IEC 62848-2:2019
(Main)Railway applications - DC surge arresters and voltage limiting devices - Part 2: Voltage limiting devices
Railway applications - DC surge arresters and voltage limiting devices - Part 2: Voltage limiting devices
IEC 62848-2:2019 applies to Voltage Limiting Devices (VLDs) to be applied in DC traction systems in order to comply with protective provisions against electric shock from DC, and combined AC – DC voltages, in accordance with the IEC 62128 series, taking into account stray current provisions.
VLDs operate in such a way as to connect the track return circuit of DC railway systems to the earthing system or to conductive parts within the overhead contact line zone or current collector zone.
Applications ferroviaires - Parafoudres et appareils limiteurs de tension pour réseaux à courant continu - Partie 2: Appareils limiteurs de tension
IEC 62848-9:2019 Le présent document concerne les appareils limiteurs de tension (VLD, Voltage Limiting Device) destinés à être appliqués aux réseaux de traction en courant continu afin de satisfaire aux dispositions de protection contre les chocs électriques dus aux tensions continues et aux tensions alternatives-continues combinées, conformément à la série IEC 62128, en tenant compte des mesures contre les courants vagabonds.
Les VLD fonctionnent de manière à raccorder le circuit de retour de voie des reseaux ferroviaires en courant continu à un réseau de mise à la terre ou aux parties conductrices de la zone de la ligne aérienne de contact ou de la zone de captage de courant.
General Information
- Status
- Published
- Publication Date
- 17-Jun-2019
- Technical Committee
- TC 9 - Electrical equipment and systems for railways
- Drafting Committee
- PT 62848-2 - TC 9/PT 62848-2
- Current Stage
- PPUB - Publication issued
- Start Date
- 18-Jun-2019
- Completion Date
- 31-May-2019
Overview - IEC 62848-2:2019 (Voltage Limiting Devices)
IEC 62848-2:2019 is the International Electrotechnical Commission standard that defines Voltage Limiting Devices (VLDs) for DC traction systems. The standard specifies how VLDs must operate to meet protective provisions against electric shock from DC and combined AC–DC voltages in accordance with the IEC 62128 series, while taking stray current considerations into account. VLDs covered by this standard are intended to connect the track return circuit to the earthing system or to conductive parts within the overhead contact line or current collector zones to limit dangerous voltages.
Key topics and technical requirements
The standard addresses practical design, testing and performance requirements for VLDs used in railway DC systems, including:
- Classes of VLDs (classification and intended use: e.g., welding-shut spark gap, thyristor, mechanical switching, combined types)
- Characteristics and requirements
- Marking and identification
- Service conditions: normal outdoor/indoor and abnormal environments
- Electrical characteristics and thermal rating
- Response time and minimum performance criteria
- Protection against lightning and stray current effects
- Command and control features (for certain classes): local control, remote signalling, operation and alarm recordings
- Type and routine tests required for certification and quality assurance:
- Nominal triggering and non-triggering voltages
- Leakage current, DC current withstand, short-time withstand
- Response time tests for DC and combined AC–DC voltages
- Lightning and high-current impulse withstand
- Recovery voltage and reverse voltage tests
- Dielectric, degree-of-protection (IP), and environmental tests for outdoor equipment
- Determination of minimum current for safe short-circuiting (Class 1)
- Annex with preferred ranges of key parameters (nominal triggering voltage, rated current, impulse withstand, etc.)
Practical applications
IEC 62848-2:2019 is applied where limiting dangerous potentials on DC traction systems is required:
- Protection of track personnel and passengers by ensuring safe touch / step voltages
- Safety interfaces between the rail return and earthing systems in substations, depots and on-track equipment
- Design and selection of VLD components in overhead contact line zones and current collector zones
- Specification for procurement, factory testing and on-site acceptance of VLDs
Who should use this standard
- Railway electrical engineers and designers specifying protection systems for DC traction
- Manufacturers of voltage limiting devices and DC surge protection equipment
- Test laboratories and conformity assessment bodies performing type/routine tests
- Infrastructure owners, system integrators, and maintenance teams responsible for earthing and stray current mitigation
- Safety assessors and regulatory authorities referencing IEC 62128 and related railway safety standards
Related standards
- IEC 62848-1:2016 - Railway applications: DC surge arresters (metal-oxide surge arresters without gaps)
- IEC 62128 series - Electrical safety, earthing and the return circuit (protective provisions)
- IEC 60060‑1, IEC 62497‑1, IEC 62498‑2 and other normative references cited for test methods and environmental requirements
Keywords: IEC 62848-2:2019, voltage limiting devices, VLDs, DC traction systems, railway safety, surge arresters, IEC 62128, earthing, stray current, response time, type tests.
Buy Documents
IEC 62848-2:2019 - Railway applications - DC surge arresters and voltage limiting devices - Part 2: Voltage limiting devices Released:6/18/2019 Isbn:9782832268841
IEC 62848-2:2019 - Applications ferroviaires - Parafoudres et appareils limiteurs de tension pour réseaux à courant continu - Partie 2: Appareils limiteurs de tension Released:6/18/2019 Isbn:9782832708088
IEC 62848-2:2019 - Railway applications - DC surge arresters and voltage limiting devices - Part 2: Voltage limiting devices Released:6/18/2019 Isbn:9782832708088
Get Certified
Connect with accredited certification bodies for this standard

Bureau Veritas Railway Certification
Railway and transportation certification.
Deutsch Quality Systems (India) Pvt. Ltd. (DQS India)
Subsidiary of DQS Holding GmbH, founding member of IQNet. CDSCO Notified Body.

Excellence Ireland Quality Association (EIQA)
Irish quality certification organization.
Sponsored listings
Frequently Asked Questions
IEC 62848-2:2019 is a standard published by the International Electrotechnical Commission (IEC). Its full title is "Railway applications - DC surge arresters and voltage limiting devices - Part 2: Voltage limiting devices". This standard covers: IEC 62848-2:2019 applies to Voltage Limiting Devices (VLDs) to be applied in DC traction systems in order to comply with protective provisions against electric shock from DC, and combined AC – DC voltages, in accordance with the IEC 62128 series, taking into account stray current provisions. VLDs operate in such a way as to connect the track return circuit of DC railway systems to the earthing system or to conductive parts within the overhead contact line zone or current collector zone.
IEC 62848-2:2019 applies to Voltage Limiting Devices (VLDs) to be applied in DC traction systems in order to comply with protective provisions against electric shock from DC, and combined AC – DC voltages, in accordance with the IEC 62128 series, taking into account stray current provisions. VLDs operate in such a way as to connect the track return circuit of DC railway systems to the earthing system or to conductive parts within the overhead contact line zone or current collector zone.
IEC 62848-2:2019 is classified under the following ICS (International Classification for Standards) categories: 45.060.01 - Railway rolling stock in general. The ICS classification helps identify the subject area and facilitates finding related standards.
IEC 62848-2:2019 is available in PDF format for immediate download after purchase. The document can be added to your cart and obtained through the secure checkout process. Digital delivery ensures instant access to the complete standard document.
Standards Content (Sample)
IEC 62848-2 ®
Edition 1.0 2019-06
INTERNATIONAL
STANDARD
Railway applications – DC surge arresters and voltage limiting devices –
Part 2: Voltage limiting devices
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC
copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or
your local IEC member National Committee for further information.
IEC Central Office Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.
About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigendum or an amendment might have been published.
IEC publications search - webstore.iec.ch/advsearchform Electropedia - www.electropedia.org
The advanced search enables to find IEC publications by a The world's leading online dictionary on electrotechnology,
variety of criteria (reference number, text, technical containing more than 22 000 terminological entries in English
committee,…). It also gives information on projects, replaced and French, with equivalent terms in 16 additional languages.
and withdrawn publications. Also known as the International Electrotechnical Vocabulary
(IEV) online.
IEC Just Published - webstore.iec.ch/justpublished
Stay up to date on all new IEC publications. Just Published IEC Glossary - std.iec.ch/glossary
details all new publications released. Available online and 67 000 electrotechnical terminology entries in English and
once a month by email. French extracted from the Terms and Definitions clause of
IEC publications issued since 2002. Some entries have been
IEC Customer Service Centre - webstore.iec.ch/csc collected from earlier publications of IEC TC 37, 77, 86 and
If you wish to give us your feedback on this publication or CISPR.
need further assistance, please contact the Customer Service
Centre: sales@iec.ch.
IEC 62848-2 ®
Edition 1.0 2019-06
INTERNATIONAL
STANDARD
Railway applications – DC surge arresters and voltage limiting devices –
Part 2: Voltage limiting devices
INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
ICS 45.060.01 ISBN 978-2-8322-6884-1
– 2 – IEC 62848-2:2019 © IEC 2019
CONTENTS
FOREWORD . 4
1 Scope . 6
2 Normative references . 6
3 Terms and definitions . 7
4 Classes of VLD . 9
5 Characteristics and requirements of the VLDs . 10
5.1 Marking . 10
5.2 Service requirements . 11
5.2.1 Normal outdoor service conditions . 11
5.2.2 Normal indoor service conditions . 11
5.2.3 Abnormal service conditions . 11
5.3 General characteristics . 12
5.4 Minimum requirements . 12
5.4.1 Response time . 12
5.4.2 Additional requirements for VLDs of Class 1 . 12
5.4.3 Additional requirements for VLDs of Classes 3 and 4 . 12
5.5 Electrical characteristics and thermal rating . 12
5.6 Protection of VLDs against lightning. 13
5.7 Command and control (Classes 3 and 4 only) . 13
5.7.1 Local control . 13
5.7.2 Remote signalling . 13
5.7.3 Operation and alarm recordings . 14
6 Type tests . 14
6.1 General . 14
6.2 Nominal triggering voltage U and non-triggering voltage U . 15
Tn W
6.2.1 Procedure for welding shut spark gap VLDs (Class 1) . 15
6.2.2 Procedure for thyristor type VLDs (Class2) . 16
6.2.3 Procedure for mechanical switching VLDs and for combined thyristors
with mechanical switching devices VLDs (Class 3 and Class 4) . 17
6.3 Leakage current . 17
6.4 DC current withstand . 18
6.4.1 General . 18
6.4.2 DC rated current test . 18
6.4.3 Short time withstand current test . 19
6.5 AC current withstand characteristics (optional). 20
6.6 Response time characteristics . 20
6.6.1 Response time for DC voltage . 20
6.6.2 Response time for combined AC-DC voltage . 22
6.7 Lightning current impulse withstand characteristics for VLDs exposed to
direct lightning strikes . 24
6.8 Recovery voltage test (Classes 3, 4) . 25
6.9 Reverse voltage test (Class 2.1) . 26
6.10 Dielectric tests for panel type voltage limiting devices (Classes 3 and 4) . 27
6.10.1 Test conditions . 27
6.10.2 Power-frequency voltage withstand test . 27
6.11 Degree of protection of enclosures. 27
6.12 Environmental tests for outdoor equipment . 28
6.13 Determination of minimum current for safe short circuiting of Class 1 VLDs . 28
7 Routine tests . 29
7.1 General . 29
7.2 VLDs of Classes 3 and 4 . 29
7.3 Dielectric tests for panel type voltage limiting devices . 29
Annex A (informative) Preferred ranges of the principal properties of the VLDs. 30
Bibliography . 34
Figure 1 – Test circuit for testing of response time . 21
Figure 2 – T evaluation . 22
R
Figure 3 – Response time characteristic . 22
Figure 4 – Test circuit for testing of response time T for combined AC-DC voltage . 24
R
Figure 5 – Evaluation of response time T for combined AC-DC voltage . 24
R
Figure 6 – Circuit for the recovery voltage test . 26
Table 1 – Classes of voltage-limiting device. 10
Table 2 – Type tests . 15
Table 3 – Maximum response time as a function of DC voltages . 20
Table 4 – Response time for combined AC-DC voltages . 23
Table A.1 – Nominal triggering voltage U . 30
Tn
Table A.2 – Instantaneous triggering voltage U . 30
TI
Table A.3 – Rated current I . 30
r
Table A.4 – Short time withstand current I . 31
W
Table A.5 – Leakage current I . 31
L
Table A.6 – Making and breaking capacity . 31
Table A.7 – Lightning current impulse (8/20 µs) I . 31
imp-n
Table A.8 – High current impulse 8/20 μs and 4/10 μs I . 32
imp-high
Table A.9 – High charge impulse I . 32
imp-hc
Table A.10 – Current-time characteristic for safe short circuiting of Class 1 VLDs . 32
Table A.11 – Preferred parameters for high charge impulse I . 32
imp-hc
Table A.12 – Applicable tolerances according to IEC 61643-11:2011 . 33
– 4 – IEC 62848-2:2019 © IEC 2019
INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
RAILWAY APPLICATIONS –
DC SURGE ARRESTERS AND VOLTAGE LIMITING DEVICES –
Part 2: Voltage limiting devices
FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.
International Standard IEC 62848-2 has been prepared by IEC technical committee 9:
Electrical equipment and systems for railways.
This document is based on EN 50526-2:2014.
