Guidelines for treated wastewater use for irrigation projects - Part 4: Monitoring

ISO 16075-4:2016 provides recommendations regarding: · monitoring the quality of treated wastewater (TWW) for irrigation; · monitoring irrigated plants; · monitoring the soil with regard to salinity; · monitoring natural water sources in neighbouring environments; · monitoring the quality of water in storage reservoirs. It puts emphasis on sampling methods and their frequency. Regarding the methods of analysis, ISO 16075-4:2016 refers to standard methods or, where not available, to other bibliographical references.

Lignes directrices pour l'utilisation des eaux usées traitées en irrigation — Partie 4: Surveillance

L'ISO 16075-4:2016 fournit des recommandations concernant: - la surveillance de la qualité des eaux usées traitées (abrégées en EUT) pour l'irrigation; - la surveillance des cultures irriguées; - la surveillance de la salinité du sol; - la surveillance des sources d'eau naturelle dans les environs; - la surveillance de la qualité de l'eau dans les réservoirs de stockage. L'ISO 16075-4:2016 met l'accent sur les méthodes et la fréquence d'échantillonnage. Concernant les méthodes d'analyse, il se réfère à des méthodes normalisées ou, lorsque celles-ci font défaut, à d'autres références bibliographiques.

General Information

Status
Withdrawn
Publication Date
12-Dec-2016
Withdrawal Date
12-Dec-2016
Current Stage
9599 - Withdrawal of International Standard
Start Date
24-May-2021
Completion Date
13-Dec-2025
Ref Project

Relations

Standard
ISO 16075-4:2016 - Guidelines for treated wastewater use for irrigation projects
English language
21 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 16075-4:2016 - Guidelines for treated wastewater use for irrigation projects
English language
21 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 16075-4:2016 - Lignes directrices pour l'utilisation des eaux usées traitées en irrigation
French language
22 pages
sale 15% off
Preview
sale 15% off
Preview

Frequently Asked Questions

ISO 16075-4:2016 is a standard published by the International Organization for Standardization (ISO). Its full title is "Guidelines for treated wastewater use for irrigation projects - Part 4: Monitoring". This standard covers: ISO 16075-4:2016 provides recommendations regarding: · monitoring the quality of treated wastewater (TWW) for irrigation; · monitoring irrigated plants; · monitoring the soil with regard to salinity; · monitoring natural water sources in neighbouring environments; · monitoring the quality of water in storage reservoirs. It puts emphasis on sampling methods and their frequency. Regarding the methods of analysis, ISO 16075-4:2016 refers to standard methods or, where not available, to other bibliographical references.

ISO 16075-4:2016 provides recommendations regarding: · monitoring the quality of treated wastewater (TWW) for irrigation; · monitoring irrigated plants; · monitoring the soil with regard to salinity; · monitoring natural water sources in neighbouring environments; · monitoring the quality of water in storage reservoirs. It puts emphasis on sampling methods and their frequency. Regarding the methods of analysis, ISO 16075-4:2016 refers to standard methods or, where not available, to other bibliographical references.

ISO 16075-4:2016 is classified under the following ICS (International Classification for Standards) categories: 13.060.01 - Water quality in general; 13.060.30 - Sewage water. The ICS classification helps identify the subject area and facilitates finding related standards.

ISO 16075-4:2016 has the following relationships with other standards: It is inter standard links to ISO 16075-4:2021. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.

You can purchase ISO 16075-4:2016 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of ISO standards.

Standards Content (Sample)


DRAFT INTERNATIONAL STANDARD
ISO/DIS 16075-4
ISO/TC 282/SC 1 Secretariat: SII
Voting begins on: Voting terminates on:
2015-09-23 2015-12-23
Guidelines for treated wastewater use for irrigation
projects —
Part 4:
Monitoring
Lignes directrices pour l’utilisation des eaux usées traitées pour l’irrigation
ICS: 13.060.01; 13.060.30
THIS DOCUMENT IS A DRAFT CIRCULATED
FOR COMMENT AND APPROVAL. IT IS
THEREFORE SUBJECT TO CHANGE AND MAY
NOT BE REFERRED TO AS AN INTERNATIONAL
STANDARD UNTIL PUBLISHED AS SUCH.
IN ADDITION TO THEIR EVALUATION AS
BEING ACCEPTABLE FOR INDUSTRIAL,
TECHNOLOGICAL, COMMERCIAL AND
USER PURPOSES, DRAFT INTERNATIONAL
STANDARDS MAY ON OCCASION HAVE TO
BE CONSIDERED IN THE LIGHT OF THEIR
POTENTIAL TO BECOME STANDARDS TO
WHICH REFERENCE MAY BE MADE IN
Reference number
NATIONAL REGULATIONS.
ISO/DIS 16075-4:2015(E)
RECIPIENTS OF THIS DRAFT ARE INVITED
TO SUBMIT, WITH THEIR COMMENTS,
NOTIFICATION OF ANY RELEVANT PATENT
RIGHTS OF WHICH THEY ARE AWARE AND TO
©
PROVIDE SUPPORTING DOCUMENTATION. ISO 2015

ISO/DIS 16075-4:2015(E) ISO CD(2) 16075-4

Contents Page
1 Scope . 1
2 Normative references . 1
3 Terms, definitions and abbreviated terms . 2
3.1 General . 2
3.2 Use of treated wastewater (TWW) . 4
3.3 Wastewater quality . 5
3.4 Irrigation systems . 5
3.5 Wastewater system related components . 8
3.6 Abbreviated terms . 8
4 Monitoring of the quality of TWW for irrigation. 9
4.1 General . 9
4.1.1 Sampling procedure . 10
4.1.2 TWW monitoring plan . 13
4.2 Test methods for TWW for irrigation . 15
5 Monitoring of the irrigated crops . 15
6 Monitoring of the soil with regard to salinity. 16
6.1 Soil Sampling . 16
6.1.1 Frequency of the soil sampling . 16
6.1.2 Sampling procedure . 16
6.2 Soil test methods . 16
7 Receiving Environment Monitoring . 17
7.1 General . 17
7.2 Movement of water through soil . .תרדגומ הניא הינמיסה !האיגש
7.3 Surface water movement . .תרדגומ הניא הינמיסה !האיגש
7.4 Monitoring program purpose . 17
7.5 Quality assurance and quality control . .תרדגומ הניא הינמיסה !האיגש
7.6 Groundwater sampling . 17
7.7    Sampling surface water…………………………………………………………………………………….18
Annex A (informative) Salinity Management (Underground and runoff) . .תרדגומ הניא הינמיסה !האיגש
Bibliography . 20

© ISO 2015, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2015 – All rights reserved
ISO CD(2) 16075-4
Contents Page
1 Scope . 1
2 Normative references . 1
3 Terms, definitions and abbreviated terms . 2
3.1 General . 2
3.2 Use of treated wastewater (TWW) . 4
3.3 Wastewater quality . 5
3.4 Irrigation systems . 5
3.5 Wastewater system related components . 8
3.6 Abbreviated terms . 8
4 Monitoring of the quality of TWW for irrigation. 9
4.1 General . 9
4.1.1 Sampling procedure . 10
4.1.2 TWW monitoring plan . 13
4.2 Test methods for TWW for irrigation . 15
5 Monitoring of the irrigated crops . 15
6 Monitoring of the soil with regard to salinity. 16
6.1 Soil Sampling . 16
6.1.1 Frequency of the soil sampling . 16
6.1.2 Sampling procedure . 16
6.2 Soil test methods . 16
7 Receiving Environment Monitoring . 17
7.1 General . 17
7.2 Movement of water through soil . .תרדגומ הניא הינמיסה !האיגש
7.3 Surface water movement . .תרדגומ הניא הינמיסה !האיגש
7.4 Monitoring program purpose . 17
7.5 Quality assurance and quality control . .תרדגומ הניא הינמיסה !האיגש
7.6 Groundwater sampling . 17
7.7    Sampling surface water…………………………………………………………………………………….18
Annex A (informative) Salinity Management (Underground and runoff) . .תרדגומ הניא הינמיסה !האיגש
Bibliography . 20

ISO CD(2) 16075-4
Foreword
 ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO
collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
 International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
 The main task of technical committees is to prepare International Standards. Draft International
Standards adopted by the technical committees are circulated to the member bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the member bodies casting
a vote.
 Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO should not be held responsible for identifying any or all such patent rights.
 ISO 16075-4 was prepared by Technical Committee ISO/TC 282, Water reuse, Subcommittee SC01,
Treated Wastewater Use for Irrigation.
 This second/third/. edition cancels and replaces the first/second/. edition (), [clause(s) / subclause(s) /
table(s) / figure(s) / annex(es)] of which [has / have] been technically revised.
 ISO 16075 consists of the following parts, under the general title Guidelines for Treated Wastewater Use
for Irrigation Projects:
 Part 1: The Basis of a Reuse Project for Irrigation
 Part 2: Development of the project
 Part 3: Components of a reuse project for irrigation
 Part 4: Monitoring
iv © ISO 2012 – All rights reserved

ISO CD(2) 16075-4
Introduction
The increasing water scarcity and water pollution control efforts in many countries have made treated
municipal and industrial wastewater a suitable economic means of augmenting the existing water supply,
especially when compared to expensive alternatives such as desalination or the development of new water
sources involving dams and reservoirs. Water reuse makes it possible to close the water cycle at a point
closer to cities by producing “new water” from municipal wastewater and reducing wastewater discharge to the
environment.
An important new concept in water reuse is the “fit-to-purpose” approach, which entails the production of
reclaimed water quality that meets the needs of the intended end-users. In the situation of reclaimed water for
irrigation, the reclaimed water quality may induce an adaptation of the type of plant grown. Thus, the intended
water reuse applications should govern the degree of wastewater treatment required, and inversely, the
reliability of wastewater reclamation processes and operation.
Treated wastewater can be used for various non-potable purposes. The dominant applications for the use of
treated wastewater (also referred to as reclaimed water or recycled water) include agricultural irrigation,
landscape irrigation, industrial reuse and groundwater recharge. More recent and rapidly growing applications
are for various urban uses, recreational and environmental uses and indirect and direct potable reuse.
Agricultural irrigation was, is and will likely remain the largest TWW consumer with recognized benefits and
contribution to food security. Urban water recycling, in particular landscape irrigation, is characterized by fast
development and will play a crucial role for the sustainability of cities in the future, including energy footprint
reduction, human wellbeing and environmental restoration.
It is worth noting again, that the suitability of treated wastewater for a given type of reuse depends on the
compatibility between the wastewater availability (volume) and water irrigation demand throughout the year,
as well as on the water quality and the specific use requirements. Water reuse for irrigation can convey some
risks for health and environment, depending on the water quality, the irrigation water application method, the
soil characteristics, the climate conditions and the agronomic practices. Consequently, the public health and
potential agronomic and environmental adverse impacts must be considered as priority elements in the
successful development of water reuse projects for irrigation. To prevent such potential adverse impacts, the
development and application of international guidelines for the reuse of treated wastewater is essential.
The main water quality factors that determine the suitability of treated wastewater for irrigation are pathogen
content, salinity, sodicity, specific ion toxicity, other chemical elements and nutrients. Local health authorities
are responsible for establishing water quality threshold values depending on authorized uses and they are
also responsible for defining practices to ensure health and environmental protection taking in account local
specificities.
From an agronomic point of view, the main limitation in using treated wastewater for irrigation arises from its
quality. Treated wastewater, unlike water supplied for domestic and industrial purposes contains higher
concentrations of inorganic suspended and dissolved materials (total soluble salts, sodium, chloride, boron,
heavy metals), which can damage the soil and irrigated crops. Dissolved salts are not removed by
conventional wastewater treatment technologies and appropriate good management, agronomic and irrigation
practices should be used to avoid or minimize potential negative impacts.
The presence of nutrients (nitrogen, phosphorus and potassium) may become an advantage due to possible
saving in fertilizers. However, the amount of nutrients provided by treated wastewater along the irrigation
period is not necessarily synchronized with crop requirements, and the availability of nutrients depends on the
chemical forms.
This Guideline provides guidance for healthy, hydrological, environmental and good operation, monitoring and
maintenance of water reuse projects for unrestricted and restricted irrigation of agricultural crops, gardens and
landscape areas using treated wastewater. The quality of supplied treated wastewater should reflect the
ISO CD(2) 16075-4
possible uses according to crop sensitivity (health-wise and agronomy-wise), water sources (the hydrologic
sensitivity of the project area), the soil and climate conditions.
This Guideline refers to factors involved in water reuse projects for irrigation regardless of size, location and
complexity. It is applicable to intended uses of treated wastewater in a given project, even if such uses will
change during the project’s lifetime; as a result of changes in the project itself or in the applicable legislation.
The key factors in assuring the health, environmental and safety of water reuse projects in irrigation are:
 Meticulous monitoring of treated wastewater quality to ensure the system functions as planned and
designed;
 Design and maintenance instructions of the irrigation systems to ensure their proper long-term operation;
 Compatibility between the treated wastewater quality, the distribution method and the intended soil and
crops to ensure a viable use of the soil and undamaged crop growth;
 Compatibility between the treated wastewater quality and its use to prevent or minimize possible
contamination of groundwater or surface water sources.

