Assessment methods of the human exposure to electric and magnetic fields from wireless power transfer systems - Models, instrumentation, measurement and computational methods and procedures (frequency range of 3 kHz to 30 MHz)

Identical adoption of future IEC/IEEE 63184 into EN IEC/IEEE 63184

Bewertungsmethoden für die Exposition des Menschen gegenüber elektrischen und magnetischen Feldern von drahtlosen Energieübertragungssystemen - Modelle, Instrumente, Mess- und Berechnungsmethoden und -verfahren (Frequenzbereich von 3 kHz bis 30 MHz)

Méthodes d'évaluation de l'exposition humaine aux champs électriques et magnétiques produits par les systèmes de transfert de puissance sans fil - Modèles, instrumentation, méthodes et procédures de mesure et de calcul (Plage de fréquences comprise entre 3 kHz et 30 MHz)

Ocenjevanje izpostavljenosti ljudi sistemu brezžičnega prenosa energije z električnim in magnetnim poljem - Modeli, instrumenti, meritve ter računalniške metode in postopki (frekvenčno območje od 3 kHz do 30 MHz)

Cilj tega dokumenta je določiti metode za ocenjevanje izpostavljenosti ljudi elektromagnetnim poljem, ki jih ustvarja stacionarni brezžični prenos energije (WPT), glede na specifično hitrost absorpcije (SAR), notranja električna polja2 ali tokovno gostoto in kontaktne tokove.
V tem dokumentu je zajeto frekvenčno območje od 3 kHz do 30 MHz. Ta dokument se osredotoča na izpostavljenost induktivnim sistemom brezžičnega prenosa energije in določa:
• splošne postopke ocenjevanja skladnosti; • merilne metode; • računalniške metode ocenjevanja; • ocenjevanje s kombinacijo merilnih in računalniških metod.
Ta dokument ne obravnava odpornosti srčnih električnih pripomočkov za vsaditev na motnje zaradi sevanja iz sistemov brezžičnega prenosa energije.

General Information

Status
Published
Publication Date
10-Apr-2025
Current Stage
6060 - Document made available - Publishing
Start Date
11-Apr-2025
Completion Date
11-Apr-2025
Standard
EN IEC/IEE 63184:2025 - BARVE
English language
151 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)


SLOVENSKI STANDARD
01-junij-2025
Ocenjevanje izpostavljenosti ljudi sistemu brezžičnega prenosa energije z
električnim in magnetnim poljem - Modeli, instrumenti, meritve ter računalniške
metode in postopki (frekvenčno območje od 3 kHz do 30 MHz)
Assessment Methods of the Human Exposure to Electric and Magnetic Fields from
Wireless Power Transfer Systems - Models, Instrumentation, Measurement and
Computational Methods and Procedures (Frequency Range of 3 kHz to 30 MHz)
Bewertungsmethoden für die Exposition des Menschen gegenüber elektrischen und
magnetischen Feldern von drahtlosen Energieübertragungssystemen - Modelle,
Instrumente, Mess- und Berechnungsmethoden und -verfahren (Frequenzbereich von 3
kHz bis 30 MHz)
Méthodes d'évaluation de l'exposition humaine aux champs électriques et magnétiques
produit par les systèmes de transfert de puissance sans fil - Modèles, instrumentation,
méthodes et procédures de mesure et de calcul (Plage de fréquences comprise entre 3
kHz et 30 MHz)
Ta slovenski standard je istoveten z: EN IEC/IEEE 63184:2025
ICS:
17.220.20 Merjenje električnih in Measurement of electrical
magnetnih veličin and magnetic quantities
17.240 Merjenje sevanja Radiation measurements
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

EUROPEAN STANDARD EN IEC/IEEE 63184

NORME EUROPÉENNE
EUROPÄISCHE NORM April 2025
ICS 17.220.20; 17.240
English Version
Assessment methods of the human exposure to electric and
magnetic fields from wireless power transfer systems - Models,
instrumentation, measurement and computational methods and
procedures (frequency range of 3 kHz to 30 MHz)
(IEC/IEEE 63184:2025)
Méthodes d'évaluation de l'exposition humaine aux champs Bewertungsmethoden für die Exposition des Menschen
électriques et magnétiques produits par les systèmes de gegenüber elektrischen und magnetischen Feldern von
transfert de puissance sans fil - Modèles, instrumentation, drahtlosen Energieübertragungssystemen - Modelle,
méthodes et procédures de mesure et de calcul (Plage de Instrumente, Mess- und Berechnungsmethoden und -
fréquences comprise entre 3 kHz et 30 MHz) verfahren (Frequenzbereich von 3 kHz bis 30 MHz)
(IEC/IEEE 63184:2025) (IEC/IEEE 63184:2025)
This European Standard was approved by CENELEC on 2025-04-01. CENELEC members are bound to comply with the CEN/CENELEC
Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.
Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC
Management Centre or to any CENELEC member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation
under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the
same status as the official versions.
CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic,
Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the
Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Türkiye and the United Kingdom.