The text of this International Standard is based on the following documents:
FDIS Report on voting
9/2492/FDIS 9/2503/RVD
Full information on the voting for the approval of this International Standard can be found in
the report on voting indicated in the above table.
A list of all parts in the IEC 62848 series, published under the general title Railway
applications – DC surge arresters and voltage limiting devices, can be found on the IEC
website.
This document has been drafted in accordance with the ISO/IEC Directives, Part 2.
The committee has decided that the contents of this document will remain unchanged until the
stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to
the specific document. At this date, the document will be
• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.
A bilingual version of this publication may be issued at a later date.
– 6 – IEC 62848-2:2019 © IEC 2019
RAILWAY APPLICATIONS –
DC SURGE ARRESTERS AND VOLTAGE LIMITING DEVICES –
Part 2: Voltage limiting devices
1 Scope
This document applies to Voltage Limiting Devices (VLDs) to be applied in DC traction
systems in order to comply with protective provisions against electric shock from DC, and
combined AC – DC voltages, in accordance with the IEC 62128 series, taking into account
stray current provisions.
VLDs operate in such a way as to connect the track return circuit of DC railway systems to the
earthing system or to conductive parts within the overhead contact line zone or current
collector zone.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their
content constitutes requirements of this document. For dated references, only the edition
cited applies. For undated references, the latest edition of the referenced document (including
any amendments) applies.
IEC 60060-1, High-voltage test techniques – Part 1: General definitions and test requirements
IEC 60085, Electrical insulation – Thermal evaluation and designation
IEC 60529:1989, Degrees of protection provided by enclosures (IP Code)
IEC 60850:2014, Railway applications – Supply voltages of traction systems
IEC 61643-311, Components for low-voltage surge protective devices – Part 311:
Performance requirements and test circuits for gas discharge tubes (GDT)
IEC 61992-1:2006, Railway applications – Fixed installations – DC switchgear – Part 1:
General
IEC 61992-1:2006/AMD1:2014
IEC 61992-7:2006 (all parts), Railway applications – Fixed installations – DC switchgear –
Part 7-x: Measurement, control and protection devices for specific use in d.c. traction systems
IEC 62128-1:2013, Railway applications – Fixed installations – Electrical safety, earthing and
the return circuit – Part 1: Protective provisions against electric shock
IEC 62128-3:2013, Railway applications – Fixed installations – Electrical safety, earthing and
the return circuit – Part 3: Mutual Interaction of a.c. and d.c. traction systems
IEC 62497-1, Railway applications – Insulation coordination – Part 1: Basic requirements –
Clearances and creepage distances for all electrical and electronic equipment
IEC 62498-2, Railway applications – Environmental conditions for equipment – Part 2: Fixed
electrical installations
IEC 62848-1:2016, Railway applications – DC surge arresters and voltage limiting devices –
Part 1: Metal-oxide surge arresters without gaps
ISO 4287:1997, Geometrical Product Specifications (GPS) -Surface texture: Profile method –
Terms, definitions and surface texture parameters
ISO 4892-1, Plastics – Methods of exposure to laboratory light sources – Part 1: General
guidance
ISO 4892-2, Plastics – Methods of exposure to laboratory light sources – Part 2: Xenon-arc
lamps
ISO 4892-3, Plastics – Methods of exposure to laboratory light sources – Part 3: Fluorescent
UV lamps
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminological databases for use in standardization at the following
addresses:
• IEC Electropedia: available at http://www.electropedia.org/
• ISO Online browsing platform: available at http://www.iso.org/obp
3.1
voltage-limiting device
VLD
protective device whose function is to prevent existence of an impermissible high touch
voltage
[SOURCE: IEC 60050-811:2017, 811-29-41]
3.2
recoverable VLD
VLD that recovers after triggering
3.3
non-recoverable VLD
VLD remaining in its low resistance state permanently after triggering
3.4
welding shut spark gap
VLD which is triggered by electrical discharge across a gap causing a permanent short-circuit
by welding shut of metallic parts
Note 1 to entry: Sometimes the term voltage fuse is used for this type of VLD.
3.5
rated current
I
r
maximum value of the direct current that may flow for the
specified long term through the VLD in specified environmental conditions without exceeding
the temperature rise limits
– 8 – IEC 62848-2:2019 © IEC 2019
3.6
short time withstand current
I
W
current that a VLD can carry in closed status, during a specified short time under prescribed
conditions of use and behaviour
3.7
making capacity
I
NSS
value of prospective making current that a switching device
is capable of making at a stated voltage under prescribed conditions of use and behaviour
Note 1 to entry: The conditions to be prescribed are dealt with in the relevant specifications.
[SOURCE: IEC 60050-441:1984, 441-17-09, modified – The beginning of the Note has been
changed.]
3.8
breaking capacity
maximum current that a recoverable VLD can interrupt at a
stated voltage
3.9
leakage current
I
L
current which flows through the terminals when the VLD is in
open status
3.10
lightning current impulse
I
imp-n
8/20 µs current impulse with limits on the adjustment of equipment such that the measured
values are from 7 µs to 9 µs for the virtual front time and from 18 µs to 22 µs for the time to
half value on the tail
Note 1 to entry: The time to half-value on the tail is not critical and may have any tolerance during the residual
voltage type tests.
[SOURCE: IEC 60099-4:2014, 3.31]
3.11
high current impulse
I
imp-high
peak value of discharge current having a 4/10 µs or 8/20 µs impulse shape which is used to
test the ability of the VLD to withstand direct lightning strikes from the dielectric point of view
3.12
high charge impulse
I
imp-hc
crest value of a high charge impulse through the VLD with specified charge transfer Q and
specified energy W/R in the specified time
Note 1 to entry: A crest value of a high charge impulse having a 10/350 µs waveshape is also a commonly known
expression.
3.13
triggering voltage
U
T
voltage at which a VLD becomes conductive
3.14
nominal triggering voltage
U
Tn
voltage at which the VLD becomes conductive when a DC voltage is applied for long term
Note 1 to entry: This voltage is used to identify the VLD.
3.15
instantaneous triggering voltage
U
Ti
minimum triggering voltage at which the VLD becomes conductive shortly after its application
Note 1 to entry: A maximum delay of 5 ms is taken in this document.
3.16
non-triggering voltage
U
W
maximum voltage below which the VLD will not trigger for any duration of the applied voltage
3.17
residual voltage of a VLD
U
res
value of voltage that appears between the terminals of the VLD
during the passage of a specified current
3.18
combined voltage
voltage having significant AC and DC components
3.19
response time
T
R
time between the application of a voltage until VLD becomes
conductive
3.20
degree of protection
extent of protection provided by an enclosure against access to hazardous parts, against
ingress of solid foreign objects and/or against ingress of water and verified by standardized
test methods
[SOURCE: IEC 60529:1989, 3.3]
3.21
IP Code
coding system to indicate the degree of protection provided by an enclosure against access to
hazardous parts, ingress of solid foreign objects, ingress of water and to give an additional
information in connection with such protection
[SOURCE: IEC 60529:1989, 3.4]
4 Classes of VLD
This document identifies the properties and the technology of a VLD using the classes of VLD
which are defined in Table 1.
– 10 – IEC 62848-2:2019 © IEC 2019
Table 1 – Classes of voltage-limiting device
Able to
Auxiliary
Method for interrupt
power supply
switching between Maximum response time Recoverable the
Class necessary Polarity
the high and low T or not current
R
for normal
resistance status in the
operation
VLD
Can be
Welding shut of recoverable in
1 No Bidirectional 5 ms No
metallic parts some
a
conditions
Passive
5 ms
at natural
Triggering of
2.1 No Unidirectional Yes zero
(for voltages equal to or
thyristors
crossing
higher than U )
TI
of current
Passive
5 ms
at natural
Triggering of
2.2 No Bidirectional Yes zero
(for voltages equal to or
thyristors
crossing
higher than U )
TI
of current
Voltage dependent and
not exceeding the limits
given in IEC 62128-
3.1 Contactor only Yes Bidirectional Yes Yes
1:2013, 9.3.2.2 or
IEC 62128-3:2013, 7.2
through 7.5
Voltage dependent and
not exceeding the limits
3.2 Contactor only Yes Bidirectional given in IEC 62128- Yes Yes
1:2013, 9.3.2.3,
IEC 62128-3:2013, 7.6
Specified by the
3.3 Contactor only Yes Bidirectional manufacturer or the Yes Yes
purchaser
For voltages up to U ,
TI
voltage dependent and
not exceeding the limits
given in IEC 62128-
Combination of
1:2013, 9.3.2.2 or
4.1 thyristors and Yes Bidirectional Yes Yes
IEC 62128-3:2013, 7.2
contactor
through 7.5.
For voltages equal to or
higher than U 5 ms.
Ti
For voltages up to U ,
TI
voltage dependent and
not exceeding the limits
Combination of given in IEC 62128-
4.2 thyristors and Yes Bidirectional Yes Yes
1:2013, 9.3.2.3,
contactor
IEC 62128-3:2013, 7.6.
For voltages equal to or
higher than U 5 ms
Ti
Combination of Specified by the
4.3 thyristors and Yes Bidirectional manufacturer or the Yes Yes
contactor purchaser
NOTE IEC 62128-1 defines two functionalities for VLDs, VLD-O and VLD-F. In this document a discrimination
is not necessary.
a
For transient low currents associated with low energy dissipation no welding shut may occur.
5 Characteristics and requirements of the VLDs
5.1 Marking
VLDs shall be identified by the following minimum information which shall appear on the rating
plate (nameplate):
– manufacturer's name or trademark and manufacture type designation;
– class of VLD according to IEC 62848-2 (optional);
– rated current I in A;
r
– short time withstand current I in kA;
w
– nominal triggering voltage U ;
Tn
– year of manufacture;
– serial number.
The terminals of unidirectional devices shall be marked with the symbols + and -.
In case of small VLDs not having space for a rating plate with all information, the devices
shall be marked with the manufacturer’s name or trademark, the type designation and the
nominal triggering voltage. The remaining information shall be given in a data-sheet.
5.2 Service requirements
5.2.1 Normal outdoor service conditions
VLDs which conform to this document shall be suitable for operation under the following
normal service conditions:
– ambient temperature within the range of -40 °C to +40 °C;
– solar radiation lower than 1 120 W/m as given in IEC 62498-2;
– altitude not exceeding 1 400 m (from Annex B in IEC 61992-1:2006);
– any pollution not exceeding PD 4 as given in IEC 62497-1.
The equipment shall be suitable for installation in the vicinity of a rail track on foundations
designed so as to damp the main effects of the passage of the trains. Nevertheless, a limited
vibration or limited shocks may affect the equipment, which shall be capable of operating
satisfactorily when subjected to the following conventional accelerations separately applied:
– g : vertical acceleration:5 m/s ;
v
– g : horizontal acceleration:5 m/s .
h
5.2.2 Normal indoor service conditions
VLDs which conform to this document shall be suitable for operation under the following
normal service conditions:
– ambient temperature within the range of -5 °C to +40 °C (from Annex B in IEC 61992-
1:2006);
– altitude not exceeding 1 400 m (from Annex B in IEC 61992-1:2006);
– any pollution not exceeding PD3 as given in IEC 62497-1.
5.2.3 Abnormal service conditions
The following are examples of abnormal service conditions which require special
consideration in the manufacture or application of VLD and should be brought to the attention
of the supplier:
– temperature in excess of +40 °C or below -5 °C for indoor installations or below -40 °C for
outdoor installations;
– application at altitudes higher than 1 400 m; in this case the temperature-rise tests and
dielectric tests (for VLDs inside a cabinet), carried out at laboratories at lower levels, shall
take into account a correction in the temperature-rises and dielectric test values to be
agreed between the involved parties;
– 12 – IEC 62848-2:2019 © IEC 2019
– all excessive environmental conditions that may degrade insulating surface or mounting
hardware: fumes, vapours dirt, salt spray or other conducting materials; moisture,
humidity, dropping water or steam;
– explosive mixtures of dust, gases or fumes;
– special mechanical requirements (earthquakes, vibrations, high ice loads, high cantilever
stresses);
– unusual transportation or storage;
– heat sources near the VLD.
5.3 General characteristics
The following characteristics shall be defined to identify each VLD:
– the class of VLD;
– if relevant, the auxiliary power supply voltage, with its tolerances.
The manufacturer shall specify whether the device is recoverable or non-recoverable at
defined currents and durations.
5.4 Minimum requirements
5.4.1 Response time
A VLD shall become conductive in a time not greater than the specified response time
depending on the applied voltage. The response time of the VLD shall be stated as function of
the applied voltage.
For VLDs of Classes 2, 3 and 4 the triggering may be delayed intentionally in order that
unwanted triggering will not take place due to switching transients and similar phenomena.
5.4.2 Additional requirements for VLDs of Class 1
If gas discharge tubes are used in VLDs, they shall comply with IEC 61643-311.
5.4.3 Additional requirements for VLDs of Classes 3 and 4
The VLD shall not open if the current through it exceeds its breaking capacity.
The VLD shall open at an adjustable time after it has closed unless the breaking capacity is
exceeded. The range of variation of this time setting shall be specified.
