux usées traitées en
irrigation —
Partie 4: Surveillance
Reference number
©
ISO 2021
© ISO 2021
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2021 – All rights reserved
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms definitions, and abbreviated terms . 1
3.1 Terms and definitions . 1
3.2 Abbreviated terms . 2
4 Monitoring of the quality of TWW for irrigation . 2
4.1 General . 2
4.2 Sampling procedure . 3
4.2.1 General. 3
4.2.2 Sampling from an irrigation system . 4
4.2.3 Sampling from a storage reservoir . 5
4.2.4 Composite sample . . 5
4.2.5 Sample handling . 5
4.3 TWW monitoring plan . 6
4.4 Analytical methods for TWW . 8
5 Monitoring of the irrigated crops . 8
5.1 General . 8
5.2 Frequency of monitoring . 8
5.2.1 Field crops and vegetables . 8
5.2.2 Perennial crops. 8
6 Monitoring of the soil with regard to salinity . 9
6.1 Soil sampling . 9
6.2 Frequency of the soil sampling . 9
6.3 Sampling procedure .10
6.3.1 Drip irrigation .10
6.3.2 Sprinkler and micro-jet irrigation .10
6.4 Sample preparation .10
6.5 Soil test methods .10
7 Receiving environment monitoring .10
7.1 General .10
7.2 Monitoring programme purpose .11
7.3 Groundwater sampling .11
7.4 Surface water sampling .12
8 Quality assurance and quality control .12
Bibliography .14
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www .iso .org/
iso/ foreword .html.
This document was prepared by Technical Committee ISO/TC 282, Water reuse, Subcommittee SC 1,
Treated wastewater reuse for irrigation.
This second edition cancels and replaces the first edition (ISO 16075-4:2016), which has been
technically revised.
The main changes compared to the previous edition are as follows:
— editorial update.
A list of all parts in the ISO 16075 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www .iso .org/ members .html.
iv © ISO 2021 – All rights reserved
Introduction
The increasing water scarcity and water pollution control efforts in many countries have made treated
municipal and industrial wastewater a suitable economic means of augmenting the existing water
supply, especially when compared to expensive alternatives such as desalination or the development
of new water sources involving dams and reservoirs. Water reuse makes it possible to close the water
cycle at a point closer to cities by producing “new water” from municipal wastewater and reducing
wastewater discharge to the environment. The reuse of treated wastewater could be also a beneficial
solution to improve water body’s quality, such as for example avoiding wastewater treatment plants
discharge upstream sensitive areas (shellfish aquaculture area, swimming area).
An important new concept in water reuse is the “fit-to-purpose” approach, which entails the production
of reclaimed water quality that meets the needs of the intended end-users. In the situation of reclaimed
water for irrigation, the reclaimed water quality can induce an adaptation of the type of plant grown.
Thus, the intended water reuse applications should govern the degree of wastewater treatment
required, and inversely, the reliability of wastewater reclamation processes and operation.
Treated wastewater (TWW, also referred to as reclaimed water or recycled water) can be used for
various non-potable purposes. The dominant applications for the use of TWW include agricultural
irrigation, landscape irrigation, industrial reuse and groundwater recharge. More recent and rapidly
growing applications are for various urban uses, recreational and environmental uses and indirect and
direct potable reuse.
Agricultural irrigation was, is and will likely remain the largest TWW consumer with recognized
benefits and contribution to food security. Urban water recycling, in particular landscape irrigation,
is characterized by fast development and will play a crucial role for the sustainability of cities in the
future, including energy footprint reduction, human well-being and environmental restoration.
The suitability of TWW for a given type of reuse depends on the compatibility between the wastewater
availability (volume) and water irrigation demand throughout the year, as well as on the water
quality and the specific use requirements. Water reuse for irrigation can convey some risks for health
and environment, depending on the water quality, the irrigation water application method, the soil
characteristics, the climate conditions and the agronomic practices. Consequently, public health and
potential agronomic and environmental adverse impacts need to be considered as priority elements
in the successful development of water reuse projects for irrigation. To prevent such potential adverse
impacts, the development and application of international guidelines for the reuse of TWW is essential.
The main water quality factors that determine the suitability of TWW for irrigation are pathogen
content, salinity, sodicity, specific ion toxicity, other chemical elements and nutrients. Local health
authorities are responsible for establishing water quality threshold values depending on authorized
uses and they are also responsible for defining practices to ensure health and environmental protection
taking in account local specificities.
From an agronomic point of view, the main limitation in using TWW for irrigation arises from its
quality. Treated wastewater, unlike water supplied for domestic and industrial purposes contains
higher concentrations of inorganic suspended and dissolved materials (total soluble salts, sodium,
chloride, boron, heavy metals), which can damage the soil and irrigated crops. As dissolved salts are
not removed by conventional wastewater treatment technologies and appropriate good management,
agronomic and irrigation practices should be used to avoid or minimize potential negative impacts.
The presence of nutrients (nitrogen, phosphorus and potassium) can become an advantage due to
possible saving in fertilizers. However, the amount of nutrients provided by TWW along the irrigation
period is not necessarily synchronized with crop requirements, and the availability of nutrients
depends on the chemical forms.
This document provides guidance for healthy, hydrological, environmental and good operation,
monitoring and maintenance of water reuse projects for unrestricted and restricted irrigation of
agricultural crops, gardens and landscape areas using treated wastewater. The quality of supplied
TWW should reflect the possible uses according to crop sensitivity (health-wise and agronomy-wise),
water sources (the hydrologic sensitivity of the project area), the soil and climate conditions.
This document refers to factors involved in water reuse projects for irrigation regardless of size,
location and complexity. It is applicable to intended uses of TWW in a given project, even if such uses
will change during the project’s lifetime; as a result of changes in the project itself or in the applicable
legislation.
The key factors in assuring the health, environmental and safety of water reuse projects in irrigation
are:
— adequate monitoring of TWW quality to ensure the system functions as planned and designed;
— design and maintenance instructions of the irrigation systems to ensure their proper long-term
operation;
— compatibility between the TWW quality, the distribution method and the intended soil and crops to
ensure a viable use of the soil and undamaged crop growth;
— compatibility between the TWW quality and its use to prevent or minimize possible contamination
of groundwater or surface water sources.
This document is not intended to prevent the creation of more specific standards or guides which are
better adapted to specific regions, countries, areas, or organizations. If such documents are published,
it is recommended to reference this document to ensure uniformity throughout the treated wastewater
use community.
vi © ISO 2021 – All rights reserved
INTERNATIONAL STANDARD ISO 16075-4:2021(E)
Guidelines for treated wastewater use for irrigation
projects —
Part 4:
Monitoring
1 Scope
This document provides recommendations regarding:
— monitoring the quality of treated wastewater (TWW) for irrigation;
— monitoring irrigated plants;
— monitoring the soil with regard to salinity;
— monitoring natural water sources in neighbouring environments;
— monitoring the quality of water in storage reservoirs.