European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2025 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.
Ref. No. EN IEC/IEEE 63184:2025 E

European foreword
The text of document 106/669/FDIS, future edition 1 of IEC/IEEE 63184, prepared by TC 106
"Methods for the assessment of electric, magnetic and electromagnetic fields associated with human
exposure" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as
The following dates are fixed:
• latest date by which the document has to be implemented at national (dop) 2026-04-30
level by publication of an identical national standard or by endorsement
• latest date by which the national standards conflicting with the (dow) 2028-04-30
document have to be withdrawn
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.
Any feedback and questions on this document should be directed to the users’ national committee. A
complete listing of these bodies can be found on the CENELEC website.
Endorsement notice
The text of the International Standard IEC/IEEE 63184:2025 was approved by CENELEC as a
European Standard without any modification.
In the official version, for Bibliography, the following notes have to be added for the standard indicated:
IEC 61980-3:2022 NOTE Approved as EN IEC 61980-3:2022 (not modified)
IEC 62226-2-1:2004 NOTE Approved as EN 62226-2-1:2005 (not modified)
IEC 62233:2005 NOTE Approved as EN 62233:2008
IEC 62311:2019 NOTE Approved as EN IEC 62311:2020 (not modified)
IEC 60990:2016 NOTE Approved as EN 60990:2016 (not modified)
IEC/IEEE 63195-2:2022 NOTE Approved as EN IEC/IEEE 63195-2:2023 (not modified)
ISO/IEC 17025:2017 NOTE Approved as EN ISO/IEC 17025:2017 (not modified)
ISO 19363:2020 NOTE Approved as EN ISO 19363:2021 (not modified)

Annex ZA
(normative)
Normative references to international publications
with their corresponding European publications
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments)
applies.
NOTE 1  Where an International Publication has been modified by common modifications, indicated by (mod),
the relevant EN/HD applies.
NOTE 2  Up-to-date information on the latest versions of the European Standards listed in this annex is available
here: www.cencenelec.eu.
Publication Year Title EN/HD Year
IEC 61786-1 2013 Measurement of DC magnetic, AC EN 61786-1 2014
magnetic and AC electric fields from 1 Hz
to 100 kHz with regard to exposure of
human beings - Part 1: Requirements for
measuring instruments
+ AMD1 2024 + A1 2024
IEC 61786-2 2014 Measurement of DC magnetic, AC - -
magnetic and AC electric fields from 1 Hz
to 100 kHz with regard to exposure of
human beings - Part 2: Basic standard for
measurements
IEC/IEEE 62209- 2020 Measurement procedure for the EN IEC/IEEE 62209- 2021
1528 assessment of specific absorption rate of 1528
human exposure to radio frequency fields
from hand-held and body-worn wireless
communication devices - Part 1528:
Human models, instrumentation and
procedures (Frequency range of 4 MHz to
10 GHz)
IEC/IEEE 62704-1 2017 Determining the peak spatial-average - -
specific absorption rate (SAR) in the
human body from wireless
communications devices, 30 MHz to 6 GHz
- Part 1: General requirements for using
the finite difference time-domain (FDTD)
method for SAR calculations

IEC/IEEE 62704-4 2020 Determining the peak spatial-average - -
specific absorption rate (SAR) in the
human body from wireless communication
devices, 30 MHz to 6 GHz - Part 4:
General requirements for using the finite
element method for SAR calculations

IEC/IEEE 63184 ®
Edition 1.0 2025-02
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
Assessment methods of the human exposure to electric and magnetic fields

from wireless power transfer systems – Models, instrumentation, measurement

and computational methods and procedures (frequency range of 3 kHz to 30

MHz)
Méthodes d'évaluation de l'exposition humaine aux champs électriques et

magnétiques produits par les systèmes de transfert de puissance sans fil –

Modèles, instrumentation, méthodes et procédures de mesure et de calcul

(Plage de fréquences comprise entre 3 kHz et 30 MHz)