If the VLD re-opens automatically and then re-triggers, after a set number of operations in a
given time interval either:
– it shall be prevented from re-opening and a warning or an alarm shall be signalled; or
– only a warning or an alarm shall be signalled.
The VLD shall provide the possibility to be manually operated at site.
If the VLD requires a power supply for operation, the VLD shall be provided with a failsafe
function such that it turns into the conductive state in case of failure of the power supply.
5.5 Electrical characteristics and thermal rating
In addition to the general characteristics indicated in 5.3, the manufacturer shall state the
following electrical characteristics of each type of VLD if applicable. In case of adjustable
parameters, the setting ranges shall be stated:
– for VLDs of Classes 3 and 4, the nominal voltages of the electric traction systems in which
the VLDs are to be installed;
– the nominal triggering voltage U ;
Tn
– the non-triggering voltage U ;
W
– the maximum response time as function of the voltage;
– the instantaneous triggering voltage U ;
Ti
– the maximum leakage current I at U , when the VLD is in its non-conducting state;
L W
– the short-time withstand current I and the duration of the current flow;
W
– the rated current I ;
r
– the maximum residual voltage at the short-time withstand current;
– the maximum residual voltage at the rated current;
– the conditions in which the VLD is recoverable;
– the lightning current impulse, or sequence of lightning impulses, which the VLD can
withstand in the specified test conditions;
– for VLDs of Classes 3 and 4, the breaking capacity, determined in accordance with 6.8;
– for VLDs of Classes 3 and 4, the making capacity, in accordance with 6.4.3.
5.6 Protection of VLDs against lightning
If requested by the purchaser the VLD shall withstand the effects of the specified lightning
surges. The requirements can be different according to the class of VLD. If necessary a surge
arrester, according to IEC 62848-1, may be integrated into the VLD.
5.7 Command and control (Classes 3 and 4 only)
5.7.1 Local control
On the cabinet, the following characteristics and measuring indications should be foreseen to
provide a monitoring and control locally:
a) the instantaneous DC voltage across the terminals of the VLD;
b) the instantaneous DC current flowing through the device;
c) the operating state of the VLD (open or closed);
d) a push or touch button to manually command the closing and the opening of the device;
e) a push or touch button to start a manual self-test (if possible);
f) access to recorded data as given in 5.7.3, the activations, warnings, alarms, etc., in the
past and stored in a register file (if applicable).
NOTE 1 Conventionally the voltage in item a) is the voltage on the rails relative to earth. This means that if the
rail potential is positive the figure displayed is positive.
NOTE 2 The manual self-test procedure in item e) will trigger the thyristor and will also close the contactor for a
limited time (typically 1 s).
5.7.2 Remote signalling
If remote signalling is requested at least the following signals shall be offered:
a) contactor open;
b) contactor closed;
c) warnings, alarms.
Further information may be agreed between purchaser and manufacturer such as current or
voltage.
– 14 – IEC 62848-2:2019 © IEC 2019
5.7.3 Operation and alarm recordings
Recordings are optional. A list of the recordings that can be stored is indicated as an example
in the following:
a) operation recordings:
1) the status of the VLD;
2) the total number of operations (1 operation = 1 x close + 1 x open);
b) alarm recordings with time stamp:
1) interruption of the auxiliary power supply of the device;
2) device in closed position state during a long period of time, eventually parameterised
in 2 or more levels;
3) internal operation faults: an internal self-diagnostic function controls the correct
functioning of closing and opening the device; in case of an internal fault, an alarm is
created;
4) the exceeding of a given frequency of operations, eventually parameterised in 2 or
more levels.
6 Type tests
6.1 General
The characteristics of the VLD shall be verified by type tests.
Type tests shall be carried out as indicated in Table 2. All tests are mandatory unless stated
otherwise.
Once made, these type tests need not be repeated unless the design is changed so as to
modify the VLD performance. In such a case only the relevant tests need be repeated.
For all the tests the ambient temperature shall be recorded.
An alternating current test is foreseen, if requested, because even if the VLD is not specified
to conduct AC, the wave-form of the current in the VLD can flow in both directions due to
ripple currents from the substations, tripping of the feeders during short-circuits or earth faults
in the DC power system, transient effects due to switching of the current by the trains,
regenerative braking currents of the trains or AC currents injected by AC power systems.
Table 2 – Type tests
Tests Classes of Subclause
VLD
Nominal triggering voltage and non-triggering voltage: 6.2
Procedure for welding shut spark gap VLDs 1 6.2.1
Procedure for thyristor type VLDs 2 6.2.2
Procedure for mechanical switching VLDs and for combined thyristor with 3, 4 6.2.3
mechanical switching devices
Leakage current 1, 2, 4 6.3
DC current withstand All 6.4
Procedure to determine long-term current All 6.4.2
Procedure to determine short time withstand All 6.4.3
AC current withstand characteristics All 6.5
(Optional)
Response time characteristics All 6.6
Lightning current withstand characteristics for VLDs exposed to direct lightning All 6.7
strikes
Recovery test 3, 4 6.8
Reverse voltage test 2.1 6.9
Dielectric test 3, 4 6.10
Degree of protection All 6.11
Environmental tests for outdoor equipment All 6.12
Determination of minimum current for safe short circuiting of Class 1 VLDs 1 6.13
The required number of samples and their conditions are specified in the individual
subclauses.
VLDs are considered to be of the same design if the following conditions are fulfilled:
– they are based on the same components resulting in the same performance
characteristics;
– they are characterised by similar construction resulting in equivalent heat dissipation
conditions whereas mounting or arrangement on the supporting structure may differ.
If not specified otherwise in the individual clauses, tests shall be carried out on the complete
VLD as used in service, i.e. with surge arrester in parallel, if applicable.
6.2 Nominal triggering voltage U and non-triggering voltage U
Tn W
6.2.1 Procedure for welding shut spark gap VLDs (Class 1)
6.2.1.1 General
This test shall be carried out on 3 samples of VLD in dry condition at 20 °C ± 15 °C.
6.2.1.2 Non-triggering voltage test
The non-triggering voltage U of the VLD shall be applied for a duration greater than 300 s.
W
This test shall be carried out at both polarities. The non-triggering voltage U should typically
W
be 80 % of U as given in Table A.1 (see Annex A).
Tn
– 16 – IEC 62848-2:2019 © IEC 2019
a) Pass criteria
No trigger shall occur.
6.2.1.3 Triggering voltage test
The test samples are connected to a DC voltage generator with a current ≥ 1 mA after
triggering but such that the device recovers after the trigger.
NOTE For VLD class 1 the nominal triggering voltage and the instantaneous triggering voltage are equal.
The test samples shall be further tested by applying a DC voltage increasing from 0 V with a
rise du/dt within 100 V/s up to 2 000 V/s according to IEC 61643-311 until the test sample
VLD triggers.
The procedure shall be repeated 5 times per sample for positive and negative polarity within a
period of 15 min.
The value of the trigger voltage shall be recorded.
a) Pass criteria
All measured triggering voltages are below or equal to the nominal triggering voltage U , no
Tn
mechanical destructions occurred and the VLD will not trigger for any duration when
non-triggering voltage U is applied. The nominal triggering voltage U should be in
W Tn
accordance with Table A.1.
6.2.2 Procedure for thyristor type VLDs (Class2)
6.2.2.1 General
This test shall be carried out on 3 samples of VLD in dry condition at 20 °C ± 15 °C. The test
shall be carried out at both polarities for bidirectional VLDs.
6.2.2.2 Non-triggering voltage test
The non-triggering voltage of the VLD shall be applied for a duration greater than 300 s. The
non-triggering voltage U should be 80 % of U as given in Table A.1.
W Tn
a) Pass criteria
No trigger shall occur.
6.2.2.3 Triggering and instantaneous triggering voltage test
The test samples shall be further tested by applying a DC voltage increasing from 0 V with a
rise to the:
– instantaneous triggering voltage within 5 ms;
– triggering voltage(s) according to a duration which is specified for the triggering voltage,
until the test sample VLD triggers.
The test of the triggering voltage(s) may be omitted, if the nominal triggering voltage
coincides with the instantaneous triggering voltage.
The procedure shall be repeated 5 times per sample for positive and negative polarity within a
period of 15 min. The value of the instantaneous triggering voltage and the triggering
voltage(s) shall be recorded.
a) Pass criteria
All measured triggering voltages are below or equal to the specified nominal triggering voltage
U . The nominal triggering voltage U should be in accordance with Table A.1.
Tn Tn
6.2.3 Procedure for mechanical switching VLDs and for combined thyristors with
mechanical switching devices VLDs (Class 3 and Class 4)
6.2.3.1 General
This test shall be carried out on 1 sample of VLD in dry condition at 20 °C ± 15 °C. The test
shall be carried out at both polarities for bidirectional VLDs.
6.2.3.2 Non-triggering voltage test
The non-triggering voltage of the VLD shall be applied for a duration greater than 300 s. The
non-triggering voltage U should be 80 % of U as given in Table A.1.
W Tn
a) Pass criteria
No trigger shall occur.
6.2.3.3 Triggering and instantaneous triggering voltage test
The test samples shall be further tested by applying a DC voltage increasing from 0 V with a
rise to the:
– instantaneous triggering voltage within 5 ms;
– triggering voltage(s) according to a duration which is specified for the triggering voltage
until the test sample VLD triggers.
The procedure shall be repeated 5 times per sample for positive and negative polarity within a
period of 15 min. The value of the instantaneous triggering voltage and the triggering
voltage(s) shall be recorded.
a) Pass criteria
All measured triggering voltages are below or equal to the specified instantaneous triggering
voltage U and the nominal triggering voltage(s) U . The instantaneous triggering voltage
TI Tn
U should be in accordance with Table A.2. The nominal triggering voltage U shall be in
TI Tn
accordance with Table A.1.
6.3 Leakage current
This test shall be carried out on one sample of VLD in dry condition at a temperature of
20 °C ± 15 °C for minimum duration of 1 min.
A DC voltage equal to the non-triggering voltage U of the VLD shall be applied and the
W
leakage current through the VLD shall be recorded. This test shall be carried out at both
polarities.
a) Pass criteria
The leakage current for each polarity should be within the specified limits of Table A.5.
– 18 – IEC 62848-2:2019 © IEC 2019
6.4 DC current withstand
6.4.1 General
The test is intended to check that the device withstands the rated current.
6.4.2 DC rated current test
This test shall be carried out on one VLD in dry condition at an ambient temperature of
20 °C ± 15 °C.
The DC rated current shall be applied to the VLD for a time duration of 60 min. Values of DC
rated current should be in the range of Table A.3.
The test sample shall be mounted and connected with connecting cables of equivalent cross-
section such that the current density of 1,5 A/mm² of copper or equivalent is not exceeded
based on the rated current.
The temperature of the device and its terminal temperatures shall be measured by at least 3
thermo elements or equivalent temperature sensors, one at each terminal and at least one on
the surface of the device. Good thermal conductivity shall be ensured between the sensor and
the surface of the VLD. The position of the temperature sensors shall be noted in the test
report.
The current, residual voltage and temperatures shall be monitored during the test and plotted
versus time in a diagram.
For VLDs of Classes 1, 3 and 4 the test current may also be an AC current with an RMS equal
to the specified DC test current.
The test comprises:
– select polarity;
...
IEC 62848-2 ®
Edition 1.0 2019-06
NORME
INTERNATIONALE
Applications ferroviaires - Parafoudres et appareils limiteurs de tension pour
réseaux à courant continu -
Partie 2: Appareils limiteurs de tension
ICS 45.060.01 ISBN 978-2-8327-0808-8
Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni
utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et
les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des
questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez
les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.
IEC Secretariat Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
A propos de l'IEC
La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des
Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.
A propos des publications IEC
Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l’édition la
plus récente, un corrigendum ou amendement peut avoir été publié.
Recherche de publications IEC - IEC Products & Services Portal - products.iec.ch
webstore.iec.ch/advsearchform Découvrez notre puissant moteur de recherche et consultez
La recherche avancée permet de trouver des publications gratuitement tous les aperçus des publications, symboles
IEC en utilisant différents critères (numéro de référence, graphiques et le glossaire. Avec un abonnement, vous aurez
texte, comité d’études, …). Elle donne aussi des toujours accès à un contenu à jour adapté à vos besoins.
informations sur les projets et les publications remplacées
ou retirées. Electropedia - www.electropedia.org
Le premier dictionnaire d'électrotechnologie en ligne au
IEC Just Published - webstore.iec.ch/justpublished monde, avec plus de 22 500 articles terminologiques en
Restez informé sur les nouvelles publications IEC. Just anglais et en français, ainsi que les termes équivalents
Published détaille les nouvelles publications parues. dans 25 langues additionnelles. Egalement appelé
Disponible en ligne et une fois par mois par email. Vocabulaire Electrotechnique International (IEV) en ligne.
Service Clients - webstore.iec.ch/csc
Si vous désirez nous donner des commentaires sur cette
publication ou si vous avez des questions contactez-
nous: sales@iec.ch.
