Electromagnetic compatibility (EMC) - Part 4-20: Testing and measurement techniques - Emission and immunity testing in transverse electromagnetic (TEM) waveguides

IEC 61000-4-20:2022 focuses on emission and immunity test methods for electrical and electronic equipment using various types of transverse electromagnetic (TEM) waveguides. These types include open structures (for example striplines and electromagnetic pulse simulators) and closed structures (for example TEM cells). These structures can be further classified as one-port, two-port, or multi-port TEM waveguides. The frequency range depends on the specific testing requirements and the specific TEM waveguide type. The object of this document is to describe
TEM waveguide characteristics, including typical frequency ranges and equipment-under-test (EUT) size limitations;
TEM waveguide validation methods for electromagnetic compatibility (EMC) tests;
the EUT (i.e. EUT cabinet and cabling) definition;
test set-ups, procedures, and requirements for radiated emission measurements in TEM waveguides; and
test set-ups, procedures, and requirements for radiated immunity testing in TEM waveguides.
NOTE Test methods are defined in this document to measure the effects of electromagnetic radiation on equipment and the electromagnetic emissions from the equipment concerned. The simulation and measurement of electromagnetic radiation is not adequately exact for the quantitative determination of effects for all end-use installations. The test methods defined are structured for a primary objective of establishing adequate reproducibility of results at various test facilities for qualitative analysis of effects.
This document does not intend to specify the tests to be applied to any particular apparatus or system(s). The main intention of this document is to provide a general basic reference for all interested product committees of the IEC. For radiated emission measurements, product committees select emission limits and measurement methods in consultation with CISPR standards. For radiated immunity testing, product committees remain responsible for the appropriate choice of immunity tests and immunity test limits to be applied to equipment within their scope. This document describes test methods that are separate from those of IEC 61000‑4‑3.
This third edition cancels and replaces the second edition published in 2010. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
provide information on the testing of large EUTs (including cables);
apply the work on measurement uncertainties by adapting the work completed in CISPR and TC 77 (for emissions and immunity);
update the validation procedure for the test volume regarding field uniformity and TEM mode verification;
provide information concerning two-port and four-port TEM waveguides;
add a new informative annex (Annex I) dealing with transient TEM waveguide characterization; and
add information dealing with dielectric test stands for EUTs.

Compatibilité électromagnétique (CEM) - Partie 4-20: Techniques d’essai et de mesure - Essais d’émission et d'immunité dans les guides d’onde TEM

IEC 61000-4-20:2022 concerne les méthodes d’essai d’émission et d’immunité pour les matériels électriques et électroniques qui utilisent différents types de guides d’onde transverses électromagnétiques (TEM). Ces types comprennent des structures ouvertes (par exemple, des lignes ouvertes et des simulateurs d’impulsion électromagnétique), et des structures fermées (par exemple, des cellules TEM), qui peuvent être elles-mêmes classées en guides d’onde TEM à un accès, à deux accès, ou à accès multiples. La plage de fréquences dépend des exigences d’essai spécifiques et du type spécifique de guide d’onde TEM.
L’objet du présent document est de décrire
les caractéristiques des guides d’onde TEM, y compris les plages de fréquences types et les limites de tailles des équipements en essai (EUT);
les méthodes de validation des guides d’onde TEM pour les essais de compatibilité électromagnétique CEM;
la définition de l'EUT (c’est-à-dire l’armoire et le câblage de l'EUT);
les montages d’essai, les procédures et les exigences relatives aux mesurages d’émissions rayonnées dans les guides d’onde TEM; et
les montages d'essai, les procédures et les exigences pour les essais d’immunité rayonnée dans les guides d’onde TEM.
NOTE Dans le présent document, les méthodes d’essai sont définies afin de mesurer les effets des rayonnements électromagnétiques sur les matériels et les émissions électromagnétiques des matériels concernés. La simulation et le mesurage des rayonnements électromagnétiques ne sont pas suffisamment exacts pour une détermination quantitative des effets sur toutes les installations d'utilisation finale. Les méthodes d’essai définies sont structurées avec l’objectif premier d'établir une reproductibilité adéquate des résultats dans différentes installations d’essai pour des analyses qualitatives des effets.
Le présent document ne vise pas à spécifier les essais à appliquer à des appareils ou à un ou des systèmes particuliers. Le but principal présent document est de donner une référence de base d'ordre général à tous les comités de produits IEC concernés. Pour les mesurages d’émission rayonnée, les comités de produits sélectionnent des limites d’émission et des méthodes de mesure en consultation avec les normes CISPR. Pour les essais d’immunité rayonnée, les comités de produits restent responsables du choix approprié des essais d’immunité et des limites qui y sont associées, à appliquer aux matériels qui relèvent de leur domaine d’application. Le présent document décrit des méthodes d'essai qui sont indépendantes de celles de l'IEC 61000-4-3 [34].
CEM conformément au Guide IEC 107.
Cette troisième édition annule et remplace la deuxième édition parue en 2010. Cette édition constitue une révision technique.
Cette édition inclut les modifications techniques majeures suivantes par rapport à l'édition précédente:
a) fournir des informations relatives aux essais d'EUT volumineux (y compris les câbles);
b) appliquer les travaux sur les incertitudes de mesure par adaptation des travaux réalisés par le CISPR et le CE 77 (pour les émissions et l'immunité);
c) mettre à jour la procédure de validation pour le volume d'essai en ce qui concerne la vérification de l'uniformité du champ et du mode TEM;
d) fournir des informations relatives aux guides d'onde TEM à deux accès et à quatre accès;
e) ajouter une nouvelle annexe informative (Annex I) qui traite de la caractérisation du guide d'onde TEM transitoire; et
f) ajouter des informations qui traitent des bancs d'essais diélectriques des EUT.