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
COMMISSION
ELECTROTECHNIQUE
INTERNATIONALE
ICS 17.220.20; 17.240 ISBN 978-2-8327-0139-3

– 2 – IEC/IEEE 63184:2025 © IEC/IEEE 2025
CONTENTS
FOREWORD . 10
INTRODUCTION . 12
1 Scope . 13
2 Normative references. 13
3 Terms and definitions . 14
4 Symbols and abbreviated terms . 19
4.1 Physical quantities . 19
4.2 Constants . 19
4.3 Abbreviated terms . 19
5 Assessment procedures . 20
5.1 General . 20
5.2 Compliance assessment considering direct effects . 21
5.2.1 General . 21
5.2.2 Tier 1: Evaluation based on coil current . 22
5.2.3 Tier 2: Evaluation of incident fields against reference levels . 23
5.2.4 Tier 3: Evaluation of incident magnetic fields using coupling factor . 23
5.2.5 Tier 4: Evaluation of internal E-field, current density, or SAR against
basic restrictions . 29
5.3 Exposure assessment of contact currents . 29
6 Measurement methods . 31
6.1 Incident fields. 31
6.1.1 General . 31
6.1.2 Equipment . 32
6.2 SAR and pE . 34
ind
6.3 Contact currents . 36
6.3.1 General . 36
6.3.2 Equipment . 36
6.3.3 Measurements . 37
7 Computational assessment methods . 38
7.1 General . 38
7.2 Quasi-static approximation . 39
7.3 Computational assessment against the basic restrictions . 40
7.3.1 General . 40
7.3.2 Peak spatial-average SAR . 41
7.3.3 Whole-body average SAR . 41
7.3.4 Averaged current density on a surface . 41
7.3.5 Peak spatial average internal E-field in a cubical volume . 41
7.3.6 Peak spatial average internal E-field along a line . 41
7.3.7 Maximum local internal E-field . 41
8 Combination of measurement and computational methods for inductive WPT
systems . 42
8.1 General . 42
8.2 Measurement of magnetic field . 42
8.3 Computational analyses of induced quantities . 42
8.4 Computational assessment against the basic restrictions . 43
9 Uncertainty assessments . 43

IEC/IEEE 63184:2025 © IEC/IEEE 2025 – 3 –
9.1 General . 43
9.2 Measurement methods . 43
9.2.1 Measurement uncertainty budget . 43
9.2.2 Amplitude calibration uncertainty . 44
9.2.3 Probe anisotropy . 45
9.2.4 Probe dynamic range linearity . 45
9.2.5 Probe frequency domain response . 45
9.2.6 Modulation response . 45
9.2.7 Spatial averaging (maximum gradient) . 45
9.2.8 Gradient assessment uncertainty . 45
9.2.9 Parasitic E-field and H-field sensitivity . 45
9.2.10 Detection limit . 45
9.2.11 Readout electronics . 46
9.2.12 Response time . 46
9.2.13 Probe positioning . 46
9.2.14 Signal postprocessing . 46
9.2.15 Nominal position . 46
9.2.16 Repeatability . 46
9.2.17 DUT . 46
9.3 Computational methods . 46
9.3.1 Computational uncertainty budget . 46
9.3.2 Grid resolution . 48
9.3.3 Tissue parameters . 48
9.3.4 Exposure position . 48
9.3.5 Convergence . 48
9.3.6 Power budget . 49
9.3.7 Boundary conditions . 49
9.3.8 Quasi-static approximation . 49
9.3.9 Model parts and geometry . 49
9.3.10 Dielectric parameters . 49
9.3.11 Ferrite parameters . 50
9.3.12 Positioning of transmit and receive coils . 50
9.3.13 Coupling of transmit and receive coils . 50
9.3.14 Exposure sources other than the coils . 50
9.3.15 Loading of the coil . 50
9.4 Assessment of combining measurement and computational methods. 50
10 Reporting . 51
10.1 General . 51
10.2 Items to be recorded in exposure compliance assessment reports . 51
10.3 Additional items to be included for evaluation measurements . 52
10.4 Additional items to be included for numerical and combined numerical and
measurement evaluations . 53
Annex A (normative) Exposure evaluations using approximations . 54
A.1 Limit on current for a WPT coil . 54
A.2 Induced field quantities for comparison with basic restrictions . 55
A.3 Enhancement or coverage factor . 57
Annex B (normative) Calibration methods . 58
B.1 General . 58
B.2 E-field and H-field calibration . 58