– 36 – IEC 62848-2:2019 © IEC 2019
SOMMAIRE
AVANT-PROPOS . 38
1 Domaine d'application . 40
2 Références normatives . 40
3 Termes et définitions . 41
4 Classes de VLD . 43
5 Caractéristiques et exigences des VLD . 45
5.1 Marquage . 45
5.2 Exigences de fonctionnement en service . 45
5.2.1 Conditions de service normales à l'extérieur . 45
5.2.2 Conditions de service normales à l'intérieur . 45
5.2.3 Conditions de service anormales . 45
5.3 Caractéristiques générales . 46
5.4 Exigences minimales . 46
5.4.1 Temps de réponse . 46
5.4.2 Exigences supplémentaires pour les VLD de classe 1 . 46
5.4.3 Exigences supplémentaires pour les VLD de classes 3 et 4 . 46
5.5 Caractéristiques électriques et données thermiques assignées . 47
5.6 Protection des VLD contre la foudre . 47
5.7 Commande et contrôle (classes 3 et 4 seulement) . 47
5.7.1 Contrôle local. 47
5.7.2 Signalisation à distance . 47
5.7.3 Enregistrements des manœuvres et des alarmes . 48
6 Essais de type . 48
6.1 Généralités . 48
6.2 Tension nominale de déclenchement U et tension de non-déclenchement
Tn
U . 49
W
6.2.1 Procédure pour les VLD à éclateurs à soudage (classe 1) . 49
6.2.2 Procédure pour les VLD du type à thyristor (classe 2) . 50
6.2.3 Procédure pour les VLD à commutation mécanique et pour les thyristors
combinés munis de dispositifs de commutation mécanique (classes 3
et 4) . 51
6.3 Courant de fuite . 51
6.4 Courant continu de courte durée admissible. 51
6.4.1 Généralités . 51
6.4.2 Essai au courant continu assigné . 52
6.4.3 Essai de tenue en courant de courte durée admissible . 53
6.5 Caractéristiques de courant alternatif de courte durée admissible (facultatif) . 53
6.6 Caractéristiques de temps de réponse . 54
6.6.1 Temps de réponse pour une tension continue . 54
6.6.2 Temps de réponse pour une tension alternative-continue combinée . 56
6.7 Caractéristiques de tenue aux chocs de courant de foudre pour les VLD
exposés à des coups de foudre directs . 58
6.8 Essai de tension de rétablissement (classes 3 et 4) . 59
6.9 Essai de tension inverse (classe 2.1) . 60
6.10 Essais diélectriques pour les appareils limiteurs de tension du type sur
châssis (classes 3 et 4) . 60
6.10.1 Conditions d'essai . 60
6.10.2 Essai de tenue à la tension à fréquence industrielle . 60
6.11 Degré de protection des enveloppes . 61
6.12 Essais d'environnement pour le matériel destiné à un usage extérieur . 61
6.13 Détermination du courant minimal pour court-circuiter les VLD de classe 1
en toute sécurité . 62
7 Essais individuels de série . 62
7.1 Généralités . 62
7.2 VLD de classes 3 et 4 . 63
7.3 Essais diélectriques pour les appareils limiteurs de tension du type sur
châssis . 63
Annexe A (informative) Plages préférentielles des principales propriétés des VLD . 64
Bibliographie . 68
Figure 1 – Circuit d'essai pour l'essai de temps de réponse . 55
Figure 2 – Evaluation de T . 55
R
Figure 3 – Caractéristiques de temps de réponse . 56
Figure 4 — Circuit d'essai pour l'essai de temps de réponse T pour une tension
R
alternative-continue combinée . 57
Figure 5 — Evaluation du temps de réponse T pour une tension alternative-continue
R
combinée . 58
Figure 6 – Circuit d'essai pour l'essai de tension de rétablissement . 59
Tableau 1 – Classes d'appareils limiteurs de tension . 44
Tableau 2 — Essais de type . 49
Tableau 3 – Temps de réponse maximal en fonction des tensions continues . 54
Tableau 4 – Temps de réponse pour les tensions alternatives-continues combinées . 56
Tableau A.1 – Tension nominale de déclenchement U . 64
Tn
Tableau A.2 – Tension instantanée de déclenchement U . 64
Ti
Tableau A.3 – Courant assigné I . 64
r
Tableau A.4 – Courant de courte durée admissible I . 65
W
Tableau A.5 – Courant de fuite I . 65
L
Tableau A.6 – Pouvoir de fermeture et de coupure . 65
Tableau A.7 – Choc de courant de foudre (8/20 µs) I . 65
imp-n
Tableau A.8 – Choc de fort courant 8/20 μs et 4/10 μs I . 66
imp-high
Tableau A.9 – Choc de forte charge I . 66
imp-hc
Tableau A.10 – Caractéristiques courant-temps pour court-circuiter les VLD de
classe 1 en toute sécurité . 66
Tableau A.11 – Paramètres préférentiels pour le choc de forte charge I . 66
imp-hc
Tableau A.12 – Tolérances applicables selon l'IEC 61643-11:2011 . 67
– 38 – IEC 62848-2:2019 © IEC 2019
COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE
____________
APPLICATIONS FERROVIAIRES –
PARAFOUDRES ET APPAREILS LIMITEURS DE TENSION POUR RÉSEAUX
À COURANT CONTINU –
Partie 2: Appareils limiteurs de tension
AVANT-PROPOS
1) La Commission Electrotechnique Internationale (IEC) est une organisation mondiale de normalisation
composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de l'IEC). L'IEC a pour
objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines
de l'électricité et de l'électronique. A cet effet, l'IEC – entre autres activités – publie des Normes
internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au
public (PAS) et des Guides (ci-après dénommés "Publication(s) de l'IEC"). Leur élaboration est confiée à des
comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les
organisations internationales, gouvernementales et non gouvernementales, en liaison avec l'IEC, participent
également aux travaux. L'IEC collabore étroitement avec l'Organisation Internationale de Normalisation (ISO),
selon des conditions fixées par accord entre les deux organisations.
2) Les décisions ou accords officiels de l'IEC concernant les questions techniques représentent, dans la mesure
du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de l'IEC
intéressés sont représentés dans chaque comité d'études.
3) Les Publications de l'IEC se présentent sous la forme de recommandations internationales et sont agréées
comme telles par les Comités nationaux de l'IEC. Tous les efforts raisonnables sont entrepris afin que l'IEC
s'assure de l'exactitude du contenu technique de ses publications ; l'IEC ne peut pas être tenue responsable de
l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de l'IEC s'engagent, dans toute la
mesure possible, à appliquer de façon transparente les Publications de l'IEC dans leurs publications nationales
et régionales. Toutes divergences entre toutes Publications de l'IEC et toutes publications nationales ou
régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
5) L'IEC elle-même ne fournit aucune attestation de conformité. Des organismes de certification indépendants
fournissent des services d'évaluation de conformité et, dans certains secteurs, accèdent aux marques de
conformité de l'IEC. L'IEC n'est responsable d'aucun des services effectués par les organismes de certification
indépendants.
6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.
7) Aucune responsabilité ne doit être imputée à l'IEC, à ses administrateurs, employés, auxiliaires ou
mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités
nationaux de l'IEC, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre
dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais
de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de l'IEC ou de
toute autre Publication de l'IEC, ou au crédit qui lui est accordé.
8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications
référencées est obligatoire pour une application correcte de la présente publication.
9) L'attention est attirée sur le fait que certains des éléments de la présente Publication de l'IEC peuvent faire
l'objet de droits de brevet. L'IEC ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits
de brevets et de ne pas avoir signalé leur existence.
La Norme internationale IEC 62848-2 a été établie par le comité d'études 9 de l'IEC :
Matériels et systèmes électriques ferroviaires.
Le présent document est basé sur l'EN 50526-2:2014.
La présente version bilingue (2025-11) correspond à la version anglaise monolingue publiée
en 2019-06.
La version française de cette norme n'a pas été soumise au vote.
Une liste de toutes les parties de la série IEC 62848, publiées sous le titre général
Applications ferroviaires — Parafoudres et appareils limiteurs de tension pour réseaux à
courant continu, peut être consultée sur le site web de l'IEC.
Ce document a été rédigé selon les Directives ISO/IEC, Partie 2.
Le comité a décidé que le contenu de ce document ne sera pas modifié avant la date de
stabilité indiquée sur le site web de l'IEC sous "http://webstore.iec.ch" dans les données
relatives au document recherché. A cette date, le document sera
• reconduit,
• supprimé,
• remplacé par une édition révisée, ou
• amendé.
– 40 – IEC 62848-2:2019 © IEC 2019
APPLICATIONS FERROVIAIRES –
PARAFOUDRES ET APPAREILS LIMITEURS DE TENSION POUR RÉSEAUX
À COURANT CONTINU –
Partie 2: Appareils limiteurs de tension
1 Domaine d'application
Le présent document concerne les appareils limiteurs de tension (VLD, Voltage Limiting
Device) destinés à être appliqués aux réseaux de traction en courant continu afin de satisfaire
aux dispositions de protection contre les chocs électriques dus aux tensions continues et aux
tensions alternatives-continues combinées, conformément à la série IEC 62128, en tenant
compte des mesures contre les courants vagabonds.
Les VLD fonctionnent de manière à raccorder le circuit de retour de voie des réseaux
ferroviaires en courant continu à un réseau de mise à la terre ou aux parties conductrices de
la zone de la ligne aérienne de contact ou de la zone de captage de courant.
2 Références normatives
Les documents suivants sont cités dans le texte de sorte qu'ils constituent, pour tout ou partie
de leur contenu, des exigences du présent document. Pour les références datées, seule
l'édition citée s'applique. Pour les références non datées, la dernière édition du document de
référence s'applique (y compris les éventuels amendements).
IEC 60060-1:2010, Technique des essais à haute tension — Partie 1 : Définitions et
exigences générales
IEC 60085, Isolation électrique — Evaluation et désignation thermiques
IEC 60529:1989, Degrés de protection procurés par les enveloppes (code IP)
IEC 60850:2014, Applications ferroviaires — Tensions d'alimentation des réseaux de traction
IEC 61643-311, Composants pour parafoudres basse tension — Partie 311 : Exigences de
performance et circuits d'essai pour tubes à décharge de gaz (TDG)
IEC 61992-1:2006, Applications ferroviaires — Installations fixes — Appareillage à courant
continu — Partie 1 : Généralités
IEC 61992-1:2006/AMD1:2014
IEC 61992-7:2006 (toutes les parties), Applications ferroviaires — Installation fixes —
Appareillage à courant continu — Partie 7-x : Appareils de mesure, de contrôle et de
protection pour usage spécifique dans les systèmes de traction à courant continu
IEC 62128-1:2013, Applications ferroviaires — Installations fixes — Sécurité électrique, mise
à la terre et circuit de retour — Partie 1 : Mesures de protection contre les chocs électriques
IEC 62128-3:2013, Applications ferroviaires — Installations fixes — Sécurité électrique, mise
à la terre et circuit de retour — Partie 3 : Interactions mutuelles entre systèmes de traction en
courant alternatif et en courant continu
IEC 62497-1, Applications ferroviaires — Coordination de l'isolement — Partie 1 : Exigences
fondamentales — Distances d'isolement dans l'air et lignes de fuite pour tout matériel
électrique et électronique
IEC 62498-2, Applications ferroviaires — Conditions d'environnement pour le matériel —
Partie 2 : Installations électriques fixes
IEC 62848-1:2016, Applications ferroviaires — Parafoudres et appareils limiteurs de tension
pour réseaux à courant continu — Partie 1 : Parafoudres à oxyde métallique sans éclateur
EN ISO 4287, Spécification géométrique des produits (GPS) — Etat de surface : méthode du
profil — Termes, définitions et paramètres d'état de surface
ISO 4892-1, Plastiques — Méthodes d'exposition à des sources lumineuses de laboratoire —
Partie 1 : Lignes directrices générales
ISO 4892-2, Plastiques — Méthodes d'exposition à des sources lumineuses de laboratoire —
Partie 2 : Lampes à arc au xénon
ISO 4892-3, Plastiques — Méthodes d'exposition à des sources lumineuses de laboratoire —
Partie 3 : Lampes fluorescentes UV
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions suivants s'appliquent.
L'ISO et l'IEC tiennent à jour des bases de données terminologiques destinées à être utilisées
en normalisation, consultables aux adresses suivantes :
• IEC Electropedia : disponible à l'adresse http://www.electropedia.org/
• ISO Online browsing platform : disponible à l'adresse http://www.iso.org/obp
3.1
appareil limiteur de tension
VLD
dispositif de protection dont la fonction consiste à empêcher l'existence de toute tension de
contact élevée inadmissible
Note 1 à l'article: L'abréviation « VLD » est dérivée du terme anglais développé correspondant « Voltage-Limiting
Device ».
[SOURCE : IEC 60050-811:2017, 811-29-41]
3.2
VLD réarmable
VLD se réarmant après déclenchement
3.3
VLD non réarmable
VLD restant en permanence dans son état conducteur après déclenchement
3.4
éclateur à soudage
VLD qui est déclenché par décharge électrique dans un espace provoquant un court-circuit
permanent par soudage d'éléments métalliques
Note 1 à l'article: Parfois, ce type de VLD est appelé "fusible de tension".
