Insulation co-ordination - Part 1: Definitions, principles and rules

IEC 60071-1:2006 applies to three-phase a.c. systems having a highest voltage for equipment above 1 kV. It specifies the procedure for the selection of the rated withstand voltages for the phase-to-earth, phase-to-phase and longitudinal insulation of the equipment and the installations of these systems. It also gives the lists of the standard withstand voltages from which the rated withstand voltages should be selected. This standard recommends that the selected withstand voltages should be associated with the highest voltage for equipment. This association is for insulation co-ordination purposes only. The requirements for human safety are not covered by this standard. Although the principles of this standard also apply to transmission line insulation, the values of their withstand voltages may be different from the standard rated withstand voltages. The apparatus committees are responsible for specifying the rated withstand voltages and the test procedures suitable for the relevant equipment taking into consideration the recommendations of this standard. NOTE: In IEC 60071-2, Application Guide, all rules for insulation co ordination given in this standard are justified in detail, in particular the association of the standard rated withstand voltages with the highest voltage for equipment. When more than one set of standard rated withstand voltages is associated with the same highest voltage for equipment, guidance is provided for the selection of the most suitable set. The main changes from the previous edition are as follows:
- in the definitions (3.26, 3.28 and 3.29) and in the environmental conditions (5.9) taken into account clarification of the atmospheric and altitude corrections involved in the insulation co-ordination process;
- in the list of standard rated short-duration power frequency withstand voltages reported in 5.6 addition of 115 kV;
- in the list of standard rated impulse withstand voltages reported in 5.7, addition of 200 kV and 380 kV;
- in the standard insulation levels for range I (1kV  - in the standard insulation levels for range II (Um ≤ 245 kV) (Table 3) replacement of 525 kV by 550 kV and of 765 kV by 800 kV;
- in order to remove that part in the next revision of IEC 60071-2, addition of Annex A dealing with clearances in air to assure a specified impulse withstand voltage in installation;
- in Annex B, limitation at two Um values for the values of rated insulation levels for 1kV  It has the status of a horizontal standard in accordance with IEC Guide 108.

Coordination de l'isolement - Partie 1: Définitions, principes et règles

La CEI 60071-1:2006 s'applique aux réseaux à tension alternative triphasée dont la tension la plus élevée pour le matériel est supérieure à 1 kV. Elle spécifie la procédure pour le choix des tensions de tenue assignées normalisées pour l'isolation phase-terre, l'isolation entre phases et l'isolation longitudinale du matériel et des installations de ces réseaux. Elle donne également les listes des valeurs normalisées parmi lesquelles il convient de choisir les tensions de tenue assignées normalisées. Cette norme recommande que les tensions de tenue choisies soient associées aux tensions les plus élevées pour le matériel. Cette association est destinée aux seules fins de la coordination de l'isolement. Les exigences concernant la sécurité des personnes ne sont pas couvertes par cette norme. Bien que les principes de cette norme s'appliquent également à l'isolation des lignes de transport d'énergie, les valeurs des tensions de tenue peuvent être différentes des tensions de tenue assignées normalisées. Il appartient aux comités de produits de spécifier les tensions de tenue et les procédures d'essai appropriées aux matériels correspondants, en prenant les recommandations de cette norme en considération. NOTE: Toutes les règles pour la coordination de l'isolement données dans cette norme sont justifiées en détail dans la CEI 60071-2, en particulier en ce qui concerne l'association des tensions de tenue assignées normalisées avec les tensions les plus élevées pour le matériel. Lorsque plusieurs séries de tensions de tenue assignées normalisées sont associées à la même valeur de la tension la plus élevée pour le matériel, une ligne directrice est donnée pour le choix de la série la plus appropriée. Les principaux changements par rapport à l'édition précédente sont ceux qui suivent:
- dans les définitions (3.26, 3.28 et 3.29) et dans les conditions environnementales (5.9) prises en compte, clarification des corrections atmosphérique et d'altitude impliquées dans le processus de coordination de l'isolement;
- dans la liste des tensions de tenue assignées normalisées de courte durée à fréquence industrielle mentionnées en 5.6, introduction de 115 kV;
- dans la liste des tensions de tenue assignées normalisées aux chocs indiquées en 5.7, introduction de 200 kV et 380 kV;
dans les niveaux de tenue normalisés pour la gamme I (1kV  - dans les niveaux de tenue normalisés pour la gamme II (Um > 245 kV) (Tableau 3) remplacement de 525 kV par 550 kV et de 765 kV par 800 kV;
- afin de supprimer cette partie dans la révision prochaine de la CEI 60071-2, introduction de l'Annexe A relative aux distances dans l'air pour installation avec tension de tenue aux chocs spécifiée;
- dans l'Annexe B, limitation à deux valeurs de Um pour les valeurs de niveaux d'isolement assignés pour 1 kV  Elle a le statut de norme horizontale conformément au Guide IEC 108.

General Information

Status
Published
Publication Date
22-Jan-2006
Current Stage
DELPUB - Deleted Publication
Start Date
08-Aug-2019
Completion Date
31-Aug-2017
Ref Project

Relations

Standard
IEC 60071-1:2006 - Insulation co-ordination - Part 1: Definitions, principles and rules Released:1/23/2006
English language
35 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
IEC 60071-1:2006 - Coordination de l'isolement - Partie 1: Définitions, principes et règles Released:1/23/2006
French language
35 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
IEC 60071-1:2006 - Insulation co-ordination - Part 1: Definitions, principles and rules Released:1/23/2006 Isbn:2831884705
English and French language
69 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
IEC 60071-1:2006+AMD1:2010 CSV - Insulation co-ordination - Part 1: Definitions, principles and rules Released:3/30/2011 Isbn:9782832249475
English and French language
74 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)


INTERNATIONAL IEC
STANDARD 60071-1
Eight edition
2006-01
Insulation co-ordination –
Part 1:
Definitions, principales and rules

This English-language version is derived from the original
bilingual publication by leaving out all French-language
pages. Missing page numbers correspond to the French-
language pages.
Reference number
Publication numbering
As from 1 January 1997 all IEC publications are issued with a designation in the

60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions
The IEC is now publishing consolidated versions of its publications. For example,

edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the

base publication incorporating amendment 1 and the base publication incorporating

amendments 1 and 2.
Further information on IEC publications
The technical content of IEC publications is kept under constant review by the IEC,
thus ensuring that the content reflects current technology. Information relating to
this publication, including its validity, is available in the IEC Catalogue of
publications (see below) in addition to new editions, amendments and corrigenda.
Information on the subjects under consideration and work in progress undertaken
by the technical committee which has prepared this publication, as well as the list
of publications issued, is also available from the following:
• IEC Web Site (www.iec.ch)
• Catalogue of IEC publications
The on-line catalogue on the IEC web site (www.iec.ch/searchpub) enables you to
search by a variety of criteria including text searches, technical committees
and date of publication. On-line information is also available on recently issued
publications, withdrawn and replaced publications, as well as corrigenda.
• IEC Just Published
This summary of recently issued publications (www.iec.ch/online_news/ justpub)
is also available by email. Please contact the Customer Service Centre (see
below) for further information.
• Customer Service Centre
If you have any questions regarding this publication or need further assistance,
please contact the Customer Service Centre:

Email: custserv@iec.ch
Tel: +41 22 919 02 11
Fax: +41 22 919 03 00
INTERNATIONAL IEC
STANDARD 60071-1
Eight edition
2006-01
Insulation co-ordination –
Part 1:
Definitions, principales and rules

© IEC 2006 Copyright - all rights reserved
No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical,
including photocopying and microfilm, without permission in writing from the publisher.
International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland
Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch
PRICE CODE
Commission Electrotechnique Internationale V
International Electrotechnical Commission
Международная Электротехническая Комиссия
For price, see current catalogue

60071-1  IEC:2006 – 3 –
CONTENTS
FOREWORD.7

1 Scope.11

2 Normative references .11

3 Terms and definitions .13

4 Symbols and abbreviations.27

4.1 General .27

4.2 Subscripts .27
4.3 Letter symbols.27
4.4 Abbreviations .29
5 Procedure for insulation co-ordination .29
5.1 General outline of the procedure .29
5.2 Determination of the representative voltages and overvoltages (U ) .33
rp
5.3 Determination of the co-ordination withstand voltages (U ).35
cw
5.4 Determination of the required withstand voltage (U ) .37
rw
5.5 Selection of the rated insulation level .37
5.6 List of standard rated short-duration power frequency withstand voltages .39
5.7 List of standard rated impulse withstand voltages.39
5.8 Ranges for highest voltage for equipment.39
5.9 Environmental conditions .41
5.10 Selection of the standard insulation level.41
5.11 Background of the standard insulation levels.49
6 Requirements for standard withstand voltage tests .51
6.1 General requirements.51
6.2 Standard short-duration power-frequency withstand voltage tests .53
6.3 Standard impulse withstand voltage tests .53
6.4 Alternative test situation .55
6.5 Phase-to-phase and longitudinal insulation standard withstand voltage tests
for equipment in range I .55
6.6 Phase-to-phase and longitudinal insulation standard withstand voltage tests
for equipment in range II .57

Annex A (normative) Clearances in air to assure a specified impulse withstand voltage
installation .59
Annex B (informative) Values of rated insulation levels for 1kV < U ≤ 245 kV for
m
highest voltages for equipment U not standardized by IEC based on current practice
m
in some countries .67

Bibliography.69

Figure 1 – Flow chart for the determination of rated or standard insulation level .31

60071-1  IEC:2006 – 5 –
Table 1 – Classes and shapes of overvoltages, Standard voltage shapes and Standard

withstand voltage tests .33

Table 2 – Standard insulation levels for range I (1kV < U ≤ 245 kV).45

m
Table 3 – Standard insulation levels for range II (U > 245 kV) .47
m
Table A.1 – Correlation between standard rated lightning impulse withstand voltages

and minimum air clearances .61

Table A.2 – Correlation between standard rated switching impulse withstand voltages

and minimum phase-to-earth air clearances.63

Table A.3 – Correlation between standard rated switching impulse withstand voltages

and minimum phase-to-phase air clearances .65

Table B.1- Values of rated insulation levels for 1kV < U ≤ 245 kV for highest voltages
m
for equipment U not standardized by IEC based on current practice in some countries .67
m
60071-1  IEC:2006 – 7 –
INTERNATIONAL ELECTROTECHNICAL COMMISSION

___________
INSULATION CO-ORDINATION –
Part 1: Definitions, principles and rules

FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.
5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with an IEC Publication.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.
International Standard IEC 60071-1 has been prepared by IEC technical committee 28:
Insulation co-ordination.
This eighth edition cancels and replaces the seventh edition published in 1993 and constitutes
a technical revision.
The main changes from the previous edition are as follows:
– in the definitions (3.26, 3.28 and 3.29) and in the environmental conditions (5.9) taken into
account clarification of the atmospheric and altitude corrections involved in the insulation
co-ordination process;
– in the list of standard rated short-duration power frequency withstand voltages reported in
5.6 addition of 115 kV;
60071-1  IEC:2006 – 9 –
– in the list of standard rated impulse withstand voltages reported in 5.7, addition of 200 kV

and 380 kV;
≤ 245 kV) (Table 2) addition of the
– in the standard insulation levels for range I (1kV < U

m
highest voltage for equipment U = 100 kV;
m
– in the standard insulation levels for range II (U > 245 kV) (Table 3) replacement of
m
525 kV by 550 kV and of 765 kV by 800 kV;

– in order to remove that part in the next revision of IEC 60071-2, addition of Annex A

dealing with clearances in air to assure a specified impulse withstand voltage in

installation;
– in Annex B, limitation at two U values for the values of rated insulation levels for
m
1kV < U ≤ 245 kV for highest voltages for equipment U not standardized by IEC based
m m
on current practice in some countries.
The text of this standard is based on the following documents:
FDIS Report on voting
28/176/FDIS 28/177/RVC
Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.
This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.
The IEC 60071 comprises the following parts under the general title Insulation co-ordination:
Part 1: Definitions, principles and rules
Part 2: Application guide
Part 4: Computational guide to insulation co-ordination and modelling of electrical networks
Part 5: Procedures for high-voltage direct current (HVDC) converter stations
The committee has decided that the contents of this publication will remain unchanged until
the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in
the data related to the specific publication. At this date, the publication will be
• reconfirmed;
• withdrawn;
• replaced by a revised edition, or
• amended.
60071-1  IEC:2006 – 11 –
INSULATION CO-ORDINATION –
Part 1: Definitions, principles and rules

1 Scope
This part of IEC 60071 applies to three-phase a.c. systems having a highest voltage for
equipment above 1 kV. It specifies the procedure for the selection of the rated withstand

voltages for the phase-to-earth, phase-to-phase and longitudinal insulation of the equipment

and the installations of these systems. It also gives the lists of the standard withstand
voltages from which the rated withstand voltages should be selected.
This standard recommends that the selected withstand voltages should be associated with the
highest voltage for equipment. This association is for insulation co-ordination purposes only.
The requirements for human safety are not covered by this standard.
Although the principles of this standard also apply to transmission line insulation, the values
of their withstand voltages may be different from the standard rated withstand voltages.
The apparatus committees are responsible for specifying the rated withstand voltages and the
test procedures suitable for the relevant equipment taking into consideration the
recommendations of this standard.
NOTE In IEC 60071-2, Application Guide, all rules for insulation co-ordination given in this standard are justified
in detail, in particular the association of the standard rated withstand voltages with the highest voltage for
equipment. When more than one set of standard rated withstand voltages is associated with the same highest
voltage for equipment, guidance is provided for the selection of the most suitable set.
2 Normative references
The following referenced documents are indispensable for the application of this document.
For dated references, only the edition cited applies. For undated references, the latest edition
of the referenced document (including any amendments) applies.
IEC 60038:2002, IEC standard voltages
IEC 60060-1:1989, High-voltage test techniques – Part 1: General definitions and test
requirements
IEC 60071-2, Insulation co-ordination – Part 2: Application guide
IEC 60099-4, Surge arresters – Part 4: Metal-oxide surge arresters without gaps for a.c.
systems
IEC 60507, Artificial pollution tests on high-voltage insulators to be used on a.c. systems
IEC 60633, Terminology for high-voltage direct current (HVDC) transmission

60071-1  IEC:2006 – 13 –
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.

3.1
insulation co-ordination
selection of the dielectric strength of equipment in relation to the operating voltages and
overvoltages which can appear on the system for which the equipment is intended and taking

into account the service environment and the characteristics of the available preventing and

protective devices
[IEC 604-03-08:1987, modified]

NOTE By "dielectric strength" of the equipment, is meant here its rated or its standard insulation level as defined
in 3.35 and 3.36 respectively.
3.2
external insulation
distances in atmospheric air, and the surfaces in contact with atmospheric air of solid
insulation of the equipment which are subject to dielectric stresses and to the effects of
atmospheric and other environmental conditions from the site, such as pollution, humidity,
vermin, etc.
[IEC 604-03-02:1987, modified]
NOTE External insulation is either weather protected or non-weather protected, designed to operate inside or
outside closed shelters respectively.
3.3
internal insulation
internal distances of the solid, liquid, or gaseous insulation of equipment which are protected
from the effects of atmospheric and other external conditions
[IEC 604-03-03:1987]
3.4
self-restoring insulation
insulation which, after a short time, completely recovers its insulating properties after a
disruptive discharge during test
[IEC 604-03-04:1987, modified]
NOTE Insulation of this kind is generally, but not necessary, external insulation
3.5
non self-restoring insulation
insulation which loses its insulating properties, or does not recover them completely, after a
disruptive discharge during test
[IEC 604-03-05:1987, modified]
NOTE The definitions of 3.4 and 3.5 apply only when the discharge is caused by the application of a test voltage
during a dielectric test. However, discharges occurring in service may cause a self-restoring insulation to lose
partially or completely its original insulating properties.
3.6
insulation configuration terminal
any of the terminals between any two of which a voltage that stresses the insulation can be
applied. The types of terminal are:
(a) phase terminal, between which and the neutral is applied in service the phase-to-neutral
voltage of the system;
(b) neutral terminal, representing, or connected to, the neutral point of the system (neutral
terminal of transformers, etc.);
(c) earth terminal, always solidly connected to earth in service (tank of transformers, base of
disconnectors, structures of towers, ground plane, etc.).