General Information

Status
Published
Publication Date
17-Feb-2022
Current Stage
PPUB - Publication issued
Start Date
18-Feb-2022
Completion Date
25-Mar-2022
Ref Project

Relations

Standard
IEC 61000-4-20:2022 - Electromagnetic compatibility (EMC) - Part 4-20: Testing and measurement techniques - Emission and immunity testing in transverse electromagnetic (TEM) waveguides
English and French language
229 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)


IEC 61000-4-20 ®
Edition 3.0 2022-02
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
colour
inside
BASIC EMC PUBLICATION
PUBLICATION FONDAMENTALE EN CEM
Electromagnetic compatibility (EMC) –
Part 4-20: Testing and measurement techniques – Emission and immunity
testing in transverse electromagnetic (TEM) waveguides

Compatibilité électromagnétique (CEM) –
Partie 4-20: Techniques d’essai et de mesure – Essais d’émission et d’immunité
dans les guides d’onde TEM
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC
copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or
your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni
utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et
les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des
questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez
les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Secretariat Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform IEC Products & Services Portal - products.iec.ch
The advanced search enables to find IEC publications by a Discover our powerful search engine and read freely all the
variety of criteria (reference number, text, technical publications previews. With a subscription you will always have
committee, …). It also gives information on projects, replaced access to up to date content tailored to your needs.
and withdrawn publications.
Electropedia - www.electropedia.org
IEC Just Published - webstore.iec.ch/justpublished
The world's leading online dictionary on electrotechnology,
Stay up to date on all new IEC publications. Just Published
containing more than 22 300 terminological entries in English
details all new publications released. Available online and once
and French, with equivalent terms in 19 additional languages.
a month by email.
Also known as the International Electrotechnical Vocabulary

(IEV) online.
IEC Customer Service Centre - webstore.iec.ch/csc
If you wish to give us your feedback on this publication or need
further assistance, please contact the Customer Service
Centre: sales@iec.ch.
A propos de l'IEC
La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des
Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC
Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l’édition la
plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC - Découvrez notre puissant moteur de recherche et consultez
webstore.iec.ch/advsearchform gratuitement tous les aperçus des publications. Avec un
La recherche avancée permet de trouver des publications IEC abonnement, vous aurez toujours accès à un contenu à jour
en utilisant différents critères (numéro de référence, texte, adapté à vos besoins.
comité d’études, …). Elle donne aussi des informations sur les
projets et les publications remplacées ou retirées. Electropedia - www.electropedia.org

Le premier dictionnaire d'électrotechnologie en ligne au monde,
IEC Just Published - webstore.iec.ch/justpublished
avec plus de 22 300 articles terminologiques en anglais et en
Restez informé sur les nouvelles publications IEC. Just
français, ainsi que les termes équivalents dans 19 langues
Published détaille les nouvelles publications parues.
additionnelles. Egalement appelé Vocabulaire
Disponible en ligne et une fois par mois par email.
Electrotechnique International (IEV) en ligne.