3.5
courant assigné
I
r
valeur maximale du courant direct qui peut traverser le
VLD pendant la durée prolongée spécifiée dans les conditions environnementales spécifiées,
sans dépasser les limites d'échauffement
3.6
courant de courte durée admissible
I
W
courant que peut supporter un VLD dans la position de fermeture pendant un court intervalle
de temps spécifié et dans des conditions prescrites d'emploi et de comportement
– 42 – IEC 62848-2:2019 © IEC 2019
3.7
pouvoir de fermeture
I
NSS
valeur du courant présumé établi qu'un appareil
de connexion est capable d'établir sous une tension donnée et dans des conditions prescrites
d'emploi et de comportement
Note 1 à l'article: Les conditions à prescrire sont précisées dans les spécifications individuelles.
[SOURCE : IEC 60050-441:1984, 441-17-09, modifiée — Le début de la Note a été modifié.]
3.8
pouvoir de coupure
courant maximal qu'un VLD réarmable peut interrompre à
une tension donnée
3.9
courant de fuite
I
L
courant parcourant les bornes du VLD lorsque celui-ci est
en position ouverte
3.10
choc de courant de foudre
I
imp-n
choc de courant 8/20 µs ; les limites de réglage sont telles que l'on mesure des valeurs
comprises entre 7 µs et 9 µs pour la durée conventionnelle de front et entre 18 µs et 22 µs
pour la durée jusqu'à mi-valeur sur la queue
Note 1 à l'article: La durée jusqu'à mi-valeur sur la queue n'est pas un paramètre critique et aucune tolérance
n'est imposée lors des essais de type à la tension résiduelle.
[SOURCE : IEC 60099-4:2014, 3.31]
3.11
choc de fort courant
I
imp-high
valeur de crête d'un courant de décharge présentant une forme de choc de 4/10 µs ou
8/20 µs, utilisée pour évaluer l'aptitude du VLD à supporter les coups de foudre directs du
point de vue diélectrique
3.12
choc de forte charge
I
imp-hc
valeur de crête d'un choc de forte charge parcourant le VLD avec le transfert de charge
spécifié Q et l'énergie spécifiée W/R pendant le temps spécifié
Note 1 à l'article: La valeur de crête d'un choc de forte charge présentant une forme de 10/350 µs est également
une expression généralement admise.
3.13
tension de déclenchement
U
T
tension à laquelle un VLD devient conducteur
3.14
tension nominale de déclenchement
U
Tn
tension à laquelle le VLD devient conducteur lorsqu'une tension continue est appliquée
pendant une longue durée
Note 1 à l'article: Cette tension est utilisée pour identifier le VLD.
3.15
tension instantanée de déclenchement
U
Ti
tension de déclenchement minimale à laquelle le VLD devient conducteur immédiatement
après son application
Note 1 à l'article: Un délai maximal de 5 ms est appliqué dans le présent document.
3.16
tension de non-déclenchement
U
W
tension maximale au-dessous de laquelle le VLD ne se déclenche pas, quelle que soit la
durée d'application de la tension
3.17
tension résiduelle d'un VLD
U
res
valeur de tension apparaissant aux bornes du VLD
pendant le passage d'un courant spécifié
3.18
tension combinée
tension ayant des composantes importantes en courant alternatif et en courant continu
3.19
temps de réponse
T
R
temps compris entre l'application d'une tension et le
moment où le VLD devient conducteur
3.20
degré de protection
niveau de protection procuré par une enveloppe contre l'accès aux parties dangereuses,
contre la pénétration de corps solides étrangers et/ou contre la pénétration de l'eau et vérifié
par des méthodes d'essai normalisées
[SOURCE : IEC 60529:1989, 3.3]
3.21
code IP
système de codification pour indiquer les degrés de protection procurés par une enveloppe
contre l'accès aux parties dangereuses, la pénétration de corps solides étrangers, la
pénétration de l'eau et pour donner une information additionnelle liée à une telle protection
[SOURCE : IEC 60529:1989, 3.4]
4 Classes de VLD
Le présent document identifie les propriétés et la technologie d'un VLD en utilisant les classes de VLD
qui sont définies dans le Tableau 1.
– 44 – IEC 62848-2:2019 © IEC 2019
Tableau 1 – Classes d'appareils limiteurs de tension
Alimentation Aptitude
Méthode de
auxiliaire à couper
commutation Réarmable
Temps de réponse T
nécessaire le
R
Classe entre les états de Polarité ou non
pour un courant
maximal
forte et de faible réarmable
fonctionneme dans le
résistance
nt normal VLD
Peut être
réarmable
Soudage
dans
1 d'éléments Non Bidirectionnel 5 ms Non
certaines
métalliques
a
conditions
Passif au
5 ms
passage
Déclenchement de (pour des tensions naturel
2.1 Non Unidirectionnel oui
thyristors supérieures ou égales à par zéro
U ) du
Ti
courant
Passif au
5 ms
passage
Déclenchement de (pour des tensions naturel
2.2 Non Bidirectionnel oui
thyristors supérieures ou égales à par zéro
U ) du
Ti
courant
Dépend de la tension et
ne dépassant pas les
limites indiquées dans
Contacteur
3.1 oui Bidirectionnel l'IEC 62128-1:2013, oui oui
seulement
9.3.2.2 ou
l'IEC 62128-3:2013, 7.2
à 7.5
Dépend de la tension et
ne dépassant pas les
Contacteur limites indiquées dans
3.2 oui Bidirectionnel oui oui
seulement l'IEC 62128-1:2013,
9.3.2.3,
l'IEC 62128-3:2013, 7.6
Contacteur Spécifié par le fabricant
3.3 oui Bidirectionnel oui oui
seulement ou l'acheteur
Pour les tensions allant
jusqu'à U , dépend de la
Ti
tension et ne dépassant
pas les limites indiquées
dans l'IEC 62128-1:2013,
Combinaison de
9.3.2.2 ou
4.1 thyristors et d'un oui Bidirectionnel oui oui
l'IEC 62128-3:2013, 7.2
contacteur
à 7.5.
Pour des tensions
supérieures ou égales à
U 5 ms.
Ti
Pour les tensions allant
jusqu'à U , dépend de
Ti
la tension et ne
dépassant pas les limites
indiquées dans
Combinaison de
l'IEC 62128-1:2013,
4.2 thyristors et d'un oui Bidirectionnel oui oui
9.3.2.3 ou
contacteur
l'IEC 62128-3:2013, 7.6.
Pour des tensions
supérieures ou égales à
U 5 ms
Ti
Combinaison de
Spécifié par le fabricant
4.3 thyristors et d'un oui Bidirectionnel oui oui
ou l'acheteur
contacteur
NOTE L'IEC 62128-1 définit deux fonctionnalités pour les VLD, VLD-O et VLD-F. Dans le présent document,
aucune discrimination n'est nécessaire.
a
Pour les faibles courants transitoires associés à une faible dissipation d'énergie, aucun soudage ne peut se produire.
5 Caractéristiques et exigences des VLD
5.1 Marquage
Les VLD doivent être identifiés par les informations minimales suivantes, qui doivent être
apposées sur la plaque signalétique :
– nom du fabricant ou marque et désignation du type de fabrication ;
– classe de VLD selon l'IEC 62848-2 (facultatif) ;
– courant assigné I en A ;
r
– courant de courte durée admissible I en kA ;
w
– tension nominale de déclenchement U ;
Tn
– année de fabrication ;
– numéro de série.
Les bornes des appareils unidirectionnels doivent être marquées par les symboles + et -.
Pour les VLD de petite taille dont la plaque signalétique est trop petite pour contenir
l'ensemble des informations, les appareils doivent être marqués du nom du fabricant ou de la
marque, de la désignation du type ainsi que de la tension nominale de déclenchement. Les
autres informations doivent être fournies dans une fiche technique.
5.2 Exigences de fonctionnement en service
5.2.1 Conditions de service normales à l'extérieur
Les VLD conformes au présent document doivent être adaptés pour fonctionner dans les
conditions de service normales suivantes :
– température ambiante entre -40 °C et +40 °C ;
– rayonnement solaire inférieur à 1 120 W/m , comme spécifié dans l'IEC 62498-2 ;
– altitude ne dépassant pas 1 400 m (selon l'Annexe B de l'IEC 61992-1:2006) ;
– pollution ne dépassant pas PD 4, comme spécifié dans l'IEC 62497-1.
Le matériel doit être adapté à une installation au voisinage d'une voie ferrée sur des
fondations conçues pour amortir les principaux effets du passage des trains. Cependant, une
vibration ou des chocs restreints peuvent affecter le matériel qui doit être capable de
fonctionner de façon satisfaisante lorsqu'il est exposé aux accélérations classiques suivantes
appliquées séparément :
– g : accélération verticale : 5 m/s ;
v
– g : accélération horizontale : 5 m/s .
h
5.2.2 Conditions de service normales à l'intérieur
Les VLD conformes au présent document doivent être adaptés pour fonctionner dans les
conditions de service normales suivantes :
– température ambiante entre -5 °C et +40 °C (selon l'Annexe B de l'IEC 61992-1:2006) ;
– altitude ne dépassant pas 1 400 m (selon l'Annexe B de l'IEC 61992-1:2006) ;
– pollution ne dépassant pas PD 3, comme spécifié dans l'IEC 62497-1.
5.2.3 Conditions de service anormales
La liste suivante répertorie des exemples de conditions de service anormales types qui
exigent des considérations particulières de fabrication ou d'application de VLD et pour
lesquels il convient de les rappeler à l'attention du fournisseur :
– température supérieure à +40 °C ou inférieure à -5 °C pour les installations en intérieur ou
inférieure à -40 °C pour les installations en extérieur ;
– 46 – IEC 62848-2:2019 © IEC 2019
– application à des altitudes supérieures à 1 400 m. Dans ce cas, les essais d'échauffement
et les essais diélectriques (pour les VLD contenus dans un coffret), réalisés dans des
laboratoires à des altitudes inférieures, doivent appliquer une correction des valeurs des
essais d'échauffement et diélectriques à convenir entre les parties prenantes ;
– toutes conditions d'environnement excessives susceptibles de dégrader la surface
isolante ou les accessoires de montage : fumées, poussière de vapeur, brouillard salin ou
autres matériaux conducteurs ; humidité, eau ou vapeur ;
– mélanges explosifs de poussières, gaz ou fumées ;
– exigences mécaniques particulières (séismes, vibrations, charges de glace importantes,
contraintes importantes de porte-à-faux) ;
– conditions anormales de transport ou de stockage ;
– sources de chaleur à proximité du VLD.
5.3 Caractéristiques générales
Les caractéristiques suivantes doivent être définies pour identifier chaque VLD :
– la classe du VLD ;
– s'il y a lieu, la tension d'alimentation auxiliaire avec ses tolérances.
Le fabricant doit spécifier si l'appareil est réarmable ou non réarmable pour les courants et
les durées définis.
5.4 Exigences minimales
5.4.1 Temps de réponse
Un VLD doit devenir conducteur en une durée ne dépassant pas le temps de réponse spécifié
en fonction de la tension appliquée. Le temps de réponse du VLD doit être indiqué en fonction
de la tension appliquée.
Pour les VLD de classes 2, 3 et 4, le déclenchement peut être retardé volontairement afin
d'éviter tout déclenchement indésirable sous l'effet des transitoires de commutation et de
phénomènes analogues.
5.4.2 Exigences supplémentaires pour les VLD de classe 1
Si des tubes à décharge de gaz sont utilisés dans les VLD, ils doivent être conformes à
l'IEC 61643-311.
5.4.3 Exigences supplémentaires pour les VLD de classes 3 et 4
Le VLD ne doit pas s'ouvrir si le courant qui le traverse dépasse son pouvoir de coupure.
Le VLD doit s'ouvrir à l'issue d'un temps réglable après avoir été fermé, sauf si le pouvoir de
coupure est dépassé. La plage de variation de ce réglage de temps doit être spécifiée.
Si le VLD se rouvre automatiquement et se déclenche à nouveau après un nombre défini de
manœuvres dans un intervalle de temps donné, soit :
– la réouverture du VLD doit être empêchée et un avertissement ou une alarme doit être
déclenché(e) ; ou
– seul(e) un avertissement ou une alarme seulement doit être déclenché(e).
Le VLD doit pouvoir être actionné manuellement sur place.
Si la manœuvre du VLD nécessite une alimentation, le VLD doit comporter une fonction de
sécurité lui permettant de passer dans l'état conducteur en cas de panne d'alimentation.