vi © ISO 2012 – All rights reserved

ISO CD(2) 16075-4
Guidelines for Treated Wastewater Use for Irrigation Projects —
Part 4: Monitoring
1 Scope
This part of the international standard provides recommendations regarding:
 Monitoring the quality of treated wastewater (hereinafter TWW) for irrigation;
 Monitoring irrigated plants;
 Monitoring the soil with regard to salinity;
 Monitoring natural water sources in neighboring environment;
 Monitoring the quality of water in storage reservoirs.
It puts emphasis on sampling methods and on the frequency. Regarding the methods of analysis, the guide
refers to standard methods or, when not available, to other bibliographical references.
NOTE In cases where a monitoring plan already exists, these recommendations may be integrated into this plan.
This is notably the case when a broader approach of risk management is implemented, such as the Water Safety Plans
(serving as a model for sanitation safety plans) developed by WHO.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.
ISO 5667-1, Water quality — Sampling — Part 1: Guidance on the design of sampling programmes and
sampling techniques
ISO 5667-4, Water quality — Sampling — Part 4: Guidance on sampling from lakes, natural and man-made
ISO 5667-6, Water quality — Sampling — Part 6: Guidance on sampling of rivers and streams
ISO 5667-10, Water quality — Sampling — Part 10: Guidance on sampling of waste waters
ISO 5667-11, Water quality — Sampling — Part 11: Guidance on sampling of groundwaters
ISO 5667-20:2008, Water quality — Sampling — Part 20: Guidance on the use of sampling data for decision
making — Compliance with thresholds and classification systems
ISO 5667-22:2010, Water quality — Sampling — Part 22: Guidance on the design and installation of
groundwater monitoring points
ISO 5667-23:2011, Water quality — Sampling — Part 23: Guidance on passive sampling in surface waters
ISO 15175:2004, Soil quality — Characterization of soil related to groundwater protection
3 Terms, definitions and abbreviated terms
3.1 General
3.1.1
aquifer
an underground layer of water-bearing permeable rock or unconsolidated materials (gravel, sand or silt) from
which groundwater can be extracted

3.1.2
background water
the freshwater supplied for domestic, institutional, commercial and industrial use, from which wastewater is
created
3.1.3
barrier
any means including physical or process steps, that reduces or prevents the risk of human infection, by
preventing contact between the TWW and the ingested produce or other means that, for example, reduces the
concentration of microorganisms in the TWW or prevents their survival on the ingested produce

3.1.4
environment
surroundings in which an organization operates, including air, water, land, natural resources, flora, fauna,
humans and their interrelation

3.1.5
environmental aspect
element of an organization's activities, projects or products that can interact with the environment

3.1.6
environmental impact
any change to environmental quality, whether adverse or beneficial, wholly or partly resulting from an
organization's activities, projects or products

3.1.7
environmental parameter
quantifiable attribute of an environmental aspect

3.1.8
fodder crops
crops not for human consumption such as: pastures and forage, fiber, ornamental, seed, forest and turf crops

3.1.9
food crops
crops which are intended for human consumption, often further classified as to whether the food crop is to be
cooked, processed or consumed raw

3.1.10
freshwater
naturally occurring water on the Earth's surface (in ice, lakes, rivers and streams) and underground as
groundwater in aquifers
NOTE: freshwater includes desalinated seawater and desalinated brackish water, but excludes seawater and
brackish water
ISO CD(2) 16075-4
3.1.11
irrigation project
design, development, construction, selection of equipment, operation and monitoring of works to provide
suitable TWW irrigation
3.1.12
non-potable water (NPW)
water that is not of drinking water quality. It generaly refers to wastewater or TWW, but can also include other
waters of non-drinking quality

3.1.13
organization
group of people and facilities with an arrangement of responsibilities, authorities and relationships

3.1.14
process
a set of interrelated or interacting activities which transform inputs into outputs
NOTE 1 inputs to a process are generally outputs of other processes.
NOTE 2 processes in an organization are generally planned and carried out under controlled conditions to
add value.
3.1.15
product
any goods or services
NOTE This includes interconnected and/or interrelated goods or services.

3.1.16
public health aspect
element of an organization's activities, projects or products that can interact with the public health

3.1.17
public health impact
any change to public health, whether adverse or beneficial, wholly or partly resulting from an organization's
activities, projects or products

3.1.18
public health parameter
quantifiable attribute of a public health aspect

3.1.19
soil
layer of unconsolidated material consisting of weathered material particles, dead and living organic matter, air
space and the soil solution
3.1.20
soil solution
liquid phase of the soil and its solutes

3.1.21
stakeholder
individual, group or organization that has an interest in an organization or activity
NOTE usually a stakeholder can affect or is affected by the organization or the activity

3.1.22
wastewater
wastewater collected principally by municipalities, that may include spent or used water from domestic,
institutional, commercial or industrial sources, and can include storm water

3.1.23
water reuse
the use of treated wastewater for beneficial use; synonymous also to water reclamation and water recycling
3.2 Use of treated wastewater (TWW)
3.2.1
agriculture
the science or practice of farming, including cultivation of the soil for the growing of crops and the rearing of
animals to provide food or other products

3.2.2
landscape
all the visible features of an area of land, often considered in terms of their aesthetic appeal such as public
and private gardens, parks, road vegetation including lawns and turfed recreational areas

3.2.3
restricted irrigation
the use of TWW for non-potable applications in settings where public access is controlled or restricted by
physical or institutional barriers

3.2.4
restricted urban irrigation
irrigation of areas in which public access during irrigation can be controlled, such as some golf courses,
cemeteries, and highway medians

3.2.5
unrestricted irrigation
the use of TWW for non-potable applications in settings where public access is not restricted

3.2.6
unrestricted urban irrigation
irrigation of areas in which public access during irrigation is not restricted, such as some gardens and
playgrounds
ISO CD(2) 16075-4
3.3 Wastewater quality
3.3.1
category A: very high quality TWW
raw wastewater which has undergone physical and biological treatment, filtration and disinfection, and its
quality is according to the description in ISO 16075-2, Table 1

3.3.2
category B: high quality TWW
raw wastewater which has undergone physical and biological treatment, filtration and disinfection, and its
quality is according to the description in ISO 16075-2, Table 1

3.3.3
category C: good quality TWW
raw wastewater which has undergone physical and biological treatment, and its quality is according to the
description in ISO 16075-2, Table 1

3.3.4
category D: medium quality TWW
raw wastewater which has undergone physical and biological treatment, and its quality is according to the
description in ISO 16075-2, Table 13.3.5
3.3.5. category E: extensively TWW
raw wastewater which has undergone natural biological treatment process with long (minimum 10-15 days)
retention time and its quality is accordingly to the description in ISO 16075-2, Table 1

3.3.6
raw wastewater
wastewater which has not undergone any treatment

3.3.7
thermo-tolerant coliforms
group of bacteria whose presence in the environment usually indicates faecal contamination (previously called
faecal coliforms). In order to determine the quality of TWW, one can test for Escherichia coli (E. coli) or for
Faecal coliforms, since the difference in values is not significant
3.4 Irrigation systems
3.4.1
boom sprinkler
a mobile sprinkling machine composed by two symmetrical pipes (booms), with sprinkler nozzles distributed in
one of the pipes, with the sprinkler action complemented by a gun sprinkler placed at each end of both pipes;
the nozzles work through a reaction effect (similar to a hydraulic tourniquet) which drives the boom rotation at
a desired speed
3.4.2
center-pivot and moving lateral irrigation machines
automated irrigation machine consisting of a number of self-propelled towers supporting a pipeline rotating
around a pivot point and through which water supplied at the pivot point flows radially outward for distribution
by sprayers or sprinklers located along the pipeline
3.4.3
emitter (emitting pipe/dripper)
device fitted to an irrigation lateral and intended to discharge water in the form of drops or continuous flow at
flow rates not exceeding 15 l/h except during flushing
3.4.4
gravity flow irrigation systems
irrigation systems, where water is applied directly to the soil surface and is not under pressure
3.4.5
in-line emitter
emitter intended for installation between two lengths of pipe in an irrigation lateral
3.4.6
irrigation gun
large discharge device being either a part circle or full circle sprinkler

3.4.7
irrigation sprayer
device which discharges water in the form of fine jets or in a fan shape without rotational movement of its
parts
3.4.8
irrigation system
assembly of pipes, components, and devices installed in the field for the purpose of irrigating a specific area

3.4.9
micro-irrigation system
a system capable of delivering water drops, tiny-streams or minispray to the plants. Surface and sub-surface
drip irrigation (3.4.3) and micro-spray irrigation (3.4.10) are the main types of this system

3.4.10
micro-spray irrigation systems
this system is characterized by water point sources similar to sprinkler´s miniatures (micro-sprinklers), which
are placed along the laterals, with a flow rate between 30 and 150 L/h at pressure heads of 15-25 m, and the
corresponding wetted area between 2 and 6 m

3.4.11
mobile sprinkling machine
sprinkling unit which is automatically moved across the soil surface during the water application

3.4.12
on-line emitter
emitter intended for installation in the wall of an irrigation lateral, either directly or indirectly by means such as
tubing
3.4.13
perforating pipe system
emitting pipe (emitter/emitting pipe) continuous pipe, hose or tubing, including collapsible hose, with
perforations, intended to discharge water in the form of drops or continuous flow at emission rates not
exceeding 15 l/h for each emitting unit

3.4.14
permanent system
stationary fixed-grid irrigation system (sprinklers) for which sprinkler set positions are rigidly fixed by semi-
permanent or permanently installed irrigation laterals, for example, portable solid-set irrigation system, buried
irrigation system
3.4.15
portable system
system for which all or part of the network elements can be removed

ISO CD(2) 16075-4
3.4.16
pressurized irrigation systems
piped network systems under pressure

3.4.17
rotating sprinkler
device which, by its rotating motion around it's vertical axis, distributes water over a circular area or part of a
circular area
3.4.18
self-moved system
unit where a lateral is mounted through the center of a series of wheels and is moved as a whole; rotating
sprinklers/sprayers are placed on the lateral (also called wheel move)

3.4.19
self-propelled gun traveler
gun sprinkler on a cart or sled attached to the end of flexible pipe/hose.