60071-1  IEC:2006 – 15 –
3.7
insulation configuration
complete geometric configuration of the insulation in service, consisting of the insulation and

of all terminals. It includes all elements (insulating and conducting) which influence its

dielectric behaviour. The following insulation configurations are identified:

3.7.1
three-phase insulation configuration

configuration having three phase terminals, one neutral terminal and one earth terminal

3.7.2
phase-to-earth (p-e) insulation configuration
three-phase insulation configuration where two phase terminals are disregarded and, except
in particular cases, the neutral terminal is earthed
3.7.3
phase-to-phase(p-p) insulation configuration
three-phase insulation configuration where one phase terminal is disregarded. In particular
cases, the neutral and the earth terminals are also disregarded
3.7.4
longitudinal(t-t) insulation configuration
insulation configuration having two phase terminals and one earth terminal. The phase
terminals belong to the same phase of a three-phase system temporarily separated into two
independently energized parts (e.g. open switching devices). The four terminals belonging to
the other two phases are disregarded or earthed. In particular cases one of the two phase
terminals considered is earthed
3.8
nominal voltage of a system
U
n
suitable approximate value of voltage used to designate or identify a system
[IEC 601-01-21:1985]
3.9
highest voltage of a system
U
s
highest value of the phase-to-phase operating voltage (r.m.s. value) which occurs under
normal operating conditions at any time and at any point in the system
[IEC 601-01-23:1985, modified]

3.10
highest voltage for equipment
U
m
highest value of phase-to-phase voltage (r.m.s. value) for which the equipment is designed in
respect of its insulation as well as other characteristics which relate to this voltage in the
relevant equipment Standards. Under normal service conditions specified by the relevant
apparatus committee this voltage can be applied continuously to the equipment
[IEC 604-03-01:1987, modified]

60071-1  IEC:2006 – 17 –
3.11
isolated neutral system
system where the neutral point is not intentionally connected to earth, except for high

impedance connections for protection or measurement purposes

[IEC 601-02-24:1985]
3.12
solidly earthed neutral system

system whose neutral point(s) is(are) earthed directly

[IEC 601-02-25:1985]
3.13
impedance earthed (neutral) system
system whose neutral point(s) is(are) earthed through impedances to limit earth fault currents
[IEC 601-02-26:1985]
3.14
resonant earthed (neutral) system
system in which one or more neutral points are connected to earth through reactances which
approximately compensate the capacitive component of a single-phase-to-earth fault current
[IEC 601-02-27:1985]
NOTE With resonant earthing of a system, the residual current in the fault is limited to such an extent that an
arcing fault in air is usually self-extinguishing.
3.15
earth fault factor
k
at a given location of a three-phase system, and for a given system configuration, the ratio of
the highest r.m.s. phase-to-earth power frequency voltage on a healthy phase during a fault to
earth affecting one or more phases at any point on the system to the r.m.s. phase-to-earth
power frequency voltage which would be obtained at the given location in the absence of any
such fault
[IEC 604-03-06:1987]
3.16
overvoltage
any voltage:
– between one phase conductor and earth or across a longitudinal insulation having a peak
value exceeding the peak of the highest voltage of the system divided by 3;
[IEC 604-03-09, modified] or
– between phase conductors having a peak value exceeding the amplitude of the highest
voltage of the system
[IEC 604-03-09:1987, modified]
NOTE Unless otherwise clearly indicated, such as for surge arresters, overvoltage values expressed in p.u. refer
to U × 2 3
s
60071-1  IEC:2006 – 19 –
3.17
classification of voltages and overvoltages

according to their shape and duration, voltages and overvoltages are divided in the following

classes
NOTE More details on the following six first voltages and overvoltages are also given in Table 1.

3.17.1
continuous (power frequency) voltage

power-frequency voltage, considered having constant r.m.s. value, continuously applied to

any pair of terminals of an insulation configuration

3.17.2
temporary overvoltage
TOV
power frequency overvoltage of relatively long duration
[IEC 604-03-12:1987, modified]
NOTE The overvoltage may be undamped or weakly damped. In some cases its frequency may be several times
smaller or higher than power frequency.
3.17.3
transient overvoltage
short-duration overvoltage of few milliseconds or less, oscillatory or non-oscillatory, usually
highly damped
[IEC 604-03-13:1987]
NOTE Transient overvoltages may be immediately followed by temporary overvoltages. In such cases the two
overvoltages are considered as separate events.
Transient overvoltages are divided into:
3.17.3.1
slow-front overvoltage
SFO
transient overvoltage, usually unidirectional, with time to peak 20 µs < T ≤ 5 000 µs, and tail
p
duration T ≤ 20 ms
3.17.3.2
fast-front overvoltage
FFO
transient overvoltage, usually unidirectional, with time to peak 0,1 µs < T ≤ 20 µs, and tail
duration T < 300 µs
3.17.3.3
very-fast-front overvoltage
VFFO
transient overvoltage, usually unidirectional with time to peak T ≤ 0,1 µs, and with or without
f
superimposed oscillations at frequency 30 kHz < f < 100 MHz
3.17.4
combined overvoltage
consisting of two voltage components simultaneously applied between each of the two phase
terminals of a phase-to-phase (or longitudinal) insulation and earth. It is classified by the
component of higher peak value (temporary, slow-front, fast-front or very-fast-front)

60071-1  IEC:2006 – 21 –
3.18
standard voltage shapes for test

the following voltage shapes are standardized:

NOTE More details on the following three first standard voltage shapes are given in IEC 60060-1 and also in

Table 1.
3.18.1
standard short-duration power-frequency voltage

sinusoidal voltage with frequency between 48 Hz and 62 Hz, and duration of 60 s

3.18.2
standard switching impulse
impulse voltage having a time to peak of 250 µs and a time to half-value of 2 500 µs
3.18.3
standard lightning impulse
impulse voltage having a front time of 1,2 µs and a time to half-value of 50 µs
3.18.4
standard combined switching impulse
for phase-to-phase insulation, a combined impulse voltage having two components of equal
peak value and opposite polarity.
The positive component is a standard switching impulse and the negative one is a switching
impulse whose times to peak and half value should not be less than those of the positive
impulse. Both impulses should reach their peak value at the same instant. The peak value of
the combined voltage is, therefore, the sum of the peak values of the components
3.18.5
standard combined voltage
for longitudinal insulation, a combined voltage having a standard impulse on one terminal and
a power frequency voltage on the other terminal. The impulse component is applied at the
peak of the power frequency voltage of opposite polarity
3.19
representative overvoltages
U
rp
overvoltages assumed to produce the same dielectric effect on the insulation as overvoltages
of a given class occurring in service due to various origins.
They consist of voltages with the standard shape of the class, and may be defined by one
value or a set of values or a frequency distribution of values that characterize the service

conditions
NOTE This definition also applies to the continuous power frequency voltage representing the effect of the service
voltage on the insulation.
3.20
overvoltage limiting device
device which limits the peak values of the overvoltages or their durations or both. They are
classified as preventing devices (e.g., a preinsertion resistor), or as protective devices (e.g., a
surge arrester)
60071-1  IEC:2006 – 23 –
3.21
lightning [or switching] impulse protective level

U [or U ]
pl ps
maximum permissible peak voltage value on the terminals of a protective device subjected to

lightning [or switching] impulses under specific conditions

[IEC 604-03-56:1987 and IEC 604-03-57:1987]

3.22
performance criterion
basis on which the insulation is selected so as to reduce to an economically and operationally

acceptable level the probability that the resulting voltage stresses imposed on the equipment
will cause damage to equipment insulation or affect continuity of service. This criterion is
usually expressed in terms of an acceptable failure rate (number of failures per year, years
between failures, risk of failure, etc.) of the insulation configuration
3.23
withstand voltage
value of the test voltage to be applied under specified conditions in a withstand voltage test,
during which a specified number of disruptive discharges is tolerated. The withstand voltage
is designated as:
a) conventional assumed withstand voltage, when the number of disruptive discharges
tolerated is zero. It is deemed to correspond to a withstand probability P = 100 %;
w
b) statistical withstand voltage, when the number of disruptive discharges tolerated is related
to a specified withstand probability. In this standard, the specified probability is P = 90 %.
w
NOTE In this standard, for non-self-restoring insulation are specified conventional assumed withstand voltages,
and for self-restoring insulation are specified statistical withstand voltages.
3.24
co-ordination withstand voltage
U
cw
for each class of voltage, the value of the withstand voltage of the insulation configuration in
actual service conditions, that meets the performance criterion
3.25
co-ordination factor
K
c
factor by which the value of the representative overvoltage must be multiplied in order to
obtain the value of the co-ordination withstand voltage
3.26
standard reference atmospheric conditions
atmospheric conditions to which the standardized withstand voltages apply (see 5.9)
3.27
required withstand voltage
U
rw
test voltage that the insulation must withstand in a standard withstand voltage test to ensure
that the insulation will meet the performance criterion when subjected to a given class of
overvoltages in actual service conditions and for the whole service duration. The required
withstand voltage has the shape of the co-ordination withstand voltage, and is specified with
reference to all the conditions of the standard withstand voltage test selected to verify it

60071-1  IEC:2006 – 25 –
3.28
atmospheric correction factor
K
t
factor to be applied to the co-ordination withstand voltage to account for the difference in

dielectric strength between the average atmospheric conditions in service and the standard

reference atmospheric conditions

It applies to external insulation only, for all altitudes

NOTE 1 The factor K allows the correction of test voltages taking into account the difference between the actual
t
atmospheric conditions during test and the standard reference atmospheric conditions. For the factor K , the
t
atmospheric conditions taken into account are air pressure, temperature and humidity.

NOTE 2 For insulation co-ordination purposes usually only the air pressure correction needs to be taken into
account.
3.29
altitude correction factor
K
a
factor to be applied to the co-ordination withstand voltage to account for the difference in
dielectric strength between the average pressure corresponding to the altitude in service and
the standard reference pressure
NOTE The altitude correction factor K is part of the atmospheric correction factor K .
a t
3.30
safety factor
K
s
overall factor to be applied to the co-ordination withstand voltage, after the application of the
atmospheric correction factor (if required), to obtain the required withstand voltage,
accounting for all other differences in dielectric strength between the conditions in service
during life time and those in the standard withstand voltage test
3.31
actual withstand voltage of an equipment or insulation configuration
U
aw
highest possible value of the test voltage that can be applied to an equipment or insulation
configuration in a standard withstand voltage test
3.32
test conversion factor
K
tc
for a given equipment or insulation configuration, the factor to be applied to the required
withstand voltage of a given overvoltage class, in the case where the standard withstand
shape of the selected withstand voltage test is that of a different overvoltage class

NOTE For a given equipment or insulation configuration: the test conversion factor of the standard voltage shape
(a) to the standard voltage shape (b) must be higher than or equal to the ratio between the actual withstand voltage
for the standard voltage shape (a) and the actual withstand voltage of the standard voltage shape (b).
3.33
rated withstand voltage
value of the test voltage, applied in a standard withstand voltage test that proves that the
insulation complies with one or more required withstand voltages. It is a rated value of the
insulation of an equipment
3.34
standard rated withstand voltage
U
w
standard value of the rated withstand voltage as specified in this standard (see 5.6 and 5.7)

60071-1  IEC:2006 – 27 –
3.35
rated insulation level
set of rated withstand voltages which characterize the dielectric strength of the insulation

3.36
standard insulation level
set of standard rated withstand voltages which are associated to U as specified in this
m
standard (see Table 2 and Table 3)

3.37
standard withstand voltage test

dielectric test performed in specified conditions to prove that the insulation complies with a
standard rated withstand voltage
NOTE 1 This standard covers:
– short-duration power-frequency voltage tests;
– switching impulse tests;
– lightning impulse tests;
– combined switching impulse tests;
– combined voltage tests.
NOTE 2 More detailed information on the standard withstand voltage tests are given in IEC 60060-1 (see also
Table 1 for the test voltage shapes).
NOTE 3 The very-fast-front impulse standard withstand voltage tests should be specified by the relevant
apparatus committees, if required.
4 Symbols and abbreviations
4.1 General
The list covers only the most frequently used symbols and abbreviations which are useful for
insulation co-ordination.
4.2 Subscripts
p-e related to phase to earth
t-t related to longitudinal
max maximum (IEC 60633)
p-p related to phase to phase
4.3 Letter symbols
f frequency
k earth fault factor
K atmospheric correction factor

t
K altitude correction factor
a
K co-ordination factor
c
K safety factor
s
K test conversion factor
tc
P withstand probability
w
front time
T
T time to half value of a decreasing voltage
60071-1  IEC:2006 – 29 –
T time to peak value
p
T total overvoltage duration
t
U the actual withstand voltage of an equipment or insulation configuration
aw
U co-ordination withstand voltage
cw
U highest voltage for equipment
m
U nominal voltage of a system

n
U lightning impulse protective level of a surge arrester
pl
U switching impulse protective level of a surge arrester
ps
U representative overvoltage
rp
U required withstand voltage
rw
U highest voltage of a system
s
U standard rated withstand voltage
w
4.4 Abbreviations
FFO fast-front overvoltage
ACWV standard rated short-duration power frequency withstand voltage of an
equipment or insulation configuration
LIPL lightning impulse protective level of a surge arrester
SIPL switching impulse protective level of a surge arrester
LIWV standard rated lightning impulse withstand voltage of an equipment or
insulation configuration
SFO slow-front overvoltage
SIWV standard rated switching impulse withstand voltage of an equipment or
insulation configuration
TOV temporary overvoltage
VFFO very-fast-front overvoltage

5 Procedure for insulation co-ordination

5.1 General outline of the procedure
The procedure for insulation co-ordination consists of the selection of the highest voltage for
the equipment together with a corresponding set of standard rated withstand voltages which
characterize the insulation of the equipment needed for the application. This procedure is
outlined in Figure 1 and its steps are described in 5.1 to 5.5. The optimization of the selected
set of U may require reconsideration of some input data and repetition of part of the
w
procedure.
The rated withstand voltages shall be selected from the lists of standard rated withstand
voltages given in 5.6 and 5.7. The set of selected standard voltages constitutes a rated
insulation level. If the standard rated withstand voltages are also associated with the same
U according to 5.10, this set constitutes a standard insulation level.
m
60071-1  IEC:2006 – 31 –
Origin and classification of stressing
System analysis (see 5.2)
voltages          (see 3.16 and 3.17)

Protective level of overvoltage limiting

devices                  (see 3.21)

Insulation characteristics
Representative voltages and
(see 3.19 )
overvoltages U
rp
Insulation characteristics
Performance criterion       (see 3.22)

Selection of the insulation meeting
Statistical distribution (+)
(see 5.3)
the performance criterion
Inaccuracy of input data (+)
(+) Effects combined in a co-ordination
factor K                 (see 3.25)
c
Co-ordination withstand voltages U
cw
(see 3.24)
Altitude correction factors K
a
(or atmospheric correction factors K
t
(see 3.28 and 3.29)
Equipment test assembly *)
Application of factors to account for
Dispersion in production *)
the differences between type test
Quality of installation *) conditions and actual
service conditions
Ageing in service *)
(see 5.4)
Other unknown factors *)
*) Effects combined in a safety factor K
s
(see 3.30)
Required withstand voltages U
rw
(see 3.27)
Test conditions              (see 6)
Test conversion factor K (see 3.32)
tc
Selection of rated withstand voltages
Standard withstand voltages
(see 3.33) or standard rated withstand
(see 5.6 and 5.7)
voltages U (see 3.34) from the lists
w
in 5.6 and 5.7
Ranges of U
m (see 5.8)
Rated or standard insulation level : set of U (see 3.35 and 3.36)
w
IEC  2781/05
NOTE  In brackets the subclauses reporting the definition of the term or the description of the action.
Sided boxes refer to required input
Sided boxes refer to performed actions
Sided boxes refer to obtained results

Figure 1 – Flow chart for the determination of rated or standard insulation level

60071-1  IEC:2006 – 33 –
5.2 Determination of the representative voltages and overvoltages (U )
rp
The voltages and the overvoltages that stress the insulation shall be determined in amplitude,

shape and duration by means of a system analysis which includes the selection and location

of the overvoltage preventing and limiting devices.

For each class of voltages and overvoltages, this analysis shall then determine a

representative voltage and overvoltage, taking into account the characteristics of the

insulation with respect to the different behaviour at the voltage or overvoltage shapes in the

system and at the standard voltage shapes applied in a standard withstand voltage test as

outlined in Table 1.
Table 1 – Classes and shapes of overvoltages, Standard voltage shapes
and Standard withstand voltage tests
Class Low frequency Transient
Continuous Temporary Slow-front Fast-front Very-fast-front
1/f
T
f
1/f
Voltage or
over-
T
p
voltage
T
shapes T
t
1/f
T T
t 2 1/f
T 1
T ≤ 100 ns
f
Range of 10 Hz < f <
0,3 MHz < f <
f = 50 Hz or 20 µs < T ≤ ≤
0,1 µs < T
500 Hz p 1
voltage or
100 MHz
60 Hz 5 000 µs 20 µs
over-
30 kHz < f <
voltage 0,02 s ≤ T ≤
t
T ≥3 600s
T ≤ 20 ms T ≤ 300 µs
t
2 2
300 kHz
shapes
3 600 s
1/f
1/f
Standard
se
T a
p T
T 1
t
voltage
T
t
T
shapes
T
f = 50 Hz 48 Hz ≤ f ≤
T = 250 µs T = 1,2 µs
p 1
or 60 Hz 62 Hz
T = 2 500 µs T = 50 µs
a
2 2
T T = 60 s
t t
Standard Short-duration
Switching impulse Lightning impulse
a
withstand power a
test test
voltage test frequency test
a
To be specified by the relevant apparatus committees.