Service Clients - webstore.iec.ch/csc
Si vous désirez nous donner des commentaires sur cette
publication ou si vous avez des questions contactez-nous:
sales@iec.ch.
IEC Products & Services Portal - products.iec.ch

IEC 61000-4-20 ®
Edition 3.0 2022-02
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
colour
inside
BASIC EMC PUBLICATION
PUBLICATION FONDAMENTALE EN CEM

Electromagnetic compatibility (EMC) –

Part 4-20: Testing and measurement techniques – Emission and immunity

testing in transverse electromagnetic (TEM) waveguides

Compatibilité électromagnétique (CEM) –

Partie 4-20: Techniques d’essai et de mesure – Essais d’émission et d’immunité

dans les guides d’onde TEM
INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
COMMISSION
ELECTROTECHNIQUE
INTERNATIONALE
ICS 33.100.10; 33.100.20 ISBN 978-2-8322-1083-0

– 2 – IEC 61000-4-20:2022 © IEC 2022
CONTENTS
FOREWORD . 7
INTRODUCTION . 9
1 Scope . 10
2 Normative references . 11
3 Terms, definitions and abbreviated terms . 11
3.1 Terms and definitions . 11
3.2 Abbreviated terms . 14
4 General . 15
5 TEM waveguide requirements . 15
5.1 General . 15
5.2 General requirements for the use of TEM waveguides . 16
5.2.1 Test volume and maximum EUT size . 16
5.2.2 Validation of usable test volume . 16
5.3 Special requirements and recommendations for certain types of TEM
waveguides . 23
5.3.1 Set-up of open TEM waveguides . 23
5.3.2 Alternative TEM mode verification for a two-port TEM waveguide . 23
5.3.3 TEM mode generation for a four-port TEM waveguide . 23
5.4 Figures for Clause 5 . 24
6 Overview of EUT types . 26
6.1 General . 26
6.2 Small EUT . 26
6.3 Large EUT . 26
7 Laboratory test conditions. 26
7.1 General . 26
7.2 Climatic conditions . 26
7.3 Electromagnetic conditions . 26
8 Evaluation and reporting of test results . 27
Annex A (normative) Emission measurements in TEM waveguides . 28
A.1 Overview. 28
A.2 Test equipment . 28
A.3 Correlating TEM waveguide voltages to electric field strength data . 28
A.3.1 General . 28
A.3.2 Correlation algorithms . 29
A.4 Emission measurement correction factors . 33
A.4.1 Reference emission sources . 33
A.4.2 Arrangement of small EUTs . 34
A.4.3 Calculation of the small EUT correction factor . 34
A.5 Emission measurement procedures in TEM waveguides . 37
A.5.1 EUT types. 37
A.5.2 EUT arrangement . 37
A.6 Test report . 38
A.7 Figures for Annex A . 39
Annex B (normative) Immunity testing in TEM waveguides . 44
B.1 Overview. 44
B.2 Test equipment . 44