3.4.20
semi-permanent system
similar to the semi-portable system, but with portable laterals and permanent pumping plant, main lines and
sub-mains
3.4.21
semi-portable system
similar to the portable system, except that the water source and the pumping plant are fixed

3.4.22
solid-set system
temporary fixed network, where the laterals are positioned in the field throughout the irrigation season

3.4.23
spray
release of water from a sprinkler

3.4.24
sprinkler
water distribution device of a variety of sizes and types, for example, impact sprinkler, fixed nozzle, sprayer,
irrigation gun
3.4.25
sprinkler irrigation systems
irrigation system composed of sprinklers

3.4.26
stationary sprinkler systems
network of fixed sprinklers
3.4.27
traveler irrigation machine
irrigation machine designed to irrigate a field sequentially, strip by strip, while moving across the field

3.5 Wastewater system related components
3.5.1
additional disinfection
disinfection of TWW in a water reuse project intended to raise the quality of the TWW before irrigation

3.5.2
disinfection
a process that destroys, inactivates or removes microorganisms
3.5.3
filtration
a process or device for removing solid or colloidal material from wastewater by physically trapping the
particles and removing them
3.5.4
membrane filtration
filtration by membrane with pore size equal or less than 0.45 μm. Membrane filtration may also be considered
as disinfection, according to the log units of pathogen reduction that it achieves
3.5.5
reservoir
a system to store temporarily unused TWW depending on the demand for water irrigation and the treatment
plant discharge. There are different types of reservoirs that can be used:
1) open reservoirs which are commonly used for short-term storage with hydraulic residence times
from 1 day to 2 weeks;
2) closed reservoirs for short-term storage to limit bacterial regrowth and external contamination
common with hydraulic residence time of 0,5 day to a week;
3) surface reservoirs for long-term or seasonal storage of TWW to accumulate water during periods
of treatment plant discharge higher than irrigation demand, and to satisfy irrigation requirements
when the demand is higher than the treatment plant discharge. The hydraulic residence time
changes according to the seasons;
4) aquifer storage and recovery for long-term storage which is commonly combined with soil aquifer
treatment (by means of infiltration basins). The residence time is also a variable that is affected
by the TWW discharge and irrigation demand. This aquifer storage should not contribute to the
aquifer recharge for potential potable water use.
3.5.6
storage
retained temporary unused TWW for short or long term before their release for use in irrigation systems
3.5.7
TWW pumping stations and transport systems
system of pipelines and pumps transporting the TWW from the WWTP to storage reservoirs and to the use
site
3.5.8
wastewater treatment plant (WWTP)
facility designed to treat wastewater by a combination of physical (mechanical) unit operations and chemical
and biological processes, for the purpose of reducing the organic and inorganic contaminants in the
wastewater.
note 1 There are different levels of wastewater treatment, according to the desired quality of TWW and the
level of contamination
3.6 Abbreviated terms
 BOD: biochemical oxygen demand

ISO CD(2) 16075-4
 CFU: colony forming units
 COD: chemical oxygen demand
 DO: dissolved oxygen
 EC: electrical conductivity
 MPN: most probable number
 NDWQ: non-drinking water quality
 NTU: nephelometric turbidity units
 PVC: polyvinyl chloride
 RO: reverse osmosis
 SAR: sodium adsorption ratio
 SAT: soil aquifer treatment
 SS: suspended solids
 TDS: total dissolved solids
 TKN: total Kjeldahl nitrogen
 TN: total nitrogen
 TOC: total organic carbon
 TP: total phosphorus
 TSS: total suspended solids
 TWW: treated wastewater
 UV: ultraviolet
 VOC: volatile organic compounds
 WRF: water reclamation facility
 WW: wastewater
 WWTP: wastewater treatment plant
4 Monitoring of the quality of TWW for irrigation
4.1 General
The development and implementation of an appropriate monitoring strategy is a crucial step for the health and
environmental safety of water reuse projects. This compliance monitoring is performed usually at the outlet of
the wastewater reclamation facility.
Monitoring can be undertaken for a range of purposes, and for each specific objective, different parameters
can be selected. For example, water quality monitoring can be implemented for the following purposes:
1. Human health protection: monitoring programs include selected microbial indicators at concentrations
which depend on health risk (risk of direct contact, risk related to the type of crops, etc.), as well as
few other parameters which indicate the reliability of operation of the wastewater treatment (e.g.,
turbidity, suspended solids, BOD, etc.)
2. Prevention of adverse effect on crops: monitored parameters (named also agronomic parameters,
include nutrients, soluble salts, sodium, trace elements, etc.)
3. Prevention of adverse effects on environment (natural water sources and soil).
4. Prevention of clogging of irrigation system, e.g. drip and sprinkler irrigation.

As a rule, the sampling frequency for human health protection is defined by local regulations and water reuse
permits as a function of risk and project size.
Similarly, the sampling frequency of other parameters related to prevention of adverse effects on crops and
environment is adapted to risk associated with sensitive crops and/or sensitive environment (e.g. shallow
aquifers used for potable water supply), and/or specific irrigation equipment.
4.1.1 Sampling procedure
Depending on the type of the monitored parameters, there exist some basic sampling rules described in
Standard Methods, ISO standards for water analysis or some specific analytical procedures defined by
certified laboratories.
The basic important requirements for sampling TWW for irrigation are listed below:
 The type of samples can be either grab or composite samples to be used for water quality monitoring
depending on the final objectives.
 All samples should be well labeled, indicating the type of water, site location, date, time and other
pertinent data.
 The water reuse permit usually defines sampling frequency. For the better planning and management
of the irrigation scheme, it is recommended to take seasonal samples in spring, summer, autumn and
winter in order to obtain representative data on the variation in water quality, in particular nitrogen and
salinity. The most important period for the sampling of trace elements is the crops germination period.
The baseline monitoring for human health protection is undertaken by sampling at
the outlet of the treatment facility (see Table 1, ISO 16075 part 2). To check the
reliability of operation of treatment processes, additional sampling points could be
added when necessary, in particular in the case of noncompliance. For verification
of potential contamination or regrowth in storage reservoirs and/or distribution
network, additional control points for sampling can be established as a function of
the final use, site location and irrigation method.
 Sampling bottles should be clean.Depending on parameters It is preferred to use plastic bottles,
because certain types of glass bottles yield boron to the samples. The sample quantity depends on
the type of the analysis to be performed. For the analysis of the basic water characteristics and the
main anions and cations, 1-liter of sample could be sufficient.
 Sampling and handing should be done safely with suitable precaution to avoid disease transmission
by means of plastic gloves or using other protection.

Table 1 gives some basic recommendations for the sampling and handing of raw wastewater and treated
wastewater.
Table 1 - Recommendations for sample preparation and conservation
Parameter Type of bottle Addition of Conserva Comments
chemicals tion
ISO CD(2) 16075-4
Anions and cations (chloride, 1 liter No additive Dark, 4°C
Temperature, pH and
sulfate), all forms of nitrogen and
dissolved oxygen should
phosphorus, as well as general plastic, Phosphorus and N be measured on site
Anions and cations
physico-chemical parameters
Kjeldahl H2SO4 to
(chloride, sulfate), all forms
(pH, suspended solids, pH=2
with or without
of nitrogen, except N
conductivity)
air
Kjeldahl, as well as (…)
Phosphorus N Kjeldahl 1 liter H SO to pH= 2 Dark, 4°C
2 4
plastic,
with or without
air
Boron 100 mL, plastic HNO3 to pH=2 Dark, 4°C
COD 100 mL, plastic, Sulfuric acid Dark, 4°C No additive is needed if
the samples are
no air analyzed within 48h
BOD 500 mL, plastic, No additive Dark, 4°C
no air
Trace elements and heavy 250 mL, plastic, Nitric acid to pH= 2 Dark, 4°C A special bottle and
metals additive is needed for
with or without the analysis of mercury
(Hg)
air
Trace organics and pesticides 1 liter, Ascorbic acid Dark 4°C
-1
(1000 mg L ) if
dark glass bottle residual chlorine is
present
or
polytetrafluoroet
hylen (PTFE)
bottle,
no air rinsed
with organic
solvents
Microbiological parameters (total 1-5 liters, No additive Dark, 4°C Additive of sodium
and fecal coliforms, helminthes, thiosulfate at a well-
viruses, etc.) sterile plastic defined concentration is
mandatory in presence
bottle,
of residual chlorine and
recommended in all
with air
cases
Sampling from the irrigation system
The purpose of such sampling is to check the water quality by the end user
The following steps describe the procedure:
1) Turn on the irrigation until the system operates on full designed pressure and let the system irrigate
until the pipe have been flushed of all stagnant water from the previous irrigation event;
2) Collect a sample from a control filter or from an irrigation emitter (a sprinkler, micro-jet or a dripper);
NOTE Sampling the water should not be taken when fertigation (fertilization through irrigation) is taking place.
3) Sample the water into; bottles as provided or recommended by the analytical laboratory or procedure
and the parameters to be tested (see Table1).
NOTE For bacterial sampling use sterile bottle.
4) Write all necessary details on a sticker attached to the bottle (Name, address, date, location, etc.)
and seal the lid.
5) Samples need to be preserved according to standard laboratory practice and taken to an analytical
laboratory within the time period recommended for the analysis (see Table 1). Special care and
consideration should be given to samples for fecal coliforms.
For more information about sampling, see ISO 5667-10.
Sampling from the reservoir
In order to evaluate a potential evolution of treated wastewater quality during storage, a sample from the
reservoir is required
The following steps describe the procedure:
1) It is recommended to take the sample as close as possible to the pumping point;
2) Avoid sampling downwind to prevent the collection of floating materials (plant or algae residues)
transported by water waves to the downwind side of the reservoir;
3) Tie an empty bottle to a weight and attach both to a pole;
4) Lower the bottle so that the neck is submerged in the reservoir to a depth of about 100 mm or 10 cm
and fill the bottle;
5) Remove the bottle from the reservoir, seal it and indelibly label the bottle.
6) Sample should be preserved, stored and taken to the laboratory within a time period recommended
by the analytical laboratory or procedure (see Table 1).
For more information about sampling, see ISO 5667-4.
4.1.1.C Composite sample
24   The purpose of such sample is to characterize TWW at the outlet of the plant in order to take
into account the fluctuations of wastewater quality. The typical duration for composite sampling is
24h. It is recommended to use a refrigerated automatic sampler The composite sample will be taken in

typical conditions of flowing rate and pollutant load (wastewater generators).
4.1.1.D Sample handling
Samples should be kept in a thermally insulated container and delivered immediately to the laboratory. If the
samples cannot be delivered immediately, they should be temporarily stored in a refrigerator, at 4ºC.
For more information about sample handling, see ISO 5667-1.

ISO CD(2) 16075-4
4.1.2 TWW monitoring plan
The plan presented in Tables 2, 3 and 4 serves as an example of the monitoring plan to characterize TWW used for
irrigation. The tables include the parameters to be tested, and the sampling frequency of the TWW flowing to reservoirs,
directly to irrigation or from reservoirs. The monitoring plan should be adapted to the local conditions of each region.
Table 2 —– Example of Monitoring frequency at the outlet of the wastewater treatment plant – health
related paramet
...


INTERNATIONAL ISO
STANDARD 16075-4
First edition
2016-12-15
Guidelines for treated wastewater use
for irrigation projects —
Part 4:
Monitoring
Lignes directrices pour l’utilisation des eaux usées traitées pour
l’irrigation —
Partie 4: Surveillance
Reference number
©
ISO 2016
© ISO 2016, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2016 – All rights reserved

Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
3.1 General . 1
3.2 Use of treated wastewater (TWW) . 3
3.3 Wastewater quality . 4
3.4 Irrigation systems . 5
3.5 Wastewater system related components . 7
3.6 Abbreviated terms . 8
4 Monitoring of the quality of TWW for irrigation . 9
4.1 General . 9
4.2 Sampling procedure .10
4.2.1 Sampling from an irrigation system .11
4.2.2 Sampling from a storage reservoir .12
4.2.3 Composite sample . .12
4.2.4 Sample handling .12
4.3 TWW monitoring plan .12
4.4 Analytical methods for TWW .15
5 Monitoring of the irrigated crops .15
5.1 General .15
5.2 Frequency of monitoring .15
5.2.1 Field crops and vegetables .15
5.2.2 Perennial crops.16
6 Monitoring of the soil with regard to salinity .16
6.1 Soil sampling .16
6.2 Frequency of the soil sampling .16
6.3 Sampling procedure .17
6.3.1 Drip irrigation .17
6.3.2 Sprinkler and micro-jet irrigation .17
6.3.3 Sample preparation .17
6.4 Soil test methods .17
7 Receiving environment monitoring .18
7.1 General .18
7.2 Monitoring program purpose .18
7.3 Groundwater sampling .18
7.4 Surface water sampling .19
8 Quality assurance and quality control .19
Bibliography .21
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment,
as well as information about ISO’s adherence to the World Trade Organization (WTO) principles in the
Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.
The committee responsible for this document is Technical Committee ISO/TC 282, Water reuse,
Subcommittee SC 1, Treated wastewater reuse for irrigation.
A list of all parts in the ISO 16075 series can be found on the ISO website.
iv © ISO 2016 – All rights reserved