– 4 – IEC/IEEE 63184:2025 © IEC/IEEE 2025
B.2.1 Standard field generation methods . 58
B.2.2 Characteristics to be measured . 58
B.2.3 Frequency domain calibration . 60
B.2.4 E-field calibration . 63
B.3 Gradient response verification . 67
B.3.1 General . 67
B.3.2 H-field gradient verification: Main steps . 67
B.3.3 Uncertainty for H-field gradient verification . 67
B.4 Dosimetric probe calibration . 68
B.4.1 General . 68
B.4.2 Calibration with short dipole antennas via transmit antenna factor . 69
B.4.3 Uncertainty . 72
Annex C (normative) Verification and validation methods for measurements . 73
C.1 General . 73
C.2 Objective . 73
C.3 Measurement setup and procedure for system verification and system
validation . 73
C.3.1 General . 73
C.3.2 Measurement system verification: test procedure . 74
C.3.3 Measurement system validation: test procedure . 75
Annex D (informative) Case study on the dependency of SAR on phantom properties

and size. 76
D.1 Phantom properties . 76
D.2 Phantom size . 79
Annex E (informative) Extrapolation methods of SAR measurement . 82
E.1 General . 82
E.2 Measurement and interpolation of electric field inside a phantom . 82
E.2.1 General . 82
E.2.2 Extrapolation functions . 82
E.2.3 Three steps for determination of spatial-peak SAR . 83
E.2.4 Validation of measurement methods using extrapolation . 83
E.2.5 Uncertainty . 86
Annex F (informative) Computational methods . 88
F.1 General . 88
F.2 Quasi-static finite element method . 88
F.3 Scalar potential finite difference method . 89
F.4 Impedance method . 90
F.5 Finite-difference time-domain method . 91
F.6 Hybrid technique of MoM and FDTD method . 91
F.7 Hybrid technique of FEM and SPFD method . 93
Annex G (informative) Averaging algorithms . 94
G.1 Current density averaging over an area . 94
G.1.1 General . 94
G.1.2 Calculation of the current density in a Cartesian voxel . 94
G.1.3 Calculation of the current density in a tetrahedron . 95
G.1.4 Calculation of J . 95
av
G.2 Internal E-field . 96
G.2.1 General . 96

IEC/IEEE 63184:2025 © IEC/IEEE 2025 – 5 –
G.2.2 E-field averaging in a cubical volume . 96
G.2.3 E-field averaging along an averaging distance . 97
G.2.4 Maximum local E-field . 99
Annex H (normative) Code verification and model validations . 100
H.1 Code verification . 100
H.1.1 General . 100
H.1.2 Quasi-static codes . 100
H.1.3 Quasi-static codes for the calculation of the incident magnetic field . 101
H.1.4 Averaging algorithms . 103
H.2 Model validation . 104
H.2.1 General . 104
H.2.2 Recommendations for the development of the computational model . 105
H.2.3 Determining the validity of the field source . 105
Annex I (informative) Use cases of magnetic field exposure assessment . 107
I.1 EV WPT – electric passenger car . 107
I.1.1 General . 107
I.1.2 Determination of user position . 107
I.1.3 Assessment procedures considering direct effects for WPT system for EV . 108
I.1.4 Assessment procedures for contact currents of WPT systems for EV . 114
I.2 Heavy duty vehicle EMF measurement procedure . 119
I.2.1 General . 119
I.2.2 Step 1 . 119
I.2.3 Step 2 . 121
I.2.4 Step 3 . 121
I.3 Remotely piloted aircraft . 122
I.3.1 General . 122
I.3.2 Assessment procedures of WPT system for RPA . 122
Annex J (informative) Examples of magnetic field exposure assessment . 126
J.1 General . 126
J.2 Assessment procedure of heavy-duty WPT EV system . 126
J.2.1 Outline of assessment procedure . 126
J.2.2 Test condition . 126
J.2.3 Test result 1 . 127
J.2.4 Test result 2 . 127
J.2.5 Test result 3 . 127
J.3 Remotely piloted aircraft . 127
J.3.1 General . 127
J.3.2 Description of WPT system for RPA . 128
J.3.3 Measurement of magnetic field around the WPT system for RPA . 128
J.3.4 Modelling for the WPT system for RPA . 129
J.3.5 Evaluation of incident field against basic restrictions . 129
J.3.6 Evaluation of current density, internal electric field, and SAR against
basic restrictions . 132
J.4 Combined method of measurement and computational analysis . 132
J.4.1 General . 132
J.4.2 Measurement of magnetic field . 132
J.4.3 Computational analyses of induced quantities . 133
J.4.4 Example of exposure assessment for WPT systems using combined
method . 133