It puts emphasis on sampling methods and their frequency. Regarding the methods of analysis, this
document refers to standard methods or, where not available, to other bibliographical references.
NOTE In cases where a monitoring plan already exists, these recommendations can be integrated into this
plan. This is notably the case when a broader approach of risk management is implemented, such as the water
[16]
safety plans (serving as a model for sanitation safety plans) developed by WHO .
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 20670, Water reuse — Vocabulary
ISO 16075-1, Guidelines for treated wastewater use for irrigation projects — Part 1: The basis of a reuse
project for irrigation
3 Terms definitions, and abbreviated terms
3.1 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 20670 and ISO 16075-1 apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at http:// www .electropedia .org/
3.2 Abbreviated terms
BOD biochemical oxygen demand
CFU colony forming units
COD chemical oxygen demand
DO dissolved oxygen
HDPE high-density polyethylene
PP polypropylene
QA quality assurance
QC quality control
SAR sodium adsorption ratio
SS suspended solids
TKN total Kjeldahl nitrogen
TP total phosphorus
TSS total suspended solids
TWW treated wastewater
VOC volatile organic compounds
WW wastewater
WWTP wastewater treatment plant
4 Monitoring of the quality of TWW for irrigation
4.1 General
The development and implementation of an appropriate monitoring strategy is a crucial step for the
health and environmental safety of water reuse projects. This compliance monitoring is performed
usually at the outlet of the wastewater treatment plant.
Monitoring can be undertaken for a range of purposes, and for each specific objective, different
parameters may be selected. For example, water quality monitoring can be implemented for the
following purposes:
a) human health protection: monitoring programmes include selected microbial indicators at
concentrations that depend on health risk (risk of direct contact, risk related to the type of crops,
etc.), as well as few other parameters, which indicate the reliability of operation of the wastewater
treatment (e.g. turbidity, suspended solids, BOD, residual chlorine, etc.);
b) prevention of adverse effect on crops: monitored parameters (named also agronomic parameters)
include nutrients, soluble salts, sodium, trace elements, etc.);
c) prevention of adverse effects on environment (natural water sources and soil);
d) prevention of clogging of irrigation system, e.g. drip and sprinkler irrigation.
2 © ISO 2021 – All rights reserved
The selection of sampling points to control water quality and treatment performance, named
“performance control points”, should depend on the type of application and the level of health and
environmental risks.
The key water quality control point should be located at the outlet of the wastewater reclamation plant.
[2]
Sampling at the plant outlet should follow ISO 5667-4. Treated wastewater should be monitored either
through grab sampling or composite sampling (see below), depending on the monitored parameters.
Composite samples (as a rule for 24 h using refrigerated equipment) are very important for
relevant monitoring of physico-chemical parameters as they represent the average quality of TWW.
Microbiological parameters, dissolved oxygen, pH and temperature should be monitored in grab
samples in situ, if possible during diurnal peak flow.
Similarly, the sampling frequency of other parameters related to prevention of adverse effects on
crops, soils and environment should be adapted to risk associated with sensitive crops and/or sensitive
environment (e.g. shallow aquifers used for potable water supply), and/or specific irrigation equipment.
The decision about the sampling (composite or grab) for these parameters should also take into account
the daily variations in raw wastewater.
4.2 Sampling procedure
4.2.1 General
Depending on the type of the monitored parameters, there exist some basic sampling rules described
in standard methods and International Standards for water analysis or some specific analytical
procedures defined by certified laboratories.
Sampling of TWW for irrigation should follow the list below:
— The sampling should be done by skilled employee.
— The type of samples can be either grab or composite samples to be used for water quality monitoring
depending on the final objectives,
— All samples should be well labelled, indicating the type of water, site location, date, time and other
pertinent data,
— Sampling frequency should be defined by water reuse granted permit,
— For better planning and management of the irrigation scheme, seasonal samples should be taken
depending on seasons in the concerned region, in order to obtain representative data on the
variation in water quality, in particular nitrogen and salinity,
— The baseline monitoring for human health protection should be undertaken by sampling at the
[1]
outlet of the treatment facility (see ISO 16075-2:2020, Table 1 ).
To check the reliability of operation of treatment processes, additional sampling points may be added
when necessary, particularly in the case of non-compliance.
— For verification of potential contamination or regrowth in storage reservoirs and/or distribution
network, additional control points for sampling can be established as a function of the final use, site
location and irrigation method, to verify potential contamination or regrowth in storage reservoirs
and/or in the distribution network.
— Bottle type should be determined according to the parameters tested. It should be taken into
account that some types of glass bottles yield boron to the samples and to prevent it high-density
polyethylene (HDPE) or polypropylene (PP) bottles with double caps or self-sealing caps may be
used.
As the sample quantity depends on the type of analysis to be performed, for the analysis of the
basic water characteristics and the main anions and cations, 1 l of sample can be sufficient.
— Sampling and handling should be done safely with suitable precaution to avoid disease transmission
by means of plastic gloves or using other protection.
Quality control samples should be collected as part of any routine sampling programme. Sampling and
handling of raw wastewater and treated wastewater should follow Table 1.
Table 1 — Recommendations for sample preparation and conservation
Parameter Type of bottle Addition of Conservation Comments
chemicals
Anions and cations 1 l HDPE or PP No additive Dark, 4 °C Temperature, pH and
(chloride, sulfate), as bottles with double dissolved oxygen should
well as general physico- caps or self-sealing be measured on site.
chemical parameters caps, with or
(pH, suspended solids, without air
conductivity, turbidity)
Phosphorus and 1 l HDPE or PP H SO to pH = 2 Dark, 4 °C
2 4
N Kjeldahl bottles with double
caps or self-sealing
caps, with or
without air
Boron 100 ml HDPE or PP HNO to pH = 2 Dark, 4 °C
bottles with double
caps or self-sealing
caps
COD 100 ml HDPE or PP H SO to pH = 2 Dark, 4 °C No additive is needed if
2 4
bottles with double the samples are analysed
caps or self-sealing within 48 h.
caps, no air
BOD 500 ml HDPE or PP No additive Dark, 4 °C Na SO should be used
2 3
bottles with double for dealing with samples
caps or self-sealing with residual chlo-
caps, no air rine. Sample should be
Preserved and added
seed for chlorinated and
dechlorinated wastewa-
ter samples.