B.2.1 General . 44
B.2.2 Description of the test facility . 44
B.3 Field uniformity area calibration . 45
B.4 Test levels . 45
B.5 Test set-up . 45
B.5.1 Arrangement of table-top equipment . 45
B.5.2 Arrangement of floor-standing equipment . 46
B.5.3 Arrangement of wiring . 46
B.6 Test procedures . 46
B.7 Test results and test report . 46
B.8 Figures for Annex B . 47
Annex C (normative) HEMP transient testing in TEM waveguides . 49
C.1 Overview. 49
C.2 Immunity tests . 49
C.2.1 General . 49
C.2.2 Radiated test facilities . 50
C.2.3 Frequency domain spectrum requirements . 51
C.3 Test equipment . 51
C.4 Test set-up . 52
C.5 Test procedure . 52
C.5.1 General . 52
C.5.2 Severity level and test exposures . 53
C.5.3 Test procedure . 53
C.5.4 Test execution . 54
C.5.5 Execution of the radiated immunity test . 54
C.6 Figure for Annex C . 55
Annex D (informative) TEM waveguide characterization . 56
D.1 Overview. 56
D.2 Distinction between wave impedance and characteristic impedance. 56
D.3 TEM wave . 57
D.3.1 General . 57
D.3.2 Free-space TEM mode . 57
D.3.3 Waveguides . 57
D.4 Wave propagation . 58
D.4.1 General . 58
D.4.2 Spherical propagation . 58
D.4.3 Plane wave propagation in free space . 58
D.4.4 Velocity of propagation . 58
D.5 Polarization . 58
D.6 Types of TEM waveguides . 59
D.6.1 General . 59
D.6.2 Open TEM waveguides (striplines, etc.) . 60
D.6.3 Closed TEM waveguides (TEM cells) . 60
D.7 Frequency limitations . 60
D.8 Figures for Annex D . 61
Annex E (informative) Calibration method for E-field probes in TEM waveguides . 69
E.1 Overview. 69
E.2 Probe calibration requirements . 69
E.2.1 General . 69

– 4 – IEC 61000-4-20:2022 © IEC 2022
E.2.2 Calibration frequency range . 69
E.2.3 Calibration volume . 70
E.2.4 Probe dimensions . 70
E.2.5 Perturbations of TEM waveguide fields due to the probe . 70
E.2.6 Frequency steps . 71
E.2.7 Field strength . 71
E.3 Requirements for calibration instrumentation . 71
E.3.1 Specifications of TEM waveguide . 71
E.3.2 Harmonics and spurious signals . 72
E.3.3 Probe fixture . 72
E.3.4 Measuring net power to a transmitting device using directional couplers . 72
E.4 E-field probe calibration . 73
E.4.1 Calibration methods . 73
E.4.2 Calibration procedure using a two-port TEM waveguide . 73
E.4.3 Calibration procedure using one-port TEM waveguide . 74
E.5 Figures for Annex E . 77
Annex F (informative) Instrumentation uncertainty of emission measurement results . 79
F.1 Radiated disturbance measurements using a TEM waveguide . 79
F.1.1 Measurand for radiated disturbance measurements using a TEM
waveguide . 79
F.1.2 Symbols of input quantities common to all disturbance measurements . 79
F.1.3 Symbols of input quantities specific to TEM waveguide measurements . 79
F.2 Input quantities to be considered for radiated disturbance measurements
using a TEM waveguide . 79
F.3 Uncertainty budget and rationale for the input quantities for radiated
disturbance measurements using a TEM waveguide . 80
F.3.1 Uncertainty budget for radiated disturbance measurements using a TEM

waveguide . 80
F.3.2 Rationale for the estimates of input quantities for radiated disturbance
measurements using a TEM waveguide . 81
F.4 Figures for Annex F . 87
Annex G (informative) Measurement uncertainty of immunity testing due to test
instrumentation . 89
G.1 General symbols . 89
G.2 Symbol and definition of the measurand . 89
G.3 Symbols for input quantities . 89
G.4 Example: Uncertainty budget for immunity test . 89
G.5 Rationale for the estimates of input quantities . 90
Annex H (informative) Correlation of emission and immunity limits between EMC test
facilities . 93
H.1 Overview. 93
H.2 Dipole in free space (representing FAR set-up) . 93
H.3 Dipole in half space (representing OATS or SAC set-up). 95
H.4 Dipole in a TEM-mode transmission line . 96
H.5 Dipole in a reverberation chamber . 97
H.6 Correlation . 98
H.7 Example of emission limits . 99
H.8 Figures for Annex H . 100
Annex I (informative) TEM waveguide transient characterization . 103
I.1 Overview. 103

I.2 Test equipment . 103
I.3 Test set-up . 103
I.4 TEM waveguide characterization by correlation . 104
I.5 Quantification of the Pcc . 105
I.6 Performable transient test signals . 105
I.7 Figures for Annex I . 106
Bibliography . 108