The representative voltages and overvoltages may be characterized either by:
– an assumed maximum, or
– a set of peak values, or
– a complete statistical distribution of peak values.
NOTE In the last case additional characteristics of the overvoltage shapes may have to be considered.

60071-1  IEC:2006 – 35 –
When the adoption of an assumed maximum is considered adequate, the representative
overvoltage of the various classes shall be:

– For the continuous power-frequency voltage: a power-frequency voltage with r.m.s. value

equal to the highest voltage of the system, and with duration corresponding to the lifetime

of the equipment.
– For the temporary overvoltage: a standard power-frequency short-duration voltage with an

r.m.s. value equal to the assumed maximum of the temporary overvoltages divided by 2.

– For the slow-front overvoltage: a standard switching impulse with peak value equal to the

peak value of the assumed maximum of the slow-front overvoltages.

– For the fast-front overvoltage: a standard lightning impulse with peak value equal to the
peak value of the assumed maximum of the fast-front overvoltages phase to earth.
NOTE For GIS or GIL with three-phase enclosure and insulation levels chosen among the lowest ones for a
given U , the phase-to-phase overvoltages may need consideration.
m
– For the very-fast-front overvoltage: the characteristics for this class of overvoltage are
specified by the relevant apparatus committees.
– For the slow-front phase-to-phase overvoltage: a standard combined switching impulse
with peak value equal to the peak value of the assumed maximum of the slow-front phase-
to-phase overvoltages.
– For the slow-front [or fast-front] longitudinal overvoltage: a combined voltage consisting of
a standard switching [or lightning] impulse and of a power-frequency voltage, each with
peak value equal to the two relevant assumed maximum peak values, and with the instant
of impulse peak coinciding with the peak of the power-frequency of opposite polarity.
5.3 Determination of the co-ordination withstand voltages (U )
cw
The determination of the co-ordination withstand voltages consists of determining the lowest
values of the withstand voltages of the insulation meeting the performance criterion when
subjected to the representative overvoltages under service conditions.
The co-ordination withstand voltages of the insulation have the shape of the representative
overvoltages of the relevant class and their values are obtained by multiplying the values of
the representative overvoltages by a co-ordination factor. The value of the co-ordination
factor depends on the accuracy of the evaluation of the representative overvoltages and on
an empirical, or on a statistical appraisal of the distribution of the overvoltages and of the
insulation characteristics.
The co-ordination withstand voltages can be determined as either conventional assumed
withstand voltages or statistical withstand voltages. This affects the de
...


NORME CEI
INTERNATIONALE 60071-1
Huitième édition
2006-01
Coordination de l’isolement –
Partie 1:
Définitions, principes et règles

Cette version française découle de la publication d’origine
bilingue dont les pages anglaises ont été supprimées.
Les numéros de page manquants sont ceux des pages
supprimées.
Numéro de référence
CEI 60071-1:2006(F)
Numérotation des publications
Depuis le 1er janvier 1997, les publications de la CEI sont numérotées à partir de

60000. Ainsi, la CEI 34-1 devient la CEI 60034-1.

Editions consolidées
Les versions consolidées de certaines publications de la CEI incorporant les

amendements sont disponibles. Par exemple, les numéros d’édition 1.0, 1.1 et 1.2

indiquent respectivement la publication de base, la publication de base incorporant

l’amendement 1, et la publication de base incorporant les amendements 1 et 2

Informations supplémentaires sur les publications de la CEI
Le contenu technique des publications de la CEI est constamment revu par la CEI
afin qu'il reflète l'état actuel de la technique. Des renseignements relatifs à cette
publication, y compris sa validité, sont disponibles dans le Catalogue des
publications de la CEI (voir ci-dessous) en plus des nouvelles éditions, amende-
ments et corrigenda. Des informations sur les sujets à l’étude et l’avancement des
travaux entrepris par le comité d’études qui a élaboré cette publication, ainsi que la
liste des publications parues, sont également disponibles par l’intermédiaire de:
• Site web de la CEI (www.iec.ch)
• Catalogue des publications de la CEI
Le catalogue en ligne sur le site web de la CEI (www.iec.ch/searchpub) vous permet
de faire des recherches en utilisant de nombreux critères, comprenant des
recherches textuelles, par comité d’études ou date de publication. Des informations
en ligne sont également disponibles sur les nouvelles publications, les publications
remplacées ou retirées, ainsi que sur les corrigenda.
• IEC Just Published
Ce résumé des dernières publications parues (www.iec.ch/online_news/justpub)
est aussi disponible par courrier électronique. Veuillez prendre contact avec le
Service client (voir ci-dessous) pour plus d’informations.
• Service clients
Si vous avez des questions au sujet de cette publication ou avez besoin de
renseignements supplémentaires, prenez contact avec le Service clients:
Email: custserv@iec.ch
Tél: +41 22 919 02 11
Fax: +41 22 919 03 00
NORME CEI
INTERNATIONALE 60071-1
Huitième édition
2006-01
Coordination de l’isolement –
Partie 1:
Définitions, principes et règles

© IEC 2006 Droits de reproduction réservés
Aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun
procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'éditeur.
International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland
Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch
CODE PRIX
Commission Electrotechnique Internationale V
International Electrotechnical Commission
Международная Электротехническая Комиссия
Pour prix, voir catalogue en vigueur

– 2 – 60071-1  CEI:2006
SOMMAIRE
AVANT-PROPOS.6

1 Domaine d’application .10

2 Références normatives.10

3 Termes et définitions .12

4 Symboles et abréviations.26

4.1 Généralités.26

4.2 Indices .26
4.3 Symboles littéraux.26
4.4 Abréviations .28
5 Procédure pour la coordination de l'isolement .28
5.1 Généralités sur la procédure .28
5.2 Détermination des tensions et surtensions représentatives (U ) .32
rp
5.3 Détermination des tensions de tenue de coordination (U ).34
cw
5.4 Détermination des tensions de tenue requises (U ).36
rw
5.5 Choix du niveau d'isolement assigné .36
5.6 Liste des tensions de tenue assignées normalisées de courte durée à
fréquence industrielle .38
5.7 Liste des tensions de tenue assignées normalisées aux chocs .38
5.8 Gammes de la tension la plus élevée pour le matériel .38
5.9 Conditions environnementales.40
5.10 Choix du niveau d'isolement normalisé.40
5.11 Origine des niveaux d'isolement normalisés .48
6 Exigences pour les essais de tension de tenue normalisée.50
6.1 Exigences générales .50
6.2 Essais de tension de tenue normalisée de courte durée à fréquence
industrielle .52
6.3 Essais de tension de tenue normalisée aux chocs .52
6.4 Situation d'essai alternative.54
6.5 Essais de tension de tenue normalisée de l'isolation entre phases et de
l'isolation longitudinale pour le matériel de la gamme I .54
6.6 Essais de tension de tenue normalisée de l'isolation entre phases et de

l'isolation longitudinale pour le matériel de la gamme II .56

Annexe A (normative) Distances dans l'air pour installation garantissant une tension
de tenue aux chocs spécifiée.58
Annexe B (informative) Valeurs de niveaux d'isolement assignés pour
1 kV < U ≤ 245 kV pour des tensions les plus élevées pour le matériel U non
m
m
normalisées par la CEI, fondées sur la pratique existant dans certains pays.66

Bibliographie.68

Figure 1 – Organigramme de détermination du niveau d'isolement assigné ou normalisé 30

– 4 – 60071-1  CEI:2006
Table 1 – Classes et formes des surtensions, des formes de tension normalisées et

des essais de tension de tenue normalisée.32

Tableau 2 – Niveaux d'isolement normalisés pour la gamme I (1 kV < U ≤ 245 kV).44

m
Tableau 3 – Niveaux d'isolement normalisés pour la gamme II (U > 245 kV).46
m
Tableau A.1 – Correspondance entre les tensions de tenue assignées normalisées au

choc de foudre et les distances dans l'air minimales .60

Tableau A.2 – Correspondance entre les tensions de tenue assignées normalisées au

choc de manœuvre et les distances dans l'air minimales phase-terre.62

Tableau A.3 – Correspondance entre les tensions de tenue assignées normalisées au

choc de manœuvre et les distances dans l'air minimales phase-phase .64

Tableau B.1 – Valeurs de niveaux d'isolement assignés pour 1 kV < U ≤ 245 kV pour
m
des tensions les plus élevées pour le matériel U non normalisées par la CEI, fondées
m
sur la pratique existant dans certains pays .66

– 6 – 60071-1  CEI:2006
COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

__________
COORDINATION DE L'ISOLEMENT –
Partie 1: Définitions, principes et règles

AVANT-PROPOS
1) La Commission Electrotechnique Internationale (CEI) est une organisation mondiale de normalisation
composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a
pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les
domaines de l'électricité et de l'électronique. A cet effet, la CEI – entre autres activités – publie des Normes
internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au
public (PAS) et des Guides (ci-après dénommés "Publication(s) de la CEI"). Leur élaboration est confiée à des
comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les
organisations internationales, gouvernementales et non gouvernementales, en liaison avec la CEI, participent
également aux travaux. La CEI collabore étroitement avec l'Organisation Internationale de Normalisation (ISO),
selon des conditions fixées par accord entre les deux organisations.
2) Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesure
du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de la CEI
intéressés sont représentés dans chaque comité d’études.
3) Les Publications de la CEI se présentent sous la forme de recommandations internationales et sont agréées
comme telles par les Comités nationaux de la CEI. Tous les efforts raisonnables sont entrepris afin que la CEI
s'assure de l'exactitude du contenu technique de ses publications; la CEI ne peut pas être tenue responsable
de l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de la CEI s'engagent, dans toute la
mesure possible, à appliquer de façon transparente les Publications de la CEI dans leurs publications
nationales et régionales. Toutes divergences entre toutes Publications de la CEI et toutes publications
nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
5) La CEI n’a prévu aucune procédure de marquage valant indication d’approbation et n'engage pas sa
responsabilité pour les équipements déclarés conformes à une de ses Publications.
6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.
7) Aucune responsabilité ne doit être imputée à la CEI, à ses administrateurs, employés, auxiliaires ou
mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités
nationaux de la CEI, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre
dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais
de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de la CEI ou de
toute autre Publication de la CEI, ou au crédit qui lui est accordé.
8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications
référencées est obligatoire pour une application correcte de la présente publication.
9) L’attention est attirée sur le fait que certains des éléments de la présente Publication de la CEI peuvent faire
l’objet de droits de propriété intellectuelle ou de droits analogues. La CEI ne saurait être tenue pour
responsable de ne pas avoir identifié de tels droits de propriété et de ne pas avoir signalé leur existence.

La Norme internationale CEI 60071-1 a été établie par le comité d'études 28 de la CEI:
Coordination de l'isolement.
Cette huitième édition annule et remplace la septième édition publiée en 1993 et constitue
une révision technique.
Les principaux changements par rapport à l'édition précédente sont ceux qui suivent:
– dans les définitions (3.26, 3.28 et 3.29) et dans les conditions environnementales (5.9)
prises en compte, clarification des corrections atmosphérique et d'altitude impliquées dans
le processus de coordination de l'isolement;
– dans la liste des tensions de tenue assignées normalisées de courte durée à fréquence
industrielle mentionnées en 5.6, introduction de 115 kV;

– 8 – 60071-1  CEI:2006
– dans la liste des tensions de tenue assignées normalisées aux chocs indiquées en 5.7,

introduction de 200 kV et 380 kV;

≤ 245 kV) (Tableau 2),
– dans les niveaux de tenue normalisés pour la gamme I (1kV < U

m
introduction de la tension la plus élevée pour le matériel U = 100 kV;
m
– dans les niveaux de tenue normalisés pour la gamme II (U > 245 kV) (Tableau 3)
m
remplacement de 525 kV par 550 kV et de 765 kV par 800 kV;

– afin de supprimer cette partie dans la révision prochaine de la CEI 60071-2, introduction

de l'Annexe A relative aux distances dans l'air pour installation avec tension de tenue aux

chocs spécifiée;
– dans l'Annexe B, limitation à deux valeurs de U pour les valeurs de niveaux d'isolement
m
assignés pour 1 kV < U ≤ 245 kV pour des tensions les plus élevées pour le matériel U
m m
non normalisées par la CEI, fondées sur la pratique existant dans certains pays.
Le texte de cette norme est issu des documents suivants:
FDIS Rapport de vote
28/176/FDIS 28/177/RVC
Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant
abouti à l'approbation de cette norme.
Cette publication a été rédigée selon les Directives ISO/CEI, Partie 2.
La CEI 60071 comprend les parties suivantes, sous le titre général Coordination de
l'isolement:
Partie 1: Définitions, principes et règles
Partie 2: Guide d'application
Partie 4: Guide de calcul de coordination de l'isolement et de modélisations des réseaux
électriques
Partie 5: Procédures pour les stations de conversion à courant continu haute tension (CCHT)
Le comité a décidé que le contenu de cette publication ne sera pas modifié avant la date de
maintenance indiquée sur le site web de la CEI sous «http://webstore.iec.ch» dans les
données relatives à la publication recherchée. A cette date, la publication sera
• reconduite;
• supprimée;
• remplacée par une édition révisée, ou

• amendée.
– 10 – 60071-1  CEI:2006
COORDINATION DE L'ISOLEMENT –
Partie 1: Définitions, principes et règles

1 Domaine d’application
La présente partie de la CEI 60071 s'applique aux réseaux à tension alternative triphasée
dont la tension la plus élevée pour le matériel est supérieure à 1 kV. Elle spécifie la

procédure pour le choix des tensions de tenue assignées normalisées pour l'isolation phase-

terre, l'isolation entre phases et l'isolation longitudinale du matériel et des installations de ces
réseaux. Elle donne également les listes des valeurs normalisées parmi lesquelles il convient
de choisir les tensions de tenue assignées normalisées.
Cette norme recommande que les tensions de tenue choisies soient associées aux tensions
les plus élevées pour le matériel. Cette association est destinée aux seules fins de la
coordination de l'isolement. Les exigences concernant la sécurité des personnes ne sont pas
couvertes par cette norme.
Bien que les principes de cette norme s'appliquent également à l'isolation des lignes de
transport d'énergie, les valeurs des tensions de tenue peuvent être différentes des tensions
de tenue assignées normalisées.
Il appartient aux comités de produits de spécifier les tensions de tenue et les procédures
d'essai appropriées aux matériels correspondants, en prenant les recommandations de cette
norme en considération.
NOTE Toutes les règles pour la coordination de l'isolement données dans cette norme sont justifiées en détail
dans la CEI 60071-2, en particulier en ce qui concerne l'association des tensions de tenue assignées normalisées
avec les tensions les plus élevées pour le matériel. Lorsque plusieurs séries de tensions de tenue assignées
normalisées sont associées à la même valeur de la tension la plus élevée pour le matériel, une ligne directrice est
donnée pour le choix de la série la plus appropriée.
2 Références normatives
Les documents de référence suivants sont indispensables pour l'application du présent
document. Pour les références datées, seule l'édition citée s'applique. Pour les références
non datées, la dernière édition du document de référence s'applique (y compris les éventuels
amendements).
CEI 60038:2002, Tensions normales de la CEI

CEI 60060-1:1989, Techniques des essais à haute tension – Partie 1: Définitions et
prescriptions générales relatives aux essais
CEI 60071-2, Coordination de l’isolement – Partie 2: Guide d’application
CEI 60099-4, Parafoudres – Partie 4: Parafoudres à oxyde métallique sans éclateurs pour
réseaux à courant alternatif
CEI 60507, Essais sous pollution artificielle des isolateurs pour haute tension destinés aux
réseaux à courant alternatif
CEI 60633, Terminologie pour le transport d’énergie en courant continu à haute tension
(CCHT)
– 12 – 60071-1  CEI:2006
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions suivants s'appliquent.