5.5 Caractéristiques électriques et données thermiques assignées
Outre les caractéristiques générales indiquées en 5.3, le fabricant doit indiquer les
caractéristiques électriques suivantes de chaque type de VLD, si applicable. Si les
paramètres sont réglables, les plages de paramètres doivent être indiquées :
– pour les VLD de classes 3 et 4, les tensions nominales des réseaux de traction électrique
dans lesquels les VLD doivent être installés ;
– la tension nominale de déclenchement U ;
Tn
– la tension de non-déclenchement U ;
W
– le temps de réponse maximal en fonction de la tension appliquée ;
– la tension instantanée de déclenchement U ;
Ti
– le courant de fuite maximal I à U lorsque le VLD n'est pas conducteur ;
L W
– le courant de courte durée admissible I et la durée de passage du courant ;
W
– le courant assigné I ;
r
– la tension résiduelle maximale au courant de courte durée admissible ;
– la tension résiduelle maximale au courant assigné ;
– les conditions dans lesquelles le VLD est réarmable ;
– le choc de courant de foudre ou la séquence de chocs de foudre que peut supporter le
VLD dans les conditions d'essai spécifiées ;
– pour les VLD de classes 3 et 4, le pouvoir de coupure déterminé conformément au 6.8 ;
– pour les VLD de classes 3 et 4, le pouvoir de fermeture déterminé conformément au 6.4.3.
5.6 Protection des VLD contre la foudre
Si l'acheteur le demande, le VLD doit supporter les effets des surtensions de foudre
spécifiées. Les exigences peuvent différer d'une classe de VLD à l'autre. Si nécessaire, un
parafoudre conforme à l'IEC 62848-1 peut être intégré au VLD.
5.7 Commande et contrôle (classes 3 et 4 seulement)
5.7.1 Contrôle local
Pour permettre une surveillance et un contrôle local, il convient d'apposer les caractéristiques
et les indications de mesures suivantes sur le coffret :
a) la tension continue instantanée aux bornes du VLD ;
b) le courant continu instantané parcourant l'appareil ;
c) l'état de fonctionnement du VLD (ouvert ou fermé) ;
d) une touche ou un bouton-poussoir permettant de commander manuellement la fermeture
et l'ouverture de l'appareil ;
e) une touche ou un bouton-poussoir permettant d'initier un essai automatique manuel (si
possible) ;
f) l'accès aux données enregistrées comme spécifié en 5.7.3, aux activations, aux
avertissements, aux alarmes, etc., antérieurs et stockés dans un fichier registre (si
applicable).
NOTE 1 Par convention, la tension du point a) est la tension des rails par rapport à la terre. Cela signifie que, si
le potentiel des rails est positif, le nombre affiché est positif.
NOTE 2 La procédure d'essai automatique manuel du point e) déclenche le thyristor et ferme également le
contacteur pendant une durée limitée (généralement 1 s).
5.7.2 Signalisation à distance
Si la signalisation à distance est demandée, les signaux suivants doivent au minimum être
fournis :
a) contacteur ouvert ;
– 48 – IEC 62848-2:2019 © IEC 2019
b) contacteur fermé ;
c) avertissements, alarmes.
Des informations complémentaires peuvent être convenues entre l'acheteur et le fabricant,
telles que le courant ou la tension.
5.7.3 Enregistrements des manœuvres et des alarmes
Les enregistrements sont facultatifs. Les informations suivantes sont un exemple
d'enregistrements pouvant être stockés :
a) enregistrements des manœuvres :
1) état du VLD ;
2) nombre total de manœuvres (1 manœuvre = 1 x ouverture + 1 x fermeture) ;
b) enregistrements des alarmes avec horodatage :
1) interruption de l'alimentation auxiliaire de l'appareil ;
2) appareil en position fermée pendant une longue durée, qui peut être paramétré dans 2
niveaux ou plus ;
3) défauts de fonctionnement interne : une fonction interne d'autodiagnostic vérifie le bon
fonctionnement de la fermeture et de l'ouverture de l'appareil ; en cas de défaut
interne, une alarme est déclenchée ;
4) le dépassement d'une fréquence de manœuvre donnée, qui peut être paramétrée dans
2 niveaux ou plus.
6 Essais de type
6.1 Généralités
Les caractéristiques du VLD doivent être vérifiées par des essais de type.
Les essais de type doivent être effectués comme indiqué dans le Tableau 2. Sauf indication
contraire, tous les essais sont obligatoires.
Une fois effectués, il n'est pas nécessaire de répéter les essais de type à moins que les
caractéristiques de fonctionnement du VLD n'aient été modifiées à la suite d'une modification
de conception. Dans ce cas, seuls les essais concernés doivent être répétés.
La température ambiante doit être enregistrée pour tous les essais.
Si nécessaire, un essai en courant alternatif est prévu, car même s'il n'est pas spécifié que le
VLD conduise du courant alternatif, la forme d'onde du courant parcourant le VLD peut
circuler dans les deux directions en raison des courants d'ondulation provenant des
sous-stations, du déclenchement des conducteurs lors de courts-circuits ou de défauts de
terre dans le réseau d'alimentation en courant continu, des effets transitoires dus à la
commutation du courant par les trains, des courants de freinage par récupération des trains
ou des courants alternatifs injectés par les réseaux d'alimentation en courant alternatif.
Tableau 2 — Essais de type
Essais Classes Paragraphe
de VLD
Tension nominale de déclenchement et tension de non-déclenchement : 6.2
Procédure pour les VLD à éclateurs à soudage 1 6.2.1
Procédure pour les VLD du type à thyristor 2 6.2.2
Procédure pour les VLD à commutation mécanique et pour les thyristors 3, 4 6.2.3
combinés équipés de dispositifs de commutation mécanique
Courant de fuite 1, 2, 4 6.3
Courant continu de courte durée admissible Toutes 6.4
Procédure pour déterminer le courant de longue durée Toutes 6.4.2
Procédure pour déterminer la résistance de courte durée Toutes 6.4.3
Caractéristiques de courant alternatif de courte durée admissible Toutes 6.5
(facultatif)
Caractéristiques de temps de réponse Toutes 6.6
Caractéristiques de tenue au courant de foudre pour les VLD exposés à des Toutes 6.7
coups de foudre directs
Essai de tension de rétablissement 3, 4 6.8
Essai de tension inverse 2.1 6.9
Essai diélectrique 3, 4 6.10
Degré de protection Toutes 6.11
Essais d'environnement pour le matériel destiné à un usage extérieur Toutes 6.12
Détermination du courant minimal pour court-circuiter les VLD de classe 1 en 1 6.13
toute sécurité
Le nombre d'échantillons exigés et leurs conditions sont spécifiés dans les paragraphes
concernés.
Il est admis par hypothèse que les VLD sont de même conception si les conditions suivantes
sont remplies :
– ils sont fondés sur les mêmes composants produisant les mêmes caractéristiques de
performance ;
– ils sont caractérisés par une construction similaire produisant des conditions de
dissipation de chaleur équivalentes, tandis que les méthodes de montage ou
d'agencement sur la structure de support peuvent varier.
Sauf spécification contraire dans les articles concernés, les essais doivent être effectués sur
le VLD complet tel qu'il est utilisé en service, c'est-à-dire avec le parafoudre en parallèle, s'il
y a lieu.
6.2 Tension nominale de déclenchement U et tension de non-déclenchement U
Tn W
6.2.1 Procédure pour les VLD à éclateurs à soudage (classe 1)
6.2.1.1 Généralités
Cet essai doit être effectué sur 3 échantillons de VLD à sec, à une température de 20 °C ±
15 °C.
6.2.1.2 Essai de tension de non-déclenchement
La tension de non-déclenchement U du VLD doit être appliquée pendant une durée
W
supérieure à 300 s. Cet essai doit être effectué aux deux polarités. Il convient que la tension
de non-déclenchement U soit égale à 80 % de U telle que présentée dans le Tableau A.1
W Tn
(voir Annexe A).
– 50 – IEC 62848-2:2019 © IEC 2019
a) Critères d'acceptation
Aucun déclenchement ne doit se produire.
6.2.1.3 Essai de tension de déclenchement
Les échantillons d'essai sont reliés à un générateur de tension continue avec un courant de ≥
1 mA après le déclenchement, mais de telle manière que l'appareil se réarme après le
déclenchement.
NOTE Pour les VLD de classe 1, la tension nominale de déclenchement et la tension instantanée de
déclenchement sont égales.
Les échantillons d'essai doivent être soumis à un essai supplémentaire en appliquant une
tension continue qui augmente à partir de 0 V avec une vitesse d'augmentation du/dt de
100 V/s à 2 000 V/s selon l'IEC 61643-311 jusqu'à ce que l'échantillon d'essai de VLD se
déclenche.
La procédure doit être répétée 5 fois par échantillon pour la polarité positive et négative dans
un délai de 15 min.
La valeur de la tension de déclenchement doit être enregistrée.
a) Critères d'acceptation
Toutes les tensions de déclenchement mesurées sont inférieures ou égales à la tension
nominale de déclenchement U , aucune destruction mécanique ne se produit et le VLD ne se
Tn
déclenche pas, quelle que soit la durée d'application de la tension de non-déclenchement U .
W
Il convient que la tension nominale de déclenchement U soit conforme aux valeurs
Tn
indiquées dans le Tableau A.1.
6.2.2 Procédure pour les VLD du type à thyristor (classe 2)
6.2.2.1 Généralités
Cet essai doit être effectué sur 3 échantillons de VLD à sec, à une température de
20 °C ± 15 °C. Il doit être réalisé aux deux polarités pour les VLD bidirectionnels.
6.2.2.2 Essai de tension de non-déclenchement
La tension de non-déclenchement du VLD doit être appliquée pendant une durée supérieure à
300 s. Il convient que la tension de non-déclenchement U soit égale à 80 % de U (voir
W Tn
Tableau A.1).
a) Critères d'acceptation
Aucun déclenchement ne doit se produire.
6.2.2.3 Essai de tension de déclenchement et de tension instantanée
...
IEC 62848-2 ®
Edition 1.0 2019-06
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
Railway applications - DC surge arresters and voltage limiting devices -
Part 2: Voltage limiting devices
Applications ferroviaires - Parafoudres et appareils limiteurs de tension pour
réseaux à courant continu -
Partie 2: Appareils limiteurs de tension
ICS 45.060.01 ISBN 978-2-8327-0808-8
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or
by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either
IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright
or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local
IEC member National Committee for further information.
Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni
utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et
les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des
questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez
les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.
IEC Secretariat Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.
About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigendum or an amendment might have been published.
IEC publications search - IEC Products & Services Portal - products.iec.ch
webstore.iec.ch/advsearchform Discover our powerful search engine and read freely all the
The advanced search enables to find IEC publications by a publications previews, graphical symbols and the glossary.
variety of criteria (reference number, text, technical With a subscription you will always have access to up to date
committee, …). It also gives information on projects, content tailored to your needs.
replaced and withdrawn publications.
Electropedia - www.electropedia.org
IEC Just Published - webstore.iec.ch/justpublished The world's leading online dictionary on electrotechnology,
Stay up to date on all new IEC publications. Just Published containing more than 22 500 terminological entries in English
details all new publications released. Available online and and French, with equivalent terms in 25 additional languages.
Also known as the International Electrotechnical Vocabulary
once a month by email.
(IEV) online.
IEC Customer Service Centre - webstore.iec.ch/csc
If you wish to give us your feedback on this publication or
need further assistance, please contact the Customer
Service Centre: sales@iec.ch.
A propos de l'IEC
La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des
Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.
A propos des publications IEC
Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l’édition la
plus récente, un corrigendum ou amendement peut avoir été publié.
Recherche de publications IEC - IEC Products & Services Portal - products.iec.ch
webstore.iec.ch/advsearchform Découvrez notre puissant moteur de recherche et consultez
La recherche avancée permet de trouver des publications gratuitement tous les aperçus des publications, symboles
IEC en utilisant différents critères (numéro de référence, graphiques et le glossaire. Avec un abonnement, vous aurez
texte, comité d’études, …). Elle donne aussi des toujours accès à un contenu à jour adapté à vos besoins.
informations sur les projets et les publications remplacées
ou retirées. Electropedia - www.electropedia.org
Le premier dictionnaire d'électrotechnologie en ligne au
IEC Just Published - webstore.iec.ch/justpublished monde, avec plus de 22 500 articles terminologiques en
Restez informé sur les nouvelles publications IEC. Just anglais et en français, ainsi que les termes équivalents
Published détaille les nouvelles publications parues. dans 25 langues additionnelles. Egalement appelé
Disponible en ligne et une fois par mois par email. Vocabulaire Electrotechnique International (IEV) en ligne.
Service Clients - webstore.iec.ch/csc
Si vous désirez nous donner des commentaires sur cette
publication ou si vous avez des questions contactez-
nous: sales@iec.ch.
