Metallic industrial piping - Part 3: Design and calculation

Application of the design rules for gasketted circular flanges connections (according to EN 1591)

Metallische industrielle Rohrleitungen - Teil 3: Konstruktion und Berechnung

Tuyauteries industrielles métalliques - Partie 3: Conception et calcul

Kovinski industrijski cevovodi – 3. del: Konstruiranje in izračun

Ta del standarda EN 13480 opisuje zahteve za konstruiranje in izračun industrijskih kovinskih cevnih sistemov, vključno s podporami.

General Information

Status
Withdrawn
Publication Date
28-Nov-2006
Withdrawal Date
26-Jun-2012
Current Stage
9960 - Withdrawal effective - Withdrawal
Start Date
27-Jun-2012
Completion Date
27-Jun-2012

Relations

Effective Date
06-Jun-2012
Effective Date
08-Jun-2022
Amendment

EN 13480-3:2002/A2:2007

English language
68 pages
Preview
Preview
e-Library read for
1 day

Frequently Asked Questions

EN 13480-3:2002/A2:2006 is a amendment published by the European Committee for Standardization (CEN). Its full title is "Metallic industrial piping - Part 3: Design and calculation". This standard covers: Application of the design rules for gasketted circular flanges connections (according to EN 1591)

Application of the design rules for gasketted circular flanges connections (according to EN 1591)

EN 13480-3:2002/A2:2006 is classified under the following ICS (International Classification for Standards) categories: 23.040.01 - Pipeline components and pipelines in general. The ICS classification helps identify the subject area and facilitates finding related standards.

EN 13480-3:2002/A2:2006 has the following relationships with other standards: It is inter standard links to EN 13480-3:2012, EN 13480-3:2002. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.

EN 13480-3:2002/A2:2006 is associated with the following European legislation: EU Directives/Regulations: 97/23/EC; Standardization Mandates: M/071. When a standard is cited in the Official Journal of the European Union, products manufactured in conformity with it benefit from a presumption of conformity with the essential requirements of the corresponding EU directive or regulation.

EN 13480-3:2002/A2:2006 is available in PDF format for immediate download after purchase. The document can be added to your cart and obtained through the secure checkout process. Digital delivery ensures instant access to the complete standard document.

Standards Content (Sample)


SLOVENSKI STANDARD
01-april-2007
.RYLQVNLLQGXVWULMVNLFHYRYRGL±GHO.RQVWUXLUDQMHLQL]UDþXQ
Metallic industrial piping - Part 3: Design and calculation
Metallische industrielle Rohrleitungen - Teil 3: Konstruktion und Berechnung
Tuyauteries industrielles métalliques - Partie 3: Conception et calcul
Ta slovenski standard je istoveten z: EN 13480-3:2002/A2:2006
ICS:
77.140.75 Jeklene cevi in cevni profili Steel pipes and tubes for
za posebne namene specific use
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

EUROPEAN STANDARD
EN 13480-3:2002/A2
NORME EUROPÉENNE
EUROPÄISCHE NORM
November 2006
ICS 23.040.01
English Version
Metallic industrial piping - Part 3: Design and calculation
Tuyauteries industrielles métalliques - Partie 3: Conception Metallische industrielle Rohrleitungen - Teil 3: Konstruktion
et calcul und Berechnung
This amendment A2 modifies the European Standard EN 13480-3:2002; it was approved by CEN on 25 September 2006.
CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for inclusion of this
amendment into the relevant national standard without any alteration. Up-to-date lists and bibliographical references concerning such
national standards may be obtained on application to the Central Secretariat or to any CEN member.
This amendment exists in three official versions (English, French, German). A version in any other language made by translation under the
responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France,
Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania,
Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG
Management Centre: rue de Stassart, 36  B-1050 Brussels
© 2006 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN 13480-3:2002/A2:2006: E
worldwide for CEN national Members.

Contents Page
Foreword.3
2 Normative references .4
6.6 Bolted flange connections.4
D.1 Purpose.5
D.4.1 Introduction.5
Annex P (informative) Bolted flange connections – Application of EN 1591.6
P.1 Introduction.6
P.2 Scope .7
P.2.1 General.7
P.2.2 Materials .7
P.2.3 Loadings .7
P.2.4 Assumptions .7
P.3 Application of EN 1591.8
P.3.1 Calculations.8
P.3.2 Gasket coefficients.8
P.3.3 Tightening.9
Bibliography .68

Foreword
This document (EN 13480-3:2002/A2:2006) has been prepared by Technical Committee CEN/TC 267
“Industrial piping and pipelines”, the secretariat of which is held by AFNOR.
This Amendment to the European Standard EN 13480-3:2002 shall be given the status of a national standard,
either by publication of an identical text or by endorsement, at the latest by May 2007, and conflicting national
standards shall be withdrawn at the latest by May 2007.
This document amends Clauses 2, 6.6, 13.3.3.9, D.1 and D.4.1 of EN 13480-3:2002.
This document contains informative Annex P to be added to EN 13480-3:2002.
This document includes the text of the amendment itself. The corrected pages of EN 13480-3 are delivered as
Issue 8 of the standard.
According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following
countries are bound to implement this European Standard: Austria, Belgium, Cyprus, Czech Republic,
Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania,
Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden,
Switzerland and United Kingdom.