3.1
coordination de l'isolement
sélection de la rigidité diélectrique des matériels, en fonction des tensions de service et des
surtensions qui peuvent apparaître dans le réseau auquel ces matériels sont destinés et

compte tenu de l'environnement en service et des caractéristiques des dispositifs de

prévention et de protection disponibles

[VEI 604-03-08:1987, modifiée]

NOTE La «rigidité diélectrique» des matériels est prise ici au sens de niveau d'isolement assigné ou de niveau
d'isolement normalisé tels que définis respectivement en 3.35 et en 3.36.
3.2
isolation externe
distances dans l'air atmosphérique et sur les surfaces des isolations solides d'un matériel en
contact avec l'air atmosphérique, qui sont soumises aux contraintes diélectriques et à
l'influence des conditions atmosphériques ou d'autres conditions environnementales provenant
du site comme la pollution, l'humidité, les animaux, etc.
[VEI 604-03-02:1987, modifiée]
NOTE L'isolation externe est soit protégée, soit exposée, selon qu'elle est conçue pour être utilisée à l'intérieur
ou à l'extérieur d'abris fermés.
3.3
isolation interne
distances internes dans l’isolation solide, liquide ou gazeuse des matériels qui sont à l'abri de
l'influence des conditions atmosphériques ou d'autres agents externes
[VEI 604-03-03:1987]
3.4
isolation autorégénératrice
isolation qui, en peu de temps, retrouve intégralement ses propriétés isolantes après une
décharge disruptive au cours d'un essai
[VEI 604-03-04:1987, modifiée]
NOTE Une isolation de ce type est généralement, mais pas nécessairement, une isolation externe.
3.5
isolation non autorégénératrice
isolation qui perd ses propriétés isolantes, ou ne les retrouve pas intégralement, après une
décharge disruptive au cours d'un essai
[VEI 604-03-05:1987, modifiée]
NOTE Les définitions 3.4 et 3.5 s'appliquent uniquement quand la décharge est provoquée par l'application d'une
tension d'essai lors d'un essai diélectrique. Cependant, des décharges apparaissant en service peuvent conduire
une isolation autorégénératrice à perdre partiellement ou complètement ses propriétés isolantes d'origine.
3.6
borne de la configuration de l'isolation
l'une ou l'autre des deux bornes entre lesquelles peut être appliquée une tension qui soumet
l'isolation à une contrainte. Les types de borne sont:
(a) borne de phase, en service, la tension phase-neutre du réseau est appliquée entre cette
borne et le neutre;
(b) borne de neutre, représentant le point neutre du réseau, ou y étant connectée (borne de
neutre de transformateur, etc.);
(c) borne de terre, toujours mise directement à la terre en service (cuve de transformateur,
socle de sectionneur, structure de pylône, plaque de mise à la terre, etc.)

– 14 – 60071-1  CEI:2006
3.7
configuration de l'isolation
configuration géométrique complète de l'isolation en service comprenant l'isolation et toutes

ses bornes. Elle inclut tous les éléments (isolants et conducteurs) qui influencent son comporte-

ment diélectrique. On distingue les configurations de l'isolation suivantes:

3.7.1
configuration de l’isolation triphasée

configuration ayant trois bornes de phase, une borne de neutre et une borne de terre

3.7.2
configuration de l’isolation phase-terre
p-e
configuration d'isolation triphasée dans laquelle on ne tient pas compte des bornes de deux
phases et, sauf cas particuliers, dans laquelle la borne de neutre est mise à la terre
3.7.3
configuration de l’isolation phase-phase
p-p
configuration d'isolation triphasée dans laquelle on ne tient pas compte d'une borne de phase.
Dans des cas particuliers, les bornes de neutre et de terre ne sont également pas prises en
compte
3.7.4
configuration de l’isolation longitudinale
t-t
configuration de l’isolation ayant deux bornes de phase et une borne de terre. Les bornes de
phase appartiennent à la même phase d'un réseau triphasé, séparée temporairement en deux
parties indépendantes sous tension (par exemple, appareils de connexion ouverts). Les
quatre bornes appartenant aux deux autres phases ne sont pas prises en compte ou sont
mises à la terre. Dans des cas particuliers, l'une des deux bornes de phase considérées est
mise à la terre
3.8
tension nominale d'un réseau
U
n
valeur arrondie appropriée de la tension utilisée pour dénommer ou identifier un réseau
[VEI 601-01-21:1985]
3.9
tension la plus élevée d'un réseau

U
s
valeur la plus élevée de la tension de service entre phases (valeur efficace) qui se présente à
un instant et en un point quelconque du réseau dans des conditions d'exploitation normales
[VEI 601-01-23:1985, modifiée]
3.10
tension la plus élevée pour le matériel
U
m
valeur la plus élevée de la tension entre phases (valeur efficace) pour laquelle le matériel est
spécifié en ce qui concerne son isolement ainsi que certaines autres caractéristiques qui sont
rattachées à cette tension dans les normes proposées pour chaque matériel. Dans les
conditions normales de service spécifiées par le comité de produit correspondant, cette
tension peut être appliquée au matériel en permanence
[VEI 604-03-01:1987, modifiée]

– 16 – 60071-1  CEI:2006
3.11
réseau à neutre isolé
réseau dont aucun point neutre n'a de connexion intentionnelle avec la terre, à l'exception

des liaisons à haute impédance destinées à des dispositifs de protection ou de mesure

[VEI 601-02-24:1985]
3.12
réseau à neutre directement à la terre

réseau dont le ou les points neutres sont reliés directement à la terre

[VEI 601-02-25:1985]
3.13
réseau à neutre non directement à la terre
réseau dont le ou les points neutres sont reliés à la terre par l'intermédiaire d'impédances
destinées à limiter les courants de défaut à la terre
[VEI 601-02-26:1985]
3.14
réseau compensé par bobine d'extinction
réseau dont un ou plusieurs points neutres sont reliés à la terre par des réactances
compensant approximativement la composante capacitive du courant de défaut monophasé à
la terre
[VEI 601-02-27:1985]
NOTE Pour un réseau compensé par bobine d'extinction, le courant résiduel dans le défaut est limité à tel point
qu'un arc de défaut dans l'air est généralement auto-extinguible.
3.15
facteur de défaut à la terre
k
en un emplacement donné d'un réseau triphasé, et pour un schéma d'exploitation donné de
ce réseau, rapport entre, d'une part, la tension efficace la plus élevée, à la fréquence du
réseau, entre une phase saine et la terre pendant un défaut à la terre affectant une phase
quelconque ou plusieurs phases en un point quelconque du réseau, et d'autre part la valeur
efficace de la tension entre phase et terre à la fréquence du réseau qui serait obtenue à
l'emplacement considéré en l'absence du défaut
[VEI 604-03-06:1987]
3.16
surtension
toute tension:
– entre un conducteur de phase et la terre ou à travers une isolation longitudinale dont la
valeur de crête dépasse la valeur de crête correspondant à la tension la plus élevée du
réseau divisée par 3
[VEI 604-03-09:1987, modifiée] ou
– entre conducteurs de phase dont la valeur de crête dépasse l'amplitude de la tension le
plus élevée du réseau
[VEI 604-03-09:1987, modifiée]
NOTE Sauf indication contraire clairement stipulée, comme pour les parafoudres, les valeurs de surtension
exprimées en p.u. renvoient à U × 2 3 .
s
– 18 – 60071-1  CEI:2006
3.17
classification des tensions et des surtensions

tensions et surtensions réparties selon les catégories suivantes d'après leur forme et leur

durée
NOTE Plus de détails sur les six premières tensions et surtensions suivantes sont aussi donnés au Tableau 1.

3.17.1
tension permanente (à fréquence industrielle)

tension à la fréquence du réseau, considérée comme ayant une valeur efficace constante,

appliquée en permanence à toute paire de bornes d'une configuration d'isolation

3.17.2
surtension temporaire
TOV
surtension à fréquence industrielle de durée relativement longue
[VEI 604-03-12:1987, modifiée]
NOTE La surtension peut être non amortie ou faiblement amortie. Dans certains cas, sa fréquence peut être
inférieure ou supérieure à la fréquence industrielle dans un rapport de plusieurs unités.
3.17.3
surtension transitoire
surtension de courte durée, ne dépassant pas quelques millisecondes, oscillatoire ou non,
généralement fortement amortie
[VEI 604-03-13:1987]
NOTE Les surtensions transitoires peuvent être immédiatement suivies par des surtensions temporaires. S'il en
est ainsi, les deux types de surtensions sont considérés comme des événements séparés.
Les surtensions transitoires sont divisées en:
3.17.3.1
surtension à front lent
SFO
surtension transitoire, généralement unidirectionnelle, de durée T jusqu'à la valeur de crête
p
telle que 20 µs < T ≤ 5 000 µs et de durée de queue T ≤ 20 ms
p 2
3.17.3.2
surtension à front rapide
SFO
surtension transitoire, généralement unidirectionnelle, de durée T jusqu'à la valeur de crête
p
telle que 0,1 µs < T ≤ 20 µs et de durée de queue T < 300 µs

1 2
3.17.3.3
surtension à front très rapide
VFFO
surtension transitoire, généralement unidirectionnelle, de durée jusqu'à la valeur de crête T ≤
f
0,1 µs et avec ou sans oscillations superposées de fréquence 30 kHz < f < 100 MHz
3.17.4
surtension combinée
consistant en deux composantes de tension appliquées simultanément entre chacune des
deux bornes de phase d'une isolation entre phases (ou longitudinale) et la terre. Elle est
classée selon la composante de la valeur de crête la plus élevée (temporaire, à front lent, à
front rapide ou à front très rapide)

– 20 – 60071-1  CEI:2006
3.18
formes de tension normalisées pour essai

les formes de tension suivantes sont normalisées:

NOTE Plus de détails sur les trois premières formes de tension normalisées suivantes sont donnés dans la

CEI 60060-1 ainsi qu’au Tableau 1.

3.18.1
tension normalisée de courte durée à fréquence industrielle

tension sinusoïdale de fréquence comprise entre 48 Hz et 62 Hz et de durée égale à 60 s

3.18.2
tension normalisée de choc de manœuvre
tension de choc ayant une durée jusqu'à la crête de 250 µs et une durée jusqu'à la mi-valeur
de 2 500 µs
3.18.3
tension normalisée de choc de foudre
tension de choc ayant une durée de front de 1,2 µs et une durée jusqu'à la mi-valeur de 50 µs
3.18.4
tension normalisée de choc de manœuvre combinée
pour l'isolation entre phases, une tension de choc combinée ayant deux composantes de
valeurs de crête égales et de polarités opposées.
La composante positive est une tension de choc de manœuvre normalisée et la composante
négative est une tension de choc de manœuvre dont les durées jusqu'à la crête et jusqu'à la
mi-valeur ne sont pas inférieures à celles de la composante positive. Il convient que les deux
tensions de choc atteignent leur valeur de crête au même instant. Par conséquent, la valeur
de crête de la tension combinée est la somme des valeurs de crête de leurs composantes
3.18.5
tension normalisée combinée
pour l'isolation longitudinale, une tension combinée ayant un choc normalisé sur une borne et
une tension à fréquence industrielle sur l'autre borne. La composante de choc est appliquée à
la valeur de crête de la tension à fréquence industrielle de polarité opposée
3.19
surtensions représentatives
U
rp
surtensions supposées produire le même effet diélectrique sur l'isolation que les surtensions
d'une catégorie donnée apparaissant en service dues à diverses origines.

Elles sont constituées de tensions ayant la forme normalisée de la catégorie en question et
peuvent être définies par une valeur, un ensemble de valeurs ou une distribution statistique
des valeurs qui caractérisent les conditions de service
NOTE Cette définition s'applique également à la tension permanente à fréquence industrielle qui représente
l'effet de la tension de service sur l'isolation.
3.20
dispositif de limitation des surtensions
dispositif qui limite les valeurs de crête des surtensions ou leurs durées ou les deux. Ces
dispositifs sont classés en dispositifs de prévention (tel que résistance de préinsertion) ou en
dispositifs de protection (tel que parafoudre)

– 22 – 60071-1  CEI:2006
3.21
niveau de protection au choc de foudre [ou de manœuvre]

U [ou U ]
pl ps
valeur de crête maximale de la tension admissible aux bornes d'un dispositif de protection

soumis, dans des conditions spécifiées, à des chocs de foudre [ou de manœuvre]

[VEI 604-03-56:1987 et VEI 604-03-57:1987]

3.22
critère de performance
base sur laquelle est choisie l'isolation de façon à réduire à un niveau acceptable, du point de

vue de l'économie et de celui de l'exploitation, la probabilité que les contraintes diélectriques
résultantes imposées aux matériels causent des dommages aux isolations des matériels ou
affectent la continuité du service. Ce critère est habituellement exprimé en termes d'un taux
de défaillance acceptable (nombre de défaillances par année, nombre d'années entre
défaillances, risque de défaillance, etc.) de la configuration de l'isolation
3.23
tension de tenue
valeur de la tension d'essai à appliquer, dans des conditions spécifiées, lors d'un essai de
tension de tenue pendant lequel un nombre spécifié de décharges disruptives est toléré. La
tension de tenue est désignée par:
a) tension de tenue présumée conventionnelle, lorsque le nombre de décharges disruptives
toléré est nul. Cela est supposé correspondre à une probabilité de tenue P = 100 %;
w
b) tension de tenue statistique, lorsque le nombre de décharges disruptives toléré est relatif
à une probabilité de tenue spécifiée. Dans cette norme, la probabilité spécifiée est
P = 90 %.
w
NOTE Dans cette norme, les tensions de tenue présumées conventionnelles sont spécifiées pour l'isolation non
autorégénératrice et les tensions de tenue statistiques le sont pour l'isolation autorégénératrice.
3.24
tension de tenue de coordination
U
cw
pour chaque catégorie de tension, valeur de la tension de tenue de la configuration de
l'isolation, dans les conditions réelles de service, qui satisfait au critère de performance
3.25
facteur de coordination
K
c
facteur par lequel il faut que la valeur de la surtension représentative soit multipliée pour
obtenir la valeur de la tension de tenue de coordination

3.26
conditions atmosphériques normalisées de référence
conditions atmosphériques auxquelles les tensions de tenue assignées normalisées
s'appliquent (voir 5.9)
3.27
tension de tenue requise
U
rw
tension d'essai qu’il faut que l'isolation tienne dans un essai de tension de tenue normalisée
pour s'assurer que l'isolation satisfera au critère de performance lorsqu'elle sera soumise à
une catégorie donnée de surtensions dans les conditions réelles de service et pendant toute
la durée de service. La tension de tenue requise a la forme de la tension de tenue de
coordination et elle est spécifiée en se référant à toutes les conditions de l'essai de tension
de tenue normalisée choisi pour vérifier cette tenue

– 24 – 60071-1  CEI:2006
3.28
facteur de correction atmosphérique

K
t
facteur à appliquer à la tension de tenue de coordination pour tenir compte de la différence de

tenue diélectrique entre les conditions atmosphériques moyennes en service et les conditions

atmosphériques normalisées de référence.

Ce facteur ne s'applique qu'à l'isolation externe, pour toutes les altitudes

NOTE 1 Le facteur K permet de corriger les tensions d'essai en tenant compte de la différence entre les
t
conditions atmosphériques réelles pendant les essais et les conditions atmosphériques normalisées de référence.

Pour ce facteur, les conditions atmosphériques prises en compte sont la pression de l’air, la température et
l’humidité.
NOTE 2 En général, pour les besoins de coordination de l’isolement, seule la correction de pression de l’air a
besoin d’être prise en compte.
3.29
facteur de correction de l'altitude
K
a
facteur à appliquer à la tension de tenue de coordination pour tenir compte de la différence de
tenue diélectrique entre la pression moyenne correspondant à l'altitude en service et la
pression normalisée de référence
NOTE Le facteur de correction de l'altitude K fait partie du facteur de correction atmosphérique K .
a t
3.30
facteur de sécurité
K
s
facteur global à appliquer à la tension de tenue de coordination, après application du facteur
de correction atmosphérique (si nécessaire), pour obtenir la tension de tenue requise en
tenant compte de toutes les autres différences de tenue diélectrique entre les conditions en
service au cours de la durée de vie et celles de l'essai de tension de tenue normalisée
3.31
tension de tenue réelle d'un matériel ou d'une configuration de l'isolation
U
aw
valeur la plus élevée possible de la tension d'essai qui peut être appliquée à un matériel ou à
une configuration d'isolation dans un essai de tension de tenue normalisée
3.32
facteur de conversion d'essai
K
tc
pour un matériel ou une configuration d'isolation donné, facteur à appliquer à la tension de
tenue requise d'une catégorie de surtension donnée, dans le cas où la forme de la tension de
tenue normalisée de l'essai de tension de tenue choisi est celle d'une catégorie de surtension

différente
NOTE Pour une configuration de matériel ou d'isolation donnée: il faut que le facteur de conversion d'essai de la
forme de la tension normalisée (a) en forme de tension normalisée (b) soit supérieur ou égal au rapport entre la
tension de tenue réelle pour la forme de tension normalisée (a) et la tension de tenue réelle de la forme de tension
normalisée (b).
3.33
tension de tenue assignée
valeur de la tension d'essai, appliquée dans un essai de tension de tenue normalisée, qui
permet de vérifier que l'isolation satisfait à une ou plusieurs des tensions de tenue requises.
C'est une valeur assignée d’isolation d'un matériel
3.34
tension de tenue assignée normalisée
U
w
valeur normalisée de la tension de tenue assignée telle que recommandée dans cette norme
(voir 5.6 et 5.7)
– 26 – 60071-1  CEI:2006
3.35
niveau d’isolement assigné
ensemble de tensions de tenue assignées qui caractérisent la rigidité diélectrique de

l'isolation
3.36
niveau d'isolement normalisé
ensemble de tensions de tenue assignées normalisées associées à U comme il est
m
recommandé dans cette norme (voir Tableau 2 et Tableau 3)