Introduction
The increasing water scarcity and water pollution control efforts in many countries have made treated
municipal and industrial wastewater a suitable economic means of augmenting the existing water
supply, especially when compared to expensive alternatives such as desalination or the development
of new water sources involving dams and reservoirs. Water reuse makes it possible to close the water
cycle at a point closer to cities by producing “new water” from municipal wastewater and reducing
wastewater discharge to the environment. The reuse of treated wastewater could be also a beneficial
solution to improve water body’s quality, such as for example avoiding wastewater treatment plants
discharge upstream sensitive areas (shellfish aquaculture area, swimming area).
An important new concept in water reuse is the “fit-to-purpose” approach, which entails the production
of reclaimed water quality that meets the needs of the intended end-users. In the situation of reclaimed
water for irrigation, the reclaimed water quality may induce an adaptation of the type of plant grown.
Thus, the intended water reuse applications should govern the degree of wastewater treatment
required, and inversely, the reliability of wastewater reclamation processes and operation.
Treated wastewater (TWW, also referred to as reclaimed water or recycled water) can be used for
various non-potable purposes. The dominant applications for the use of TWW include agricultural
irrigation, landscape irrigation, industrial reuse and groundwater recharge. More recent and rapidly
growing applications are for various urban uses, recreational and environmental uses and indirect and
direct potable reuse.
Agricultural irrigation was, is and will likely remain the largest TWW consumer with recognized
benefits and contribution to food security. Urban water recycling, in particular landscape irrigation,
is characterized by fast development and will play a crucial role for the sustainability of cities in the
future, including energy footprint reduction, human well-being and environmental restoration.
It is worth noting again, that the suitability of TWW for a given type of reuse depends on the
compatibility between the wastewater availability (volume) and water irrigation demand throughout
the year, as well as on the water quality and the specific use requirements. Water reuse for irrigation
can convey some risks for health and environment, depending on the water quality, the irrigation
water application method, the soil characteristics, the climate conditions and the agronomic practices.
Consequently, public health and potential agronomic and environmental adverse impacts need to be
considered as priority elements in the successful development of water reuse projects for irrigation. To
prevent such potential adverse impacts, the development and application of international guidelines for
the reuse of TWW is essential.
The main water quality factors that determine the suitability of TWW for irrigation are pathogen
content, salinity, sodicity, specific ion toxicity, other chemical elements and nutrients. Local health
authorities are responsible for establishing water quality threshold values depending on authorized
uses and they are also responsible for defining practices to ensure health and environmental protection
taking in account local specificities.
From an agronomic point of view, the main limitation in using TWW for irrigation arises from its
quality. Treated wastewater, unlike water supplied for domestic and industrial purposes contains
higher concentrations of inorganic suspended and dissolved materials (total soluble salts, sodium,
chloride, boron, heavy metals), which can damage the soil and irrigated crops. As dissolved salts are
not removed by conventional wastewater treatment technologies and appropriate good management,
agronomic and irrigation practices should be used to avoid or minimize potential negative impacts.
The presence of nutrients (nitrogen, phosphorus and potassium) may become an advantage due to
possible saving in fertilizers. However, the amount of nutrients provided by TWW along the irrigation
period is not necessarily synchronized with crop requirements, and the availability of nutrients
depends on the chemical forms.
This document provides guidance for healthy, hydrological, environmental and good operation,
monitoring and maintenance of water reuse projects for unrestricted and restricted irrigation of
agricultural crops, gardens and landscape areas using treated wastewater. The quality of supplied
TWW should reflect the possible uses according to crop sensitivity (health-wise and agronomy-wise),
water sources (the hydrologic sensitivity of the project area), the soil and climate conditions.
This document refers to factors involved in water reuse projects for irrigation regardless of size,
location and complexity. It is applicable to intended uses of TWW in a given project, even if such uses
will change during the project’s lifetime; as a result of changes in the project itself or in the applicable
legislation.
The key factors in assuring the health, environmental and safety of water reuse projects in irrigation are:
— meticulous monitoring of TWW quality to ensure the system functions as planned and designed;
— design and maintenance instructions of the irrigation systems to ensure their proper long-term
operation;
— compatibility between the TWW quality, the distribution method and the intended soil and crops to
ensure a viable use of the soil and undamaged crop growth;
— compatibility between the TWW quality and its use to prevent or minimize possible contamination
of groundwater or surface water sources.
vi © ISO 2016 – All rights reserved

INTERNATIONAL STANDARD ISO 16075-4:2016(E)
Guidelines for treated wastewater use for irrigation
projects —
Part 4:
Monitoring
1 Scope
This document provides recommendations regarding:
— monitoring the quality of treated wastewater (TWW) for irrigation;
— monitoring irrigated plants;
— monitoring the soil with regard to salinity;
— monitoring natural water sources in neighbouring environments;
— monitoring the quality of water in storage reservoirs.
It puts emphasis on sampling methods and their frequency. Regarding the methods of analysis, this
document refers to standard methods or, where not available, to other bibliographical references.
NOTE In cases where a monitoring plan already exists, these recommendations can be integrated into this
plan. This is notably the case when a broader approach of risk management is implemented, such as the water
safety plans (serving as a model for sanitation safety plans) developed by WHO.
2 Normative references
There are no normative references in this document.
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at http://www.iso.org/obp
— IEC Electropedia: available at http://www.electropedia.org/
3.1 General
3.1.1
aquifer
underground layer of water-bearing permeable rock or unconsolidated materials (gravel, sand or silt)
from which groundwater can be extracted
3.1.2
background water
freshwater (3.1.10) supplied for domestic, institutional, commercial and industrial use, from which
wastewater (3.1.22) is created
3.1.3
barrier
any means including physical or process steps, that reduces or prevents the risk of human infection, by
preventing contact between the TWW and the ingested produce or other means that, for example, reduces
the concentration of microorganisms in the TWW or prevents their survival on the ingested produce
3.1.4
environment
surroundings in which an organization (3.1.13) operates, including air, water, land, natural resources,
flora, fauna, humans and their interrelation
3.1.5
environmental aspect
element of an organization’s (3.1.13) activities, projects or products (3.1.15) that can interact with the
environment (3.1.4)
3.1.6
environmental impact
any change to environmental quality, whether adverse or beneficial, wholly or partly resulting from an
organization’s (3.1.13) activities, projects or products (3.1.15)
3.1.7
environmental parameter
quantifiable attribute of an environmental aspect (3.1.5)
3.1.8
fodder crops
crops not for human consumption such as: pastures and forage, fibre, ornamental, seed, forest and
turf crops
3.1.9
food crops
crops which are intended for human consumption, often further classified as to whether the food crop
is to be cooked, processed or consumed raw
3.1.10
freshwater
naturally occurring water on the Earth’s surface (in ice, lakes, rivers and streams) and underground as
groundwater in aquifers (3.1.1)
Note 1 to entry: Freshwater includes desalinated seawater and desalinated brackish water, but excludes seawater
and brackish water.
3.1.11
irrigation project
design, development, construction, selection of equipment, operation and monitoring of works to
provide suitable TWW irrigation
3.1.12
non-potable water
NPW
water that is not of drinking water quality
Note 1 to entry: It generally refers to wastewater (3.1.22) or TWW, but can also include other waters of non-
drinking quality.
3.1.13
organization
group of people and facilities with an arrangement of responsibilities, authorities and relationships
2 © ISO 2016 – All rights reserved

3.1.14
process
set of interrelated or interacting activities which transform inputs into outputs
Note 1 to entry: Inputs to a process are generally outputs of other processes.
Note 2 to entry: Processes in an organization (3.1.13) are generally planned and carried out under controlled
conditions to add value.
3.1.15
product
any goods or services
Note 1 to entry: This includes interconnected and/or interrelated goods or services.
3.1.16
public health aspect
element of an organization’s (3.1.13) activities, projects or products (3.1.15) that can interact with the
public health
3.1.17
public health impact
any change to public health, whether adverse or beneficial, wholly or partly resulting from an
organization’s (3.1.13) activities, projects or products (3.1.15)
3.1.18
public health parameter
quantifiable attribute of a public health aspect (3.1.16)
3.1.19
soil
layer of unconsolidated material consisting of weathered material particles, dead and living organic
matter, air space and the soil solution (3.1.20)
3.1.20
soil solution
liquid phase of the soil (3.1.19) and its solutes
3.1.21
stakeholder
individual, group or organization (3.1.13) that has an interest in an organization or activity
Note 1 to entry: Usually a stakeholder can affect or is affected by the organization or the activity.
3.1.22
wastewater
wastewater collected principally by municipalities, that may include spent or used water from domestic,
institutional, commercial or industrial sources, and can include storm water
3.1.23
water reuse
use of treated wastewater (3.1.22) for beneficial use; synonymous also to water reclamation and water
recycling
3.2 Use of treated wastewater (TWW)
3.2.1
agriculture
science or practice of farming, including cultivation of the soil (3.1.19) for the growing of crops and the
rearing of animals to provide food or other products (3.1.15)
3.2.2
landscape
all the visible features of an area of land, often considered in terms of their aesthetic appeal such as
public and private gardens, parks, road vegetation including lawns and turfed recreational areas
3.2.3
restricted irrigation
use of TWW for non-potable applications in settings where public access is controlled or restricted by
physical or institutional barriers
3.2.4
restricted urban irrigation
irrigation of areas in which public access during irrigation can be controlled, such as some golf courses,
cemeteries, and highway medians
3.2.5
unrestricted irrigation
use of TWW for non-potable applications in settings where public access is not restricted
3.2.6
unrestricted urban irrigation
irrigation of areas in which public access during irrigation is not restricted, such as some gardens and
playgrounds
3.3 Wastewater quality
3.3.1
category A: very high quality TWW
raw wastewater (3.3.6) which has undergone physical and biological treatment, filtration (3.5.3) and
disinfection (3.5.2), and its quality is according to the description in ISO 16075-2:2015, Table 1
3.3.2
category B: high quality TWW
raw wastewater (3.3.6) which has undergone physical and biological treatment, filtration (3.5.3) and
disinfection (3.5.2), and its quality is according to the description in ISO 16075-2:2015, Table 1
3.3.3
category C: good quality TWW
raw wastewater (3.3.6) which has undergone physical and biological treatment, and its quality is
according to the description in ISO 16075-2:2015, Table 1
3.3.4
category D: medium quality TWW
raw wastewater (3.3.6) which has undergone physical and biological treatment, and its quality is
according to the description in ISO 16075-2:2015, Table 1
3.3.5
category E: extensively TWW
raw wastewater (3.3.6) which has undergone natural biological treatment process (3.1.14) with
long (minimum 10 to 15 days) retention time and its quality is according to the description in
ISO 16075-2:2015, Table 1
3.3.6
raw wastewater
wastewater (3.1.22) which has not undergone any treatment
4 © ISO 2016 – All rights reserved

3.3.7
thermo-tolerant coliforms
group of bacteria whose presence in the environment (3.1.4) usually indicates faecal contamination
(previously called Faecal coliforms)
Note 1 to entry: In order to determine the quality of TWW, one can test for Escherichia coli (E. coli) or for Faecal
coliforms, since the difference in values is not significant.
3.4 Irrigation systems
3.4.1
boom sprinkler
mobile sprinkling machine (3.4.11) composed of two symmetrical pipes (booms), with sprinkler (3.4.24)
nozzles distributed in one of the pipes, with the sprinkler action complemented by a gun sprinkler
placed at each end of both pipes; the nozzles work through a reaction effect (similar to a hydraulic
tourniquet) which drives the boom rotation at a desired speed
3.4.2
centre-pivot and moving lateral irrigation machines
automated irrigation machine consisting of a number of self-propelled towers supporting a pipeline
rotating around a pivot point and through which water supplied at the pivot point flows radially
outward for distribution by sprayers or sprinklers (3.4.24) located along the pipeline
3.4.3
emitter
emitting pipe
dripper
device fitted to an irrigation lateral and intended to discharge water in the form of drops or continuous
flow at flow rates not exceeding 15 l/h except during flushing
3.4.4
gravity flow irrigation systems
irrigation systems (3.4.8), where water is applied directly to the soil (3.1.19) surface and is not under
pressure
3.4.5
in-line emitter
emitter (3.4.3) intended for installation between two lengths of pipe in an irrigation lateral
3.4.6
irrigation gun
large discharge device being either a part circle or full circle sprinkler (3.4.24)
3.4.7
irrigation sprayer
device which discharges water in the form of fine jets or in a fan shape without rotational movement of
its parts
3.4.8
irrigation system
assembly of pipes, components, and devices installed in the field for the purpose of irrigating a
specific area
3.4.9
micro-irrigation system
system capable of delivering water drops, tiny-streams or mini-spray to the plants
Note 1 to entry: Surface and sub-surface drip irrigation and micro-spray irrigation (3.4.10) are the main types of
this system.
3.4.10
micro-spray irrigation systems
characterized by water point sources similar to sprinkler’s (3.4.24) miniatures (micro-sprinklers),
which are placed along the laterals, with a flow rate between 30 l/h and 150 l/h at pressure heads of
15 m to 25 m, and the corresponding wetted area between 2 m and 6 m
3.4.11
mobile sprinkling machine
sprinkling unit which is automatically moved across the soil (3.1.19) surface during the water application
3.4.12
on-line emitter
emitter (3.4.3) intended for installation in the wall of an irrigation lateral, either directly or indirectly
by means such as tubing
3.4.13
perforating pipe system
emitting pipe [emitter (3.4.3)/emitting pipe] continuous pipe, hose or tubing, including collapsible hose,
with perforations, intended to discharge water in the form of drops or continuous flow at emission
rates not exceeding 15 l/h for each emitting unit
3.4.14
permanent system
stationary fixed-grid irrigation system (3.4.8) [sprinklers (3.4.24)] for which sprinkler set positions are
rigidly fixed by semi-permanent or permanently installed irrigation laterals, for example, portable
solid-set irrigation system, buried irrigation system
3.4.15
portable system
system for which all or part of the network elements can be removed
3.4.16
pressurized irrigation systems
piped network systems under pressure
3.4.17
rotating sprinkler
device which, by its rotating motion around its vertical axis, distributes water over a circular area or
part of a circular area
3.4.18
self-moved system
unit where a lateral is mounted through the centre of a series of wheels and is moved as a whole
Note 1 to entry: Rotating sprinklers (3.4.17)/sprayers are placed on the lateral (also called wheel move).
3.4.19
self-propelled gun traveller
gun sprinkler (3.4.24) on a cart or sled attached to the end of flexible pipe/hose
3.4.20
semi-permanent system
similar to the semi-portable system (3.4.21), but with portable laterals and permanent pumping plant,
main lines and sub-mains
3.4.21
semi-portable system
similar to the portable system (3.4.15), except that the water source and the pumping plant are fixed
6 © ISO 2016 – All rights reserved