2 Normative references
Add the date of publication for the following references to read the following:
EN 287-1:2004, Qualification test of welders — Fusion welding — Part 1: Steels
EN 1591-1:2001, Flanges and their joints — Design rules for gasketed circular flange connections — Part 1:
Calculation method
EN 12953-3:2002, Shell boilers — Part 3: Design and calculation for pressure parts EN 13480-1:2002,
Metallic industrial piping — Part 1: General
EN 13480-1:2002, Metallic industrial piping — Part 1: General
EN 13480-2:2002, Metallic industrial piping — Part 2: Materials
Add the following references:
EN 288 (all parts), Specification and approval of welding procedures for metallic materials
ENV 1591-2:2001, Flanges and their joints — Design rules for gasketed circular flange connections — Part 2:
Gasket parameters
Replace 6.6 of EN 13480-3:2002 with the following:
6.6 Bolted flange connections
The design of flanges other than flat face flanges shall be performed in accordance with the following:
 if a standard flange is specified in a European Standard, and no further requirement is given, the flange
shall be selected by means of the P/T rating;
— if a non-standard flange is used, the design shall be done by applying the calculation method in
EN 1591-1, using for example Annex P, or by applying the algorithm shown in the Taylor-Forge method.
If there is a specific requirement on tightness for the flange connection, this shall be calculated in accordance
with EN 1591-1, using Annex P.
Allowable stresses for bolts shall be in accordance with Annex D.
The designer shall consider section loadings caused by the connected piping system.
NOTE 1 The Taylor-Forge method does not ensure tightness.
NOTE 2 The algorithm given in EN 1591-1 includes a consideration of section loadings.
NOTE 3 The bolt torque should be specified by the designer.
NOTE 4 Attention should be paid in such cases to the method of tightening. Guidance of scatter band when applying
the different methods of tightening are given in EN 1591-1.

Replace 13.3.3.9 of EN 13480-3:2002 with the following:
13.3.3.9 The dimensioning of intermediate or secondary steelwork supplied for supporting the pipe shall be
based on good industrial practice as defined in ENV 1993.

Replace D.1 of EN 13480-3:2002 with the following:
D.1 Purpose
This annex gives requirements for the design of circular bolted flange connections. Flanges with full face and
narrow face gaskets, subject to internal and external pressure are included, as are reverse flanges and seal
welded flanges. The requirements provided in this clause are based on the well established Taylor Forge rules.

Replace D.4.1 of EN 13480-3:2002 by the following:
D.4.1 Introduction
Circular bolted flanged connections, either sealed with a gasket or seal welded, used in the construction of
vessels to this European Standard shall conform to either:
 an appropriate European Standard for pipework flanges, and the requirements of D.4.2, or
 the requirements for bolted flanged connections specified in this clause.
Alternative rules for bolted flanges connections are given in Annex P.
Both flanges of a mating pair shall be designed to the same standard or set of requirements. This applies
when one of the pair is a bolted flat end or cover. The requirements for bolted flat ends in Clause 10 and
bolted domed ends in Clause 12 are considered part of the same set of requirements as this clause.