3.37
essai de tension de tenue normalisée
essai diélectrique effectué dans des conditions spécifiées pour démontrer que l'isolation
satisfait à une tension de tenue assignée normalisée.
NOTE 1 Cette norme couvre:
– les essais à la tension de courte durée à fréquence industrielle;
– les essais au choc de manœuvre;
– les essais au choc de foudre;
– les essais au choc de manœuvre combinés;
– les essais à la tension combinée.
NOTE 2 Des informations détaillées complémentaires sur les essais de tension de tenue normalisée sont
données dans la CEI 60060-1 (voir également le Tableau 1 pour les formes de la tension d'essai).
NOTE 3 Il convient que les essais de tension de tenue normalisée au choc à front très rapides soient spécifiés
par les comités de produit concernés, si nécessaire.
4 Symboles et abréviations
4.1 Généralités
Cette liste ne couvre que les symboles et les abréviations utilisés le plus fréquemment et qui
sont utiles pour la coordination de l'isolement.
4.2 Indices
p-e phase à terre
t-t longitudinal
max maximum (CEI 60633)
p-p entre phases
4.3 Symboles littéraux
f fréquence
k facteur de défaut à la terre
K facteur de correction atmosphérique

t
K facteur de correction d'altitude

a
K facteur de coordination
c
K facteur de sécurité
s
K facteur de conversion d'essai
tc
P probabilité de tenue
w
T durée de front
T durée jusqu'à la mi-valeur d'une tension décroissante
– 28 – 60071-1  CEI:2006
T durée jusqu'à la valeur de crête
p
T durée totale de surtension
t
U tension de tenue réelle d'un matériel ou d'une configuration de l'isolation
aw
U tension de tenue de coordination
cw
U tension la plus élevée pour le matériel
m
U tension nominale d'un réseau

n
U niveau de protection au choc de foudre d'un parafoudre
pl
U niveau de protection au choc de manœuvre d'un parafoudre
ps
U surtension représentative
rp
U tension de tenue requise
rw
U tension la plus élevée d'un réseau
s
U tension de tenue assignée normalisée
w
4.4 Abréviations
FFO surtension à front rapide (fast-front overvoltage)
ACWV tension de tenue assignée normalisée de courte durée à fréquence
industrielle d'un matériel ou d'une configuration de l'isolation (power
frequency withstand voltage )
LIPL niveau de protection au choc de foudre d'un parafoudre (lightning impulse
protective level)
SIPL niveau de protection au choc de manœuvre d'un parafoudre (switching
impulse protective level)
LIWV tension de tenue assignée normalisée au choc de foudre d'un matériel ou
d'une configuration de l'isolation (lightning impulse withstand voltage)
SFO surtension à front lent (slow-front overvoltage)
SIWV tension de tenue assignée normalisée au choc de manœuvre d'un matériel ou
d'une configuration de l'isolation (switching impulse withstand voltage)
TOV surtension temporaire (temporary overvoltage)
VFFO surtension à front très rapide (very-fast-front overvoltage)

5 Procédure pour la coordination de l'isolement

5.1 Généralités sur la procédure
La procédure pour la coordination de l'isolement consiste à choisir la tension la plus élevée
pour le matériel avec un ensemble de tensions de tenue assignées normalisées qui
caractérisent l'isolation du matériel nécessaire à l'application. Cette procédure est
représentée à la Figure 1 et ses étapes sont décrites de 5.1 à 5.5. L'optimisation de
l'ensemble choisi de U peut nécessiter la reprise de quelques données d'entrée et la
w
répétition d'une partie de cette procédure.
Les tensions de tenue assignées normalisées doivent être choisies dans les listes de 5.6 et
de 5.7. L'ensemble des tensions normalisées choisies constitue un niveau d'isolement
assigné. Si les tensions de tenue assignées normalisées sont également associées à la
même valeur de U conformément à 5.10, cet ensemble constitue un niveau d'isolement
m
normalisé.
– 30 – 60071-1  CEI:2006
Origine et classification des contraintes
Analyse du réseau (voir 5.2)
de tension          (voir 3.16 et 3.17)

Niveau de protection des dispositifs

limiteurs de surtension      (voir 3.21)

Caratéristique de l’isolation
Tensions et surtensions
représentatives U (voir3.19 )
rp
Caratéristique de l’isolation
Critère de performace      (voir 3.22)

Choix de l’isolement satisfaisant le
Distribution statistique (+)
critère de performance (voir 5.3)
Imprécision des données de départ (+)

(+) Effets combinés en un facteur de
coordination K           (voir 3.25)
c
Tensions de tenue de coordination U
cw
(see 3.24)
Facteurs de correction d’altitude K
a
ou facteurs de correction
atmosphèrique K
t (voir 3.28 et 3.29)
Montage du matériel essayé *)
Application de facteurs tenant compte
Dispersion de fabrication *)
des différences entre conditions
Qualité de l’installation *) d’essai de type et conditions
réelles de service
Vieillissement en service *)
(voir 5.4)
Autres facteurs inconnus *)
*) Effets combinés en un facteur de

sécurité K
s
(voir 3.30)
Tensions de tenue requises U
rw
(voir 3.27)
Conditions d’essai           (voir 6)
Facteur de conversion d’essai K
tc
(voir 3.32)
Choix des tensions de tenue assignées
Tensions de tenue normalisées
(voir 3.33) ou de tensions de tenue
(voir 5.6 et 5.7)
assignées normalisées U (voir 3.34)
w
dans les listes 5.6 et 5.7
Gamme de valeurs de U
m (voir 5.8)
Niveau d’isolement assigné ou normalisé: ensemble de U
w
(voir 3.35 et 3.36)
IEC  2781/05
NOTE  Entre parenthèses, les paragraphes donnant la définition du terme ou la description de l’action.
Rectangles faisant référence aux données d’entrées à prendre en compte
Rectangles faisant référence aux actions à effectuer
Rectangles faisant référence aux résultats obtenus

Figure 1 – Organigramme de détermination du niveau d'isolement assigné ou normalisé

– 32 – 60071-1  CEI:2006
5.2 Détermination des tensions et surtensions représentatives (U )
rp
Les tensions et les surtensions qui contraignent l'isolation doivent être déterminées en

amplitude, en forme et en durée, au moyen d'une analyse de réseau comprenant la sélection

et le choix de l'emplacement des dispositifs de limitation et de prévention des surtensions.

Pour chaque catégorie de tensions et de surtensions, cette analyse doit donc permettre de

déterminer u
...


IEC 60071-1
Edition 8.0 2006-01
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
Insulation co-ordination –
Part 1: Definitions, principles and rules

Coordination de l'isolement –
Partie 1: Définitions, principes et règles

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by

any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or

IEC's member National Committee in the country of the requester.
If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication,
please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite
ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie
et les microfilms, sans l'accord écrit de la CEI ou du Comité national de la CEI du pays du demandeur.

Si vous avez des questions sur le copyright de la CEI ou si vous désirez obtenir des droits supplémentaires sur cette

publication, utilisez les coordonnées ci-après ou contactez le Comité national de la CEI de votre pays de résidence.

IEC Central Office
3, rue de Varembé
CH-1211 Geneva 20
Switzerland
Email: inmail@iec.ch
Web: www.iec.ch
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.
ƒ Catalogue of IEC publications: www.iec.ch/searchpub
The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,…).
It also gives information on projects, withdrawn and replaced publications.
ƒ IEC Just Published: www.iec.ch/online_news/justpub
Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available
on-line and also by email.
ƒ Electropedia: www.electropedia.org
The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions
in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical
Vocabulary online.
ƒ Customer Service Centre: www.iec.ch/webstore/custserv
If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service
Centre FAQ or contact us:
Email: csc@iec.ch
Tel.: +41 22 919 02 11
Fax: +41 22 919 03 00
A propos de la CEI
La Commission Electrotechnique Internationale (CEI) est la première organisation mondiale qui élabore et publie des
normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications CEI
Le contenu technique des publications de la CEI est constamment revu. Veuillez vous assurer que vous possédez
l’édition la plus récente, un corrigendum ou amendement peut avoir été publié.
ƒ Catalogue des publications de la CEI: www.iec.ch/searchpub/cur_fut-f.htm
Le Catalogue en-ligne de la CEI vous permet d’effectuer des recherches en utilisant différents critères (numéro de référence,
texte, comité d’études,…). Il donne aussi des informations sur les projets et les publications retirées ou remplacées.
ƒ Just Published CEI: www.iec.ch/online_news/justpub
Restez informé sur les nouvelles publications de la CEI. Just Published détaille deux fois par mois les nouvelles
publications parues. Disponible en-ligne et aussi par email.
ƒ Electropedia: www.electropedia.org
Le premier dictionnaire en ligne au monde de termes électroniques et électriques. Il contient plus de 20 000 termes et
définitions en anglais et en français, ainsi que les termes équivalents dans les langues additionnelles. Egalement appelé
Vocabulaire Electrotechnique International en ligne.
ƒ Service Clients: www.iec.ch/webstore/custserv/custserv_entry-f.htm
Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions, visitez le FAQ du
Service clients ou contactez-nous:
Email: csc@iec.ch
Tél.: +41 22 919 02 11
Fax: +41 22 919 03 00
IEC 60071-1
Edition 8.0 2006-01
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
Insulation co-ordination –
Part 1: Definitions, principles and rules

Coordination de l'isolement –
Partie 1: Définitions, principes et règles

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
COMMISSION
ELECTROTECHNIQUE
PRICE CODE
INTERNATIONALE
V
CODE PRIX
ICS 29.080.30 ISBN 2-8318-8470-5

60071-1  IEC:2006 –– 2 – 3 – 60071-1 © IEC:2006

CONTENTS
FOREWORD.4

1 Scope.6

2 Normative references .6

3 Terms and definitions .7

4 Symbols and abbreviations.14

4.1 General .14

4.2 Subscripts .14
4.3 Letter symbols.14
4.4 Abbreviations .15
5 Procedure for insulation co-ordination .15
5.1 General outline of the procedure .15
5.2 Determination of the representative voltages and overvoltages (U ) .17
rp
5.3 Determination of the co-ordination withstand voltages (U ).18
cw
5.4 Determination of the required withstand voltage (U ) .19
rw
5.5 Selection of the rated insulation level .19
5.6 List of standard rated short-duration power frequency withstand voltages .20
5.7 List of standard rated impulse withstand voltages.20
5.8 Ranges for highest voltage for equipment.20
5.9 Environmental conditions .21
5.10 Selection of the standard insulation level.21
5.11 Background of the standard insulation levels.25
6 Requirements for standard withstand voltage tests .26
6.1 General requirements.26
6.2 Standard short-duration power-frequency withstand voltage tests .27
6.3 Standard impulse withstand voltage tests .27
6.4 Alternative test situation .28
6.5 Phase-to-phase and longitudinal insulation standard withstand voltage tests
for equipment in range I .28
6.6 Phase-to-phase and longitudinal insulation standard withstand voltage tests
for equipment in range II .29

Annex A (normative) Clearances in air to assure a specified impulse withstand voltage
installation .30
Annex B (informative) Values of rated insulation levels for 1kV < U ≤ 245 kV for
m
highest voltages for equipment U not standardized by IEC based on current practice
m
in some countries .34

Bibliography.35

Figure 1 – Flow chart for the determination of rated or standard insulation level .16

60071-1 © IEC:200660071-1  IEC:2006 –– 3 – 5 –

Table 1 – Classes and shapes of overvoltages, Standard voltage shapes and Standard

withstand voltage tests .17

Table 2 – Standard insulation levels for range I (1kV < U ≤ 245 kV).23

m
Table 3 – Standard insulation levels for range II (U > 245 kV) .24
m
Table A.1 – Correlation between standard rated lightning impulse withstand voltages

and minimum air clearances .31

Table A.2 – Correlation between standard rated switching impulse withstand voltages

and minimum phase-to-earth air clearances.32

Table A.3 – Correlation between standard rated switching impulse withstand voltages
and minimum phase-to-phase air clearances .33

Table B.1- Values of rated insulation levels for 1kV < U ≤ 245 kV for highest voltages
m
for equipment U not standardized by IEC based on current practice in some countries .34
m
60071-1  IEC:2006 –– 4 – 7 – 60071-1 © IEC:2006

INTERNATIONAL ELECTROTECHNICAL COMMISSION

___________
INSULATION CO-ORDINATION –
Part 1: Definitions, principles and rules

FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.
5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with an IEC Publication.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.
International Standard IEC 60071-1 has been prepared by IEC technical committee 28:
Insulation co-ordination.
This eighth edition cancels and replaces the seventh edition published in 1993 and constitutes
a technical revision.
The main changes from the previous edition are as follows:
– in the definitions (3.26, 3.28 and 3.29) and in the environmental conditions (5.9) taken into
account clarification of the atmospheric and altitude corrections involved in the insulation
co-ordination process;
– in the list of standard rated short-duration power frequency withstand voltages reported in
5.6 addition of 115 kV;
60071-1 © IEC:200660071-1  IEC:2006 –– 5 – 9 –

– in the list of standard rated impulse withstand voltages reported in 5.7, addition of 200 kV

and 380 kV;
≤ 245 kV) (Table 2) addition of the
– in the standard insulation levels for range I (1kV < U

m
highest voltage for equipment U = 100 kV;
m
– in the standard insulation levels for range II (U > 245 kV) (Table 3) replacement of
m
525 kV by 550 kV and of 765 kV by 800 kV;

– in order to remove that part in the next revision of IEC 60071-2, addition of Annex A

dealing with clearances in air to assure a specified impulse withstand voltage in

installation;
– in Annex B, limitation at two U values for the values of rated insulation levels for
m
1kV < U ≤ 245 kV for highest voltages for equipment U not standardized by IEC based
m m
on current practice in some countries.
The text of this standard is based on the following documents:
FDIS Report on voting
28/176/FDIS 28/177/RVC
Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.
This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.
The IEC 60071 comprises the following parts under the general title Insulation co-ordination:
Part 1: Definitions, principles and rules
Part 2: Application guide
Part 4: Computational guide to insulation co-ordination and modelling of electrical networks
Part 5: Procedures for high-voltage direct current (HVDC) converter stations
The committee has decided that the contents of this publication will remain unchanged until
the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in
the data related to the specific publication. At this date, the publication will be
• reconfirmed;
• withdrawn;
• replaced by a revised edition, or
• amended.
60071-1  IEC:2006 –– 6 – 11 – 60071-1 © IEC:2006

INSULATION CO-ORDINATION –
Part 1: Definitions, principles and rules

1 Scope
This part of IEC 60071 applies to three-phase a.c. systems having a highest voltage for
equipment above 1 kV. It specifies the procedure for the selection of the rated withstand
voltages for the phase-to-earth, phase-to-phase and longitudinal insulation of the equipment

and the installations of these systems. It also gives the lists of the standard withstand
voltages from which the rated withstand voltages should be selected.
This standard recommends that the selected withstand voltages should be associated with the
highest voltage for equipment. This association is for insulation co-ordination purposes only.
The requirements for human safety are not covered by this standard.
Although the principles of this standard also apply to transmission line insulation, the values
of their withstand voltages may be different from the standard rated withstand voltages.
The apparatus committees are responsible for specifying the rated withstand voltages and the
test procedures suitable for the relevant equipment taking into consideration the
recommendations of this standard.
NOTE In IEC 60071-2, Application Guide, all rules for insulation co-ordination given in this standard are justified
in detail, in particular the association of the standard rated withstand voltages with the highest voltage for
equipment. When more than one set of standard rated withstand voltages is associated with the same highest
voltage for equipment, guidance is provided for the selection of the most suitable set.
2 Normative references
The following referenced documents are indispensable for the application of this document.
For dated references, only the edition cited applies. For undated references, the latest edition
of the referenced document (including any amendments) applies.
IEC 60038:2002, IEC standard voltages
IEC 60060-1:1989, High-voltage test techniques – Part 1: General definitions and test
requirements
IEC 60071-2, Insulation co-ordination – Part 2: Application guide
IEC 60099-4, Surge arresters – Part 4: Metal-oxide surge arresters without gaps for a.c.
systems
IEC 60507, Artificial pollution tests on high-voltage insulators to be used on a.c. systems
IEC 60633, Terminology for high-voltage direct current (HVDC) transmission

60071-1 © IEC:200660071-1  IEC:2006 –– 7 – 13 –

3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.