Trace elements and 250 ml HDPE or PP HNO to pH = 2 Dark, 4 °C A special bottle [such as
heavy metals bottles with double polytetrafluoroethylene
caps or self-sealing (PTFE)] and additive are
caps, with or needed for the analysis
without air of mercury (Hg).
Trace organics and pes- 1 l dark glass bottle Ascorbic acid Dark 4 °C
−1
ticides or PTFE bottle, no air (1000 mg l ) if
rinsed with organic residual chlorine
solvents is present
Microbiological param- 1 l to 5 l sterile No additive Dark, 4 °C Additive of sodium
eters (total and faecal HDPE or PP bottles thiosulfate at a well-de-
coliforms, helminths, with double caps or fined concentration is
viruses, or other addi- self-sealing caps bot- mandatory in presence
tional microbiological tle, with air of residual chlorine and
parameters) recommended in all
cases.
4.2.2 Sampling from an irrigation system
Water quality should be checked by the end user according to the following procedure:
a) Turn on the irrigation system until the system operates to full designed pressure and let the system
irrigate until the pipes have flushed of all stagnant water from the previous irrigation event.
4 © ISO 2021 – All rights reserved
b) Collect a sample from a tap located at the entrance to the irrigation system or from an irrigation
emitter (a sprinkler, micro-jet or a dripper).
c) The water sample should be collected in bottles as provided or recommended by the analytical
laboratory or procedure and the parameters to be tested (see Table 1). For bacterial sampling, a
sterile bottle should be used. Write all necessary details on a sticker attached to the bottle (name,
address, date, location, etc.) and seal the lid.
d) Preserve samples according to standard laboratory practice and transport them to an analytical
laboratory within the time period recommended for the analysis (see Table 1).
e) Water sampling should not be taken when fertigation (fertilization through irrigation) is taking
place.
[3]
For more information about sampling from an irrigation system, see ISO 5667-10 .
4.2.3 Sampling from a storage reservoir
To evaluate a potential evolution of treated wastewater quality during storage, a sample from the
storage reservoir should be taken.
The best way to measure the quality of TWW that was stored in a reservoir is by sampling the TWW at
appropriate sampling point situated at the exit of the reservoir's pumping station.
In periods of no irrigation from the reservoir, the sample should be taken directly from the storage
reservoir, according to the following procedures:
a) It is recommended to take the sample as close as possible to the pumping point;
b) Avoid sampling downwind to prevent the collection of floating materials (plant or algae residues)
transported by water waves to the downwind side of the storage reservoir;
c) Att
...
NORME ISO
INTERNATIONALE 16075-4
Deuxième édition
2021-05
Lignes directrices pour l'utilisation
des eaux usées traitées en
irrigation —
Partie 4:
Surveillance
Guidelines for treated wastewater use for irrigation projects —
Part 4: Monitoring
Numéro de référence
DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2021
Tous droits réservés. Sauf prescription différente ou nécessité dans le contexte de sa mise en œuvre, aucune partie de cette
publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique,
y compris la photocopie, ou la diffusion sur l’internet ou sur un intranet, sans autorisation écrite préalable. Une autorisation peut
être demandée à l’ISO à l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Case postale 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Genève
Tél.: +41 22 749 01 11
E-mail: copyright@iso.org
Web: www.iso.org
Publié en Suisse
ii
Sommaire Page
Avant-propos .iv
Introduction .v
1 Domaine d’application . 1
2 Références normatives .1
3 Termes, définitions et abréviations . 1
3.1 Termes et définitions . 1
3.2 Abréviations. 2
4 Surveillance de la qualité des EUT destinées à l’irrigation . 2
4.1 Généralités . 2
4.2 Mode opératoire d’échantillonnage . 3
4.2.1 Généralités . 3
4.2.2 Échantillonnage de l’eau d’un système d’irrigation . 5
4.2.3 Échantillonnage de l’eau d’un réservoir de stockage . 5
4.2.4 Échantillon composite . 6
4.2.5 Manipulation des échantillons . 6
4.3 Plan de surveillance des EUT . . 6
4.4 Méthodes d’analyse relatives aux EUT . 9
5 Surveillance des cultures irriguées . 9
5.1 Généralités . 9
5.2 Fréquence de surveillance . 9
5.2.1 Cultures de plein champ et légumes . 9
5.2.2 Cultures pérennes . 9
6 Surveillance de la salinité du sol .10
6.1 Échantillonnage du sol . 10
6.2 Fréquence d’échantillonnage du sol. 10
6.3 Mode opératoire d’échantillonnage . 11
6.3.1 Irrigation par goutte-à-goutte. 11
6.3.2 Irrigation par arrosage et par mini-diffuseurs . 11
6.4 Préparation des échantillons . 11
6.5 Méthodes d’analyse des sols . 11
7 Surveillance du milieu récepteur .12
7.1 Généralités .12
7.2 Objectif du programme de surveillance .12
7.3 Échantillonnage des eaux souterraines .12
7.4 Échantillonnage des eaux de surface . 13
8 Assurance qualité et contrôle qualité .13
Bibliographie .15
iii
Avant-propos
L’ISO (Organisation internationale de normalisation) est une fédération mondiale d’organismes
nationaux de normalisation (comités membres de l’ISO). L’élaboration des Normes internationales est
en général confiée aux comités techniques de l’ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l’ISO participent également aux travaux.
L’ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui
concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier de prendre note des différents
critères d’approbation requis pour les différents types de documents ISO. Le présent document
a été rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2
(voir www.iso.org/directives).
L'attention est attirée sur le fait que certains des éléments du présent document peuvent faire l'objet de
droits de propriété intellectuelle ou de droits analogues. L'ISO ne saurait être tenue pour responsable
de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant
les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de
l'élaboration du document sont indiqués dans l'Introduction et/ou dans la liste des déclarations de
brevets reçues par l'ISO (voir www.iso.org/brevets).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données
pour information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un
engagement.
Pour une explication de la nature volontaire des normes, la signification des termes et expressions
spécifiques de l'ISO liés à l'évaluation de la conformité, ou pour toute information au sujet de l'adhésion
de l'ISO aux principes de l’Organisation mondiale du commerce (OMC) concernant les obstacles
techniques au commerce (OTC), voir www.iso.org/avant-propos.
Le présent document a été élaboré par le Comité technique ISO/TC 282, Recyclage des eaux, sous-
comité SC 1, Recyclage des eaux usées traitées à des fins d’irrigation.
Cette deuxième édition annule et remplace la première édition (ISO 16075-4:2016), qui a fait l’objet
d’une révision technique.
Les principales modifications par rapport à l’édition précédente sont les suivantes:
— mise à jour rédactionnelle.