3.4.22
solid-set system
temporary fixed network, where the laterals are positioned in the field throughout the irrigation season
3.4.23
spray
release of water from a sprinkler (3.4.24)
3.4.24
sprinkler
water distribution device of a variety of sizes and types, for example, impact sprinkler, fixed nozzle,
sprayer, irrigation gun (3.4.6)
3.4.25
sprinkler irrigation systems
irrigation system (3.4.8) composed of sprinklers (3.4.24)
3.4.26
stationary sprinkler systems
network of fixed sprinklers (3.4.24)
3.4.27
traveller irrigation machine
irrigation machine designed to irrigate a field sequentially, strip by strip, while moving across the field
3.5 Wastewater system related components
3.5.1
additional disinfection
disinfection (3.5.2) of TWW in a water reuse (3.1.23) project intended to raise the quality of the TWW
before irrigation
3.5.2
disinfection
process (3.1.14) that destroys, inactivates or removes microorganisms
3.5.3
filtration
process (3.1.14) or device for removing solid or colloidal material from wastewater (3.1.22) by physically
trapping the particles and removing them
3.5.4
membrane filtration
filtration (3.5.3) by membrane with pore size equal or less than 0,45 μm
Note 1 to entry: Membrane filtration may also be considered as disinfection (3.5.2), according to the log units of
pathogen reduction that it achieves.
3.5.5
reservoir
system to store temporarily unused TWW depending on the demand for water irrigation and the
treatment plant discharge
Note 1 to entry: There are different types of reservoirs that can be used.
a) Open reservoirs which are commonly used for short-term storage with hydraulic residence times from 1 day
to 2 weeks.
b) Closed reservoirs for short-term storage to limit bacterial regrowth and external contamination common
with hydraulic residence time of 0,5 day to a week.
c) Surface reservoirs for long-term or seasonal storage of TWW to accumulate water during periods of
treatment plant discharge higher than irrigation demand, and to satisfy irrigation requirements when the
demand is higher than the treatment plant discharge. The hydraulic residence time changes according to the
seasons.
d) Aquifer (3.1.1) storage and recovery for long-term storage which is commonly combined with soil (3.1.19)
aquifer treatment (by means of infiltration basins). The residence time is also a variable that is affected
by the TWW discharge and irrigation demand. This aquifer storage should not contribute to the aquifer
recharge for potential potable water use.
3.5.6
storage
retained temporary unused TWW for short or long term before their release for use in irrigation
systems (3.4.8)
3.5.7
TWW pumping stations and transport systems
system of pipelines and pumps transporting the TWW from the WWTP to storage reservoirs and to the
use site
3.5.8
wastewater treatment plant
WWTP
facility designed to treat wastewater (3.1.22) by a combination of physical (mechanical) unit operations
and chemical and biological processes (3.1.14), for the purpose of reducing the organic and inorganic
contaminants in the wastewater
Note 1 to entry: There are different levels of wastewater treatment, according to the desired quality of TWW and
the level of contamination.
3.6 Abbreviated terms
BOD biochemical oxygen demand
CFU colony forming units
COD chemical oxygen demand
DO dissolved oxygen
EC electrical conductivity
HDPE high-density polyethylene
MPN most probable number
NDWQ non-drinking water quality
NTU nephelometric turbidity units
PP polypropylene
PVC polyvinyl chloride
RO reverse osmosis
SAR sodium adsorption ratio
SAT soil aquifer treatment
SS suspended solids
TDS total dissolved solids
8 © ISO 2016 – All rights reserved

TKN total Kjeldahl nitrogen
TN total nitrogen
TOC total organic carbon
TP total phosphorus
TSS total suspended solids
TWW treated wastewater
UV ultraviolet
VOC volatile organic compounds
WRF water reclamation facility
WW wastewater
WWTP wastewater treatment plant
4 Monitoring of the quality of TWW for irrigation
4.1 General
The development and implementation of an appropriate monitoring strategy is a crucial step for the
health and environmental safety of water reuse projects. This compliance monitoring is performed
usually at the outlet of the wastewater reclamation facility.
Monitoring can be undertaken for a range of purposes, and for each specific objective, different
parameters can be selected. For example, water quality monitoring can be implemented for the
following purposes:
a) human health protection: monitoring programs include selected microbial indicators at
concentrations which depend on health risk (risk of direct contact, risk related to the type of crops,
etc.), as well as few other parameters which indicate the reliability of operation of the wastewater
treatment (e.g. turbidity, suspended solids, BOD, etc.);
b) prevention of adverse effect on crops: monitored parameters (named also agronomic parameters,
include nutrients, soluble salts, sodium, trace elements, etc.);
c) prevention of adverse effects on environment (natural water sources and soil);
d) prevention of clogging of irrigation system, e.g. drip and sprinkler irrigation.
The selection of sampling points to control water quality and treatment performance, named
“performance control points”, depends on the type of application and the level of health and
environmental risks.
The key water quality control point is located at the outlet of the wastewater reclamation plant.
Sampling at the plant outlet follows ISO 5667-4. Treated wastewater is monitored either through
grab sampling or composite sampling (see below), depending on the monitored parameters and local
regulations.
Composite samples (as a rule for 24 h using refrigerated equipment) are very important for
relevant monitoring of physico-chemical parameters as they represent the average quality of TWW.
Microbiological parameters, dissolved oxygen, pH and temperature are monitored in grab samples in
situ, if possible during diurnal peak flow.
Similarly, the sampling frequency of other parameters related to prevention of adverse effects on
crops, soils and environment should be adapted to risk associated with sensitive crops and/or sensitive
environment (e.g. shallow aquifers used for potable water supply), and/or specific irrigation equipment.
The decision about the sampling (composite or grab) for these parameters should also take into account
the daily variations in raw wastewater.
4.2 Sampling procedure
Depending on the type of the monitored parameters, there exist some basic sampling rules described in
standard methods and ISO standards for water analysis or some specific analytical procedures defined
by certified laboratories.
Sampling of TWW for irrigation should follow the list below.
— The type of samples can be either grab or composite samples to be used for water quality monitoring
depending on the final objectives.
— All samples should be well labelled, indicating the type of water, site location, date, time and other
pertinent data.
— Sampling frequency should be defined by water reuse granted permit.
— For the better planning and management of the irrigation scheme, seasonal samples should be
taken depending on seasons in the concerned region, in order to obtain representative data on the
variation in water quality, in particular nitrogen and salinity.
— The baseline monitoring for human health protection should be undertaken by sampling at the
outlet of the treatment facility (see ISO 16075-2:2015, Table 1).
To check the reliability of operation of treatment processes, additional sampling points could be added
when necessary, in particular in the case of non-compliance.
— For verification of potential contamination or regrowth in storage reservoirs and/or distribution
network, additional control points for sampling can be established as a function of the final use, site
location and irrigation method.
— Sampling bottles should be clean. Depending on parameters, and as some types of glass bottles yield
boron to the samples, high-density polyethylene (HDPE) or polypropylene (PP) bottles with double
caps or self-sealing caps should be used.
As the sample quantity depends on the type of analysis to be performed, for the analysis of the
basic water characteristics and the main anions and cations, 1 l of sample could be sufficient.
Recommendations for sample preparation and handling are given in Table 1.
— Sampling and handling should be done safely with suitable precaution to avoid disease transmission
by means of plastic gloves or using other protection.
Quality control samples should be collected as part of any routine sampling programme. Sampling and
handling of raw wastewater and treated wastewater should follow Table 1.
10 © ISO 2016 – All rights reserved

Table 1 — Recommendations for sample preparation and conservation
Parameter Type of bottle Addition of Conservation Comments
chemicals
Anions and cations 1 l HDPE or PP No additive Dark, 4 °C Temperature, pH and
(chloride, sulfate), as bottles with double dissolved oxygen should
well as general physico- caps or self-sealing be measured on site.
chemical parameters caps, with or
(pH, suspended solids, without air
conductivity, turbidity)
Phosphorus and 1 l HDPE or PP H SO to pH = 2 Dark, 4 °C
2 4
N Kjeldahl bottles with double
caps or self-sealing
caps, with or
without air
Boron 100 ml HDPE or PP HNO to pH = 2 Dark, 4 °C
bottles with double
caps or self-sealing
caps
COD 100 ml HDPE or PP H SO to pH = 2 Dark, 4 °C No additive is needed if
2 4
bottles with double the samples are analysed
caps or self-sealing within 48 h.
caps, no air
BOD 500 ml HDPE or PP No additive Dark, 4 °C Na SO should be used
2 3
bottles with double for dealing with samples
caps or self-sealing with residual chlorine.
caps, no air Preserve sample and add
seed for chlorinated and
dechlorinated wastewa-
ter samples.
Trace elements and 250 ml HDPE or PP HNO to pH = 2 Dark, 4 °C A special bottle [such as
heavy metals bottles with double polytetrafluoroethylene
caps or self-sealing (PTFE)] and additive are
caps, with or needed for the analysis
without air of mercury (Hg).
Trace organics and 1 l dark glass bottle Ascorbic acid Dark 4 °C
−1
pesticides or PTFE bottle, no air (1 000 mg l ) if
rinsed with organic residual chlorine
solvents is present
Microbiological param- 1 l to 5 l sterile No additive Dark, 4 °C Additive of sodium
eters (total and faecal HDPE or PP bottles thiosulfate at a well-de-
coliforms, helminths, with double caps or fined concentration is
viruses, or other addi- self-sealing caps bot- mandatory in presence of
tional microbiological tle, with air residual chlorine and rec-
parameters) ommended in all cases.
4.2.1 Sampling from an irrigation system
Water quality should be checked by the end user according to the following procedure.
Water sampling should not be taken when fertigation (fertilization through irrigation) is taking place.
a) Turn on the irrigation system until the system operates to full designed pressure and let the system
irrigate until the pipe have flushed of all stagnant water from the previous irrigation event.
b) Collect a sample from a control filter or from an irrigation emitter (a sprinkler, micro-jet or a
dripper).
c) The water sample should be collected in bottles as provided or recommended by the analytical
laboratory or procedure and the parameters to be tested (see Table 1). For bacterial sampling, a
sterile bottle should be used. Write all necessary details on a sticker attached to the bottle (name,
address, date, location, etc.) and seal the lid.
d) Preserve samples according to standard laboratory practice and transport them to an analytical
laboratory within the time period recommended for the analysis (see Table 1).
For more information about sampling from an irrigation system, see ISO 5667-10.
4.2.2 Sampling from a storage reservoir
To evaluate a potential evolution of treated wastewater quality during storage, a sample from the
storage reservoir should be taken according to the following procedure.
a) It is recommended to take the sample as close as possible to the pumping point.
b) Avoid sampling downwind to prevent the collection of floating materials (plant or algae residues)
transported by water waves to the downwind side of the storage reservoir.
c) Tie an empty bottle to a weight and attach both to a pole.
d) Lower the bottle so that the neck is submerged in the storage reservoir to a depth of about 100 mm
or 10 cm and fill the bottle.
e) Remove the bottle from the storage reservoir, seal it and label the bottle.
f) Preserve the sample if required or refer to Table 1 to determine if and what preservative is
required. Store the sample and take them to the laboratory within the time period recommended
by the analytical laboratory or procedure (see Table 1).
For more information about sampling from a storage reservoir, see ISO 5667-4.
4.2.3 Composite sample
To characterize TWW at the outlet of the plant in order to take into account the fluctuations of WW
quality, a composite sample should be taken.
Composite sampling should be within a 24 h duration.
A refrigerated automatic sampler should be used.
Composite sample should be taken in typical conditions of flowing rate and pollutant load (wastewater
generators).
4.2.4 Sample handling
Samples should be kept in a thermally insulated container and delivered immediately to the laboratory. If
the samples cannot be delivered immediately, they should be temporarily stored in a refrigerator at 4 °C.
For more information about sample handling, see ISO 5667-1.
4.3 TWW monitoring plan
The plans presented in Table 2, Table 3 and Table 4 serve as examples of the monitoring frequencies to
characterize TWW used for irrigation. The tables include the parameters to be tested, and the sampling
frequency of the TWW flowing to reservoirs, directly to irrigation or from reservoirs. The monitoring
plan should be adapted to the local conditions of each region.
12 © ISO 2016 – All rights reserved

Table 2 — Example of monitoring frequency at the outlet of the wastewater treatment plant
(health-related parameters)
a
Monitoring frequency by quality categories
Monitored
parameters
Category A Category B Category C Category D Category E
Thermo- Daily to weekly Weekly to twice Twice a month Not relevant Not relevant
tolerant a month to monthly
coliforms
(see 3.3.7 and
ISO 16075-2)
Intestinal Not relevant Not relevant The frequency The frequency The frequency
nematodes (hel- will be deter- will be deter- will be deter-
b
minth eggs ) mined ac
...