3.1
insulation co-ordination
selection of the dielectric strength of equipment in relation to the operating voltages and
overvoltages which can appear on the system for which the equipment is intended and taking

into account the service environment and the characteristics of the available preventing and

protective devices
[IEC 604-03-08:1987, modified]

NOTE By "dielectric strength" of the equipment, is meant here its rated or its standard insulation level as defined
in 3.35 and 3.36 respectively.
3.2
external insulation
distances in atmospheric air, and the surfaces in contact with atmospheric air of solid
insulation of the equipment which are subject to dielectric stresses and to the effects of
atmospheric and other environmental conditions from the site, such as pollution, humidity,
vermin, etc.
[IEC 604-03-02:1987, modified]
NOTE External insulation is either weather protected or non-weather protected, designed to operate inside or
outside closed shelters respectively.
3.3
internal insulation
internal distances of the solid, liquid, or gaseous insulation of equipment which are protected
from the effects of atmospheric and other external conditions
[IEC 604-03-03:1987]
3.4
self-restoring insulation
insulation which, after a short time, completely recovers its insulating properties after a
disruptive discharge during test
[IEC 604-03-04:1987, modified]
NOTE Insulation of this kind is generally, but not necessary, external insulation
3.5
non self-restoring insulation
insulation which loses its insulating properties, or does not recover them completely, after a
disruptive discharge during test
[IEC 604-03-05:1987, modified]
NOTE The definitions of 3.4 and 3.5 apply only when the discharge is caused by the application of a test voltage
during a dielectric test. However, discharges occurring in service may cause a self-restoring insulation to lose
partially or completely its original insulating properties.
3.6
insulation configuration terminal
any of the terminals between any two of which a voltage that stresses the insulation can be
applied. The types of terminal are:
(a) phase terminal, between which and the neutral is applied in service the phase-to-neutral
voltage of the system;
(b) neutral terminal, representing, or connected to, the neutral point of the system (neutral
terminal of transformers, etc.);
(c) earth terminal, always solidly connected to earth in service (tank of transformers, base of
disconnectors, structures of towers, ground plane, etc.).

60071-1  IEC:2006 –– 8 – 15 – 60071-1 © IEC:2006

3.7
insulation configuration
complete geometric configuration of the insulation in service, consisting of the insulation and

of all terminals. It includes all elements (insulating and conducting) which influence its

dielectric behaviour. The following insulation configurations are identified:

3.7.1
three-phase insulation configuration

configuration having three phase terminals, one neutral terminal and one earth terminal

3.7.2
phase-to-earth (p-e) insulation configuration
three-phase insulation configuration where two phase terminals are disregarded and, except
in particular cases, the neutral terminal is earthed
3.7.3
phase-to-phase(p-p) insulation configuration
three-phase insulation configuration where one phase terminal is disregarded. In particular
cases, the neutral and the earth terminals are also disregarded
3.7.4
longitudinal(t-t) insulation configuration
insulation configuration having two phase terminals and one earth terminal. The phase
terminals belong to the same phase of a three-phase system temporarily separated into two
independently energized parts (e.g. open switching devices). The four terminals belonging to
the other two phases are disregarded or earthed. In particular cases one of the two phase
terminals considered is earthed
3.8
nominal voltage of a system
U
n
suitable approximate value of voltage used to designate or identify a system
[IEC 601-01-21:1985]
3.9
highest voltage of a system
U
s
highest value of the phase-to-phase operating voltage (r.m.s. value) which occurs under
normal operating conditions at any time and at any point in the system
[IEC 601-01-23:1985, modified]

3.10
highest voltage for equipment
U
m
highest value of phase-to-phase voltage (r.m.s. value) for which the equipment is designed in
respect of its insulation as well as other characteristics which relate to this voltage in the
relevant equipment Standards. Under normal service conditions specified by the relevant
apparatus committee this voltage can be applied continuously to the equipment
[IEC 604-03-01:1987, modified]

60071-1 © IEC:200660071-1  IEC:2006 –– 9 – 17 –

3.11
isolated neutral system
system where the neutral point is not intentionally connected to earth, except for high

impedance connections for protection or measurement purposes

[IEC 601-02-24:1985]
3.12
solidly earthed neutral system

system whose neutral point(s) is(are) earthed directly

[IEC 601-02-25:1985]
3.13
impedance earthed (neutral) system
system whose neutral point(s) is(are) earthed through impedances to limit earth fault currents
[IEC 601-02-26:1985]
3.14
resonant earthed (neutral) system
system in which one or more neutral points are connected to earth through reactances which
approximately compensate the capacitive component of a single-phase-to-earth fault current
[IEC 601-02-27:1985]
NOTE With resonant earthing of a system, the residual current in the fault is limited to such an extent that an
arcing fault in air is usually self-extinguishing.
3.15
earth fault factor
k
at a given location of a three-phase system, and for a given system configuration, the ratio of
the highest r.m.s. phase-to-earth power frequency voltage on a healthy phase during a fault to
earth affecting one or more phases at any point on the system to the r.m.s. phase-to-earth
power frequency voltage which would be obtained at the given location in the absence of any
such fault
[IEC 604-03-06:1987]
3.16
overvoltage
any voltage:
– between one phase conductor and earth or across a longitudinal insulation having a peak
value exceeding the peak of the highest voltage of the system divided by 3;
[IEC 604-03-09, modified] or
– between phase conductors having a peak value exceeding the amplitude of the highest
voltage of the system
[IEC 604-03-09:1987, modified]
NOTE Unless otherwise clearly indicated, such as for surge arresters, overvoltage values expressed in p.u. refer
to U × 2 3
s
60071-1  IEC:2006 –– 10 – 19 – 60071-1 © IEC:2006

3.17
classification of voltages and overvoltages

according to their shape and duration, voltages and overvoltages are divided in the following

classes
NOTE More details on the following six first voltages and overvoltages are also given in Table 1.

3.17.1
continuous (power frequency) voltage

power-frequency voltage, considered having constant r.m.s. value, continuously applied to

any pair of terminals of an insulation configuration

3.17.2
temporary overvoltage
TOV
power frequency overvoltage of relatively long duration
[IEC 604-03-12:1987, modified]
NOTE The overvoltage may be undamped or weakly damped. In some cases its frequency may be several times
smaller or higher than power frequency.
3.17.3
transient overvoltage
short-duration overvoltage of few milliseconds or less, oscillatory or non-oscillatory, usually
highly damped
[IEC 604-03-13:1987]
NOTE Transient overvoltages may be immediately followed by temporary overvoltages. In such cases the two
overvoltages are considered as separate events.
Transient overvoltages are divided into:
3.17.3.1
slow-front overvoltage
SFO
transient overvoltage, usually unidirectional, with time to peak 20 µs < T ≤ 5 000 µs, and tail
p
duration T ≤ 20 ms
3.17.3.2
fast-front overvoltage
FFO
transient overvoltage, usually unidirectional, with time to peak 0,1 µs < T ≤ 20 µs, and tail
duration T < 300 µs
3.17.3.3
very-fast-front overvoltage
VFFO
transient overvoltage, usually unidirectional with time to peak T ≤ 0,1 µs, and with or without
f
superimposed oscillations at frequency 30 kHz < f < 100 MHz
3.17.4
combined overvoltage
consisting of two voltage components simultaneously applied between each of the two phase
terminals of a phase-to-phase (or longitudinal) insulation and earth. It is classified by the
component of higher peak value (temporary, slow-front, fast-front or very-fast-front)

60071-1 © IEC:200660071-1  IEC:2006 –– 11 – 21 –

3.18
standard voltage shapes for test

the following voltage shapes are standardized:

NOTE More details on the following three first standard voltage shapes are given in IEC 60060-1 and also in

Table 1.
3.18.1
standard short-duration power-frequency voltage

sinusoidal voltage with frequency between 48 Hz and 62 Hz, and duration of 60 s

3.18.2
standard switching impulse
impulse voltage having a time to peak of 250 µs and a time to half-value of 2 500 µs
3.18.3
standard lightning impulse
impulse voltage having a front time of 1,2 µs and a time to half-value of 50 µs
3.18.4
standard combined switching impulse
for phase-to-phase insulation, a combined impulse voltage having two components of equal
peak value and opposite polarity.
The positive component is a standard switching impulse and the negative one is a switching
impulse whose times to peak and half value should not be less than those of the positive
impulse. Both impulses should reach their peak value at the same instant. The peak value of
the combined voltage is, therefore, the sum of the peak values of the components
3.18.5
standard combined voltage
for longitudinal insulation, a combined voltage having a standard impulse on one terminal and
a power frequency voltage on the other terminal. The impulse component is applied at the
peak of the power frequency voltage of opposite polarity
3.19
representative overvoltages
U
rp
overvoltages assumed to produce the same dielectric effect on the insulation as overvoltages
of a given class occurring in service due to various origins.
They consist of voltages with the standard shape of the class, and may be defined by one
value or a set of values or a frequency distribution of values that characterize the service

conditions
NOTE This definition also applies to the continuous power frequency voltage representing the effect of the service
voltage on the insulation.
3.20
overvoltage limiting device
device which limits the peak values of the overvoltages or their durations or both. They are
classified as preventing devices (e.g., a preinsertion resistor), or as protective devices (e.g., a
surge arrester)
60071-1  IEC:2006 –– 12 – 23 – 60071-1 © IEC:2006

3.21
lightning [or switching] impulse protective level

U [or U ]
pl ps
maximum permissible peak voltage value on the terminals of a protective device subjected to

lightning [or switching] impulses under specific conditions

[IEC 604-03-56:1987 and IEC 604-03-57:1987]

3.22
performance criterion
basis on which the insulation is selected so as to reduce to an economically and operationally

acceptable level the probability that the resulting voltage stresses imposed on the equipment
will cause damage to equipment insulation or affect continuity of service. This criterion is
usually expressed in terms of an acceptable failure rate (number of failures per year, years
between failures, risk of failure, etc.) of the insulation configuration
3.23
withstand voltage
value of the test voltage to be applied under specified conditions in a withstand voltage test,
during which a specified number of disruptive discharges is tolerated. The withstand voltage
is designated as:
a) conventional assumed withstand voltage, when the number of disruptive discharges
tolerated is zero. It is deemed to correspond to a withstand probability P = 100 %;
w
b) statistical withstand voltage, when the number of disruptive discharges tolerated is related
to a specified withstand probability. In this standard, the specified probability is P = 90 %.
w
NOTE In this standard, for non-self-restoring insulation are specified conventional assumed withstand voltages,
and for self-restoring insulation are specified statistical withstand voltages.
3.24
co-ordination withstand voltage
U
cw
for each class of voltage, the value of the withstand voltage of the insulation configuration in
actual service conditions, that meets the performance criterion
3.25
co-ordination factor
K
c
factor by which the value of the representative overvoltage must be multiplied in order to
obtain the value of the co-ordination withstand voltage
3.26
standard reference atmospheric conditions
atmospheric conditions to which the standardized withstand voltages apply (see 5.9)
3.27
required withstand voltage
U
rw
test voltage that the insulation must withstand in a standard withstand voltage test to ensure
that the insulation will meet the performance criterion when subjected to a given class of
overvoltages in actual service conditions and for the whole service duration. The required
withstand voltage has the shape of the co-ordination withstand voltage, and is specified with
reference to all the conditions of the standard withstand voltage test selected to verify it

60071-1 © IEC:200660071-1  IEC:2006 –– 13 – 25 –

3.28
atmospheric correction factor
K
t
factor to be applied to the co-ordination withstand voltage to account for the difference in

dielectric strength between the average atmospheric conditions in service and the standard

reference atmospheric conditions

It applies to external insulation only, for all altitudes

NOTE 1 The factor K allows the correction of test voltages taking into account the difference between the actual
t
atmospheric conditions during test and the standard reference atmospheric conditions. For the factor K , the
t
atmospheric conditions taken into account are air pressure, temperature and humidity.

NOTE 2 For insulation co-ordination purposes usually only the air pressure correction needs to be taken into
account.
3.29
altitude correction factor
K
a
factor to be applied to the co-ordination withstand voltage to account for the difference in
dielectric strength between the average pressure corresponding to the altitude in service and
the standard reference pressure
NOTE The altitude correction factor K is part of the atmospheric correction factor K .
a t
3.30
safety factor
K
s
overall factor to be applied to the co-ordination withstand voltage, after the application of the
atmospheric correction factor (if required), to obtain the required withstand voltage,
accounting for all other differences in dielectric strength between the conditions in service
during life time and those in the standard withstand voltage test
3.31
actual withstand voltage of an equipment or insulation configuration
U
aw
highest possible value of the test voltage that can be applied to an equipment or insulation
configuration in a standard withstand voltage test
3.32
test conversion factor
K
tc
for a given equipment or insulation configuration, the factor to be applied to the required
withstand voltage of a given overvoltage class, in the case where the standard withstand
shape of the selected withstand voltage test is that of a different overvoltage class

NOTE For a given equipment or insulation configuration: the test conversion factor of the standard voltage shape
(a) to the standard voltage shape (b) must be higher than or equal to the ratio between the actual withstand voltage
for the standard voltage shape (a) and the actual withstand voltage of the standard voltage shape (b).
3.33
rated withstand voltage
value of the test voltage, applied in a standard withstand voltage test that proves that the
insulation complies with one or more required withstand voltages. It is a rated value of the
insulation of an equipment
3.34
standard rated withstand voltage
U
w
standard value of the rated withstand voltage as specified in this standard (see 5.6 and 5.7)

60071-1  IEC:2006 –– 14 – 27 – 60071-1 © IEC:2006

3.35
rated insulation level
set of rated withstand voltages which characterize the dielectric strength of the insulation

3.36
standard insulation level
set of standard rated withstand voltages which are associated to U as specified in this
m
standard (see Table 2 and Table 3)

3.37
standard withstand voltage test

dielectric test performed in specified conditions to prove that the insulation complies with a
standard rated withstand voltage
NOTE 1 This standard covers:
– short-duration power-frequency voltage tests;
– switching impulse tests;
– lightning impulse tests;
– combined switching impulse tests;
– combined voltage tests.
NOTE 2 More detailed information on the standard withstand voltage tests are given in IEC 60060-1 (see also
Table 1 for the test voltage shapes).
NOTE 3 The very-fast-front impulse standard withstand voltage tests should be specified by the relevant
apparatus committees, if required.
4 Symbols and abbreviations
4.1 General
The list covers only the most frequently used symbols and abbreviations which are useful for
insulation co-ordination.
4.2 Subscripts
p-e related to phase to earth
t-t related to longitudinal
max maximum (IEC 60633)
p-p related to phase to phase
4.3 Letter symbols
f frequency
k earth fault factor
K atmospheric correction factor

t
K altitude correction factor
a
K co-ordination factor
c
K safety factor
s
K test conversion factor
tc
P withstand probability
w
front time
T
T time to half value of a decreasing voltage
60071-1 © IEC:200660071-1  IEC:2006 –– 15 – 29 –

T time to peak value
p
T total overvoltage duration
t
U the actual withstand voltage of an equipment or insulation configuration
aw
U co-ordination withstand voltage
cw
U highest voltage for equipment
m
U nominal voltage of a system

n
U lightning impulse protective level of a surge arrester
pl
U switching impulse protective level of a surge arrester
ps
U representative overvoltage
rp
U required withstand voltage
rw
U highest voltage of a system
s
U standard rated withstand voltage
w
4.4 Abbreviations
FFO fast-front overvoltage
ACWV standard rated short-duration power frequency withstand voltage of an
equipment or insulation configuration
LIPL lightning impulse protective level of a surge arrester
SIPL switching impulse protective level of a surge arrester
LIWV standard rated lightning impulse withstand voltage of an equipment or
insulation configuration
SFO slow-front overvoltage
SIWV standard rated switching impulse withstand voltage of an equipment or
insulation configuration
TOV temporary overvoltage
VFFO very-fast-front overvoltage

5 Procedure for insulation co-ordination

5.1 General outline of the procedure
The procedure for insulation co-ordination consists of the selection of the highest voltage for
the equipment together with a corresponding set of standard rated withstand voltages which
characterize the insulation of the equipment needed for the application. This procedure is
outlined in Figure 1 and its steps are described in 5.1 to 5.5. The optimization of the selected
set of U may require reconsideration of some input data and repetition of part of the
w
procedure.
The rated withstand voltages shall be selected from the lists of standard rated withstand
voltages given in 5.6 and 5.7. The set of selected standard voltages constitutes a rated
insulation level. If the standard rated withstand voltages are also associated with the same
U according to 5.10, this set constitutes a standard insulation level.
m
60071-1  IEC:2006 –– 16 – 31 – 60071-1 © IEC:2006

Origin and classification of stressing
System analysis (see 5.2)
voltages          (see 3.16 and 3.17)

Protective level of overvoltage limiting

devices                  (see 3.21)

Insulation characteristics
Representative voltages and
(see 3.19 )
overvoltages U
rp
Insulation characteristics
Performance criterion       (see 3.22)

Selection of the insulation meeting
Statistical distribution (+)
(see 5.3)
the performance criterion
Inaccuracy of input data (+)
(+) Effects combined in a co-ordination
factor K                 (see 3.25)
c
Co-ordination withstand voltages U
cw
(see 3.24)
Altitude correction factors K
a
(or atmospheric correction factors K
t
(see 3.28 and 3.29)
Equipment test assembly *)
Application of factors to account for
Dispersion in production *)
the differences between type test
Quality of installation *) conditions and actual
service conditions
Ageing in service *)
(see 5.4)
Other unknown factors *)
*) Effects combined in a safety factor K
s
(see 3.30)
Required withstand voltages U
rw
(see 3.27)
Test conditions              (see 6)
Test conversion factor K (see 3.32)
tc
Selection of rated withstand voltages
Standard withstand voltages
(see 3.33) or standard rated withstand
(see 5.6 and 5.7)
voltages U (see 3.34) from the lists
w
in 5.6 and 5.7
Ranges of U
m (see 5.8)
Rated or standard insulation level : set of U (see 3.35 and 3.36)
w
IEC  2781/05
NOTE  In brackets the subclauses reporting the definition of the term or the description of the action.
Sided boxes refer to required input
Sided boxes refer to performed actions
Sided boxes refer to obtained results

Figure 1 – Flow chart for the determination of rated or standard insulation level

60071-1 © IEC:200660071-1  IEC:2006 –– 17 – 33 –

5.2 Determination of the representative voltages and overvoltages (U )
rp
The voltages and the overvoltages that stress the insulation shall be determined in amplitude,

shape and duration by means of a system analysis which includes the selection and location

of the overvoltage preventing and limiting devices.