Une liste de toutes les parties de la série ISO 16075 se trouve sur le site web de l’ISO.
Il convient que l’utilisateur adresse tout retour d’information ou toute question concernant le présent
document à l’organisme national de normalisation de son pays. Une liste exhaustive desdits organismes
est disponible à l’adresse www.iso.org/members.html.
iv
Introduction
Au vu des efforts croissants déployés par de nombreux pays pour pallier la rareté et la pollution
de leurs ressources en eau, les eaux usées municipales et industrielles traitées sont devenues un
moyen économique judicieux pour augmenter les quantités disponibles, notamment par rapport à
des alternatives coûteuses telles que le dessalement ou le développement de nouvelles sources d’eau
impliquant la construction de barrages et de réservoirs. La réutilisation de l’eau permet de fermer le
cycle de l’eau plus près des villes, en produisant une «eau neuve» à partir des eaux usées municipales
et en réduisant les rejets d’eaux usées dans l’environnement. La réutilisation des eaux usées traitées
pourrait également être une solution avantageuse pour améliorer la qualité des masses d’eau, par
exemple en évitant les rejets des stations d’épuration des eaux usées en amont de zones sensibles (zones
d’aquaculture (fruits de mer), zones de natation).
Un nouveau concept important en matière de réutilisation des eaux usées est l’approche «adaptée
aux besoins», qui implique la production d’eau réutilisée d’une qualité répondant aux besoins des
utilisateurs finaux prévus. Dans le cas de l’eau réutilisée destinée à l’irrigation, la qualité de l’eau peut
conduire à adapter les types de végétaux cultivés. Il convient donc que les applications prévues de
réutilisation de l’eau dictent le degré de traitement requis pour les eaux usées, et réciproquement, de
même que la fiabilité et l’entretien des systèmes de réutilisation des eaux usées.
Les eaux usées traitées (EUT, également qualifiées d’eaux réutilisées ou d’eaux recyclées) peuvent
être utilisées à différentes fins comme eau non potable. Les principales applications utilisant les EUT
comprennent l’irrigation des terres agricoles, l’irrigation des espaces verts, la réutilisation industrielle
et la recharge de nappe. Des applications plus récentes, qui se développent rapidement, ciblent
différents usages: urbain, récréatif, environnemental, ainsi que la réutilisation directe et indirecte pour
la production d’eau potable.
L’irrigation des terres agricoles a toujours été et restera probablement le secteur qui consomme le plus
d’eaux usées traitées, les avantages de cette pratique et sa contribution à la sécurité alimentaire étant
reconnus. Le recyclage de l’eau pour des applications urbaines, et notamment l’irrigation des espaces
verts, se caractérise par un essor rapide et jouera un rôle décisif pour le développement durable des
villes à l’avenir, y compris du point de vue de la réduction de l’empreinte énergétique, du bien-être de la
population et de la restauration de l’environnement.
L’adéquation des EUT à un type de réutilisation donné dépend de la correspondance entre la disponibilité
des eaux usées (leur volume) et la demande en eau d’irrigation tout au long de l’année, ainsi que de la
qualité de l’eau et des exigences spécifiques d’utilisation. La réutilisation de l’eau pour l’irrigation peut
comporter certains risques pour la santé et l’environnement, en fonction de la qualité de l’eau, de la
méthode d’application de l’eau d’irrigation, des caractéristiques du sol, des conditions climatiques et
des pratiques agronomiques. Par conséquent, il est nécessaire de considérer la santé publique et les
impacts négatifs potentiels sur l’agronomie et l’environnement comme des aspects prioritaires afin
de réussir le développement de projets de réutilisation de l’eau pour l’irrigation. Afin de prévenir de
tels impacts négatifs potentiels, il est essentiel d’élaborer et de mettre en œuvre des lignes directrices
internationales pour la réutilisation des EUT.
Les principaux critères de qualité d'eau déterminant l’adéquation des EUT pour l’irrigation sont la
teneur en agents pathogènes, la salinité, la sodicité, la toxicité d’ions spécifiques, les autres éléments
chimiques et les nutriments. Il incombe aux autorités sanitaires locales d’établir des valeurs seuils
de qualité de l’eau en fonction des utilisations autorisées et de définir des pratiques pour garantir la
protection sanitaire et environnementale en tenant compte des spécificités locales.
D’un point de vue agronomique, la principale limitation à l’utilisation des EUT en irrigation est liée à leur
qualité. Les eaux usées traitées, contrairement à l’eau destinée à des usages domestiques et industriels,
contiennent de plus fortes concentrations de matières inorganiques en suspension et dissoutes (sels
totaux solubles, sodium, chlorures, bore, métaux lourds), qui peuvent nuire au sol et aux cultures
irriguées. Les sels dissous n’étant pas éliminés par les techniques conventionnelles de traitement des
eaux usées, il convient d’adopter de bonnes pratiques en matière de gestion, d’agronomie et d’irrigation
pour éviter ou réduire le plus possible les impacts négatifs potentiels.
v
La présence de nutriments (azote, phosphore et potassium) peut constituer un avantage en raison des
économies d’engrais qu’elle permet. Cependant, la quantité de nutriments fournie par les EUT tout au
long de la période d’irrigation ne coïncide pas forcément avec les besoins des cultures et la disponibilité
des nutriments dépend de leur forme chimique.
Le présent document fournit des recommandations pour assurer le déroulement, la surveillance et
la maintenance dans de bonnes conditions, sur les plans sanitaire, hydrologique et environnemental,
des projets de réutilisation de l’eau pour l’irrigation non restreinte et restreinte de cultures agricoles,
de jardins et d’espaces verts avec des eaux usées traitées. Il convient que la qualité des EUT fournies
corresponde aux utilisations possibles en fonction de la sensibilité des cultures (sur le plan sanitaire
et sur le plan agronomique), des sources d’eau (sensibilité hydrologique de la zone concernée par le
projet), du sol et des conditions climatiques.
Le présent document porte sur les facteurs entrant en ligne de compte dans les projets de réutilisation
de l’eau pour l’irrigation, indépendamment de leur taille, de leur complexité et de leur situation
géographique. Il est applicable aux utilisations des EUT prévues dans un projet donné, même si ces
utilisations sont amenées à changer pendant la durée de vie du projet, du fait de modifications apportées
au projet lui-même ou à la législation en vigueur.