NORME ISO
INTERNATIONALE 16075-4
Première édition
2016-12-15
Lignes directrices pour l’utilisation
des eaux usées traitées en
irrigation —
Partie 4:
Surveillance
Guidelines for treated wastewater use for irrigation projects —
Part 4: Monitoring
Numéro de référence
©
ISO 2016
DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2016, Publié en Suisse
Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée
sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie, l’affichage sur
l’internet ou sur un Intranet, sans autorisation écrite préalable. Les demandes d’autorisation peuvent être adressées à l’ISO à
l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2016 – Tous droits réservés

Sommaire Page
Avant-propos .iv
Introduction .v
1 Domaine d’application . 1
2 Références normatives . 1
3 Termes et définitions . 1
3.1 Généralités . 1
3.2 Utilisation des eaux usées traitées (EUT) . 4
3.3 Qualité des eaux usées. 4
3.4 Systèmes d’irrigation . 5
3.5 Éléments associés aux stations d’épuration des eaux usées . 7
3.6 Abréviations . 9
4 Surveillance de la qualité des EUT destinées à l’irrigation .10
4.1 Généralités .10
4.2 Mode opératoire d’échantillonnage .10
4.2.1 Échantillonnage à partir d’un système d’irrigation .12
4.2.2 Échantillonnage dans un réservoir de stockage .13
4.2.3 Échantillon composite . .13
4.2.4 Manipulation des échantillons .14
4.3 Plan de surveillance des EUT .14
4.4 Méthodes d’analyse relatives aux EUT .16
5 Surveillance des cultures irriguées .16
5.1 Généralités .16
5.2 Fréquence de surveillance .16
5.2.1 Cultures de plein champ et légumes .16
5.2.2 Cultures pérennes .16
6 Surveillance de la salinité du sol .17
6.1 Échantillonnage du sol .17
6.2 Fréquence d’échantillonnage du sol .17
6.3 Mode opératoire d’échantillonnage .18
6.3.1 Irrigation par goutte-à-goutte .18
6.3.2 Irrigation par arrosage et par mini-diffuseurs .18
6.3.3 Préparation des échantillons .18
6.4 Méthodes d’analyse des sols .18
7 Surveillance du milieu récepteur .18
7.1 Généralités .18
7.2 Objectif du programme de surveillance .19
7.3 Échantillonnage des eaux souterraines .19
7.4 Échantillonnage des eaux de surface .20
8 Assurance qualité et contrôle qualité .20
Bibliographie .22
Avant-propos
L’ISO (Organisation internationale de normalisation) est une fédération mondiale d’organismes
nationaux de normalisation (comités membres de l’ISO). L’élaboration des Normes internationales est
en général confiée aux comités techniques de l’ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l’ISO participent également aux travaux.
L’ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui
concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier de prendre note des différents
critères d’approbation requis pour les différents types de documents ISO. Le présent document a été
rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2 (voir www.
iso.org/directives).
L’attention est appelée sur le fait que certains des éléments du présent document peuvent faire l’objet de
droits de propriété intellectuelle ou de droits analogues. L’ISO ne saurait être tenue pour responsable
de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant
les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de
l’élaboration du document sont indiqués dans l’Introduction et/ou dans la liste des déclarations de
brevets reçues par l’ISO (voir www.iso.org/brevets).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données
pour information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un
engagement.
Pour une explication de la signification des termes et expressions spécifiques de l’ISO liés à l’évaluation
de la conformité, ou pour toute information au sujet de l’adhésion de l’ISO aux principes de l’Organisation
mondiale du commerce (OMC) concernant les obstacles techniques au commerce (OTC), voir le lien
suivant: www.iso.org/iso/fr/avant-propos.html
Le comité chargé de l’élaboration du présent document est le Comité technique ISO/TC 282, Recyclage
des eaux, sous-comité SC 1, Recyclage des eaux usées traitées à des fins d’irrigation.
Une liste de toutes les parties de la série ISO 16075 peut être consultée sur le site web de l’ISO.
iv © ISO 2016 – Tous droits réservés

Introduction
Avec les efforts croissants déployés par de nombreux pays pour pallier la rareté et la pollution de
leurs ressources en eau, les eaux usées municipales et industrielles traitées sont devenues un moyen
économique judicieux pour augmenter les quantités disponibles, en particulier si on les compare à
des alternatives coûteuses telles que le dessalement ou le développement de nouvelles sources d’eau
impliquant la construction de barrages et de réservoirs. La réutilisation de l’eau permet de fermer le
cycle de l’eau plus près des villes, en produisant une «eau neuve» à partir des eaux usées municipales
et en réduisant les rejets d’eaux usées dans l’environnement. La réutilisation des eaux usées traitées
pourrait également être une solution avantageuse pour améliorer la qualité des masses d’eau, par
exemple en évitant les rejets des stations d’épuration des eaux usées en amont de zones sensibles (zones
d’aquaculture (fruits de mer), zones de natation).
Un nouveau concept, important, en matière de réutilisation des eaux usées est l’approche «adaptée
aux besoins», qui implique la production d’eau réutilisée d’une qualité répondant aux besoins des
utilisateurs finaux prévus. Dans le cas de l’eau réutilisée destinée à l’irrigation, la qualité de l’eau peut
conduire à adapter les types de végétaux cultivés. Il convient donc que les applications prévues de
réutilisation de l’eau dictent le degré de traitement requis pour les eaux usées, et réciproquement, de
même que la fiabilité des processus de réutilisation des eaux usées et de leur mise en œuvre.
Les eaux usées traitées (EUT, que l’on qualifie également d’eaux réutilisées ou d’eaux recyclées)
peuvent être utilisées à différentes fins comme eau non potable. Les principales applications utilisant
les eaux usées traitées comprennent l’irrigation des terres agricoles, l’irrigation des espaces verts, la
réutilisation industrielle et la recharge de nappe. Des applications plus récentes, qui se développent
rapidement, ciblent différents usages: urbain, récréatif, environnemental, ainsi que la réutilisation
directe et indirecte pour la production d’eau potable.
L’irrigation des terres agricoles a toujours été et restera probablement le secteur qui consomme le plus
d’eaux usées traitées, les avantages de cette pratique et sa contribution à la sécurité alimentaire étant
reconnus. Le recyclage de l’eau pour des applications urbaines, et notamment l’irrigation des espaces
verts, se caractérise par un essor rapide et jouera un rôle décisif pour le développement durable des
villes dans le futur, y compris du point de vue de la réduction de l’empreinte énergétique, du bien-être
de la population et de la restauration de l’environnement.
Il est utile de rappeler que l’adéquation des eaux usées traitées à un type de réutilisation donné
dépend de la correspondance entre la disponibilité des eaux usées (leur volume) et la demande en
eau d’irrigation tout au long de l’année, ainsi que de la qualité de l’eau et des exigences spécifiques
d’utilisation. La réutilisation de l’eau pour l’irrigation peut comporter certains risques pour la santé
et l’environnement, en fonction de la qualité de l’eau, de la méthode d’application de l’eau d’irrigation,
des caractéristiques du sol, des conditions climatiques et des pratiques agronomiques. Par conséquent,
la santé publique et les impacts négatifs potentiels sur l’agriculture et l’environnement doivent être
considérés comme des aspects prioritaires pour le développement de projets de réutilisation de l’eau
pour l’irrigation qui donnent des résultats probants. Pour prévenir de tels impacts négatifs potentiels,
l’élaboration et l’application de lignes directrices internationales pour la réutilisation des eaux usées
traitées sont essentielles.
Les principaux facteurs déterminant, sur le plan qualitatif, l’adéquation des eaux usées traitées pour
l’irrigation sont la teneur en agents pathogènes, la salinité, la sodicité, la toxicité d’ions spécifiques, les
autres éléments chimiques et les nutriments. Il incombe aux autorités sanitaires locales d’établir des
valeurs seuils de qualité de l’eau en fonction des utilisations autorisées et de définir des pratiques pour
garantir la protection sanitaire et environnementale en tenant compte des spécificités locales.
D’un point de vue agronomique, la principale limitation à l’utilisation des eaux usées traitées en irrigation
est liée à leur qualité. Les eaux usées traitées, contrairement à l’eau destinée à des usages domestiques
et industriels, contiennent de plus fortes concentrations de matières inorganiques en suspension et
dissoutes (sels totaux solubles, sodium, chlorures, bore, métaux lourds), qui peuvent nuire au sol et
aux cultures irriguées. Les sels dissous n’étant pas éliminés par les techniques conventionnelles de
traitement des eaux usées, il convient d’adopter de bonnes pratiques en matière de gestion, d’agronomie
et d’irrigation pour éviter ou réduire le plus possible les impacts négatifs potentiels.
La présence de nutriments (azote, phosphore et potassium) peut s’avérer avantageuse du fait des
économies d’engrais qu’il est possible de réaliser. Cependant, la quantité de nutriments fournie par les
eaux usées traitées tout au long de la période d’irrigation ne coïncide pas forcément avec les besoins des
cultures et la disponibilité des nutriments dépend de leur forme chimique.
Le présent document fournit des préconisations pour assurer le déroulement, la surveillance et la
maintenance dans de bonnes conditions, sur les plans sanitaire, hydrologique et environnemental, des
projets de réutilisation de l’eau pour l’irrigation non restreinte et restreinte de cultures agricoles, de
jardins et d’espaces verts avec des eaux usées traitées. Il convient que la qualité des eaux usées traitées
fournies corresponde aux utilisations possibles en fonction de la sensibilité des cultures (sur le plan
sanitaire et sur le plan agronomique), des sources d’eau (sensibilité hydrologique de la zone concernée
par le projet), du sol et des conditions climatiques.
Le présent document concerne les facteurs entrant en ligne de compte dans les projets de réutilisation
de l’eau pour l’irrigation, indépendamment de leur taille, de leur complexité et de leur situation
géographique. Il est applicable aux utilisations des eaux usées traitées prévues dans un projet
donné, même si ces utilisations sont amenées à changer pendant la durée de vie du projet, du fait de
modifications apportées au projet lui-même ou à la législation en vigueur.
Les principaux facteurs entrant en jeu pour assurer la sécurité, en matière de santé et d’environnement,
des projets de réutilisation de l’eau en irrigation sont les suivants:
— une surveillance méticuleuse de la qualité des eaux usées traitées pour garantir le fonctionnement
du système conformément aux prévisions et à la conception;
— des instructions de conception et de maintenance des systèmes d’irrigation pour garantir leur bon
fonctionnement à long terme;
— la compatibilité entre la qualité des eaux usées traitées, la méthode de distribution et le type de sol
et de cultures à irriguer pour garantir une exploitation viable du sol et une croissance normale des
cultures;
— l’adéquation entre la qualité des eaux usées traitées et leur utilisation pour empêcher ou réduire au
minimum une éventuelle contamination des sources d’eaux souterraines ou d’eaux de surface.
vi © ISO 2016 – Tous droits réservés