Annex P
(informative)
Bolted flange connections – Application of EN 1591
P.1 Introduction
According to EN 13480-3, two methods may be used to check bolted connections:
 the Taylor Forge method and
 the procedure detailed in EN 1591-1 and ENV 1591-2.
However, the proper application of this European Standard to bolted connections in the field of piping requires
additional explanations.
The following two parts of European Standard EN 1591, based on German developments, define an analytical
procedure for the design of bolted flange connections with gasket:
 EN 1591-1, Flanges and their joints — Design rules for gasketed circular flange connections —
Part 1: Calculation method;
 ENV 1591-2, Flanges and their joints — Design rules for gasketed circular flange connections —
Part 2: Gasket parameters.
This procedure allows the verification of the connection taking account of strength criteria and tightness
criteria.
The parameters taken into account are as follows:
 fluid pressure;
 mechanical strength of flange, bolting and gasket;
 gasket coefficients;
 bolt nominal loads
and, other than the Taylor-Forge method (see EN 13480-3:2002, 6.6), the following additional factors:
 operating conditions and specifically creep/relaxation behaviour;
 dispersions due to initial tightening where relevant;
 variations of gasket loading due to the deformation of the different components of the connection;
 effects of the connected shell or piping;
 effects of external axial forces and moments;
 effects of temperature difference between bolts and flanges.
P.2 Scope
P.2.1 General
This procedure shall apply to the following arrangements:
 two circular flanges (identical or different);
 four identical bolts, as a minimum, regularly spaced;
 a circular gasket entirely within the circle enclosed by the bolt holes.
The procedure does not apply to metal-metal connections.
P.2.2 Materials
Bolt and flange materials shall conform to the requirements of EN 13480-2 regarding ductility properties.
Where these requirements are not fulfilled, lower nominal design stress shall be used.
P.2.3 Loadings
The following loadings are taken into account in this procedure:
 internal and external fluid pressure;
 external loads: axial forces and bending moments (equivalent axial load);
 thermal expansion of flanges, bolts and gasket.
P.2.4 Assumptions
P.2.4.1 The deformations of the cross-section of the plate are not taken into account. Only the rotation of
the cross-section is considered.
P.2.4.2 The plate of an integral flange is connected to a cylindrical shell or to an equivalent cylindrical
shell (conical or spherical shell).
P.2.4.3 The effective width b of contact between the gasket and the flanges may be less than the
Ge
actual width of the gasket. This effective width shall be calculated for seating condition and considered as
constant for all other conditions.
P.2.4.4 The modulus of elasticity E of the gasket is a function of the applied compressive stress.
G
P.2.4.5 Creep behaviour of the gasket is taken into account using the factor P .
QR
P.2.4.6 The thermal and mechanical deformations of flanges, bolts and gasket are considered.
P.2.4.7 External moments are taken into account as equivalent axial bolt loads.
P.2.4.8 Transitions between a condition to another lead to variations of bolt and gasket loads.
P.2.4.9 Acceptance of component loadings is based on limit analysis which covers failure by gross plastic
deformation.
P.2.4.10 The following is not taken into account or covered by the procedure:
 bending stiffness of bolts;
 creep of flanges and bolts except through nominal design stress and thermal expansion factors;
 external torsion moments and external shear loads.
P.3 Application of EN 1591
P.3.1 Calculations
The minimum tightening load for the required tightening of bolts shall be calculated by successive iterations.
Internal loads due to initial tightening shall be calculated for each condition (initial tightening, proof test
condition and operating conditions) and combined with external loads.
Safety factors shall be those defined by EN 13480-3:2002, Clause 5. However for seating condition, factor for
strength test condition shall apply.
P.3.2 Gasket coefficients
The recommended gaskets for industrial piping are given in Table P.1.
NOTE 1 For more information the gasket manufacturer should be contacted.
NOTE 2 Legend of tables:
 NA: not applicable;
 ND: not defined.
Gasket reference: Example: 1-09-101-1:
 1-09 = see Table P.2;
 101-1 = joint origin (manufacturer or other).
P.3.2.1 Gasket maximum allowable stress Q .
smax
The coefficients determined according to EN 13555 are given in Table P.2 to Table P.29 (room temperature
and operating temperature).
In these tables:
 P is the test pressure in the sample;
 S is the gasket pressure.
ai
P.3.2.2 Minimum stress Q to be applied at room temperature (seating condition) in order to fulfil the
minL
requirements regarding leak tightness class for the fluid under consideration.
The values determined according to EN 13555 (Helium tightness test at room temperature) are given in Table
P.2 to Table P.29.
NOTE In Tables P.3 to P.29, Q is given in MPa.
minL
P.3.2.3 Minimum stress Q to be applied at room temperature (operating conditions) in order to fulfil
sminL
the requirements regarding leak tightness class for the fluid under consideration.
The values determined according to EN 13555 (Helium tightness test at room temperature) are given in
Table P.2 to Table P.29.
NOTE In Tables P.3 to P.29, Q is given in MPa.
sminL
P.3.2.4 Modulus of elasticity
E is the modulus of elasticity when compression is released and for a maximal stress equal to Q .
G 0
P.3.2.5 Creep/relaxation parameter
The parameter P is given in Table P.2 to Table P.29. This parameter is used instead of the previous creep
QR
factor called g where permitted by the next revision of EN 1591-1.
c
P.3.3 Tightening
The initial tightening shall be greater than the minimum tightening required at room temperature to comply to
the requirements of the tightness class for the fluid and pressure considered.
However this tightening shall not lead to a gasket stress greater than the allowable value at room temperature.
In addition, calculations shall take into account the tolerances on tightening due to tightening procedure and
the used equipment.
Table P.1 – Recommended gaskets for industrial piping
Maximum
EN 1514 c EN 12560 Chemical Maximum PN max CLASS max Surface finish
Gasket type internal fluid
(PN flanges) (CLASS Flanges) compatibility temperature (EN 1514) (EN 12560) (Ra)
pressure (bar)
All fluids (to be used
3,2 µm to
Fibre 1514-1 12560-1 carefully for steam: risk 250 °C 50 63 900
12,5 µm
of hydrolysis)
350 °C (in oxidant
3,2 µm
environment)
Graphite 1514-1 12560-1 Risk of oxidation 50 63 900
550 °C with inhibitor or
to 12,5 µm
non oxidant environment
Pure PTFE: 120 °C 3,2 µm to
PTFE 1514-1 12560-1 All fluids 50 63 900
Modified PTFE 225 °C 12,5 µm
12,5 µm
> 600 °C
900 for P < 12 bar
(vermiculite insert)
Depending on insert, (without internal 6,4 µm
600 °C
spiral and ring materials ring) for P > 20 bar
Spiral wound gasket 1514-2 12560-2 400 (with internal
(risk of oxidation with 2500 3,2 µm
(graphite insert)
ring
graphite insert) (with internal
for hard conditions
250 °C
ring) 1,6 µm
(PTFE insert)
for vacuum
Depending on internal
600 °C (may be limited 3,2 µm to 6,4 µm
and covering materials
Kammprofil 1514-6 12560-6 to 260 °C, by a PTFE 400 100 2500
1,6 µm
(risk of oxidation with
covering for example) for vacuum
graphite covering)
1514-4 (Metal 12560-4 (Metal 0,8 µm to 3,2 µm
jacketed) jacketed) (not covered)
Metal jacketed Most of industrial fluids Depending on covering > 400 100 2500
1514-7 (Covered 12560-7 (Covered 1,6 µm to 12,5 µm
metal jacketed) metal jacketed)
(covered)
12560-5 (RTJ)
Solid metal 1514-4 12560-4 (Flat Depending on material High 500 100 2500 1,6 µm
metallic gaskets)
Ring joint  Depending on material Depending on material > 400  1,6 µm
Expanded
All fluids 600 °C 500
1,6 to 6,4 µm
graphite
Table P.2 – Gasket type code
Table of this
Classification Gasket family ENV 1591-2
Gasket type European
from EN 1514 (ENV 1591-2) Table
Standard
EN 1514-1 Modified PTFE Non metallic flat gasket 1 P.5 and P.6
EN 1514-1 Non-asbestos fibre (aramid/glass) Non metallic flat gasket 1 P.3
EN 1514-1 Expanded graphite with Non metallic flat gasket 1 P.4
perforated metal insertion
EN 1514-2 Standard spiral wound gasket Spiral wound gasket 3 P.9
with external ring
EN 1514-2 Standard spiral wound gasket Spiral wound gasket 3 P.8
with internal and external rings
EN 1514-2 Low stress spiral wound gasket Spiral wound gasket 3 P.7
with internal and external rings
EN 1514-4 Metal jacketed with graphite filler Metal jacketed gasket 6 P.12
and stainless steel shell
EN 1514-4 Corrugated inlaid gasket Non metallic flat gasket 7 P.11
(graphite/stainless steel)
EN 1514-6 Kammprofile gasket for use with Grooved steel gasket with 2 P.10
steel flanges (graphite/stainless soft layers on both sides
steel)
EN 1514-7 Covered metal jacketed Covered metal jacketed 5 P.13
(graphite/graphite/stainless steel) gasket
EN 1514-1 Expanded graphite with metallic Flat gasket with metal 1 P.14, P.27
sheets laminated in thin layers insertion
withstanding high stresses
EN 1514-1 Modified PTFE sheet material Non metallic flat gasket 1 P.15, P.17,
P.23
EN 1514-1 Non-asbestos fibre with binder Non metallic flat gasket 1 P.16, P.18,
e ≥ 1 mm P.19, P.22
G
EN 1514-1 Expanded graphite with adhesive Flat gasket with metal 1 P.20
perforated metal insertion insertion
EN 1514-2 PTFE Standard spiral wound Spiral wound gasket 3 P.24
gasket with inner and outer
support ring
EN 1514-3 PTFE envelope gasket PTFE envelope gasket 1 P.28
EN 1514-4 Metal jacketed gasket with Metal jacketed gasket 6 P.26
graphite
EN 1514-4 Corrugated gasket with graphite Corrugated gasket 7 P.29
EN 1514-4 Expanded graphite with metallic Flat gasket with metal 1 P.14, P.27
sheets laminated in thin layers insertion
withstanding high stresses
EN 1514-6 Kammprofile gasket with bonded Grooved steel gasket with 2 P.21
graphite layers soft layers on both sides
EN 1514-7 Covered metal jacketed gasket Covered metal jacketed 5 P.25
with graphite (outer ring) gasket