Les principaux facteurs entrant en jeu pour assurer la sécurité, en matière de santé et d’environnement,
des projets de réutilisation de l’eau en irrigation sont les suivants:
— une surveillance méticuleuse de la qualité des EUT pour garantir le fonctionnement du système
conformément aux prévisions et à la conception;
— des instructions de conception et de maintenance des systèmes d’irrigation pour garantir leur bon
fonctionnement à long terme;
— la compatibilité entre la qualité des EUT, la méthode de distribution et le type de sol et de cultures à
irriguer pour garantir une exploitation viable du sol et une croissance normale des cultures;
— l’adéquation entre la qualité des EUT et leur utilisation pour empêcher ou réduire le plus possible
toute contamination éventuelle des sources d’eaux souterraines ou d’eaux de surface.
Le présent document n’a pas vocation à empêcher l’élaboration de normes ou de guides plus spécifiques,
mieux adaptés à des régions, des pays, des zones ou des organismes particuliers. Si des documents de
ce type sont publiés, il est recommandé qu’ils fassent référence au présent document afin de garantir
l’uniformité au sein de tous les acteurs utilisant des eaux usées traitées.
vi
NORME INTERNATIONALE ISO 16075-4:2021(F)
Lignes directrices pour l'utilisation des eaux usées traitées
en irrigation —
Partie 4:
Surveillance
1 Domaine d’application
Le présent document fournit des recommandations concernant:
— la surveillance de la qualité des eaux usées traitées (abrégées en EUT) pour l’irrigation;
— la surveillance des cultures irriguées;
— la surveillance de la salinité du sol;
— la surveillance des sources d’eau naturelle dans les environs;
— la surveillance de la qualité de l’eau dans les réservoirs de stockage.
Le présent document met l’accent sur les méthodes et la fréquence d’échantillonnage. Concernant les
méthodes d’analyse, il se réfère à des méthodes normalisées ou, lorsque celles-ci font défaut, à d’autres
références bibliographiques.
NOTE Dans les cas où un plan de surveillance existe déjà, les présentes recommandations peuvent être
intégrées à ce plan. C’est le cas notamment lorsqu’une approche de gestion du risque de plus grande portée est
mise en œuvre, par exemple les plans de gestion de la sécurité sanitaire de l’eau (qui servent de modèle aux plans
[16]
de sécurité sanitaire de l’assainissement) élaborés par l’Organisation mondiale de la Santé .
2 Références normatives
Les documents suivants sont cités dans le texte de sorte qu’ils constituent, pour tout ou partie de leur
contenu, des exigences du présent document. Pour les références datées, seule l’édition citée s’applique.
Pour les références non datées, la dernière édition du document de référence s’applique (y compris les
éventuels amendements).
ISO 16075-1, Lignes directrices pour l'utilisation des eaux usées traitées dans les projets d'irrigation —
Partie 1: Les bases d'un projet de réutilisation pour l'irrigation
ISO 20670, Réutilisation de l'eau — Vocabulaire
3 Termes, définitions et abréviations
3.1 Termes et définitions
Pour les besoins du présent document, les termes et définitions de l’ISO 16075-1 et de l’ISO 20670
s’appliquent.
L’ISO et l’IEC tiennent à jour des bases de données terminologiques destinées à être utilisées en
normalisation, consultables aux adresses suivantes:
— ISO Online browsing platform: disponible à l’adresse https:// www .iso .org/ obp
— IEC Electropedia: disponible à l’adresse https:// www .electropedia .org/
3.2 Abréviations
AQ assurance qualité
COV composés organiques volatils
CQ contrôle qualité
DBO demande biochimique en oxygène
DCO demande chimique en oxygène
EU eaux usées
EUT eaux usées traitées
MES matières en suspension
MEST matières en suspension totales
OD oxygène dissous
PEHD polyéthylène haute densité
PP polypropylène
PT phosphore total
SAR taux d’absorption du sodium
STEP station d’épuration des eaux usées
TKN azote total Kjeldahl
UFC unités formant colonies
4 Surveillance de la qualité des EUT destinées à l’irrigation
4.1 Généralités
L’élaboration et la mise en œuvre d’une stratégie de surveillance appropriée représentent une étape
très importante pour la sécurité sanitaire et environnementale des projets de réutilisation de l’eau.
Cette surveillance de conformité s’effectue habituellement à la sortie de la station d’épuration des eaux
usées.
La surveillance peut répondre à différentes finalités et, pour chaque objectif spécifique, il est admis de
choisir des paramètres différents. Par exemple, la surveillance de la qualité de l’eau peut être entreprise
dans les buts suivants:
a) protection de la santé humaine: les programmes de surveillance incluent des indicateurs
microbiens sélectionnés, à des concentrations qui dépendent du risque sanitaire (risque de contact
direct, risque lié aux types de cultures, etc.), et quelques autres paramètres qui indiquent la fiabilité
opérationnelle des processus de traitement des eaux usées (par exemple, turbidité, matières en
suspension, DBO, chlore résiduel, etc.);
b) prévention des effets négatifs sur les cultures: les paramètres surveillés (également nommés
paramètres agronomiques) incluent les nutriments, les sels solubles, le sodium, les éléments
traces, etc.;
c) prévention des effets néfastes sur l’environnement (sources d’eau naturelle et sol);
d) prévention du colmatage du système d’irrigation, par exemple irrigation par goutte-à-goutte et
irrigation par arroseurs.
Il convient de sélectionner les points d’échantillonnage destinés au contrôle de la qualité de l’eau et
des performances du traitement, appelés «points de contrôle de performances» en fonction du type
d’application et du niveau des risques sanitaires et environnementaux.
Il convient que le principal point de contrôle de la qualité de l’eau se situe à la sortie de l’installation
de recyclage des eaux usées. Il convient que l’échantillonnage à la sortie de la station soit effectué
[2]
conformément à l’ISO 5667-4 . Il convient que les eaux usées traitées soient surveillées soit par
prélèvement d’échantillons ponctuels, soit par prélèvement d’échantillons composites (voir ci-après), en
fonction des paramètres surveillés.
Les échantillons composites (généralement prélevés sur 24 h en utilisant un équipement réfrigéré)
jouent un rôle essentiel pour une surveillance pertinente des paramètres physico-chimiques, car ils
représentent la qualité moyenne des EUT. Il convient que les paramètres microbiologiques, l’oxygène
dissous, le pH et la température soient surveillés par des échantillons ponctuels in situ, si possible à un
moment de la journée où le débit est à son maximum.
De même, il convient d’adapter la fréquence d’échantillonnage concernant d’autres paramètres liés à
la prévention des effets néfastes sur les cultures, les sols et l’environnement au risque associé à des
cultures sensibles et/ou à un environnement sensible (par exemple, aquifères peu profonds utilisés
pour l’alimentation en eau potable) et/ou à un équipement d’irrigation particulier. Il convient que la
décision concernant l’échantillonnage (échantillons composites ou ponctuels) destiné à la surveillance
de ces paramètres tienne également compte des variations journalières dans les eaux usées brutes.