– 2 – IEC 62848-2:2019 © IEC 2019
CONTENTS
FOREWORD . 4
1 Scope . 6
2 Normative references. 6
3 Terms and definitions . 7
4 Classes of VLD . 9
5 Characteristics and requirements of the VLDs . 10
5.1 Marking . 10
5.2 Service requirements . 11
5.2.1 Normal outdoor service conditions . 11
5.2.2 Normal indoor service conditions . 11
5.2.3 Abnormal service conditions . 11
5.3 General characteristics . 12
5.4 Minimum requirements . 12
5.4.1 Response time . 12
5.4.2 Additional requirements for VLDs of Class 1 . 12
5.4.3 Additional requirements for VLDs of Classes 3 and 4 . 12
5.5 Electrical characteristics and thermal rating . 12
5.6 Protection of VLDs against lightning . 13
5.7 Command and control (Classes 3 and 4 only) . 13
5.7.1 Local control . 13
5.7.2 Remote signalling . 13
5.7.3 Operation and alarm recordings. 14
6 Type tests . 14
6.1 General . 14
6.2 Nominal triggering voltage U and non-triggering voltage U . 15
Tn W
6.2.1 Procedure for welding shut spark gap VLDs (Class 1) . 15
6.2.2 Procedure for thyristor type VLDs (Class2) . 16
6.2.3 Procedure for mechanical switching VLDs and for combined thyristors
with mechanical switching devices VLDs (Class 3 and Class 4) . 17
6.3 Leakage current . 17
6.4 DC current withstand . 18
6.4.1 General . 18
6.4.2 DC rated current test . 18
6.4.3 Short time withstand current test . 19
6.5 AC current withstand characteristics (optional) . 20
6.6 Response time characteristics . 20
6.6.1 Response time for DC voltage . 20
6.6.2 Response time for combined AC-DC voltage . 22
6.7 Lightning current impulse withstand characteristics for VLDs exposed to
direct lightning strikes . 24
6.8 Recovery voltage test (Classes 3, 4) . 25
6.9 Reverse voltage test (Class 2.1) . 26
6.10 Dielectric tests for panel type voltage limiting devices (Classes 3 and 4) . 27
6.10.1 Test conditions . 27
6.10.2 Power-frequency voltage withstand test . 27
6.11 Degree of protection of enclosures . 27
6.12 Environmental tests for outdoor equipment . 28
6.13 Determination of minimum current for safe short circuiting of Class 1 VLDs . 28
7 Routine tests . 29
7.1 General . 29
7.2 VLDs of Classes 3 and 4 . 29
7.3 Dielectric tests for panel type voltage limiting devices . 29
Annex A (informative) Preferred ranges of the principal properties of the VLDs . 30
Bibliography . 34
Figure 1 – Test circuit for testing of response time . 21
Figure 2 – T evaluation . 22
R
Figure 3 – Response time characteristic . 22
Figure 4 – Test circuit for testing of response time T for combined AC-DC voltage . 24
R
Figure 5 – Evaluation of response time T for combined AC-DC voltage . 24
R
Figure 6 – Circuit for the recovery voltage test . 26
Table 1 – Classes of voltage-limiting device . 10
Table 2 – Type tests . 15
Table 3 – Maximum response time as a function of DC voltages . 20
Table 4 – Response time for combined AC-DC voltages . 23
Table A.1 – Nominal triggering voltage U . 30
Tn
Table A.2 – Instantaneous triggering voltage U . 30
TI
Table A.3 – Rated current I . 30
r
Table A.4 – Short time withstand current I . 31
W
Table A.5 – Leakage current I . 31
L
Table A.6 – Making and breaking capacity . 31
Table A.7 – Lightning current impulse (8/20 µs) I . 31
imp-n
Table A.8 – High current impulse 8/20 μs and 4/10 μs I . 32
imp-high
Table A.9 – High charge impulse I . 32
imp-hc
Table A.10 – Current-time characteristic for safe short circuiting of Class 1 VLDs . 32
Table A.11 – Preferred parameters for high charge impulse I . 32
imp-hc
Table A.12 – Applicable tolerances according to IEC 61643-11:2011 . 33
– 4 – IEC 62848-2:2019 © IEC 2019
INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
RAILWAY APPLICATIONS –
DC SURGE ARRESTERS AND VOLTAGE LIMITING DEVICES –
Part 2: Voltage limiting devices
FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.
International Standard IEC 62848-2 has been prepared by IEC technical committee 9:
Electrical equipment and systems for railways.
This document is based on EN 50526-2:2014.
The text of this International Standard is based on the following documents:
FDIS Report on voting
9/2492/FDIS 9/2503/RVD
Full information on the voting for the approval of this International Standard can be found in
the report on voting indicated in the above table.
A list of all parts in the IEC 62848 series, published under the general title Railway
applications – DC surge arresters and voltage limiting devices, can be found on the IEC
website.
This document has been drafted in accordance with the ISO/IEC Directives, Part 2.
The committee has decided that the contents of this document will remain unchanged until the
stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to
the specific document. At this date, the document will be
• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.
A bilingual version of this publication may be issued at a later date.
– 6 – IEC 62848-2:2019 © IEC 2019
RAILWAY APPLICATIONS –
DC SURGE ARRESTERS AND VOLTAGE LIMITING DEVICES –
Part 2: Voltage limiting devices
1 Scope
This document applies to Voltage Limiting Devices (VLDs) to be applied in DC traction
systems in order to comply with protective provisions against electric shock from DC, and
combined AC – DC voltages, in accordance with the IEC 62128 series, taking into account
stray current provisions.
VLDs operate in such a way as to connect the track return circuit of DC railway systems to the
earthing system or to conductive parts within the overhead contact line zone or current
collector zone.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their
content constitutes requirements of this document. For dated references, only the edition
cited applies. For undated references, the latest edition of the referenced document (including
any amendments) applies.
IEC 60060-1, High-voltage test techniques – Part 1: General definitions and test requirements
IEC 60085, Electrical insulation – Thermal evaluation and designation
IEC 60529:1989, Degrees of protection provided by enclosures (IP Code)
IEC 60850:2014, Railway applications – Supply voltages of traction systems
IEC 61643-311, Components for low-voltage surge protective devices – Part 311:
Performance requirements and test circuits for gas discharge tubes (GDT)
IEC 61992-1:2006, Railway applications – Fixed installations – DC switchgear – Part 1:
General
IEC 61992-1:2006/AMD1:2014
IEC 61992-7:2006 (all parts), Railway applications – Fixed installations – DC switchgear –
Part 7-x: Measurement, control and protection devices for specific use in d.c. traction systems
IEC 62128-1:2013, Railway applications – Fixed installations – Electrical safety, earthing and
the return circuit – Part 1: Protective provisions against electric shock
IEC 62128-3:2013, Railway applications – Fixed installations – Electrical safety, earthing and
the return circuit – Part 3: Mutual Interaction of a.c. and d.c. traction systems
IEC 62497-1, Railway applications – Insulation coordination – Part 1: Basic requirements –
Clearances and creepage distances for all electrical and electronic equipment
IEC 62498-2, Railway applications – Environmental conditions for equipment – Part 2: Fixed
electrical installations
IEC 62848-1:2016, Railway applications – DC surge arresters and voltage limiting devices –
Part 1: Metal-oxide surge arresters without gaps
ISO 4287:1997, Geometrical Product Specifications (GPS) -Surface texture: Profile method –
Terms, definitions and surface texture parameters
ISO 4892-1, Plastics – Methods of exposure to laboratory light sources – Part 1: General
guidance
ISO 4892-2, Plastics – Methods of exposure to laboratory light sources – Part 2: Xenon-arc
lamps
ISO 4892-3, Plastics – Methods of exposure to laboratory light sources – Part 3: Fluorescent
UV lamps
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminological databases for use in standardization at the following
addresses:
• IEC Electropedia: available at http://www.electropedia.org/
• ISO Online browsing platform: available at http://www.iso.org/obp
3.1
voltage-limiting device
VLD
protective device whose function is to prevent existence of an impermissible high touch
voltage
[SOURCE: IEC 60050-811:2017, 811-29-41]
3.2
recoverable VLD
VLD that recovers after triggering
3.3
non-recoverable VLD
VLD remaining in its low resistance state permanently after triggering
3.4
welding shut spark gap
VLD which is triggered by electrical discharge across a gap causing a permanent short-circuit
by welding shut of metallic parts
Note 1 to entry: Sometimes the term voltage fuse is used for this type of VLD.
3.5
rated current
I
r
maximum value of the direct current that may flow for the
specified long term through the VLD in specified environmental conditions without exceeding
the temperature rise limits
– 8 – IEC 62848-2:2019 © IEC 2019
3.6
short time withstand current
I
W
current that a VLD can carry in closed status, during a specified short time under prescribed
conditions of use and behaviour
3.7
making capacity
I
NSS
value of prospective making current that a switching device
is capable of making at a stated voltage under prescribed conditions of use and behaviour
Note 1 to entry: The conditions to be prescribed are dealt with in the relevant specifications.
[SOURCE: IEC 60050-441:1984, 441-17-09, modified – The beginning of the Note has been
changed.]
3.8
breaking capacity
maximum current that a recoverable VLD can interrupt at a
stated voltage
3.9
leakage current
I
L
current which flows through the terminals when the VLD is in
open status
3.10
lightning current impulse
I
imp-n
8/20 µs current impulse with limits on the adjustment of equipment such that the measured
values are from 7 µs to 9 µs for the virtual front time and from 18 µs to 22 µs for the time to
half value on the tail
Note 1 to entry: The time to half-value on the tail is not critical and may have any tolerance during the residual
voltage type tests.
[SOURCE: IEC 60099-4:2014, 3.31]
3.11
high current impulse
I
imp-high
peak value of discharge current having a 4/10 µs or 8/20 µs impulse shape which is used to
test the ability of the VLD to withstand direct lightning strikes from the dielectric point of view
3.12
high charge impulse
I
imp-hc
crest value of a high charge impulse through the VLD with specified charge transfer Q and
specified energy W/R in the specified time
Note 1 to entry: A crest value of a high charge impulse having a 10/350 µs waveshape is also a commonly known
expression.
3.13
triggering voltage
U
T
voltage at which a VLD becomes conductive
3.14
nominal triggering voltage
U
Tn
voltage at which the VLD becomes conductive when a DC voltage is applied for long term
Note 1 to entry: This voltage is used to identify the VLD.
3.15
instantaneous triggering voltage
U
Ti
minimum triggering voltage at which the VLD becomes conductive shortly after its application
Note 1 to entry: A maximum delay of 5 ms is taken in this document.
3.16
non-triggering voltage
U
W
maximum voltage below which the VLD will not trigger for any duration of the applied voltage
3.17
residual voltage of a VLD
U
res
value of voltage that appears between the terminals of the VLD
during the passage of a specified current
3.18
combined voltage
voltage having significant AC and DC components
3.19
response time
T
R
time between the application of a voltage until VLD becomes
conductive
3.20
degree of protection
extent of protection provided by an enclosure against access to hazardous parts, against
ingress of solid foreign objects and/or against ingress of water and verified by standardized
test methods
[SOURCE: IEC 60529:1989, 3.3]
3.21
IP Code
coding system to indicate the degree of protection provided by an enclosure against access to
hazardous parts, ingress of solid foreign objects, ingress of water and to give an additional
information in connection with such protection
[SOURCE: IEC 60529:1989, 3.4]
4 Classes of VLD
This document identifies the properties and the technology of a VLD using the classes of VLD
which are defined in Table 1.
– 10 – IEC 62848-2:2019 © IEC 2019
Table 1 – Classes of voltage-limiting device
Able to
Auxiliary
Method for interrupt
power supply
switching between Maximum response time Recoverable the
Class necessary Polarity
the high and low T or not current
R
for normal
resistance status in the
operation
VLD
Can be
Welding shut of recoverable in
1 No Bidirectional 5 ms No
metallic parts some
a
conditions
Passive
5 ms
at natural
Triggering of
2.1 No Unidirectional Yes zero
(for voltages equal to or
thyristors
crossing
higher than U )
TI
of current
Passive
5 ms
at natural
Triggering of
2.2 No Bidirectional Yes zero
(for voltages equal to or
thyristors
crossing
higher than U )
TI
of current
Voltage dependent and
not exceeding the limits
given in IEC 62128-
3.1 Contactor only Yes Bidirectional Yes Yes
1:2013, 9.3.2.2 or
IEC 62128-3:2013, 7.2
through 7.5
Voltage dependent and
not exceeding the limits
3.2 Contactor only Yes Bidirectional given in IEC 62128- Yes Yes
1:2013, 9.3.2.3,
IEC 62128-3:2013, 7.6
Specified by the
3.3 Contactor only Yes Bidirectional manufacturer or the Yes Yes
purchaser
For voltages up to U ,
TI
voltage dependent and
not exceeding the limits
given in IEC 62128-
Combination of
1:2013, 9.3.2.2 or
4.1 thyristors and Yes Bidirectional Yes Yes
IEC 62128-3:2013, 7.2
contactor
through 7.5.
For voltages equal to or
higher than U 5 ms.
Ti
For voltages up to U ,
TI
voltage dependent and
not exceeding the limits
Combination of
given in IEC 62128-
4.2 thyristors and Yes Bidirectional Yes Yes
1:2013, 9.3.2.3,
contactor
IEC 62128-3:2013, 7.6.
For voltages equal to or
higher than U 5 ms
Ti
Combination of Specified by the
4.3 thyristors and Yes Bidirectional manufacturer or the Yes Yes
contactor purchaser
NOTE IEC 62128-1 defines two functionalities for VLDs, VLD-O and VLD-F. In this document a discrimination
is not necessary.
a
For transient low currents associated with low energy dissipation no welding shut may occur.
5 Characteristics and requirements of the VLDs
5.1 Marking
VLDs shall be identified by the following minimum information which shall appear on the rating
plate (nameplate):
– manufacturer's name or trademark and manufacture type designation;
– class of VLD according to IEC 62848-2 (optional);
– rated current I in A;
r
– short time withstand current I in kA;
w
– nominal triggering voltage U ;
Tn
– year of manufacture;
– serial number.