– 6 – IEC/IEEE 63184:2025 © IEC/IEEE 2025
J.5 SAR measurement for WPT system . 137
Annex K (informative) Proximity detection sensor considerations for exposure
assessment . 139
K.1 General . 139
K.2 Phantom specification . 139
K.2.1 Phantom for the stationary living object detection . 139
K.2.2 Phantom for the proximity living object detection . 139
K.3 Procedures for determining proximity detection sensor triggering distance . 140
K.4 Testing areas . 140
K.5 Procedures for determining stationary living objects . 141
Bibliography . 143

Figure 1 – Flowchart for the assessment procedure . 20
Figure 2 – Flowchart for the assessment procedure considering direct effects . 21
Figure 3 – The gradient G is determined at the surface and normal to the surface, i.e.
n
in the direction of the axis shown . 26
Figure 4 – Coupling factors k of Formula (7) through Formula (11) as a function of the
normalized magnetic field gradient [13] . 29
Figure 5 – Two exposure situations for ungrounded and grounded metal objects . 30
Figure 6 – Flowchart for assessment procedures for contact currents . 31
Figure 7 – Human body equivalent circuit proposed in IEC 60990 [30] . 37
Figure 8 – Impedance frequency characteristics of adult male and equivalent circuits
proposed in IEC 60990 [30] and evaluated values [31], [32], [33], [34] . 37
Figure 9 – Example of contact current measurement equipment . 37
Figure A.1 – Comparison of the H-field with number of turns n at 1 cm from a circular
coil calculated with Biot-Savart and with the approximation of Formula (A.1) . 55
Figure B.1 – H-field and E-field generation setup for probe calibration . 60
Figure B.2 – H-field generation setup for dynamic range calibration . 62
Figure B.3 – E-field generation setup for frequency response calibration . 64
Figure B.4 – E-field generation setup for dynamic range calibration . 65
Figure B.5 – Illustration of the transmit antenna factor evaluation setup [51] . 71
Figure B.6 – Illustration of the sensitivity coefficients evaluation setup [51] . 71
Figure C.1 – Recommended test setups for measurement system verification and
validation . 74
Figure D.1 – Simulation model of large WPT system operating close to a) elliptical
phantom and b) human body model . 77
Figure D.2 – Different exposure conditions for human body model . 77
Figure D.3 – Calculated SAR for circular coils with a 50 cm diameter operating at 6 cm
from the elliptical phantom and heterogeneous human model . 78
Figure D.4 – Simulation model of small WPT system operating close to a) elliptical
phantom and b) human body model . 78
Figure D.5 – Calculated SAR for the small square coils with dimensions 10 cm × 10 cm
operating at 2 cm from the elliptical phantom and heterogeneous human model . 79
Figure D.6 – Layout of large WPT system for exposure condition of a) case A and b)
case C with respect to the elliptical phantom surface . 80