4.2 Mode opératoire d’échantillonnage
4.2.1 Généralités
En fonction du type de paramètres surveillés, un certain nombre de règles de base pour l’échantillonnage
sont décrites dans des méthodes normalisées et les Normes internationales relatives à l’analyse de l’eau
ou certains modes opératoires d’analyse spécifiques définis par des laboratoires certifiés.
Il convient que l’échantillonnage des EUT destinées à l’irrigation réponde aux critères énumérés ci-
dessous:
— il convient que l’échantillonnage soit effectué par du personnel qualifié;
— les échantillons à utiliser pour la surveillance de la qualité de l’eau peuvent être ponctuels ou
composites, en fonction des objectifs finaux;
— il convient d’étiqueter convenablement tous les échantillons, en indiquant le type d’eau, l’emplacement
du site, la date, l’heure et d’autres données pertinentes;
— il convient que la fréquence d’échantillonnage soit définie par l’autorisation de réutilisation des
eaux;
— afin d’améliorer la spécification des besoins et la gestion du plan d’irrigation, il convient d’effectuer
des prélèvements saisonniers au gré des saisons dans la région concernée pour obtenir des données
représentatives sur la variation de la qualité de l’eau, en particulier concernant l’azote et la salinité;
— il convient que la surveillance de base, en matière de protection de la santé humaine, s’effectue par
[1]
échantillonnage à la sortie de l’installation de traitement (voir l’ISO 16075-2:2020, Tableau 1 ).
La fiabilité opérationnelle des processus de traitement peut être vérifiée en ajoutant des points
d’échantillonnage supplémentaires, si nécessaire, notamment en cas de non-conformité.
— des points de contrôle supplémentaires peuvent être établis en fonction de l’utilisation finale, de
l’emplacement du site et de la méthode d’irrigation afin de vérifier le risque de contamination ou de
reprise de la croissance bactérienne dans les réservoirs de stockage et/ou le réseau de distribution;
— il convient de déterminer le type de flacon en fonction des paramètres étudiés. Il convient de tenir
compte du fait que certains types de flacons en verre cèdent du bore aux échantillons; pour pallier
cet inconvénient, il est admis d’utiliser des flacons en polyéthylène haute densité (PEHD) ou en
polypropylène (PP), à bouchons doubles ou à bouchons auto-obturants;
Comme le volume échantillonné dépend du type d’analyse à réaliser, un échantillon de 1 l peut
suffire dans le cadre de l’analyse des paramètres de base de l’eau et des principaux anions et cations.
— il convient que le prélèvement et les manipulations soient effectués en toute sécurité, en prenant des
précautions appropriées pour éviter la transmission de maladies par le port de gants en plastique
ou l’utilisation d’autres types de protection.
Il convient que des échantillons destinés au contrôle de la qualité soient prélevés dans le cadre de tout
programme d’échantillonnage de routine. Il convient que le prélèvement et la manipulation des eaux
usées brutes et des eaux usées traitées soient conformes aux recommandations du Tableau 1.
Tableau 1 — Recommandations pour la préparation et la conservation des échantillons
Paramètre Type de flacon Ajout de Conservation Commentaires
substances
chimiques
Anions et cations (chlo- Flacons de 1 l Sans additif À l’abri de Il convient que la tempé-
rure, sulfate), ainsi que en PEHD ou en PP, la lumière, 4 °C rature, le pH et l’oxygène
les paramètres physico- à bouchons doubles dissous soient mesurés
chimiques généraux (pH, ou auto-obturants, sur site.
matières en suspension, avec ou sans air
conductivité, turbidité)
Phosphore et Flacons de 1 l H SO à pH = 2 À l’abri de
2 4
azote Kjeldahl en PEHD ou en PP, la lumière, 4 °C
à bouchons doubles
ou auto-obturants,
avec ou sans air
Bore Flacons de 100 ml HNO à pH = 2 À l’abri de
en PEHD ou en PP, la lumière, 4 °C
à bouchons doubles
ou auto-obturants
DCO Flacons de 100 ml H SO à pH = 2 À l’abri de Aucun additif requis
2 4
en PEHD ou en PP, la lumière, 4 °C si les échantillons sont
à bouchons doubles analysés dans les 48 h.
ou auto-obturants,
sans air
DBO Flacons de 500 ml Sans additif À l’abri de Il convient d’utiliser
en PEHD ou en PP, la lumière, 4 °C du Na SO pour traiter
2 3
à bouchons doubles les échantillons conte-
ou auto-obturants, nant du chlore résiduel.
sans air Il convient de conserver
l’échantillon et d’ense-
mencer les échantillons
d’eaux usées chlorées et
déchlorées.
Éléments traces et Flacons de 250 ml HNO à pH = 2 À l’abri de L’analyse du mer-
métaux lourds en PEHD ou en PP, la lumière, 4 °C cure (Hg) requiert un
à bouchons doubles flacon spécial [par
ou auto-obturants, exemple en polytétra-
avec ou sans air fluoroéthylène (PTFE)]
et un additif.
Tableau 1 (suite)
Paramètre Type de flacon Ajout de Conservation Commentaires
substances
chimiques
Éléments traces orga- Flacon de 1 l en verre Acide ascorbique À l’abri de
−1
niques et pesticides brun ou en PTFE, sans (1 000 mg l ) en la lumière, 4 °C
air, rincé à l’aide de cas de présence
solvants organiques de chlore rési-
duel
Paramètres microbiolo- Flacons stériles Sans additif À l’abri de L’ajout de thiosulfate de
giques (coliformes totaux en PEHD ou en PP, la lumière, 4 °C sodium à une concen-
et fécaux, helminthes, de 1 l à 5 l, à bouchons tration bien définie est
virus ou autres para- doubles ou auto-obtu- obligatoire en présence
mètres microbiologiques rants, avec de l’air de chlore résiduel et
supplémentaires) recommandé dans tous
les cas.
4.2.2 Échantillonnage de l’eau d’un système d’irrigation
Il convient que l’utilisateur final vérifie la qualité de l’eau en se conformant au mode opératoire suivant:
a) mettre le système d’irrigation sous tension, attendre qu’il fonctionne à la pression nominale et
poursuivre l’irrigation jusqu’à ce que les tuyaux soient totalement purgés de toute l’eau y stagnant
depuis l’irrigation précédente;
b) prélever un échantillon sur un robinet situé à l’entrée du système d’irrigation ou sur un émetteur
d’irrigation (arroseur, mini-diffuseur ou goutteur);
c) il convient de prélever l’échantillon d’eau dans des flacons fournis ou recommandés par le
laboratoire d’analyses, spécifiés par le mode opératoire ou adaptés aux paramètres à analyser
(voir le Tableau 1). Pour les prélèvements bactériologiques, il convient d’utiliser des flacons stériles.