The terminals of unidirectional devices shall be marked with the symbols + and -.
In case of small VLDs not having space for a rating plate with all information, the devices
shall be marked with the manufacturer’s name or trademark, the type designation and the
nominal triggering voltage. The remaining information shall be given in a data-sheet.
5.2 Service requirements
5.2.1 Normal outdoor service conditions
VLDs which conform to this document shall be suitable for operation under the following
normal service conditions:
– ambient temperature within the range of -40 °C to +40 °C;
– solar radiation lower than 1 120 W/m as given in IEC 62498-2;
– altitude not exceeding 1 400 m (from Annex B in IEC 61992-1:2006);
– any pollution not exceeding PD 4 as given in IEC 62497-1.
The equipment shall be suitable for installation in the vicinity of a rail track on foundations
designed so as to damp the main effects of the passage of the trains. Nevertheless, a limited
vibration or limited shocks may affect the equipment, which shall be capable of operating
satisfactorily when subjected to the following conventional accelerations separately applied:
– g : vertical acceleration:5 m/s ;
v
– g : horizontal acceleration:5 m/s .
h
5.2.2 Normal indoor service conditions
VLDs which conform to this document shall be suitable for operation under the following
normal service conditions:
– ambient temperature within the range of -5 °C to +40 °C (from Annex B in IEC 61992-
1:2006);
– altitude not exceeding 1 400 m (from Annex B in IEC 61992-1:2006);
– any pollution not exceeding PD3 as given in IEC 62497-1.
5.2.3 Abnormal service conditions
The following are examples of abnormal service conditions which require special
consideration in the manufacture or application of VLD and should be brought to the attention
of the supplier:
– temperature in excess of +40 °C or below -5 °C for indoor installations or below -40 °C for
outdoor installations;
– application at altitudes higher than 1 400 m; in this case the temperature-rise tests and
dielectric tests (for VLDs inside a cabinet), carried out at laboratories at lower levels, shall
take into account a correction in the temperature-rises and dielectric test values to be
agreed between the involved parties;
– 12 – IEC 62848-2:2019 © IEC 2019
– all excessive environmental conditions that may degrade insulating surface or mounting
hardware: fumes, vapours dirt, salt spray or other conducting materials; moisture,
humidity, dropping water or steam;
– explosive mixtures of dust, gases or fumes;
– special mechanical requirements (earthquakes, vibrations, high ice loads, high cantilever
stresses);
– unusual transportation or storage;
– heat sources near the VLD.
5.3 General characteristics
The following characteristics shall be defined to identify each VLD:
– the class of VLD;
– if relevant, the auxiliary power supply voltage, with its tolerances.
The manufacturer shall specify whether the device is recoverable or non-recoverable at
defined currents and durations.
5.4 Minimum requirements
5.4.1 Response time
A VLD shall become conductive in a time not greater than the specified response time
depending on the applied voltage. The response time of the VLD shall be stated as function of
the applied voltage.
For VLDs of Classes 2, 3 and 4 the triggering may be delayed intentionally in order that
unwanted triggering will not take place due to switching transients and similar phenomena.
5.4.2 Additional requirements for VLDs of Class 1
If gas discharge tubes are used in VLDs, they shall comply with IEC 61643-311.
5.4.3 Additional requirements for VLDs of Classes 3 and 4
The VLD shall not open if the current through it exceeds its breaking capacity.
The VLD shall open at an adjustable time after it has closed unless the breaking capacity is
exceeded. The range of variation of this time setting shall be specified.
If the VLD re-opens automatically and then re-triggers, after a set number of operations in a
given time interval either:
– it shall be prevented from re-opening and a warning or an alarm shall be signalled; or
– only a warning or an alarm shall be signalled.
The VLD shall provide the possibility to be manually operated at site.
If the VLD requires a power supply for operation, the VLD shall be provided with a failsafe
function such that it turns into the conductive state in case of failure of the power supply.
5.5 Electrical characteristics and thermal rating
In addition to the general characteristics indicated in 5.3, the manufacturer shall state the
following electrical characteristics of each type of VLD if applicable. In case of adjustable
parameters, the setting ranges shall be stated:
– for VLDs of Classes 3 and 4, the nominal voltages of the electric traction systems in which
the VLDs are to be installed;
– the nominal triggering voltage U ;
Tn
– the non-triggering voltage U ;
W
– the maximum response time as function of the voltage;
– the instantaneous triggering voltage U ;
Ti
– the maximum leakage current I at U , when the VLD is in its non-conducting state;
L W
– the short-time withstand current I and the duration of the current flow;
W
– the rated current I ;
r
– the maximum residual voltage at the short-time withstand current;
– the maximum residual voltage at the rated current;
– the conditions in which the VLD is recoverable;
– the lightning current impulse, or sequence of lightning impulses, which the VLD can
withstand in the specified test conditions;
– for VLDs of Classes 3 and 4, the breaking capacity, determined in accordance with 6.8;
– for VLDs of Classes 3 and 4, the making capacity, in accordance with 6.4.3.
5.6 Protection of VLDs against lightning
If requested by the purchaser the VLD shall withstand the effects of the specified lightning
surges. The requirements can be different according to the class of VLD. If necessary a surge
arrester, according to IEC 62848-1, may be integrated into the VLD.
5.7 Command and control (Classes 3 and 4 only)
5.7.1 Local control
On the cabinet, the following characteristics and measuring indications should be foreseen to
provide a monitoring and control locally:
a) the instantaneous DC voltage across the terminals of the VLD;
b) the instantaneous DC current flowing through the device;
c) the operating state of the VLD (open or closed);
d) a push or touch button to manually command the closing and the opening of the device;
e) a push or touch button to start a manual self-test (if possible);
f) access to recorded data as given in 5.7.3, the activations, warnings, alarms, etc., in the
past and stored in a register file (if applicable).
NOTE 1 Conventionally the voltage in item a) is the voltage on the rails relative to earth. This means that if the
rail potential is positive the figure displayed is positive.
NOTE 2 The manual self-test procedure in item e) will trigger the thyristor and will also close the contactor for a
limited time (typically 1 s).
5.7.2 Remote signalling
If remote signalling is requested at least the following signals shall be offered:
a) contactor open;
b) contactor closed;
c) warnings, alarms.
Further information may be agreed between purchaser and manufacturer such as current or
voltage.
– 14 – IEC 62848-2:2019 © IEC 2019
5.7.3 Operation and alarm recordings
Recordings are optional. A list of the recordings that can be stored is indicated as an example
in the following:
a) operation recordings:
1) the status of the VLD;
2) the total number of operations (1 operation = 1 x close + 1 x open);
b) alarm recordings with time stamp:
1) interruption of the auxiliary power supply of the device;
2) device in closed position state during a long period of time, eventually parameterised
in 2 or more levels;
3) internal operation faults: an internal self-diagnostic function controls the correct
functioning of closing and opening the device; in case of an internal fault, an alarm is
created;
4) the exceeding of a given frequency of operations, eventually parameterised in 2 or
more levels.
6 Type tests
6.1 General
The characteristics of the VLD shall be verified by type tests.
Type tests shall be carried out as indicated in Table 2. All tests are mandatory unless stated
otherwise.
Once made, these type tests need not be repeated unless the design is changed so as to
modify the VLD performance. In such a case only the relevant tests need be repeated.
For all the tests the ambient temperature shall be recorded.
An alternating current test is foreseen, if requested, because even if the VLD is not specified
to conduct AC, the wave-form of the current in the VLD can flow in both directions due to
ripple currents from the substations, tripping of the feeders during short-circuits or earth faults
in the DC power system, transient effects due to switching of the current by the trains,
regenerative braking currents of the trains or AC currents injected by AC power systems.
Table 2 – Type tests
Tests Classes of Subclause
VLD
Nominal triggering voltage and non-triggering voltage: 6.2
Procedure for welding shut spark gap VLDs 1 6.2.1
Procedure for thyristor type VLDs 2 6.2.2
Procedure for mechanical switching VLDs and for combined thyristor with 3, 4 6.2.3
mechanical switching devices
Leakage current 1, 2, 4 6.3
DC current withstand All 6.4
Procedure to determine long-term current All 6.4.2
Procedure to determine short time withstand All 6.4.3
AC current withstand characteristics All 6.5
(Optional)
Response time characteristics All 6.6
Lightning current withstand characteristics for VLDs exposed to direct lightning All 6.7
strikes
Recovery test 3, 4 6.8
Reverse voltage test 2.1 6.9
Dielectric test 3, 4 6.10
Degree of protection All 6.11
Environmental tests for outdoor equipment All 6.12
Determination of minimum current for safe short circuiting of Class 1 VLDs 1 6.13
The required number of samples and their conditions are specified in the individual
subclauses.
VLDs are considered to be of the same design if the following conditions are fulfilled:
– they are based on the same components resulting in the same performance
characteristics;
– they are characterised by similar construction resulting in equivalent heat dissipation
conditions whereas mounting or arrangement on the supporting structure may differ.
If not specified otherwise in the individual clauses, tests shall be carried out on the complete
VLD as used in service, i.e. with surge arrester in parallel, if applicable.
6.2 Nominal triggering voltage U and non-triggering voltage U
Tn W
6.2.1 Procedure for welding shut spark gap VLDs (Class 1)
6.2.1.1 General
This test shall be carried out on 3 samples of VLD in dry condition at 20 °C ± 15 °C.
6.2.1.2 Non-triggering voltage test
The non-triggering voltage U of the VLD shall be applied for a duration greater than 300 s.
W
This test shall be carried out at both polarities. The non-triggering voltage U should typically
W
be 80 % of U as given in Table A.1 (see Annex A).
Tn
– 16 – IEC 62848-2:2019 © IEC 2019
a) Pass criteria
No trigger shall occur.
6.2.1.3 Triggering voltage test
The test samples are connected to a DC voltage generator with a current ≥ 1 mA after
triggering but such that the device recovers after the trigger.
NOTE For VLD class 1 the nominal triggering voltage and the instantaneous triggering voltage are equal.
The test samples shall be further tested by applying a DC voltage increasing from 0 V with a
rise du/dt within 100 V/s up to 2 000 V/s according to IEC 61643-311 until the test sample
VLD triggers.
The procedure shall be repeated 5 times per sample for positive and negative polarity within a
period of 15 min.
The value of the trigger voltage shall be recorded.
a) Pass criteria
All measured triggering voltages are below or equal to the nominal triggering voltage U , no
Tn
mechanical destructions occurred and the VLD will not trigger for any duration when
non-triggering voltage U is applied. The nominal triggering voltage U should be in
W Tn
accordance with Table A.1.
6.2.2 Procedure for thyristor type VLDs (Class2)
6.2.2.1 General
This test shall be carried out on 3 samples of VLD in dry condition at 20 °C ± 15 °C. The test
shall be carried out at both polarities for bidirectional VLDs.
6.2.2.2 Non-triggering voltage test
The non-triggering voltage of the VLD shall be applied for a duration greater than 300 s. The
non-triggering voltage U should be 80 % of U as given in Table A.1.
W Tn
a) Pass criteria
No trigger shall occur.
6.2.2.3 Triggering and instantaneous triggering voltage test
The test samples shall be further tested by applying a DC voltage increasing from 0 V with a
rise to the:
– instantaneous triggering voltage within 5 ms;
– triggering voltage(s) according to a duration which is specified for the triggering voltage,
until the test sample VLD triggers.
The test of the triggering voltage(s) may be omitted, if the nominal triggering voltage
coincides with the instantaneous triggering voltage.
The procedure shall be repeated 5 times per sample for positive and negative polarity within a
period of 15 min. The value of the instantaneous triggering voltage and the triggering
voltage(s) shall be recorded.
a) Pass criteria
All measured triggering voltages are below or equal to the specified nominal triggering voltage
. The nominal triggering voltage U should be in accordance with Table A.1.
U
Tn Tn
6.2.3 Procedure for mechanical switching VLDs and for combined thyristors with
mechanical switching devices VLDs (Class 3 and Class 4)
6.2.3.1 General
This test shall be carried out on 1 sample of VLD in dry condition at 20 °C ± 15 °C. The test
shall be carried out at both polarities for bidirectional VLDs.
6.2.3.2 Non-triggering voltage test
The non-triggering voltage of the VLD shall be applied for a duration greater than 300 s. The
non-triggering voltage U should be 80 % of U as given in Table A.1.
W Tn
a) Pass criteria
No trigger shall occur.
6.2.3.3 Triggering and instantaneous triggering voltage test
The test samples shall be further tested by applying a DC voltage increasing from 0 V with a
rise to the:
– instantaneous triggering voltage within 5 ms;
– triggering voltage(s) according to a duration which is specified for the triggering voltage
until the test sample VLD triggers.
The procedure shall be repeated 5 times per sample for positive and negative polarity within a
period of 15 min. The value of the instantaneous triggering voltage and the triggering
voltage(s) shall be recorded.
a) Pass criteria
All measured triggering voltages are below or equal to the specified instantaneous triggering
voltage U and the nominal triggering
...












Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...