NORME INTERNATIONALE ISO 16075-4:2016(F)
Lignes directrices pour l’utilisation des eaux usées traitées
en irrigation —
Partie 4:
Surveillance
1 Domaine d’application
Le présent document fournit des recommandations concernant:
— la surveillance de la qualité des eaux usées traitées (abrégées en EUT) pour l’irrigation;
— la surveillance des cultures irriguées;
— la surveillance de la salinité du sol;
— la surveillance des sources d’eau naturelle dans les environs;
— la surveillance de la qualité de l’eau dans les réservoirs de stockage.
Le présent document met l’accent sur les méthodes et la fréquence d’échantillonnage. Concernant les
méthodes d’analyse, il se réfère à des méthodes normalisées ou, lorsque celles-ci font défaut, à d’autres
références bibliographiques.
NOTE Dans les cas où un plan de surveillance existe déjà, les présentes recommandations peuvent être
intégrées à ce plan. C’est le cas notamment lorsqu’une approche de gestion du risque de plus grande portée est
mise en œuvre, par exemple les plans de gestion de la sécurité sanitaire de l’eau (qui servent de modèle aux plans
de sécurité sanitaire de l’assainissement) élaborés par l’Organisation mondiale de la santé.
2 Références normatives
Le présent document ne contient aucune référence normative.
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions suivants s’appliquent.
L’ISO et l’IEC tiennent à jour des bases de données terminologiques destinées à être utilisées en
normalisation, consultables aux adresses suivantes:
— ISO Online browsing platform: disponible à l’adresse http://www.iso.org/obp
— IEC Electropedia: disponible à l’adresse http://www.electropedia.org/
3.1 Généralités
3.1.1
aquifère
couche souterraine de roche perméable ou de matériaux non consolidés (gravier, sable ou limon)
contenant de l’eau, dont on peut extraire de l’eau souterraine
3.1.2
eau fraîche initiale
eau douce (3.1.10) à usages domestique, institutionnel, commercial et industriel, à partir de laquelle les
eaux usées (3.1.22) sont produites
3.1.3
barrière
tout moyen, y compris des dispositifs physiques ou des étapes d’un processus, réduisant ou prévenant
le risque d’infection humaine en empêchant le contact entre les EUT et les produits agricoles ingérés, ou
autre moyen réduisant par exemple la concentration de microorganismes dans les EUT ou empêchant
leur survie sur les produits ingérés
3.1.4
environnement
cadre de fonctionnement d’une organisation (3.1.13), incluant l’air, l’eau, la terre, les ressources
naturelles, la flore, la faune, les êtres humains et leurs relations
3.1.5
aspect environnemental
élément des activités, projets ou produits (3.1.15) d’une organisation (3.1.13) pouvant interagir avec
l’environnement (3.1.4)
3.1.6
impact environnemental
tout changement qualitatif, négatif ou positif, intervenant dans l’environnement, résultant en totalité
ou en partie des activités, projets ou produits (3.1.15) d’une organisation (3.1.13)
3.1.7
paramètre environnemental
attribut quantifiable d’un aspect environnemental (3.1.5)
3.1.8
cultures fourragères
cultures non destinées à la consommation humaine, telles que les cultures pastorales, ornementales,
forestières, les cultures pour la production de fourrage et de plantes à fibres, les cultures de semences
et de gazon
3.1.9
cultures vivrières
cultures destinées à la consommation humaine, souvent réparties en sous-catégories selon que les
produits sont destinés à être cuits, transformés ou consommés crus
3.1.10
eau douce
eau naturellement présente à la surface de la terre (dans la glace, les lacs, les rivières et les ruisseaux) et
sous terre sous forme d’eau souterraine dans les aquifères (3.1.1)
Note 1 à l’article: L’eau douce inclut l’eau de mer et l’eau saumâtre après leur dessalement, mais exclut l’eau de mer
et l’eau saumâtre.
3.1.11
projet d’irrigation
conception, développement, construction, sélection de matériels, exploitation et contrôle du
fonctionnement des installations pour fournir une irrigation appropriée par des EUT
2 © ISO 2016 – Tous droits réservés

3.1.12
eau non potable
ENP
eau ne présentant pas la qualité d’une eau destinée à la consommation
Note 1 à l’article: Ce terme se réfère généralement à des eaux usées (3.1.22) ou des EUT, mais peut inclure
également d’autres eaux de qualité non potable.
3.1.13
organisation
groupe de personnes et d’installations où les responsabilités, les autorités et les relations sont
organisées
3.1.14
processus
ensemble d’activités interreliées ou présentant entre elles des interactions, qui transforment des
intrants en extrants
Note 1 à l’article: Les intrants d’un processus sont généralement les extrants d’autres processus.
Note 2 à l’article: Les processus d’une organisation (3.1.13) sont généralement planifiés et exécutés dans des
conditions contrôlées pour fournir une valeur ajoutée.
3.1.15
produit
n’importe quel type de bien ou de service
Note 1 à l’article: Ceci inclut les biens ou services interconnectés et/ou interreliés.
3.1.16
aspect lié à la santé publique
élément des activités, projets ou produits (3.1.15) d’une organisation (3.1.13) pouvant interagir avec la
santé publique
3.1.17
impact sur la santé publique
tout changement, négatif ou positif, intervenant dans le domaine de la santé publique, résultant en
totalité ou en partie des activités, projets ou produits (3.1.15) d’une organisation (3.1.13)
3.1.18
paramètre de santé publique
attribut quantifiable d’un aspect lié à la santé publique (3.1.16)
3.1.19
sol
couche de matériau non consolidé composée de particules de matériaux altérés, de matière organique
morte et vivante, d’interstices remplis d’air et de la solution du sol (3.1.20)
3.1.20
solution du sol
phase liquide du sol (3.1.19) avec ses éléments dissous
3.1.21
partie prenante
individu, groupe ou organisation (3.1.13) ayant un intérêt dans une organisation ou une activité
Note 1 à l’article: Habituellement, une partie prenante peut influencer ou être influencée par l’organisation ou
l’activité.
3.1.22
eaux usées
eaux collectées principalement par les municipalités; elles peuvent inclure des eaux résiduaires
d’origine domestique, institutionnelle, commerciale ou industrielle, ainsi que des eaux de pluie
3.1.23
réutilisation de l’eau
utilisation des eaux usées (3.1.22) traitées à des fins utiles; également synonyme de récupération de
l’eau et de recyclage de l’eau
3.2 Utilisation des eaux usées traitées (EUT)
3.2.1
agriculture
science ou pratique d’exploitation de la terre, incluant le travail du sol (3.1.19) pour la culture de produits
et l’élevage d’animaux afin de fournir de la nourriture ou d’autres produits (3.1.15)
3.2.2
espaces verts
tous les éléments visibles d’une parcelle de terrain, souvent considérés du point de vue de leur intérêt
esthétique, tels les jardins publics et privés, les parcs, la végétation des routes, y compris les pelouses et
aires récréatives gazonnées
3.2.3
irrigation restreinte
utilisation d’EUT pour des applications non potables dans des lieux dont l’accès au public est contrôlé ou
restreint par des barrières physiques ou institutionnelles
3.2.4
irrigation urbaine restreinte
irrigation d’aires dont l’accès au public pendant l’irrigation peut être contrôlé (par exemple, certains
terrains de golf, cimetières et terre-pleins centraux d’autoroutes)
3.2.5
irrigation non restreinte
utilisation d’EUT pour des applications non potables dans des lieux dont l’accès au public n’est pas
restreint
3.2.6
irrigation urbaine non restreinte
irrigation d’aires dont l’accès au public pendant l’irrigation n’est pas restreint (par exemple, certains
jardins et aires de jeux)
3.3 Qualité des eaux usées
3.3.1
classe A: EUT de très haute qualité
eaux usées brutes (3.3.6) ayant subi un traitement physique et biologique, une filtration (3.5.3) et une
désinfection (3.5.2), et dont la qualité répond à la description du Tableau 1 de l’ISO 16075-2:2015
3.3.2
classe B: EUT de haute qualité
eaux usées brutes (3.3.6) ayant subi un traitement physique et biologique, une filtration (3.5.3) et une
désinfection (3.5.2), et dont la qualité répond à la description du Tableau 1 de l’ISO 16075-2:2015
3.3.3
classe C: EUT de bonne qualité
eaux usées brutes (3.3.6) ayant subi un traitement physique et biologique, et dont la qualité répond à la
description du Tableau 1 de l’ISO 16075-2:2015
4 © ISO 2016 – Tous droits réservés

3.3.4
classe D: EUT de qualité moyenne
eaux usées brutes (3.3.6) ayant subi un traitement physique et biologique, et dont la qualité répond à la
description du Tableau 1 de l’ISO 16075-2:2015
3.3.5
classe E: eaux usées après traitement extensif
eaux usées brutes (3.3.6) ayant subi un processus (3.1.14) de traitement biologique naturel avec un long
temps de séjour (10 j à 15 j au minimum), et dont la qualité répond à la description du Tableau 1 de
l’ISO 16075-2:2015
3.3.6
eaux usées brutes
eaux usées (3.1.22) n’ayant été soumises à aucun traitement
3.3.7
coliformes thermotolérants
groupe de bactéries dont la présence dans l’environnement (3.1.4) indique généralement une
contamination fécale (auparavant nommés coliformes fécaux)
Note 1 à l’article: Pour déterminer la qualité des EUT, on peut rechercher Escherichia coli (E. coli) ou les coliformes
fécaux, car l’écart entre les valeurs n’est pas significatif.
3.4 Systèmes d’irrigation
3.4.1
rampe d’arrosage
machine d’arrosage mobile (3.4.11) composée de deux tuyaux (bras) symétriques et de buses
d’arroseur (3.4.24) réparties sur l’un des tuyaux, l’action d’arrosage étant complétée par un canon
d’arrosage placé à chaque extrémité des deux tuyaux; l’action des buses produit un effet de réaction
(similaire à un tourniquet hydraulique) qui entraîne la rotation des bras à une vitesse voulue
3.4.2
machine d’irrigation à pivot central et déplacement latéral
machine d’irrigation automatique constituée d’un certain nombre de tours automotrices supportant
un tuyau qui tourne autour d’un pivot et par le biais duquel de l’eau fournie au niveau du pivot s’écoule
radialement vers l’extérieur pour être distribuée par des asperseurs ou des arroseurs (3.4.24) situés le
long du tuyau
3.4.3
émetteur
tuyau émetteur
goutteur
dispositif monté sur une conduite latérale d’irrigation et destiné à distribuer l’eau par goutte-à-goutte
ou en flux continu à un débit ne dépassant pas 15 l/h, excepté pendant la purge
3.4.4
système d’irrigation à écoulement gravitaire
système d’irrigation (3.4.8) où l’eau est appliquée directement sur la surface du sol (3.1.19) et n’est pas
sous pression
3.4.5
émetteur intercalé
émetteur (3.4.3) destiné à être installé entre deux longueurs de tuyau dans une conduite latérale
d’irrigation
3.4.6
canon d’irrigation
dispositif de distribution sur une longue portée, qui est soit un arroseur (3.4.24) secteur de cercle, soit
un arroseur (3.4.24) plein cercle
3.4.7
asperseur d’irrigation
dispositif distribuant l’eau sous forme de jets fins ou en éventail sans mouvement rotatif des parties qui
le constituent
3.4.8
système d’irrigation
assemblage de tuyaux, composants et dispositifs installés dans le champ dans le but d’irriguer une zone
spécifique
3.4.9
système de micro-irrigation
système pouvant délivrer de l’eau aux végétaux sous forme de gouttes, de micro-ruissellements ou de
micro-aspersion
Note 1 à l’article: L’irrigation par goutte-à-goutte en surface et sous la surface et l’irrigation par micro-
aspersion (3.4.10) sont les deux principaux systèmes de ce type.
3.4.10
système d’irrigation par micro-aspersion
système caractérisé par des sources d’eau ponctuelles similaires à des arroseurs (3.4.24) miniatures
(micro-arroseurs), qui sont placées le long des conduites latérales, délivrent un débit compris entre
30 l/h et 150 l/h avec des hauteurs manométriques (pressions de refoulement) allant de 15 m à 25 m, et
arrosent sur une longueur comprise entre 2 m et 6 m
3.4.11
machine d’arrosage mobile
unité d’arrosage qui est déplacée automatiquement sur toute la surface du sol (3.1.19) pendant
l’application de l’eau
3.4.12
émetteur intégré
émetteur (3.4.3) destiné à être installé dans la paroi d’une conduite latérale d’irrigation, soit directement,
soit indirectement au moyen d’un tube par exemple
3.4.13
système de tuyau perforé
émetteur (émetteur (3.4.3)/tuyau émetteur), tuyau, tuyau flexible ou tube continu, y compris tuyau
flexible pliable, pourvu de perforations destinées à distribuer l’eau par goutte-à-goutte ou en flux
continu à un débit d’émission ne dépassant pas 15 l/h pour chaque unité émettrice
3.4.14
système permanent
système d’irrigation (3.4.8) statique à réseau fixe [arroseurs (3.4.24)], pour lequel les positions des arroseurs
sont fixées de manière rigide sur des conduites latérales d’irrigation semi-permanentes ou permanentes,
par exemple, système d’irrigation à réseau fixe saisonnier portatif, système d’irrigation enterré
3.4.15
système portatif
système dont la totalité ou une partie des éléments constituant le réseau peut être déplacée
3.4.16
système d’irrigation sous pression
système de réseaux de tuyaux sous pression
3.4.17
arroseur rotatif
dispositif qui, par son mouvement rotatif autour de son axe vertical, distribue de l’eau sur une zone
circulaire ou une partie d’une zone circulaire
6 © ISO 2016 – Tous droits réservés