Inscrire tous les détails nécessaires sur une étiquette apposée sur le flacon (nom, adresse, date,
emplacement, etc.) et sceller le couvercle;
d) conserver les échantillons en se conformant aux pratiques courantes de laboratoire et les transporter
jusqu’à un laboratoire d’analyses dans le délai recommandé pour l’analyse (voir le Tableau 1);
e) il convient de ne pas prélever d’échantillons d’eau lorsqu’une fertigation (fertilisation par irrigation)
est en cours.
Pour plus d’informations concernant l’échantillonnage de l’eau d’un système d’irrigation,
[3]
voir l’ISO 5667-10 .
4.2.3 Échantillonnage de l’eau d’un réservoir de stockage
Pour évaluer une évolution potentielle de la qualité des eaux usées traitées au cours du stockage,
il convient de prélever un échantillon dans le réservoir de stockage.
La meilleure façon de mesurer la qualité des EUT stockées dans un réservoir consiste à prélever de l’eau
au niveau d’un point d’échantillonnage adéquat situé à la sortie de la station de pompage du réservoir.
Durant les périodes où les eaux du réservoir ne sont pas mises à contribution pour l’irrigation,
il convient de prélever l’échantillon directement dans le réservoir de stockage, en se conformant au
mode opératoire suivant:
a) il est recommandé de prélever l’échantillon le plus près possible du point de pompage;
b) éviter de prélever sous le vent afin d’empêcher la collecte de matériaux flottants (résidus de
végétaux ou d’algues) transportés par les courants vers le côté du réservoir situé sous le vent;
c) attacher un flacon vide à la canne de prélèvement;
d) faire descendre le flacon jusqu’à immersion du col à une profondeur d’environ 10 cm dans le
réservoir et remplir le flacon;
e) retirer le flacon du réservoir de stockage, le fermer hermétiquement et l’étiqueter;
f) conserver l’échantillon si nécessaire ou se reporter au Tableau 1 pour déterminer si un conservateur
est nécessaire et, le cas échéant, lequel. Stocker l’échantillon et le transporter jusqu’au laboratoire
dans le délai recommandé par le laboratoire d’analyses ou spécifié par le mode opératoire (voir le
Tableau 1).
Pour plus d’informations concernant l’échantillonnage de l’eau d’un réservoir de stockage,
[2]
voir l’ISO 5667-4 .
4.2.4 Échantillon composite
Pour caractériser les EUT à la sortie de la station d’épuration afin de prendre en compte les variations
de la qualité des eaux usées, il convient de prélever un échantillon composite.
Il convient que l’échantillonnage composite se déroule sur 24 h.
Il convient d’utiliser un préleveur automatique réfrigéré.
4.2.5 Manipulation des échantillons
Il convient de conserver les échantillons dans une boîte isotherme et de les livrer immédiatement
au laboratoire. Si une livraison immédiate est impossible, il convient de stocker provisoirement les
échantillons dans un réfrigérateur à 4 °C.
[4]
Pour plus d’informations concernant la manipulation des échantillons, voir l’ISO 5667-1 .
4.3 Plan de surveillance des EUT
Les Tableaux 2, 3 et 4 présentent des exemples de plans de surveillance et de fréquences permettant de
caractériser les EUT servant à l’irrigation. Ces tableaux indiquent les paramètres à analyser, ainsi que
la fréquence d’échantillonnage des EUT s’écoulant vers les réservoirs ou à la sortie des réservoirs, ou
acheminées directement vers la zone d’irrigation. Il convient que le plan de surveillance soit adapté aux
conditions locales de chaque région.
Tableau 2 — Exemples de fréquence de surveillance à la sortie de la station d’épuration
des eaux usées (paramètres sanitaires)
a
Fréquence de surveillance en fonction des classes de qualité
Paramètres
surveillés
Classe A Classe B Classe C Classe D Classe E
Coliformes Journalière à Hebdomadaire à Bimensuelle à Non applicable Non applicable
thermo tolérants hebdomadaire bimensuelle mensuelle
(voir l’ISO 16075-2)
Nématodes intesti- Non applicable Non applicable La fréquence La fréquence La fréquence
naux (œufs d’hel- sera déterminée sera déterminée sera déterminée
b [5]
minthes ) en fonction du en fonction du en fonction du
nombre d’œufs nombre d’œufs nombre d’œufs
d’helminthes d’helminthes d’helminthes
présents dans les présents dans les présents dans les
eaux usées eaux usées eaux usées
c
MEST Hebdomadaire Hebdomadaire Mensuelle à Mensuelle à Mensuelle à
bimestrielle bimestrielle bimestrielle
Chlore résiduel Continue ou Continue ou Non applicable Non applicable Non applicable
journalière journalière
Turbidité Continue Non applicable Non applicable Non applicable Non applicable
DBO Hebdomadaire Hebdomadaire à Mensuelle à Mensuelle à Mensuelle à
à bimensuelle bimensuelle bimestrielle bimestrielle bimestrielle
a
La fréquence de surveillance peut être augmentée ou diminuée en fonction des conditions locales, par exemple,
cultures irriguées, climat, sol et technique d’irrigation. En cas d’augmentation ou de diminution de la fréquence, il convient
de prendre en compte les variations de la qualité de l’eau dans la STEP.
b
Bien que les œufs d’helminthes entrent en ligne de compte lorsqu’il s’agit d’EUT appliquées sur des cultures agricoles
et que leur concentration dans les EUT soit régulée dans de nombreux pays, les chercheurs, les autorités réglementaires
et les professionnels ont du mal à s’accorder sur la méthode la plus fiable pour mesurer ces œufs dans les échantillons
d’eau. La collecte des œufs nécessite la filtration d’importants volumes d’échantillon et le taux de récupération des œufs
après filtration est souvent relativement faible. De plus, les œufs d’helminthes ayant des formes et des tailles différentes,
ils ne peuvent être identifiés que par des personnes ayant suivi une formation appropriée. À cela s’ajoute le fait que les
œufs présents dans les eaux usées, même non traitées, ne sont pas toujours viables. Afin de vérifier la viabilité des œufs, il
est nécessaire de les laisser incuber à une température et un niveau d’humidité spécifiques pendant un mois pour voir si
des larves se développent. Ce paramètre de surveillance est considéré comme insatisfaisant en raison de la combinaison
de modes opératoires d’analyse complexes et imprécis, et de la période prolongée nécessaire à l’analyse. Les nématodes
intestinaux (œufs d’helminthes) peuvent ne pas faire l’objet d’une surveillance de routine s’il est démontré que leur présence
[1]
dans les eaux usées non traitées ne dépasse jamais le seuil de 10 œufs par litre. Voir l’ISO 16075-2:2020, Tableau 1 .
c
En cas de risque d’aérosolisation dans les serres, la surveillance peut également porter sur les légionelles, auquel cas il
−1
convient que leur nombre soit inférieur à 1 000 UFC l.