Table P.3 – Gasket 1-09-101-1 – Non-asbestos fibre (aramid/glass) e ≥≥ 1 mm
≥≥
G
Gasket coefficients from mechanical tests
Coefficient Temperature Values
Room 150 MPa
Q
200 °C 60 MPa
smax
250 °C 50 MPa
Initial load: 150 MPa
Room
Average for g : 0,72
c
g
c
Initial load: 60 MPa
200 °C
Average for g : 0,29
(for a simulated stiffness of
c
500 kN/mm)
Initial load: 50 MPa
250 °C
Average for g : 0,28
c
Initial load: 150 MPa
Room
Average for P : 0,985
QR
P
QR
Initial load: 60 MPa
200 °C
(for a simulated stiffness of
Average for P : 0,805
QR
500 kN/mm)
Initial load: 50 MPa
250 °C
Average for P : 0,775
QR
E
G
Q
Room 200 °C 250 °C
20 MPa 979 MPa 4 898 MPa 3 731 MPa
30 MPa 1 414 MPa
40 MPa 2 153 MPa 4 990 MPa 4 159 MPa
50 MPa 2 972 MPa
60 MPa 4 182 MPa 6 023 MPa 4 024 MPa
80 MPa 8 412 MPa
100 MPa 15 159 MPa
120 MPa 26 392 MPa
140 MPa 40 379 MPa
Table P.3 (concluded)
Class of tightness from tightness tests
P = 10 bar – “Simplified test” values
S =320 MPa
a1
Q
Tighness Class
minL
Q
sminL,Sa1
High tightness 15,5 10
Very high tightness 60 10
P = 40 bar – Average of “full tests” values
S = S = S = S = S = S =
a1 a2 a3 a4 a5 a6
Tighness
20 MPa 40 MPa 60 MPa 80 MPa 105 MPa 160 MPa
Q
minL
Class
Q Q Q Q Q Q
sminL,Sa1 sminL,Sa2 sminL,Sa3 sminL,Sa4 sminL,Sa5 sminL,Sa6
Normal 11,6 10 10 10 10 10 10
High
34,5 NA 10 10 10 10 10
tightness
Very high
81 NA NA NA 40 33 17
tightness
P = 80 bar – Average of “full test” and “simplified test” values
S = S = S = S = S = S =
a1 a2 a3 a4 a5 a6
20 MPa 40 MPa 60 MPa 80 MPa 105 MPa 160 MPa
Q
Tighness Class
minL
Q Q Q Q Q Q
sminL,Sa1 sminL,Sa2 sminL,Sa3 sminL,Sa4 sminL,Sa5 sminL,Sa6
Normal 10 10 10 10 10 10 10
High tightness 43 NA 10 10 10 10 10
Very high tightness 95 NA NA NA NA 38 19,4

Table P.4 – Gasket 1-05-101-1 – Expanded graphite with perforated metal insertion
Gasket coefficients from mechanical tests
Coefficient Temperature Values
Room 200 MPa
200 °C 150 MPa
Q
smax
300 °C 140 MPa
450 °C 120 MPa
Initial load: 200 MPa
Room
Average for g : 0,98
c
g
c
Initial load: 140 MPa
300 °C
(for a simulated stiffness of Average for g : 0,12
c
500 kN/mm)
Initial load: 120 MPa
450 °C
Average for g : 0,08
c
Initial load: 200 MPa
Room
Average for P : 1
QR
P
QR
Initial load: 140 MPa
(for a simulated stiffness of
300 °C
Average for P : 0,775
QR
500 kN/mm)
Initial load: 120 MPa
450 °C
Average for P : 0,62
QR
E
G
Q
Room 200 °C 300 °C 450 °C
20 MPa 198 MPa 591 MPa 416 MPa 943 MPa
30 MPa 397 MPa
40 MPa 675 MPa 1 579 MPa 1 396 MPa 2 482 MPa
50 MPa 1 043 MPa
60 MPa 1 536 MPa 2 493 MPa 2 423 MPa 3 833 MPa
80 MPa 2 804 MPa 3 437 MPa 3 828 MPa 4 706 MPa
100 MPa 4 738 MPa 4 258 MPa 5 542 MPa 4 799 MPa
120 MPa 7 083 MPa 4 871 MPa 5 968 MPa
140 MPa 10 447 MPa
160 MPa 13 992 MPa
Table P.4 (concluded)
Class of tightness from tightness tests
P = 10 bar – Average of two “simplified test” values
S =140 MPa
a1
Q
Tightness Class
minL
Q
sminL,Sa1
High tightness 23 10
Very high tightness 93 16
P = 40 bar – Average of “full tests” values
S = S = S = S = S = S =
a1 a2 a3 a4 a5 a6
Tightness
20 MPa 40 MPa 60 MPa 80 MPa 105 MPa 160 MPa
Q
minL
Class
Q Q Q Q Q Q
sminL,Sa1 sminL,Sa2 sminL,Sa3 sminL,Sa4 sminL,Sa5 sminL,Sa6
Normal 10 10 10 10 10 10 10
High
41 NA 10 10 10 10 10
tightness
Very high
139 NA NA NA NA NA 95
tightness
P = 80 bar –“Simplified test” values
S =140 MPa
a1
Q
Tightness Class
minL
Q
sminL,Sa1
High tightness 60 10
Table P.5 – Gasket 1-10-100-1 – Modified PTFE
Gasket coefficients from mechanical tests
Coefficient Temperature Values
Room 50 MPa
Q
175 °C 40 MPa
smax
225 °C 25 MPa
Initial load: 50 MPa
Room
Average for g : 0,31
c
g
c
Initial load: 40 MPa
175 °C
(for a simulated stiffness of Average for g : 0,06
c
500 kN/mm)
Initial load: 25 MPa
225 °C
Average for g : 0,08
c
Initial load: 50 MPa
Room
Average for P : 0,84
QR
P
QR
Initial load: 40 MPa
175 °C
(for a simulated stiffness of
Average for P : 0,41
QR
500 kN/mm)
Initial load: 25 MPa
225 °C
Average for P : 0,365
QR
E
G
Q
Room 175 °C 225 °C
20 MPa 2 170 MPa 826 MPa 614 MPa
30 MPa 2 986 MPa
40 MPa 8 625 MPa 1 254 MPa 809 MPa
60 MPa 1 335 MPa 864 MPa
Table P.5 (concluded)
Class of tightness from tightness tests
P = 10 bar – Average of “full tests” values
S =20 MPa S =40 MPa S =60 MPa S =80 MPa
a1 a2 a3 a4
Q
Tightness Class
minL
Q Q Q Q
sminL,Sa1 sminL,Sa2 sminL,Sa3 sminL,Sa4
High tightness 10 10 10 10 10
Very high tightness 17 10 10 10 10