IEC/IEEE 63184:2025 © IEC/IEEE 2025 – 7 –
Figure D.7 – Calculated 10 g-averaged SAR versus the smaller axis of elliptical
phantom v normalized by coil outer diameter D for a) case A (f = 7,54 MHz) and b)
high
case C (f = 6,14 MHz, f = 7,18 MHz) . 80
low high
Figure D.8 – Layout of small WPT system for exposure conditions of case C with
respect to a) elliptical phantom and b) rectangular phantom . 81
Figure D.9 – Calculated 10 g-averaged SAR versus the smaller axis v or width W
normalized by square coil diagonal K for a) elliptical phantom (f = 6,6 MHz,
low
f = 7,64 MHz) and b) rectangular phantom (f = 6,59 MHz) . 81
high low
Figure E.1 – Schematic diagram of measurement system . 84
Figure E.2 – Measurement system . 85
Figure E.3 – Measured and simulated electric field distributions in the measurement
plane 25 mm away from the phantom boundary with solenoid-type WPT system
positioned parallel to the phantom wall . 85
Figure E.4 – Measured and simulated electric field distributions in the measurement
plane 25 mm away from the phantom boundary with flat-spiral-type WPT system
positioned parallel to the phantom wall . 86
Figure E.5 – 10 g averaged SAR obtained by measurement, and extrapolation and
MoM-derived 10 g averaged SAR . 86
Figure G.1 – Field components on voxel edges . 95
Figure H.1 – Coordinate system and angles . 102
Figure I.1 – Example for regions of protection, for ground mounted systems
(vehicle) [78] . 107
Figure I.2 – Example for regions of protection, for ground mounted systems (using
vehicle mimic plate) . 108
Figure I.3 – Flowchart for EV and vehicle mimic plate assessment (direct effect) . 109
Figure I.4 – Region 2 measurement positions (WPT) . 110
Figure I.5 – Region 3 measurement positions . 111
Figure I.6 – Region 2 measurement positions of vehicle mimic plate (WPT) . 112
Figure I.7 – Region 3 measurement positions of vehicle mimic plate (WPT) . 113
Figure I.8 – Flowchart for EV use and vehicle mimic plate assessment (contact
currents) . 114
Figure I.9 – Configuration example of contact current with grounded condition: (1) with
vehicle . 116
Figure I.10 – Configuration example of contact current with grounded condition:
(2) with vehicle mimic plate . 116
Figure I.11 – Configuration example of contact current with ungrounded condition:
(1) with vehicle . 118
Figure I.12 – Configuration example of contact current with ungrounded condition:
(2) with vehicle mimic plate . 119
Figure I.13 – EMF measurement for heavy duty vehicle: top view . 120
Figure I.14 – EMF measurement for heavy duty vehicle: side view . 120
Figure I.15 – Measurement points on the inside floor of WPT bus . 121
Figure I.16 – Measurement position . 123
Figure J.1 – EMF test of an electric bus (2015 August 7, Sejong City) . 126
Figure J.2 – Test result 1 from side-view . 127
Figure J.3 – Geometry and measurement position of WPT system for RPA . 128

– 8 – IEC/IEEE 63184:2025 © IEC/IEEE 2025
Figure J.4 – Measured magnetic field strength . 129
Figure J.5 – Measured and computed magnetic field strength . 129
Figure J.6 – Measurement system for the magnetic near-field of WPT systems [83] . 133
Figure J.7 – Schematic view and picture of the fabricated magnetic-field probes [83] . 133
Figure J.8 – Schematic view (left) and picture (right) of WPT systems [83] . 135
Figure J.9 – Exposure conditions for WPT coils [83] . 135
Figure J.10 – Amplitude and phase distributions of magnetic fields measured near
WPT systems without (w/o) and with (w/) ferrite tiles [83] . 136
Figure J.11 – Distribution of the internal electric field strength with adult male model
for an input power of 7,7 kW [83] . 137
Figure J.12 – WPT system operating at 6,78 MHz . 138
Figure J.13 – SAR distribution on a plane at 25 mm from the bottom of the phantom . 138
Figure K.1 – Test side consideration drawing . 141
Figure K.2 – Positioning of the phantom and the DUT WPT for determining the
detection sensor triggering distance, an example of charging an electric vehicle with a
WPT system . 141

Table 1 – List of symbols used in the formulas of 5.2.4.2 and 5.2.4.3 . 24
Table 2 – Dielectric properties of the tissue-equivalent medium liquid . 35
Table 3 – Dielectric properties of the tissue-equivalent medium NaCl solution of
0,074 mol/L . 35
Table 4 – Computational methods . 39
Table 5 – Example of uncertainty evaluation of the the E-field and H-field exposure
assessment using measurement methods . 43
Table 6 – Example of uncertainty evaluation of computational methods . 47
Table 7 – Example of uncertainty evaluation of the exposure assessment combining
measurements and computational methods . 51
Table B.1 – EM field generation setups for probe and sensor calibrations . 58
Table B.2 – Main components of H-field and E-field generation setups for frequency

response calibration . 60
Table B.3 – Template for uncertainty in frequency response calibration . 61
Table B.4 – Main components of H-field generation setup for dynamic range calibration . 62
Table B.5 – Te
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...