3.4.18
système automoteur
unité dont une conduite latérale passe au centre d’une série de roues et est déplacée en entier
Note 1 à l’article: Des asperseurs/arroseurs rotatifs (3.4.17) sont placés sur la conduite latérale (également appelée
système déplaçable sur roues).
3.4.19
canon automoteur
canon arroseur (3.4.24) placé sur un chariot ou un traîneau attaché à l’extrémité d’un tuyau flexible
3.4.20
système semi-permanent
dispositif similaire au système semi-portatif (3.4.21), mais avec des conduites latérales portatives et une
station de pompage et des conduites principales et secondaires qui sont permanentes
3.4.21
système semi-portatif
dispositif similaire au système portatif (3.4.15), à l’exception de la source d’eau et de la station de
pompage, qui sont fixes
3.4.22
système à réseau fixe saisonnier
réseau fixe temporaire, où les conduites latérales sont positionnées dans le champ pendant toute la
saison d’irrigation
3.4.23
aspersion
distribution d’eau par un arroseur (3.4.24)
3.4.24
arroseur
dispositif de distribution d’eau de différentes dimensions et différents types, par exemple, arroseur à
impact, buse fixe, asperseur, canon d’irrigation (3.4.6)
3.4.25
système d’irrigation par arrosage
système d’irrigation (3.4.8) composé d’arroseurs (3.4.24)
3.4.26
système d’arrosage statique
réseau d’arroseurs (3.4.24) fixes
3.4.27
machine d’irrigation mobile
machine d’irrigation conçue pour irriguer un champ de façon séquentielle, bande par bande, tout en se
déplaçant d’un bout à l’autre du champ
3.5 Éléments associés aux stations d’épuration des eaux usées
3.5.1
désinfection additionnelle
désinfection (3.5.2) des EUT dans le cadre d’un projet de réutilisation de l’eau (3.1.23), destinée à
améliorer la qualité des EUT avant l’irrigation
3.5.2
désinfection
processus (3.1.14) qui détruit, inactive ou élimine les microorganismes
3.5.3
filtration
processus (3.1.14) ou dispositif permettant d’éliminer la matière solide ou colloïdale des eaux
usées (3.1.22) en piégeant physiquement les particules et en les retirant
3.5.4
filtration sur membrane
filtration (3.5.3) par une membrane de porosité inférieure ou égale à 0,45 μm
Note 1 à l’article: La filtration sur membrane peut également être considérée comme une désinfection (3.5.2) en
fonction de la réduction d’agents pathogènes, mesurée en unités log, qu’elle permet d’obtenir
3.5.5
réservoir
système de stockage temporaire des EUT non utilisées en fonction de la demande en eau d’irrigation et
du débit de production de la station d’épuration
Note 1 à l’article: Différents types de réservoirs peuvent être utilisés:
a) les réservoirs à ciel ouvert, communément utilisés pour le stockage à court terme avec des temps de séjour
hydraulique allant d’un jour à deux semaines;
b) les réservoirs fermés, utilisés pour le stockage à court terme afin de limiter la reprise de la croissance
bactérienne et la contamination extérieure, courants pour des temps de séjour hydraulique d’une demi-
journée à une semaine;
c) les réservoirs à ciel ouvert pour le stockage à long terme ou saisonnier des EUT, afin d’accumuler l’eau
pendant les périodes où le débit de production de la station d’épuration est supérieur à la demande en eau
d’irrigation et de satisfaire aux besoins d’irrigation lorsque la demande est supérieure au débit de production
de la station d’épuration. Le temps de séjour hydraulique change selon la saison;
d) le stockage en aquifère (3.1.1) et la récupération pour un stockage à long terme, qui est généralement
combinée au traitement par infiltration et percolation dans le sol (3.1.19) et l’aquifère (au moyen de bassins
d’infiltration). Le temps de séjour est également une variable qui est affectée par le débit de production des
EUT et la demande en eau d’irrigation. Il convient que ce stockage en aquifère ne contribue pas à la recharge
de l’aquifère pour une utilisation éventuelle comme eau potable.
3.5.6
stockage
rétention sur le court ou le long terme des EUT non utilisées avant de les utiliser dans des systèmes
d’irrigation (3.4.8)
3.5.7
station de pompage et système de transport des EUT
système de canalisations et de pompes transportant les EUT de la STEP vers les réservoirs de stockage
et vers le site d’utilisation
3.5.8
station d’épuration des eaux usées
STEP
installation conçue pour traiter les eaux usées (3.1.22) grâce à une combinaison d’opérations
individuelles physiques (mécaniques) et de processus (3.1.14) chimiques et biologiques dans le but de
réduire les contaminants organiques et inorganiques présents dans les eaux usées
Note 1 à l’article: Il existe différents niveaux de traitement des eaux usées, selon leur niveau de contamination et
la qualité voulue pour les EUT.
8 © ISO 2016 – Tous droits réservés

3.6 Abréviations
DBO demande biochimique en oxygène
UFC unités formant colonie
DCO demande chimique en oxygène
OD oxygène dissous
EC conductivité électrique
NPP nombre le plus probable
EQNP eau de qualité non potable
NTU unités de turbidité néphélémétrique
PEHD polyéthylène haute densité
PP polypropylène
PVC polychlorure de vinyle
OI osmose inverse
SAR rapport d’adsorption du sodium
SAT traitement par infiltration percolation dans le sol et l’aquifère
MES matières en suspension
TDS matières dissoutes totales
NTK azote Kjeldahl total
NT azote total
COT carbone organique total
PT phosphore total
MES totales matières en suspension totales
EUT eaux usées traitées
UV ultraviolet
COV composés organiques volatils
IRE installation de réutilisation de l’eau
EU eaux usées
STEP station d’épuration des eaux usées
4 Surveillance de la qualité des EUT destinées à l’irrigation
4.1 Généralités
L’élaboration et la mise en œuvre d’une stratégie de surveillance appropriée représentent une étape
très importante pour la sécurité sanitaire et environnementale des projets de réutilisation de l’eau.
Cette surveillance de conformité s’effectue habituellement à la sortie de l’installation de réutilisation
des eaux usées.
La surveillance peut répondre à différentes finalités et, pour chaque objectif spécifique, des paramètres
différents peuvent être choisis. Par exemple, la surveillance de la qualité de l’eau peut être entreprise
dans les buts suivants:
a) protection de la santé humaine: les programmes de surveillance incluent des indicateurs
microbiens sélectionnés, à des concentrations qui dépendent du risque sanitaire (risque de contact
direct, risque lié aux types de cultures, etc.), et quelques autres paramètres qui indiquent la fiabilité
opérationnelle des processus de traitement des eaux usées (par exemple, turbidité, matières en
suspension, DBO, etc.);
b) prévention des effets négatifs sur les cultures: paramètres surveillés (également nommés
paramètres agronomiques, par exemple les nutriments, les sels solubles, le sodium, les éléments
traces, etc.);
c) prévention des effets négatifs sur l’environnement (sources d’eau naturelle et sol);
d) prévention du colmatage du système d’irrigation, par exemple irrigation par goutte-à-goutte et
irrigation par arroseurs.
La sélection de points d’échantillonnage destinés au contrôle de la qualité de l’eau et des performances
du traitement, appelés «points de contrôle de performances», dépend du type d’application et du niveau
des risques sanitaires et environnementaux.
Le point de contrôle de la qualité de l’eau le plus important se situe à la sortie de la station de réutilisation
des eaux usées. L’échantillonnage à la sortie de la station est effectué conformément à l’ISO 5667-4. La
surveillance des eaux usées traitées s’effectue soit par prélèvement d’échantillons ponctuels, soit par
prélèvement d’échantillons composites (voir ci-après), en fonction des paramètres surveillés et de la
réglementation locale.
Les échantillons composites (généralement prélevés sur 24 h en utilisant un équipement réfrigéré)
jouent un rôle essentiel pour une surveillance valable des paramètres physico-chimiques, car ils
représentent la qualité moyenne des EUT. Les paramètres microbiologiques, l’oxygène dissous, le pH
et la température sont surveillés par des échantillons ponctuels in situ, si possible à un moment de la
journée où le débit est à son maximum.
De même, il convient que la fréquence d’échantillonnage concernant d’autres paramètres liés à la
prévention des effets négatifs sur les cultures, sur les sols et sur l’environnement soit adaptée au risque
associé à des cultures sensibles et/ou à un environnement sensible (par exemple, aquifères peu profonds
utilisés pour l’alimentation en eau potable) et/ou à un équipement d’irrigation particulier. Il convient
que la décision concernant l’échantillonnage (échantillons composites ou ponctuels), pour ce qui est de
ces paramètres, tienne également compte des variations journalières dans les eaux usées brutes.
4.2 Mode opératoire d’échantillonnage
En fonction du type de paramètres surveillés, il existe un certain nombre de règles de base pour
l’échantillonnage; elles sont décrites dans des méthodes normalisées, des normes ISO traitant de
l’analyse de l’eau ou certains modes opératoires d’analyse spécifiques définis par des laboratoires
certifiés.
10 © ISO 2016 – Tous droits réservés

Il convient que l’échantillonnage des EUT destinées à l’irrigation réponde aux critères énumérés ci-
dessous.
— Les échantillons à utiliser pour la surveillance de la qualité de l’eau peuvent être du type échantillons
ponctuels ou échantillons composites, en fonction des objectifs finaux.
— Il convient d’étiqueter convenablement tous les échantillons, en indiquant le type d’eau, l’emplacement
du site, la date, l’heure et d’autres données pertinentes.
— Il convient que la fréquence d’échantillonnage soit définie par l’autorisation de réutilisation des eaux.
— Pour mieux organiser et gérer le plan d’irrigation, il convient d’effectuer des prélèvements
saisonniers au gré des saisons dans la région concernée afin d’obtenir des données représentatives
sur la variation de la qualité de l’eau, en particulier pour ce qui est de l’azote et de la salinité.
— Il convient que la surveillance de base, en matière de protection de la santé humaine, s’effectue par
échantillonnage à la sortie de l’installation de traitement (voir l’ISO 16075-2:2015, Tableau 1).
La fiabilité opérationnelle des processus de traitement peut être vérifiée en ajoutant des points
d’échantillonnage supplémentaires, si nécessaire, notamment en cas de non-conformité.
— Pour vérifier le risque de contamination ou de reprise de la croissance bactérienne dans les
réservoirs de stockage et/ou le réseau de distribution, il est possible d’établir des points de contrôle
supplémentaires, en fonction de l’utilisation finale, de l’emplacement du site et de la méthode
d’irrigation.
— Il convient que les flacons d’échantillonnage soient propres. Selon les paramètres, il convient
d’utiliser des flacons en polyéthylène haute densité (PEHD) ou en polypropylène (PP), à bouchons
doubles ou à bouchons auto-obturants, car certains types de flacons en verre cèdent du bore aux
échantillons.
Le volume échantillonné dépendant du type d’analyse à réaliser, pour l’analyse des paramètres de
base de l’eau et des principaux anions et cations, un échantillon de 1 l peut suffire.
Des recommandations pour la préparation et la manipulation des échantillons sont données dans
le Tableau 1.
— Il convient que le prélèvement et les manipulations soient effectués en toute sécurité, en prenant des
précautions appropriées pour éviter la transmission de maladies par le port de gants en plastique
ou l’utilisation d’autres types de protection.
Il convient que des échantillons destinés au contrôle de la qualité soient prélevés dans le cadre de tout
programme d’
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...