P = 40 bar – Average of the four tests values or choice among the four values
S =20 MPa S =40 MPa S =60 MPa S =80 MPa
a1 a2 a3 a4
Q
Tightness Class
minL
Q Q Q Q
sminL,Sa1 sminL,Sa2 sminL,Sa3 sminL,Sa4
Normal 10 10 10 10 10
High tightness 12 10 10 10 10
Very high tightness 42 NA 38 10 10

P = 80 bar – Test values
S =80 MPa
a1
Q
Tightness Class
minL
Q
sminL,Sa1
High tightness 22 10
Very high tightness 37 10
Table P.6 – Gasket 1-10-102-1 – Modified PTFE
Gasket coefficients from mechanical tests
Coefficient Temperature Values
Room 60 MPa
Q
175 °C 60 MPa
smax
225 °C 60 MPa
Initial load: 60 MPa
Room
Average for g : 0,44
c
g
c
Initial load: 60 MPa
175 °C
(for a simulated stiffness of Average for g : 0,09
c
500 kN/mm)
Initial load: 60 MPa
225 °C
Average for g : 0,06
c
Initial load: 60 MPa
Room
Average for P : 0,895
QR
P
QR
Initial load: 60 MPa
175 °C
(for a simulated stiffness of
Average for P : 0,5
QR
500 kN/mm)
Initial load: 60 MPa
225 °C
Average for P : 0,42
QR
E
G
Q
Room 175 °C 225 °C
20 MPa 1 924 MPa 1 164 MPa 1 263 MPa
30 MPa 2 587 MPa 1 569 MPa
40 MPa 3 894 MPa 1 682 MPa 2 178 MPa
50 MPa 6 378 MPa 2 553 MPa
60 MPa 9 750 MPa 2 217 MPa 3 170 MPa
Table P.6 (concluded)
Class of tightness from tightness tests
P = 10 bar – Average of “full tests” values
S =20 MPa S =40 MPa S =60 MPa S =80 MPa
a1 a2 a3 a4
Q
Tightness Class
minL
Q Q Q Q
sminL,Sa1 sminL,Sa2 sminL,Sa3 sminL,Sa4
Normal 10 10 10 10 10
High tightness 17,3 11 10 10 10
Very high tightness 38,3 NA 17,2 10 10

P = 40 bar – Average of “full tests” values
S =20 MPa S =40 MPa S =60 MPa S =80 MPa
a1 a2 a3 a4
Q
Tightness Class
minL
Q Q Q Q
sminL,Sa1 sminL,Sa2 sminL,Sa3 sminL,Sa4
High tightness 16,4 10 10 10 10
Very high tightness 31 NA 10 10 10

P = 80 bar – “Simplified test” values
S =80 MPa
a1
Q
Tightness Class
minL
Q
sminL,Sa1
High tightness 26,2 10
Very high tightness 39,3 10
Table P.7 – Gasket 3-05-102-1 – Low stress spiral wound modified gasket with internal and external
rings
Gasket coefficients from mechanical tests
Coefficient Temperature Values
Room 126 MPa
Q
300 °C 126 MPa
smax
450 °C 126 MPa
Initial load: 60 MPa
Room
Average for g : 0,98
c
g
Initial load: 60 MPa
c
300 °C Procedure not suitable for this type
(for a simulated stiffness of
of gasket at this temperature
500 kN/mm)
Initial load: 60 MPa
450 °C Procedure not suitable for this type
of gasket at this temperature
Initial load: 60 MPa
Room
P
QR Average for P : 0,995
QR
(for a simulated stiffness of
300 °C -
500 kN/mm)
450 °C -
E
G
Q
Room 200 °C 300 °C 450 °C
20 MPa 725 MPa 843 MPa 942 MPa 850 MPa
30 MPa 996 MPa
40 MPa 1 207 MPa 1 809 MPa 1 988 MPa 2 259 MPa
50 MPa 1 703 MPa
60 MPa 2 268 MPa 4 211 MPa 3 776 MPa 3 840 MPa
80 MPa 8 537 MPa 6 992 MPa 4 945 MPa

Table P.7 (concluded)
Class of tightness from tightness tests
P = 10 bar – “Simplified test” values
S =80 MPa
a1
Q
Tightness Class
minL
Q
sminL,Sa1
Normal 10 10
High tightness 10 10
P = 40 bar – Average of “full tests” values
S = S = S = S = S = S = S =
Tightness
a1 a2 a3 a4 a5 a6 a7
Q
minL
Class
20 MPa 40 MPa 60 MPa 80 MPa 105 MPa 160 MPa 320 MPa
Q Q Q Q Q Q Q
sminL,Sa1 sminL,Sa2 sminL,Sa3 sminL,Sa4 sminL,Sa5 sminL,Sa6 sminL,Sa7
High
19 10 10 10 10 10 10 10
tightness
Very high
140 NA NA NA NA NA 82,5 87,5
tightness
P = 80 bar – “Simplified test” values
S =320 MPa
a1
Q
Tightness Class
minL
Q
sminL,Sa1
Normal 10 10
High tightness 32,5 10
Very high tightness 230,6 229,6