For each class of voltages and overvoltages, this analysis shall then determine a

representative voltage and overvoltage, taking into account the characteristics of the

insulation with respect to the different behaviour at the voltage or overvoltage shapes in the

system and at the standard voltage shapes applied in a standard withstand voltage test as

outlined in Table 1.
Table 1 – Classes and shapes of overvoltages, Standard voltage shapes
and Standard withstand voltage tests
Class Low frequency Transient
Continuous Temporary Slow-front Fast-front Very-fast-front
1/f
T
f
1/f
Voltage or
over-
T
p
voltage
T
shapes T
t
1/f
T T
t 2 1/f
T 1
T ≤ 100 ns
f
Range of 10 Hz < f <
0,3 MHz < f <
f = 50 Hz or 20 µs < T ≤ ≤
0,1 µs < T
500 Hz p 1
voltage or
100 MHz
60 Hz 5 000 µs 20 µs
over-
30 kHz < f <
voltage 0,02 s ≤ T ≤
t
T ≥3 600s
T ≤ 20 ms T ≤ 300 µs
t
2 2
300 kHz
shapes
3 600 s
1/f
1/f
Standard
se
T a
p T
T 1
t
voltage
T
t
T
shapes
T
f = 50 Hz 48 Hz ≤ f ≤
T = 250 µs T = 1,2 µs
p 1
or 60 Hz 62 Hz
T = 2 500 µs T = 50 µs
a
2 2
T T = 60 s
t t
Standard Short-duration
Switching impulse Lightning impulse
a
withstand power a
test test
voltage test frequency test
a
To be specified by the relevant apparatus committees.

The representative voltages and overvoltages may be characterized either by:
– an assumed maximum, or
– a set of peak values, or
– a complete statistical distribution of peak values.
NOTE In the last case additional characteristics of the overvoltage shapes may have to be considered.

60071-1  IEC:2006 –– 18 – 35 – 60071-1 © IEC:2006

When the adoption of an assumed maximum is considered adequate, the representative
overvoltage of the various classes shall be:

– For the continuous power-frequency voltage: a power-frequency voltage with r.m.s. value

equal to the highest voltage of the system, and with duration corresponding to the lifetime

of the equipment.
– For the temporary overvoltage: a standard power-frequency short-duration voltage with an

r.m.s. value equal to the assumed maximum of the temporary overvoltages divided by 2.

– For the slow-front overvoltage: a st
...


IEC 60071-1 ®
Edition 8.1 2011-03
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
colour
inside
Insulation co-ordination –
Part 1: Definitions, principles and rules

Coordination de l'isolement –
Partie 1: Définitions, principes et règles
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by
any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or
IEC's member National Committee in the country of the requester.
If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication,
please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite
ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie
et les microfilms, sans l'accord écrit de la CEI ou du Comité national de la CEI du pays du demandeur.
Si vous avez des questions sur le copyright de la CEI ou si vous désirez obtenir des droits supplémentaires sur cette
publication, utilisez les coordonnées ci-après ou contactez le Comité national de la CEI de votre pays de résidence.

IEC Central Office
3, rue de Varembé
CH-1211 Geneva 20
Switzerland
Email: inmail@iec.ch
Web: www.iec.ch
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.
 Catalogue of IEC publications: www.iec.ch/searchpub
The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,…).
It also gives information on projects, withdrawn and replaced publications.
 IEC Just Published: www.iec.ch/online_news/justpub
Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available
on-line and also by email.
 Electropedia: www.electropedia.org
The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions
in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical
Vocabulary online.
 Customer Service Centre: www.iec.ch/webstore/custserv
If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service
Centre FAQ or contact us:
Email: csc@iec.ch
Tel.: +41 22 919 02 11
Fax: +41 22 919 03 00
A propos de la CEI
La Commission Electrotechnique Internationale (CEI) est la première organisation mondiale qui élabore et publie des
normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications CEI
Le contenu technique des publications de la CEI est constamment revu. Veuillez vous assurer que vous possédez
l’édition la plus récente, un corrigendum ou amendement peut avoir été publié.
 Catalogue des publications de la CEI: www.iec.ch/searchpub/cur_fut-f.htm
Le Catalogue en-ligne de la CEI vous permet d’effectuer des recherches en utilisant différents critères (numéro de référence,
texte, comité d’études,…). Il donne aussi des informations sur les projets et les publications retirées ou remplacées.
 Just Published CEI: www.iec.ch/online_news/justpub
Restez informé sur les nouvelles publications de la CEI. Just Published détaille deux fois par mois les nouvelles
publications parues. Disponible en-ligne et aussi par email.
 Electropedia: www.electropedia.org
Le premier dictionnaire en ligne au monde de termes électroniques et électriques. Il contient plus de 20 000 termes et
définitions en anglais et en français, ainsi que les termes équivalents dans les langues additionnelles. Egalement appelé
Vocabulaire Electrotechnique International en ligne.
 Service Clients: www.iec.ch/webstore/custserv/custserv_entry-f.htm
Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions, visitez le FAQ du
Service clients ou contactez-nous:
Email: csc@iec.ch
Tél.: +41 22 919 02 11
Fax: +41 22 919 03 00
IEC 60071-1
Edition 8.1 2011-03 ®
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
colour
inside
Insulation co-ordination –
Part 1: Definitions, principles and rules
Coordination de l'isolement –
Partie 1: Définitions, principes et règles
INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
COMMISSION
ELECTROTECHNIQUE
INTERNATIONALE
PRICE CODE
CP
CODE PRIX
ICS 29.080.30
ISBN 978-2-8891-4947-5
– 2 – 60071-1  IEC:2006+A1:2010
CONTENTS
FOREWORD . 4

1 Scope . 6
2 Normative references . 6
3 Terms and definitions . 7
4 Symbols and abbreviations . 14
4.1 General . 14
4.2 Subscripts . 14
4.3 Letter symbols . 14
4.4 Abbreviations . 15
5 Procedure for insulation co-ordination . 15
5.1 General outline of the procedure . 15
5.2 Determination of the representative voltages and overvoltages (U ) . 17
rp
5.3 Determination of the co-ordination withstand voltages (U ) . 18
cw
5.4 Determination of the required withstand voltage (U ) . 18
rw
5.5 Selection of the rated insulation level . 19
5.6 List of standard rated short-duration power frequency withstand voltages . 20
5.7 List of standard rated impulse withstand voltages . 20
5.8 Ranges for highest voltage for equipment . 20
5.9 Environmental conditions . 20
5.10 Selection of the standard insulation level . 21
5.11 Background of the standard insulation levels . 25
6 Requirements for standard withstand voltage tests . 27
6.1 General requirements . 27
6.2 Standard short-duration power-frequency withstand voltage tests . 28
6.3 Standard impulse withstand voltage tests . 28
6.4 Alternative test situation . 29
6.5 Phase-to-phase and longitudinal insulation standard withstand voltage tests
for equipment in range I . 29
6.6 Phase-to-phase and longitudinal insulation standard withstand voltage tests
for equipment in range II . 30

Annex A (normative) Clearances in air to assure a specified impulse withstand voltage
installation . 31
Annex B (informative) Values of rated insulation levels for 1kV < U ≤ 245 kV for
m
highest voltages for equipment U not standardized by IEC based on current practice
m
in some countries . 36

Bibliography . 37

Figure 1 – Flow chart for the determination of rated or standard insulation level . 16

60071-1  IEC:2006+A1:2010 – 3 –
Table 1 – Classes and shapes of overvoltages, Standard voltage shapes and Standard
withstand voltage tests . 17
Table 2 – Standard insulation levels for range I (1kV < U ≤ 245 kV) . 23
m
Table 3 – Standard insulation levels for range II (U > 245 kV) . 24
m
Table A.1 – Correlation between standard rated lightning impulse withstand voltages
and minimum air clearances . 32
Table A.2 – Correlation between standard rated switching impulse withstand voltages
and minimum phase-to-earth air clearances . 34
Table A.3 – Correlation between standard rated switching impulse withstand voltages
and minimum phase-to-phase air clearances . 35
Table B.1- Values of rated insulation levels for 1kV < U ≤ 245 kV for highest voltages
m
for equipment U not standardized by IEC based on current practice in some countries . 36
m
– 4 – 60071-1  IEC:2006+A1:2010
INTERNATIONAL ELECTROTECHNICAL COMMISSION
___________
INSULATION CO-ORDINATION –
Part 1: Definitions, principles and rules

FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

This consolidated version of IEC 60071-1 consists of the eight edition (2006)
[documents 28/176/FDIS and 28/177/RVC] and its amendment 1 (2010) [documents
28/198A/FDIS and 28/201/RVD]. It bears the edition number 8.1.
The technical content is therefore identical to the base edition and its amendment and
has been prepared for user convenience. A vertical line in the margin shows where the
base publication has been modified by amendment 1. Additions and deletions are
displayed in red, with deletions being struck through.

60071-1  IEC:2006+A1:2010 – 5 –
International Standard IEC 60071-1 has been prepared by IEC technical committee 28:
Insulation co-ordination.
The main changes from the previous edition are as follows:
– in the definitions (3.26, 3.28 and 3.29) and in the environmental conditions (5.9) taken into
account clarification of the atmospheric and altitude corrections involved in the insulation
co-ordination process;
– in the list of standard rated short-duration power frequency withstand voltages reported in
5.6 addition of 115 kV;
– in the list of standard rated impulse withstand voltages reported in 5.7, addition of 200 kV
and 380 kV;
– in the standard insulation levels for range I (1kV < U ≤ 245 kV) (Table 2) addition of the
m
highest voltage for equipment U = 100 kV;
m
– in the standard insulation levels for range II (U > 245 kV) (Table 3) replacement of
m
525 kV by 550 kV and of 765 kV by 800 kV;
– in order to remove that part in the next revision of IEC 60071-2, addition of Annex A
dealing with clearances in air to assure a specified impulse withstand voltage in
installation;
– in Annex B, limitation at two U values for the values of rated insulation levels for
m
1kV < U ≤ 245 kV for highest voltages for equipment U not standardized by IEC based
m m
on current practice in some countries.
This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.
The IEC 60071 comprises the following parts under the general title Insulation co-ordination:
Part 1: Definitions, principles and rules
Part 2: Application guide
Part 4: Computational guide to insulation co-ordination and modelling of electrical networks
Part 5: Procedures for high-voltage direct current (HVDC) converter stations
The committee has decided that the contents of the base publication and its amendments will
remain unchanged until the stability date indicated on the IEC web site under
"http://webstore.iec.ch" in the data related to the specific publication. At this date, the
publication will be
• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.
IMPORTANT – The “colour inside” logo on the cover page of this publication indicates
that it contains colours which are considered to be useful for the correct understanding
of its contents. Users should therefore print this publication using a colour printer.

– 6 – 60071-1  IEC:2006+A1:2010
INSULATION CO-ORDINATION –
Part 1: Definitions, principles and rules

1 Scope
This part of IEC 60071 applies to three-phase a.c. systems having a highest voltage for
equipment above 1 kV. It specifies the procedure for the selection of the rated withstand
voltages for the phase-to-earth, phase-to-phase and longitudinal insulation of the equipment
and the installations of these systems. It also gives the lists of the standard withstand
voltages from which the rated withstand voltages should be selected.
This standard recommends that the selected withstand voltages should be associated with the
highest voltage for equipment. This association is for insulation co-ordination purposes only.
The requirements for human safety are not covered by this standard.
Although the principles of this standard also apply to transmission line insulation, the values
of their withstand voltages may be different from the standard rated withstand voltages.
The apparatus committees are responsible for specifying the rated withstand voltages and the
test procedures suitable for the relevant equipment taking into consideration the
recommendations of this standard.
NOTE In IEC 60071-2, Application Guide, all rules for insulation co-ordination given in this standard are justified
in detail, in particular the association of the standard rated withstand voltages with the highest voltage for
equipment. When more than one set of standard rated withstand voltages is associated with the same highest
voltage for equipment, guidance is provided for the selection of the most suitable set.
2 Normative references
The following referenced documents are indispensable for the application of this document.
For dated references, only the edition cited applies. For undated references, the latest edition
of the referenced document (including any amendments) applies.
IEC 60038:2002, IEC standard voltages
IEC 60060-1:1989, High-voltage test techniques – Part 1: General definitions and test
requirements
IEC 60071-2, Insulation co-ordination – Part 2: Application guide
IEC 60099-4, Surge arresters – Part 4: Metal-oxide surge arresters without gaps for a.c.
systems
IEC 60507, Artificial pollution tests on high-voltage insulators to be used on a.c. systems
IEC 60633, Terminology for high-voltage direct current (HVDC) transmission

60071-1  IEC:2006+A1:2010 – 7 –
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
3.1
insulation co-ordination
selection of the dielectric strength of equipment in relation to the operating voltages and
overvoltages which can appear on the system for which the equipment is intended and taking
into account the service environment and the characteristics of the available preventing and
protective devices
[IEC 604-03-08:1987, modified]
NOTE By "dielectric strength" of the equipment, is meant here its rated or its standard insulation level as defined
in 3.35 and 3.36 respectively.
3.2
external insulation
distances in atmospheric air, and the surfaces in contact with atmospheric air of solid
insulation of the equipment which are subject to dielectric stresses and to the effects of
atmospheric and other environmental conditions from the site, such as pollution, humidity,
vermin, etc.
[IEC 604-03-02:1987, modified]
NOTE External insulation is either weather protected or non-weather protected, designed to operate inside or
outside closed shelters respectively.
3.3
internal insulation
internal distances of the solid, liquid, or gaseous insulation of equipment which are protected
from the effects of atmospheric and other external conditions
[IEC 604-03-03:1987]
3.4
self-restoring insulation
insulation which, after a short time, completely recovers its insulating properties after a
disruptive discharge during test
[IEC 604-03-04:1987, modified]
NOTE Insulation of this kind is generally, but not necessary, external insulation
3.5
non self-restoring insulation
insulation which loses its insulating properties, or does not recover them completely, after a
disruptive discharge during test
[IEC 604-03-05:1987, modified]
NOTE The definitions of 3.4 and 3.5 apply only when the discharge is caused by the application of a test voltage
during a dielectric test. However, discharges occurring in service may cause a self-restoring insulation to lose
partially or completely its original insulating properties.
3.6
insulation configuration terminal
any of the terminals between any two of which a voltage that stresses the insulation can be
applied. The types of terminal are:
(a) phase terminal, between which and the neutral is applied in service the phase-to-neutral
voltage of the system;
(b) neutral terminal, representing, or connected to, the neutral point of the system (neutral
terminal of transformers, etc.);
(c) earth terminal, always solidly connected to earth in service (tank of transformers, base of
disconnectors, structures of towers, ground plane, etc.).