Tableau 3 — Exemples de fréquence de surveillance à la sortie de la station d’épuration
des eaux usées (paramètres agronomiques)
a, b
Paramètres surveillés Unités Fréquence de surveillance des EUT
c −1 c
Conductivité électrique de l’eau (EC ) dS m Fréquence modérée (tous les 2 à 6 mois)
w
d, f −1 c
Bore mg l Fréquence modérée (tous les 2 à 6 mois)
Nutriments
NTK
Azote ammoniacal
−1
Nitrites mg l Fréquence modérée (tous les 2 à 6 mois)
Azote nitrique
Azote total
Phosphore total
Principaux éléments dissous
−1
mg l Fréquence modérée (tous les 2 à 6 mois)
(Na, Ca, Mg, K, Cl, SO , HCO , CO )
4 3 3
Éléments traces
Fréquence peu élevée (une fois par an à tous les
−1
mg l
(Al, As, Be, Cd, Cr, Co, Cu, F, Fe, Li, Mn, Mo, Ni,
5 ans)
e, f, g
Pd, Se, Sn, Ti, W, V, Zn)
a
Il convient d’adapter la fréquence de surveillance aux conditions locales, par exemple, cultures irriguées, climat, sol et
technique d’irrigation.
b
La fréquence de surveillance dépend des variations de la concentration des paramètres. Si la concentration d’un
paramètre est stable, la fréquence de surveillance peut être diminuée. Lorsqu’un nouveau projet débute, il est nécessaire
d’adopter une fréquence de surveillance élevée pour identifier les paramètres à forte variabilité considérés comme
problématiques par rapport à l’utilisation des EUT dans les conditions locales.
c
Si, après diminution de la fréquence de surveillance, des variations de la conductivité électrique sont observées,
il convient d’augmenter de nouveau la fréquence de surveillance des chlorures et du sodium.
d
Il convient d’adapter la fréquence de surveillance du bore aux besoins du projet.
e
Il convient d’adopter une fréquence allant d’une fois par an à une fois tous les cinq ans. En cas d’utilisation d’EUT
industrielles, il convient d’augmenter la fréquence de surveillance.
f
En cas d’utilisation d’EUT d’origine animale, il convient d’augmenter la fréquence de surveillance du zinc, du potassium
et du bore.
g
Il convient que la fréquence d’échantillonnage concernant les éléments traces soit en adéquation avec l’origine des eaux
usées alimentant la station d’épuration. Si des eaux usées industrielles ou des eaux usées agricoles alimentent la station
d’épuration, il convient d’adopter une fréquence d’échantillonnage de deux à trois fois par an. Si la station d’épuration ne
reçoit pas d’eaux usées industrielles ou agricoles, une fréquence d’échantillonnage allant d’une fois par an à une fois tous les
cinq ans est admise, comme indiqué dans le tableau.
Tableau 4 — Exemples de fréquence de surveillance des EUT à la sortie du réservoir
pendant la période d’irrigation (paramètres sanitaires)
a
Fréquence de surveillance en fonction des classes de qualité
Paramètres
surveillés
Classe A Classe B Classe C Classe D Classe E
Coliformes Mensuelle à Mensuelle à
Mensuelle Non applicable Non applicable
thermotolérants bimestrielle bimestrielle
Chlore Continue ou jour- Continue ou jour-
Non applicable Non applicable Non applicable
b
résiduel nalière nalière
a
Il convient d’adapter la fréquence de surveillance au temps de séjour dans le réservoir. Plus le temps de séjour est long,
moins la fréquence est élevée.
b
Il convient que le chlore résiduel soit surveillé uniquement lorsqu’une chloration supplémentaire a lieu à la sortie du
[6]
réservoir, à des fins de protection sanitaire et de maintenance de l’équipement d’irrigation (voir l’ISO 20419:2018) .
4.4 Méthodes d’analyse relatives aux EUT
En l’absence de normes nationales, il est admis d’utiliser des normes internationales ou des normes
[7]
régionales, ou de faire référence à des modes opératoires d’analyse reconnus .
5 Surveillance des cultures irriguées
5.1 Généralités
Il convient de surveiller les parcelles irriguées par des EUT en étudiant la culture grâce à l’une des
méthodes suivantes:
a) détection visuelle d’une carence ou d’un excès d’éléments dans la culture; ou
b) analyse et examen d’une partie quelconque de la culture.
La méthode visuelle pourrait se révéler insuffisante pour détecter/prévenir les dégâts causés aux
cultures par la salinité ou la toxicité ou pour éviter des pertes de rendement. Il en va de même pour les
carences en nutriments.
Il convient d’effectuer l’analyse en laboratoire sur un échantillon de feuille ou de pétiole, puisqu’elle
permet de déterminer la concentration en ions toxiques (chlorure, bore, sodium), ainsi que la
concentration en nutriments des cultures (azote, phosphore, potassium et micro-nutriments).
Concernant les cultures pérennes, les résultats obtenus lors de la saison en cours permettent de
déterminer le programme de fertilisation pour la saison suivante.
Il convient que les cultures annuelles soient analysées immédiatement, mais ceci exige rapidité
d’organisation et disponibilité du laboratoire pour déterminer les résultats dans les plus brefs délais,
tant qu’ils sont pertinents pour la culture de la saison en cours.
5.2 Fréquence de surveillance
5.2.1 Cultures de plein champ et légumes
Il convient de moduler la fréquence de surveillance des cultures de plein champ et des légumes en
fonction de la culture et de la pertinence, pour ces cultures, des courbes de référence établissant un
lien entre le stade phénologique de la culture et la concentration attendue dans les feuilles ou une autre
partie de la plante. Des échantillons peuvent ainsi être prélevés à différents moments de la saison de
croissance. Il convient que la fréquence varie en fonction de la culture et de la capacité à utiliser les
données pour corriger la gestion de l’irrigation et de la fertilisation de façon immédiate durant la saison
de croissance en cours.
5.2.2 Cultures pérennes
Il convient de déterminer la concentration d’éléments dans les feuilles en prélevant des feuilles au
moment de l’année pour lequel on dispose de données de référence concern
...










Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...