Table P.8 – Gasket 3-04-104-1 – Standard spiral wound gasket with internal and external rings
Gasket coefficients from mechanical tests
Coefficient Temperature Values
Room 138 MPa
Q
300 °C 250 MPa
smax
450 °C 220 MPa
Initial load: 300 MPa
Room
Average for g : 0,92
c
g
c
Initial load: 250 MPa
300°C
(for a simulated stiffness of
Average for g : 0,52
c
500 kN/mm)
Initial load: 220 MPa
450°C
Average for g : 0,54
c
Initial load: 300 MPa
Room
Average for P : 1
QR
P
QR
Initial load: 250 MPa
(for a simulated stiffness of 300 °C
Average for P : 0,94
QR
500 kN/mm)
Initial load: 220 MPa
450 °C
Average for P : 0,92
QR
E
G
Q
Room 300 °C 450 °C
20 MPa 1 233 MPa 1 423 MPa 1 489 MPa
30 MPa 1 620 MPa
40 MPa 1 916 MPa 2 790 MPa 3 013 MPa
50 MPa 2 316 MPa 3 997 MPa
60 MPa 2 719 MPa 4 203 MPa 4 739 MPa
80 MPa 3 372 MPa 4 291 MPa 6 156 MPa
99 MPa 3 987 MPa 5 205 MPa 7 428 MPa
120 MPa 4 793 MPa 6 111 MPa 8 525 MPa
140 MPa 5 808 MPa 6 972 MPa 9 297 MPa
160 MPa 7 024 MPa 7 938 MPa 10 206 MPa
180 MPa 8 520 MPa 9 661 MPa 10 968 MPa
200 MPa 9 865 MPa 11 608 MPa
220 MPa 12 783 MPa 10 761 MPa 12 141 MPa
240 MPa 15 577 MPa 11 638 MPa
260 MPa 19 291 MPa
280 MPa 24 069 MPa
300 MPa 30 036 MPa
Table P.8 (concluded)
Class of tightness from tightness tests
P = 40 bar – Average of “full tests” values
S = S = S = S = S = S =
a1 a2 a3 a4 a5 a6
Tightness
40 MPa 60 MPa 80 MPa 105 MPa 160 MPa 320 MPa
Q
minL
Class
Q Q Q Q Q Q
sminL,Sa1 sminL,Sa2 sminL,Sa3 sminL,Sa4 sminL,Sa5 sminL,Sa6
Normal 10 NA 10 10 10 10 10
High
25 10 10 10 10 10 10
tightness
Very high
81 NA NA NA 62,4 35 26
tightness
P = 80 bar – “Simplified test” values
S =320 MPa
a1
Q
Tightness Class
minL
Q
sminL,Sa1
Normal 10 10
High tightness 48 10
Very high tightness 143,2 51
P = 160 bar – “Simplified test” values
S =160 MPa
a1
Q
Tightness Class
minL
Q
sminL,Sa1
Normal 10 10
High tightness 44,6 10
Very high tightness 158,9 157,3
Table P.9 – Gasket 3-03-100-1 – Standard spiral wound modified gasket with external ring
Gasket coefficients from mechanical tests
Coefficient Temperature Values
Room 125 MPa
Q
300 °C 125 MPa
smax
450 °C 125 MPa
Initial load: 125 MPa
Room
Average for g : 0,95
c
g
Initial load: 125 MPa
c
300 °C Procedure not suitable for this type
(for a simulated stiffness of
of gasket at this temperature
500 kN/mm)
Initial load: 125 MPa
450 °C Procedure not suitable for this type
of gasket at this temperature
Initial load: 125 MPa
Room
P
QR
Average for P : 0,99
QR
(for a simulated stiffness of
300 °C Initial load: 125 MPa
500 kN/mm)
450 °C Initial load: 125 MPa
E
G
Q
Room 300 °C 450 °C
20 MPa 1 854 MPa 2 904 MPa 2 299 MPa
30 MPa 1 975 MPa
40 MPa 2 158 MPa 3 359 MPa 4 094 MPa
49 MPa 2 563 MPa
59 MPa 2 892 MPa 4 694 MPa 6 081 MPa
79 MPa 3 643 MPa 6 874 MPa 7 835 MPa
99 MPa 4 714 MPa 10 291 MPa 9 943 MPa
120 MPa 6 147 MPa 15 117 MPa 11 529 MPa