Figure 1 – Flowchart of TEM mode and field uniformity verification procedure with the
“constant forward power” method (see 5.2.2.4.1) . 24
Figure 2 – Flowchart of TEM mode and field uniformity verification procedure with the

“constant field strength” method (see 5.2.2.4.2) . 25
Figure A.1 – Routing the exit cable to the corner at the ortho-angle and the lower edge
of the test volume in a TEM waveguide (see A.5.2) . 39
Figure A.2 – Basic ortho-axis EUT positioner or manipulator (see 3.1.13, A.4.2,
A.5.1.2, A.5.2) . 40
Figure A.3 – Die pattern and axis alignment for an EUT [26] (see A.3.2.3.2) . 41
Figure A.4 – Non-redundant twelve-face and axis orientations for a typical EUT [26]
(see A.3.2.3.2) . 42
Figure A.5 – Open-area test site (OATS) emission measurements geometry (see
A.3.2.4) . 43
Figure B.1 – Example of test set-up for single-polarization TEM waveguide
(see Clause B.5) . 47
Figure B.2 – Uniform area calibration points in a TEM waveguide (see Clause B.3) . 48
Figure C.1 – Pulse waveform frequency domain spectral magnitude between 100 kHz

and 300 MHz (see C.2.1) . 55
Figure D.1 – Simple waveguide (no TEM mode) (see D.3.3) . 61
Figure D.2 – Example of waveguides supporting TEM-mode propagation (see D.3.3) . 61
Figure D.3 – E-field polarization vector (see Clause D.5) . 61
Figure D.4 – Simple transmission line model for TEM mode propagation (see D.6.1) . 62
Figure D.5 – One- and two-port TEM waveguide concepts (see D.6.1) . 62
Figure D.6 – Operation of four-port TEM waveguides (see D.6.1) . 62
Figure D.7 – Two-port TEM cell (symmetric septum) (see D.6.1 and D.6.3) . 63
Figure D.8 – One-port TEM cell (asymmetric septum) (see D.6.1 and D.6.3) . 64
Figure D.9 – Stripline (two plates) (see D.6.1 and D.6.2) . 66
Figure D.10 – Stripline (four plates, balanced feed) (see D.6.1) . 67
Figure D.11 – Four-port TEM waveguide (symmetric parallel septa) (see D.6.1 and
D.6.3) . 68
Figure E.1 – Example of test points for calibration volume validation (see E.2.3) . 77
Figure E.2 – Set-up for validation of probe perturbation (see E.2.5) . 77
Figure E.3 – Set-up for measuring net power to a transmitting device (not to scale)
(see E.3.4) . 77
Figure E.4 – Example set-up for E-field probe calibration with two-port TEM waveguide

(see E.4.2) . 78
Figure E.5 – Example set-up for E-field probe calibration with one-port TEM waveguide
and alternative method (see E.4.3.2) . 78
Figure E.6 – Equivalent circuit of monopole antenna and measuring apparatus (see
E.4.3.3) . 78

– 6 – IEC 61000-4-20:2022 © IEC 2022
Figure F.1 – Deviation of the QP detector level indication from the signal level at
receiver input for two cases, a sine-wave signal and an impulsive signal with a pulse
repetition frequency of 100 Hz . 87
Figure F.2 – Deviation of the peak detector level indication from the signal level at
receiver input for two cases, a sine-wave signal and an impulsive signal with a pulse
repetition frequency of 100 Hz . 88
Figure H.1 – Representation of a short centre-fed dipole and a more general source

representing an EUT (see Clause H.2) . 100
Figure H.2 – Vertical source and receiving dipoles located over a perfectly-conducting
ground plane of infinite extent (see Clause H.3) . 100
Figure H.3 – Two types of TEM cells with a vertically polarized dipole source and the
source to receive port geometry defined (see Clause H.4) . 101
Figure H.4 – Reverberation chamber with a source dipole, a stirrer to randomize the

fields, and a general receive antenna (see Clause H.5) . 101
Figure H.5 – TEM waveguide Class A and Class B emission limits correlated from
CISPR 32 [68] (see Clause H.7) . 102
Figure I.1 – Test set-up . 106
Figure I.2 – Signal windowing . 107
Figure I.3 – Example of a heatmap – Pcc for a test point in the uniform area . 107