– 8 – 60071-1  IEC:2006+A1:2010
3.7
insulation configuration
complete geometric configuration of the insulation in service, consisting of the insulation and
of all terminals. It includes all elements (insulating and conducting) which influence its
dielectric behaviour. The following insulation configurations are identified:
3.7.1
three-phase insulation configuration
configuration having three phase terminals, one neutral terminal and one earth terminal
3.7.2
phase-to-earth (p-e) insulation configuration
three-phase insulation configuration where two phase terminals are disregarded and, except
in particular cases, the neutral terminal is earthed
3.7.3
phase-to-phase(p-p) insulation configuration
three-phase insulation configuration where one phase terminal is disregarded. In particular
cases, the neutral and the earth terminals are also disregarded
3.7.4
longitudinal(t-t) insulation configuration
insulation configuration having two phase terminals and one earth terminal. The phase
terminals belong to the same phase of a three-phase system temporarily separated into two
independently energized parts (e.g. open switching devices). The four terminals belonging to
the other two phases are disregarded or earthed. In particular cases one of the two phase
terminals considered is earthed
3.8
nominal voltage of a system
U
n
suitable approximate value of voltage used to designate or identify a system
[IEC 601-01-21:1985]
3.9
highest voltage of a system
U
s
highest value of the phase-to-phase operating voltage (r.m.s. value) which occurs under
normal operating conditions at any time and at any point in the system
[IEC 601-01-23:1985, modified]
3.10
highest voltage for equipment
U
m
highest value of phase-to-phase voltage (r.m.s. value) for which the equipment is designed in
respect of its insulation as well as other characteristics which relate to this voltage in the
relevant equipment Standards. Under normal service conditions specified by the relevant
apparatus committee this voltage can be applied continuously to the equipment
[IEC 604-03-01:1987, modified]
3.11
isolated neutral system
system where the neutral point is not intentionally connected to earth, except for high
impedance connections for protection or measurement purposes
[IEC 601-02-24:1985]
60071-1  IEC:2006+A1:2010 – 9 –
3.12
solidly earthed neutral system
system whose neutral point(s) is(are) earthed directly
[IEC 601-02-25:1985]
3.13
impedance earthed (neutral) system
system whose neutral point(s) is(are) earthed through impedances to limit earth fault currents
[IEC 601-02-26:1985]
3.14
resonant earthed (neutral) system
system in which one or more neutral points are connected to earth through reactances which
approximately compensate the capacitive component of a single-phase-to-earth fault current
[IEC 601-02-27:1985]
NOTE With resonant earthing of a system, the residual current in the fault is limited to such an extent that an
arcing fault in air is usually self-extinguishing.
3.15
earth fault factor
k
at a given location of a three-phase system, and for a given system configuration, the ratio of
the highest r.m.s. phase-to-earth power frequency voltage on a healthy phase during a fault to
earth affecting one or more phases at any point on the system to the r.m.s. phase-to-earth
power frequency voltage which would be obtained at the given location in the absence of any
such fault
[IEC 604-03-06:1987]
3.16
overvoltage
any voltage:
– between one phase conductor and earth or across a longitudinal insulation having a peak
value exceeding the peak of the highest voltage of the system divided by 3 ;
[IEC 604-03-09, modified] or
– between phase conductors having a peak value exceeding the amplitude of the highest
voltage of the system
[IEC 604-03-09:1987, modified]
NOTE Unless otherwise clearly indicated, such as for surge arresters, overvoltage values expressed in p.u. refer
to U × 2 3
s
3.17
classification of voltages and overvoltages
according to their shape and duration, voltages and overvoltages are divided in the following
classes
NOTE More details on the following six first voltages and overvoltages are also given in Table 1.
3.17.1
continuous (power frequency) voltage
power-frequency voltage, considered having constant r.m.s. value, continuously applied to
any pair of terminals of an insulation configuration

– 10 – 60071-1  IEC:2006+A1:2010
3.17.2
temporary overvoltage
TOV
power frequency overvoltage of relatively long duration
[IEC 604-03-12:1987, modified]
NOTE The overvoltage may be undamped or weakly damped. In some cases its frequency may be several times
smaller or higher than power frequency.
3.17.3
transient overvoltage
short-duration overvoltage of few milliseconds or less, oscillatory or non-oscillatory, usually
highly damped
[IEC 604-03-13:1987]
NOTE Transient overvoltages may be immediately followed by temporary overvoltages. In such cases the two
overvoltages are considered as separate events.
Transient overvoltages are divided into:
3.17.3.1
slow-front overvoltage
SFO
transient overvoltage, usually unidirectional, with time to peak 20 µs < T ≤ 5 000 µs, and tail
p
duration T ≤ 20 ms
3.17.3.2
fast-front overvoltage
FFO
transient overvoltage, usually unidirectional, with time to peak 0,1 µs < T ≤ 20 µs, and tail
duration T < 300 µs
3.17.3.3
very-fast-front overvoltage
VFFO
transient overvoltage, usually unidirectional with time to peak T ≤ 0,1 µs, and with or without
f
superimposed oscillations at frequency 30 kHz < f < 100 MHz
3.17.4
combined overvoltage
consisting of two voltage components simultaneously applied between each of the two phase
terminals of a phase-to-phase (or longitudinal) insulation and earth. It is classified by the
component of higher peak value (temporary, slow-front, fast-front or very-fast-front)
3.18
standard voltage shapes for test
the following voltage shapes are standardized:
NOTE More details on the following three first standard voltage shapes are given in IEC 60060-1 and also in
Table 1.
3.18.1
standard short-duration power-frequency voltage
sinusoidal voltage with frequency between 48 Hz and 62 Hz, and duration of 60 s
3.18.2
standard switching impulse
impulse voltage having a time to peak of 250 µs and a time to half-value of 2 500 µs

60071-1  IEC:2006+A1:2010 – 11 –
3.18.3
standard lightning impulse
impulse voltage having a front time of 1,2 µs and a time to half-value of 50 µs
3.18.4
standard combined switching impulse
for phase-to-phase insulation, a combined impulse voltage having two components of equal
peak value and opposite polarity.
The positive component is a standard switching impulse and the negative one is a switching
impulse whose times to peak and half value should not be less than those of the positive
impulse. Both impulses should reach their peak value at the same instant. The peak value of
the combined voltage is, therefore, the sum of the peak values of the components
3.18.5
standard combined voltage
for longitudinal insulation, a combined voltage having a standard impulse on one terminal and
a power frequency voltage on the other terminal. The impulse component is applied at the
peak of the power frequency voltage of opposite polarity
3.19
representative overvoltages
U
rp
overvoltages assumed to produce the same dielectric effect on the insulation as overvoltages
of a given class occurring in service due to various origins.
They consist of voltages with the standard shape of the class, and may be defined by one
value or a set of values or a frequency distribution of values that characterize the service
conditions
NOTE This definition also applies to the continuous power frequency voltage representing the effect of the service
voltage on the insulation.
3.20
overvoltage limiting device
device which limits the peak values of the overvoltages or their durations or both. They are
classified as preventing devices (e.g., a preinsertion resistor), or as protective devices (e.g., a
surge arrester)
3.21
lightning [or switching] impulse protective level
U [or U ]
pl ps
maximum permissible peak voltage value on the terminals of a protective device subjected to
lightning [or switching] impulses under specific conditions
[IEC 604-03-56:1987 and IEC 604-03-57:1987]
3.22
performance criterion
basis on which the insulation is selected so as to reduce to an economically and operationally
acceptable level the probability that the resulting voltage stresses imposed on the equipment
will cause damage to equipment insulation or affect continuity of service. This criterion is
usually expressed in terms of an acceptable failure rate (number of failures per year, years
between failures, risk of failure, etc.) of the insulation configuration

– 12 – 60071-1  IEC:2006+A1:2010
3.23
withstand voltage
value of the test voltage to be applied under specified conditions in a withstand voltage test,
during which a specified number of disruptive discharges is tolerated. The withstand voltage
is designated as:
a) conventional assumed withstand voltage, when the number of disruptive discharges
tolerated is zero. It is deemed to correspond to a withstand probability P = 100 %;
w
b) statistical withstand voltage, when the number of disruptive discharges tolerated is related
to a specified withstand probability. In this standard, the specified probability is P = 90 %.
w
NOTE In this standard, for non-self-restoring insulation are specified conventional assumed withstand voltages,
and for self-restoring insulation are specified statistical withstand voltages.
3.24
co-ordination withstand voltage
U
cw
for each class of voltage, the value of the withstand voltage of the insulation configuration in
actual service conditions, that meets the performance criterion
3.25
co-ordination factor
K
c
factor by which the value of the representative overvoltage must be multiplied in order to
obtain the value of the co-ordination withstand voltage
3.26
standard reference atmospheric conditions
atmospheric conditions to which the standardized withstand voltages apply (see 5.9)
3.27
required withstand voltage
U
rw
test voltage that the insulation must withstand in a standard withstand voltage test to ensure
that the insulation will meet the performance criterion when subjected to a given class of
overvoltages in actual service conditions and for the whole service duration. The required
withstand voltage has the shape of the co-ordination withstand voltage, and is specified with
reference to all the conditions of the standard withstand voltage test selected to verify it
3.28
atmospheric correction factor
K
t
factor to be applied to the co-ordination withstand voltage to account for the difference in
dielectric strength between the average atmospheric conditions in service and the standard
reference atmospheric conditions
It applies to external insulation only, for all altitudes
NOTE 1 The factor K allows the correction of test voltages taking into account the difference between the actual
t
atmospheric conditions during test and the standard reference atmospheric conditions. For the factor K , the
t
atmospheric conditions taken into account are air pressure, temperature and humidity.
NOTE 2 For insulation co-ordination purposes usually only the air pressure correction needs to be taken into
account.
3.29
altitude correction factor
K
a
factor to be applied to the co-ordination withstand voltage to account for the difference in
dielectric strength between the average pressure corresponding to the altitude in service and
the standard reference pressure
NOTE The altitude correction factor K is part of the atmospheric correction factor K .
a t
60071-1  IEC:2006+A1:2010 – 13 –
3.30
safety factor
K
s
overall factor to be applied to the co-ordination withstand voltage, after the application of the
atmospheric correction factor (if required), to obtain the required withstand voltage,
accounting for all other differences in dielectric strength between the conditions in service
during life time and those in the standard withstand voltage test
3.31
actual withstand voltage of an equipment or insulation configuration
U
aw
highest possible value of the test voltage that can be applied to an equipment or insulation
configuration in a standard withstand voltage test
3.32
test conversion factor
K
tc
for a given equipment or insulation configuration, the factor to be applied to the required
withstand voltage of a given overvoltage class, in the case where the standard withstand
shape of the selected withstand voltage test is that of a different overvoltage class
NOTE For a given equipment or insulation configuration: the test conversion factor of the standard voltage shape
(a) to the standard voltage shape (b) must be higher than or equal to the ratio between the actual withstand voltage
for the standard voltage shape (a) and the actual withstand voltage of the standard voltage shape (b).
3.33
rated withstand voltage
value of the test voltage, applied in a standard withstand voltage test that proves that the
insulation complies with one or more required withstand voltages. It is a rated value of the
insulation of an equipment
3.34
standard rated withstand voltage
U
w
standard value of the rated withstand voltage as specified in this standard (see 5.6 and 5.7)
3.35
rated insulation level
set of rated withstand voltages which characterize the dielectric strength of the insulation
3.36
standard insulation level
set of standard rated withstand voltages which are associated to U as specified in this
m
standard (see Table 2 and Table 3)
3.37
standard withstand voltage test
dielectric test performed in specified conditions to prove that the insulation complies with a
standard rated withstand voltage
NOTE 1 This standard covers:
– short-duration power-frequency voltage tests;
– switching impulse tests;
– lightning impulse tests;
– combined switching impulse tests;
– combined voltage tests.
NOTE 2 More detailed information on the standard withstand voltage tests are given in IEC 60060-1 (see also
Table 1 for the test voltage shapes).
NOTE 3 The very-fast-front impulse standard withstand voltage tests should be specified by the relevant
apparatus committees, if required.

– 14 – 60071-1  IEC:2006+A1:2010
4 Symbols and abbreviations
4.1 General
The list covers only the most frequently used symbols and abbreviations which are useful for
insulation co-ordination.
4.2 Subscripts
p-e related to phase to earth
t-t related to longitudinal
max maximum (IEC 60633)
p-p related to phase to phase
4.3 Letter symbols
f
frequency
k earth fault factor
K
atmospheric correction factor
t
K altitude correction factor
a
K co-ordination factor
c
K safety factor
s
K
test conversion factor
tc
P withstand probability
w
T front time
T time to half value of a decreasing voltage
T time to peak value
p
T total overvoltage duration
t
U
the actual withstand voltage of an equipment or insulation configuration
aw
U co-ordination withstand voltage
cw
U
highest voltage for equipment
m
U nominal voltage of a system
n
U lightning impulse protective level of a surge arrester
pl
U switching impulse protective level of a surge arrester
ps
U
representative overvoltage
rp
U required withstand voltage
rw
U
highest voltage of a system
s
U standard rated withstand voltage
w
60071-1  IEC:2006+A1:2010 – 15 –
4.4 Abbreviations
FFO fast-front overvoltage
ACWV standard rated short-duration power frequency withstand voltage of an
equipment or insulation configuration
LIPL lightning impulse protective level of a surge arrester
SIPL switching impulse protective level of a surge arrester
LIWV standard rated lightning impulse withstand voltage of an equipment or
insulation configuration
SFO slow-front overvoltage
SIWV standard rated switching impulse withstand voltage of an equipment or
insulation configuration
TOV temporary overvoltage
VFFO very-fast-front overvoltage

5 Procedure for insulation co-ordination
5.1 General outline of the procedure
The procedure for insulation co-ordination consists of the selection of the highest voltage for
the equipment together with a corresponding set of standard rated withstand voltages which
characterize the insulation of the equipment needed for the application. This procedure is
outlined in Figure 1 and its steps are described in 5.1 to 5.5. The optimization of the selected
set of U may require reconsideration of some input data and repetition of part of the
w
procedure.
The rated withstand voltages shall be selected from the lists of standard rated withstand
voltages given in 5.6 and 5.7. The set of selected standard voltages constitutes a rated
insulation level. If the standard rated withstand voltages are also associated with the same
according to 5.10, this set constitutes a standard insulation level.
U
m
– 16 – 60071-1  IEC:2006+A1:2010

Origin and classification of stressing
System analysis (see 5.2)
voltages          (see 3.16 and 3.17)
Protective level of overvoltage limiting
devices                  (see 3.21)
Insulation characteristics
Representative voltages and
(see 3.19 )
overvoltages U
rp
Insulation characteristics
Performance criterion       (see 3.22)
Statistical distribution (+) Selection of the insulation meeting
(see 5.3)
the performance criterion
Inaccuracy of input data (+)
(+) Effects combined in a co-ordination
factor K                 (see 3.25)
c
Co-ordination withstand voltages U
cw
(see 3.24)
Altitude correction factors K
a
(or atmospheric correction factors K
t
(see 3.28 and 3.29)
Equipment test assembly *)
Application of factors to account for
Dispersion in production *)
the differences between type test
Quality of installation *) conditions and actual
service conditions
Ageing in service *) (see 5.4)

Other unknown factors *)
*) Effects combined in a safety factor K
s
(see 3.30)
Required withstand voltages U
rw
(see 3.27)
Test conditions              (see 6)
(see 3.32)
Test conversion factor K
tc
Selection of rated withstand voltages
Standard withstand voltages
(see 3.33) or standard rated withstand
(see 5.6 and 5.7)
voltages U (see 3.34) from the lists
w
in 5.6 and 5.7
Ranges of U
(see 5.8)
m
Rated or standard insulation level : set of U (see 3.35 and 3.36)
w
IEC  2781/05
NOTE  In brackets the subclauses reporting the definition of the term or the description of the action.
Sided boxes refer to required input
Sided boxes refer to performed actions
Sided boxes refer to obtained results

Figure 1 – Flow chart for the determination of rated or standard insulation level

60071-1  IEC:2006+A1:2010 – 17 –
5.2 Determination of the representative voltages and overvoltages (U )
rp
The voltages and the overvoltages that stress the insulation shall be determined in amplitude,
shape and duration by means of a system analysis which includes the selection and location
of the overvoltage preventing and limiting devices.
For each class of voltages and overvoltages, this analysis shall then determine a
representative voltage and overvoltage, taking into account the characteristics of the
insulation with respect to the different behaviour at the voltage or overvoltage shapes in the
system and at the standard voltage shapes applied in a standard withstand voltage test as
outlined in Table 1.
Table 1 – Classes and shapes of overvoltages, Standard voltage shapes
and Standard withstand voltage tests
Class Low frequency Transient
Continuous Temporary Slow-front Fast-front Very-fast-front
1/f
T
f
1/f
Voltage or
over-
Tp
voltage
T
shapes T
t
1/f
T T
t 2 1/f
T 1
T ≤ 100 ns
f
10 Hz < f <
Range of
0,3 MHz < f <
f = 50 Hz or 20 µs < T ≤ 0,1 µs < T ≤
p 1
voltage or 500 Hz
100 MHz
60 Hz 5 000 µs 20 µs
over-
30 kHz < f <
voltage
0,02 s ≤ T ≤ 2
t
T ≥3 600s T ≤ 20 ms T ≤ 300 µs
t 2 2
300 kHz
shapes
3 600 s
1/f
1/f
Standard
se
T a
p T
T 1
t
voltage
T
t
T
shapes
T
f = 50 Hz 48 Hz ≤ f ≤
T = 250 µs T = 1,2 µs
p 1
or 60 Hz 62 Hz
T = 2 500 µs T = 50 µs
a
2 2
T T = 60 s
t t
Standard Short-duration
Switching impulse Lightning impulse
a
withstand a
power
test test
voltage test frequency test
a
To be specified by the relevant apparatus committees.

The representative voltages and overvoltages may be characterized either by:
– an assumed maximum, or
– a set of peak values, or
– a complete statistical distribution of peak values.
NOTE In the last case additional characteristics of the overvoltage shapes may have to be considered.

– 18 – 60071-1  IEC:2006+A1:2010
When the adoption of an assumed maximum is considered adequate, the representative
overvoltage of the various classes shall be:
– For the continuous power-frequency voltage: a power-frequency voltage with r.m.s. value
equal to the highest voltage of the system, and with duration corresponding to the lifetime
of the equipment.
– For the temporary overvoltage: a standard power-frequency short-duration voltage with an
r.m.s. value equal to the assumed maximum of the temporary overvoltages divided by 2
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...