Table P.9 (concluded)
Class of tightness from tightness tests
P = 10 bar – “Simplified test” values
S =160 MPa
a1
Q
Tightness Class
minL
Q
sminL,Sa1
Normal 10 10
High tightness 63,4 10
Very high tightness 98 24
P = 40 bar – Average of “full tests” values
S = S = S = S = S = S =
a1 a2 a3 a4 a5 a6
20 MPa 40 MPa 60 MPa 80 MPa 105 MPa 160 MPa
Q
Tightness Class
minL
Q Q Q Q Q Q
sminL,Sa1 sminL,Sa2 sminL,Sa3 sminL,Sa4 sminL,Sa5 sminL,Sa6
Normal 30 NA 10 10 10 10 10
High tightness 62 NA NA NA 19 10 10
Very high
126 NA NA NA NA NA 71
tightness
P = 80 bar – Average of “full test” and “simplified test” values
S = S = S = S = S =
a1 a2 a3 a4 a5
40 MPa 60 MPa 80 MPa 105 MPa 160 MPa
Q
Tightness Class
minL
Q Q Q Q Q
sminL,Sa1 sminL,Sa2 sminL,Sa3 sminL,Sa4 sminL,Sa5
Normal 34,5 10 10 10 10 11
High tightness 71 NA NA 25,2 17 15,5
Very high tightness 104,4 NA NA NA 100 40
Table P.10 – Gasket 2-05-104-1 – Kammprofile gasket for use with steel flanges (graphite/stainless
steel)
Gasket coefficients from mechanical tests
Coefficient Temperature Values
Room 600 MPa
Q
300 °C 450 MPa
smax
450 °C 400 MPa
Initial load: 600 MPa
Room
Average for g : 0,62
c
g
c
Initial load: 450 MPa
300 °C
Average for g : 0,20
(for a simulated stiffness of
c
500 kN/mm)
Initial load: 400 MPa
450 °C
Average for g : 0,03
c
Initial load: 600 MPa
Room
Average for P : 1
QR
P
QR
Initial load: 450 MPa
300 °C
(for a simulated stiffness of
Average for P : 0,94
QR
500 kN/mm)
Initial load: 400 MPa
450 °C
Average for P : 0,8
QR
Table P.10 (continued)
E
G
Q
Room 300 °C 450 °C
20 MPa 3 273 MPa 13 379 MPa 12 923 MPa
30 MPa 3 598 MPa
40 MPa 4 369 MPa 19 157 MPa 20 649 MPa
50 MPa 5 722 MPa
60 MPa 7 391 MPa 30 932 MPa 58 406 MPa
80 MPa 12 085 MPa 52 885 MPa 73 918 MPa
100 MPa 16 774 MPa 68 786 MPa
119 MPa 22 854 MPa 141 110 MPa
140 MPa 32 441 MPa
160 MPa 35 528 MPa
180 MPa 38 537 MPa
220 MPa 43 875 MPa
240 MPa 45 988 MPa
260 MPa 45 757 MPa
280 MPa 46 222 MPa
300 MPa 46 530 MPa
320 MPa 46 662 MPa
340 MPa 45 542 MPa
360 MPa 46 350 MPa
380 MPa 45 590 MPa
400 MPa 44 702 MPa
Table P.10 (concluded)
Class of tightness from tightness tests
P = 40 bar – Average of “full tests” values
S = S = S = S = S = S = S =
a1 a2 a3 a4 a5 a6 a7
Tightness
20 MPa 40 MPa 60 MPa 80 MPa 105 MPa 160 MPa 320 MPa
Q
minL
Class
Q Q Q Q Q Q Q
sminL,Sa1 sminL,Sa2 sminL,Sa3 sminL,Sa4 sminL,Sa5 sminL,Sa6 sminL,Sa7
High
11,7 12 16,5 18 14 13 16,9 10
tightness
Very high
47 NA NA 46 30,5 31 34 32
tightness
P = 80 bar – “Full test” values
S = S = S = S = S = S = S =
a1 a2 a3 a4 a5 a6 a7
Tightness
20 MPa 40 MPa 60 MPa 80 MPa 105 MPa 160 MPa 320 MPa
Q
minL
Class
Q Q Q Q Q Q Q
sminL,Sa1 sminL,Sa2 sminL,Sa3 sminL,Sa4 sminL,Sa5 sminL,Sa6 sminL,Sa7
Normal 10 10 10 10 10 10 10 10
High
44,7 NA NA 31,6 24,3 22,8 10 20
tightness
Very high
59,7 NA NA NA 50 46,1 42,2 54,9
tightness
P = 160 bar – “Simplified test” values
S =160 MPa
a1
Q
Tightness Class
minL
Q
sminL,Sa1
Normal 37,4 10
High tightness 62,1 42,8
Very high tightness 76 81,7
Table P.11 – Gasket 7-01-104-1 – Corrugated inlaid gasket (graphite/stainless steel)
Gasket coefficients from mechanical tests
Coefficient Temperature Values
Room 400 MPa
Q
300 °C 200 MPa
smax
450 °C 180 MPa
Initial load: 400 MPa
Room
Average for g : 0,89
c
g
c
Initial load: 200 MPa
300 °C
(for a simulated stiffness of Average for g : 0,05
c
500 kN/mm)
Initial load: 180 MPa
450 °C
Average for g : 0,04
c
Initial load: 400 MPa
Room
Average for P : 1
QR
P
QR
Initial load: 200 MPa
300 °C
(for a simulated stiffness of
Average for P : 0,72
QR
500 kN/mm)
Initial load: 180 MPa
450 °C
Average for P : 0,525
QR
Table P.11 (continued)
E
G
Q
Room 300 °C 450 °C
20 MPa 1 498 MPa 3 559 MPa 2 933 MPa
30 MPa 1 822 MPa
40 MPa 2 134 MPa 4 518 MPa 4 903 MPa
50 MPa 2 221 MPa
60 MPa 1 968 MPa 4 823 MPa 5 113 MPa
80 MPa 2 824 MPa 6 942 MPa 5 530 MPa
100 MPa 3 968 MPa 7 662 MPa 5 528 MPa
119 MPa 5 185 MPa 7 821 MPa 5 394 MPa
140 MPa 6 804 MPa 7 812 MPa 5 302 MPa
160 MPa 8 046 MPa 7 388 MPa 5 061 MPa
180 MPa 9 489 MPa 7 292 MPa 4 968 MPa
220 MPa 11 783 MPa
240 MPa 12 563 MPa
260 MPa 13 503 MPa
280 MPa 14 674 MPa
300 MPa 15 757 MPa
320 MPa 16 802 MPa
340 MPa 17 370 MPa
360 MPa 18 350 MPa
380 MPa 18 806 MPa
400 MPa 19 316 MPa
Table P.11 (concluded)
Class of tightness from tightness tests
P = 40 bar – Average of “full tests” values
S =20 S =40 S =60 S =80 S =105 S =160 S =320
a1 a2 a3 a4 a5 a6 a7
Tightness
MPa MPa MPa MPa MPa MPa MPa
Q
minL
Class
Q Q Q Q Q Q Q
sminL,Sa1 sminL,Sa2 sminL,Sa3 sminL,Sa4 sminL,Sa5 sminL,Sa6 sminL,Sa7
High
11,2 10 10 10 10 10 10 17
tightness
Very high
20,9 NA 33 13 17 27 23,8 31,6
tightness
P = 80 bar – “Simplified test” values
S =320 MPa
a1
Q
Tightness Class
minL
Q
sminL,Sa1
Very high tightness 74,9 10
P = 160 bar – “Simplified test” values
S =160 MPa
a1
Q
Tightness Class
minL
Q
sminL,Sa1
Very high tightness 30 20
Table P.12 – Gasket 6-04-103-1 – Metal jacketed with graphite filler and stainless steel shell
Gasket coefficients from mechanical tests
Coefficient Temperature Values
Room 400 MPa
Q
300 °C 400 MPa
smax
450 °C 400 MPa
Initial load: 400 MPa
Room
Average for g : 0,77
c
g
c
Initial load: 400 MPa
300 °C
(for a simulated stiffness of Average for g : 0,07
c
500 kN/mm)
Initial load: 400 MPa
450 °C
Average for g : 0,03
c
Initial load: 400 MPa
Room
Average for P : 1
QR
P
QR
Initial load: 400 MPa
300 °C
(for a simulated stiffness of
Average for P : 0,93
QR
500 kN/mm)
Initial load: 400 MPa
450 °C
Average for P : 0,865
QR
Table P.12 (continued)
E
G
Q
Room 300 °C 450 °C
20 MPa 696 MPa 1 004 MPa 1 033 MPa
30 MPa 1 126 MPa
40 MPa 1 718 MPa 2 120 MPa 2 434 MPa
50 MPa 2 435 MPa
60 MPa 3 334 MPa 3 402 MPa 3 845 MPa
80 MPa 5 787 MPa 4 521 MPa 5 021 MPa
100 MPa 9 029 MPa 5 405 MPa 5 977 MPa
119 MPa 13 855 MPa 6 296 MPa 6 513 MPa
140 MPa 19 811 MPa 7 048 MPa 7 108 MPa
160 MPa 28 779 MPa 7 886 MPa 7 252 MPa
180 MPa 40 961 MPa 8 547 MPa 7 682 MPa
200 MPa 9 349 MPa 7 888 MPa
220 MPa 10 041 MPa 8 305 MPa
240 MPa 10 584 MPa 8 677 MPa
260 MPa 11 219 MPa 8 833 MPa
280 MPa 12 059 MPa 9 322 MPa
300 MPa 12 474 MPa 9 610 MPa
320 MPa 13 783 MPa 9 856 MPa
340 MPa 14 286 MPa 10 162 MPa
360 MPa 15 491 MPa 10 808 MPa
380 MPa 17 411 MPa 10 726 MPa
400 MPa 17 061 MPa 11 381 MPa
Table P.12 (concluded)
Class of tightness from tightness tests
P = 40 bar – Average of “full tests” values
S = S = S = S = S = S =
a1 a2 a3 a4 a5 a6
Tightness Class
40 MPa 60 MPa 80 MPa 100 MPa 160 MPa 320 MPa
Q
minL
Q Q Q Q Q Q
sminL,Sa1 sminL,Sa2 sminL,Sa3 sminL,Sa4 sminL,Sa5 sminL,Sa6
Normal 54,7 36,4 26 23,4 21,3 10 10
High tightness 171 NA NA NA NA NA 34,8