Table 1 – Values k for expanded uncertainty with normal distribution . 18
Table B.1 – Uniform area calibration points . 45
Table B.2 – Test levels . 45
Table C.1 – Radiated immunity test levels defined for this document . 50
Table E.1 – Calibration frequencies . 71
Table E.2 – Calibration field strength level . 71
Table F.1 – Uncertainty budget for radiated disturbance measurement results using a
TEM waveguide from 30 MHz to 1 000 MHz (example) . 80
Table F.2 – Uncertainty budget for radiated disturbance measurement results using a

TEM waveguide from 1 GHz to 6 GHz (example) . 81
Table F.3 – Values of S for 30 MHz to 1 000 MHz . 83
lim
Table F.4 – Values of S for 1 GHz to 6 GHz . 84
lim
Table G.1 – Example uncertainty budget of the immunity test level . 90
Table H.1 – Summary of the emission correlation parameters . 99

INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
ELECTROMAGNETIC COMPATIBILITY (EMC) –

Part 4-20: Testing and measurement techniques –
Emission and immunity testing in transverse
electromagnetic (TEM) waveguides

FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international
co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and
in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports,
Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their
preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with
may participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for
Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence between
any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent
rights. IEC shall not be held responsible for identifying any or all such patent rights.
International Standard IEC 61000-4-20 has been prepared by subcommittee 77B: High
frequency phenomena, of IEC technical committee 77: Electromagnetic compatibility, in
cooperation with CISPR (International Special Committee on Radio Interference)
subcommittee A: Radio-interference measurements and statistical methods.
It forms Part 4-20 of IEC 61000. It has the status of a basic EMC publication in accordance with
IEC Guide 107.
This third edition cancels and replaces the second edition published in 2010. This edition
constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous
edition:
a) provide information on the testing of large EUTs (including cables);

– 8 – IEC 61000-4-20:2022 © IEC 2022
b) apply the work on measurement uncertainties by adapting the work completed in CISPR and
TC 77 (for emissions and immunity);
c) update the validation procedure for the test volume regarding field uniformity and TEM mode
verification;
d) provide information concerning two-port and four-port TEM waveguides;
e) add a new informative annex (Annex I) dealing with transient TEM waveguide
characterization; and
f) add information dealing with dielectric test stands for EUTs.
The text of this International Standard is based on the following documents:
Draft Report on voting
77B/853/FDIS 77B/855/RVD
Full information on the voting for its approval can be found in the report on voting indicated in
the above table.
The language used for the development of this International Standard is English.
This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in
accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available
at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are
described in greater detail at www.iec.ch/standardsdev/publications.
A list of all parts of the IEC 61000 series, published under the general title Electromagnetic
compatibility (EMC), can be found on the IEC website.
The committee has decided that the contents of this document will remain unchanged until the
stability date indicated on the IEC website under webstore.iec.ch in the data related to the
specific document. At this date, the document will be
• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.
IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it
contains colours which are considered to be useful for the correct understanding of its
contents. Users should therefore print this document using a colour printer.

INTRODUCTION
IEC 61000 is published in separate parts according to the following structure:
Part 1: General
General considerations (introduction, fundamental principles)
Definitions, terminology
Part 2: Environment
Description of the environment
Classification of the environment
Compatibility levels
Part 3: Limits
Emission limits
Immunity limits (in so far as they do not fall under the responsibility of the product
committees)
Part 4: Testing and measurement techniques
Measurement techniques
Testing techniques
Part 5: Installation and mitigation guidelines
Installation guidelines
Mitigation methods and devices
Part 6: Generic standards
Part 9: Miscellaneous
Each part is further subdivided into several parts, published either as International Standards,
Technical Specifications or Technical Reports, some of which have already been published as
sections. Others are and will be published with the part number followed by a dash and a second
number identifying the subdivision (example: IEC 61000-6-1).
This part is an International Standard which gives emission, immunity and HEMP and IEMI
transient testing requirements.