P = 80 bar – “Simplified test” values
S =320 MPa
Tightness Class
a1
Q
minL
Q
sminL,Sa1
Normal 62,6 20
High tightness 287,4 40,3
P = 160 bar – “Simplified test” values
S =160 MPa
Tightness Class
a1
Q
minL
Q
sminL,Sa1
Normal 120 NA
Table P.13 – Gasket 5-05-103-1 – Covered metal jacketed (graphite/graphite/stainless steel)
Gasket coefficients from mechanical tests
Coefficient Temperature Values
Room 171 MPa
Q
300 °C 171 MPa
smax
450 °C 171 MPa
Initial load: 47 MPa
Average for g : 0,92
c
Room
Initial load: 80 MPa
Average for g : 0,95
c
Initial load: 47 MPa
g
c
Not adapted procedure for this type
of gasket at this temperature
(for a simulated stiffness of
300 °C
500 kN/mm)
Initial load: 80 MPa
Not adapted procedure for this type
of gasket at this temperature
Initial load: 80 MPa
450 °C Not adapted procedure for this type
of gasket at this temperature
P
QR
Room Average for P : 0,985
QR
(for a simulated stiffness of
500 kN/mm)
E
G
Q
Room 300 °C 450 °C
20 MPa 534 MPa 680 MPa 253 MPa
30 MPa 963 MPa
40 MPa 1 243 MPa 1 637 MPa 758 MPa
50 MPa 1 629 MPa
60 MPa 2 038 MPa 3 002 MPa 1 625 MPa
80 MPa 3 395 MPa 5 831 MPa 2 763 MPa
100 MPa 5 381 MPa 11 047 MPa 4 563 MPa
Table P.13 (concluded)
Class of tightness from tightness tests
P = 40 bar – Tests values
S = S = S = S = S = S = S =
a1 a2 a3 a4 a5 a6 a7
Tightness
20 MPa 40 MPa 60 MPa 80 MPa 105 MPa 160 MPa 320 MPa
Q
minL
Class
Q Q Q Q Q Q Q
sminL,Sa1 sminL,Sa2 sminL,Sa3 sminL,Sa4 sminL,Sa5 sminL,Sa6 sminL,Sa7
High
13,7 10 10 10 10 10 10 10
tightness
Very high
217,5 NA NA NA NA NA NA 130,8
tightness
P = 80 bar – “Simplified test” values
S =320 MPa
a1
Q
Tightness Class
minL
Q
sminL,Sa1
High tightness 31,6 10
P = 160 bar – “Simplified test” values
S =160 MPa
a1
Q
Tightness Class
minL
Q
sminL,Sa1
High tightness 72,9 32
Table P.14 – Gasket 1-07-001-1 – Expanded graphite with metallic sheets laminated in thin la
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...