– 10 – IEC 61000-4-20:2022 © IEC 2022
ELECTROMAGNETIC COMPATIBILITY (EMC) –

Part 4-20: Testing and measurement techniques –
Emission and immunity testing in transverse
electromagnetic (TEM) waveguides

1 Scope
This part of IEC 61000 focuses on emission and immunity test methods for electrical and
electronic equipment using various types of transverse electromagnetic (TEM) waveguides.
These types include open structures (for example striplines and electromagnetic pulse
simulators) and closed structures (for example TEM cells). These structures can be further
classified as one-port, two-port, or multi-port TEM waveguides. The frequency range depends
on the specific testing requirements and the specific TEM waveguide type.
The object of this document is to describe
– TEM waveguide characteristics, including typical frequency ranges and equipment-under-
test (EUT) size limitations;
– TEM waveguide validation methods for electromagnetic compatibility (EMC) tests;
– the EUT (i.e. EUT cabinet and cabling) definition;
– test set-ups, procedures, and requirements for radiated emission measurements in TEM
waveguides; and
– test set-ups, procedures, and requirements for radiated immunity testing in TEM
waveguides.
NOTE Test methods are defined in this document to measure the effects of electromagnetic radiation on equipment
and the electromagnetic emissions from the equipment concerned. The simulation and measurement of
electromagnetic radiation is not adequately exact for the quantitative determination of effects for all end-use
installations. The test methods defined are structured for a primary objective of establishing adequate reproducibility
of results at various test facilities for qualitative analysis of effects.
This document does not intend to specify the tests to be applied to any particular apparatus or
system(s). The main intention of this document is to provide a general basic reference for all
interested product committees of the IEC. For radiated emission measurements, product
committees select emission limits and measurement methods in consultation with CISPR
standards. For radiated immunity testing, product committees remain responsible for the
appropriate choice of immunity tests and immunity test limits to be applied to equipment within
their scope. This document describes test methods that are separate from those of
IEC 61000‑4‑3 [34].
___________
Numbers in square brackets refer to the Bibliography.
These other distinct test methods may be used when so specified by product committees, in consultation with CISPR
and TC 77.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies.
For undated references, the latest edition of the referenced document (including any
amendments) applies.
IEC 60050-161, International Electrotechnical Vocabulary (IEV) – Part 161: Electromagnetic
compatibility
CISPR 16-1-1, Specification for radio disturbance and immunity measuring apparatus and
methods – Part 1-1: Radio disturbance and immunity measuring apparatus – Measuring
apparatus
CISPR 16-1-4, Specification for radio disturbance and immunity measuring apparatus and
methods – Part 1-4: Radio disturbance and immunity measuring apparatus – Antennas and test
sites for radiated disturbance measurements
3 Terms, definitions and abbreviated terms
3.1 Terms and definitions
For the purposes of this document, the terms and definitions given in IEC 60050-161and the
following apply.
ISO and IEC maintain terminological databases for use in standardization at the following
addresses:
• IEC Electropedia: available at http://www.electropedia.org/
• ISO Online browsing platform: available at http://www.iso.org/obp
3.1.1
anechoic material
material that exhibits the property of absorbing, or otherwise reducing, the level of
electromagnetic energy reflected from that material
3.1.2
broadband transmission-line termination
termination which combines a low-frequency discrete-component load, to match the
characteristic impedance of the TEM waveguides (typically 50 Ω), and a volume of high-
frequency anechoic material
3.1.3
characteristic impedance
for any constant phase wave-front, magnitude of the ratio of the voltage between the inner
conductor and the outer conductor to the current on either conductor and which is independent
of the voltage/current magnitudes and depends only on the cross-sectional geometry of the
transmission line
Note 1 to entry: TEM waveguides are typically designed to have a characteristic impedance of 50 Ω. TEM
waveguides with a characteristic impedance of 100 Ω are often used for transient testing.
3.1.4
correlation algorithm
mathematical routine for converting TEM waveguide voltage measurements to open-area test
sites (OATS), semi-anechoic chamber (SAC), or f
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...