Determination of the flowability and application behaviour of viscoelastic adhesives using the oscillatory rheometry

This document specifies a measuring method for the characterization of rheological properties of structural adhesives using oscillatory rheometry. Moreover, the testing procedure can be applied to the reactive mixture of several components or the components of a reactive bonding paste material. The advantage of the method in comparison to rotational viscometry measurements lies in the separation of elastic and viscous material properties, thus allowing the defining of the viscoelastic properties. This enables more precise information concerning the flow behaviour of the materials, thereby resulting in a better understanding of their processing properties.
The method described is particularly suitable for filled and paste-like adhesives. These are frequently processed using automated pump and application systems in industrial applications and will be set precisely considering their rheological properties. As the rheological behaviour of uncured adhesives is mostly independent of their properties in the cured state, the document can also serve for the examination of non-structural adhesives.

Bestimmung des Fließ- und Applikationsverhaltens von viskoelastischen Klebstoffen mit Hilfe der Oszillationsrheometrie

Dieses Dokument legt ein Messverfahren zur Charakterisierung der rheologischen Eigenschaften von Strukturklebstoffen mit Hilfe der Oszillationsrheometrie fest. Außerdem kann das Prüfverfahren auch auf das reaktive Gemisch mehrerer Komponenten oder auf die Komponenten eines pastösen Reaktionsklebstoffes angewendet werden. Der Vorteil des Verfahrens gegenüber Rotationsviskosimetrie¬messungen liegt in der Auftrennung von elastischen und viskosen Materialeigenschaften, wodurch die Festlegung der viskoelastischen Eigenschaften ermöglicht wird. Dadurch sind genauere Informationen über das Fließverhalten der Stoffe zugänglich, die zu einem besseren Verständnis ihrer Verarbeitungs¬eigenschaften führen.
Das beschriebene Verfahren eignet sich insbesondere für gefüllte und pastöse Klebstoffe. Diese werden im industriellen Einsatz häufig unter Verwendung automatisierter Pump  und Auftragssysteme verarbeitet, und werden unter Beachtung ihrer rheologischen Eigenschaften präzise eingestellt. Da das rheologische Verhalten ungehärteter Klebstoffe meist unabhängig von ihren Eigenschaften im ausgehärteten Zustand ist, kann das Dokument auch zur Untersuchung nicht struktureller Klebstoffe dienen.

Détermination de l'aptitude à l’écoulement et à l’application des adhésifs viscoélastiques avec la méthode de la rhéologie oscillométrique

Le présent document spécifie une méthode de mesure permettant la caractérisation des propriétés rhéologiques des adhésifs structuraux en recourant à la rhéologie oscillométrique. En outre, le mode opératoire d’essai peut être appliqué au mélange réactif de plusieurs composants ou aux composants d’un matériau en pâte se liant par réaction. L'avantage de cette méthode par rapport aux mesurages de la viscosimétrie rotative réside dans la séparation des propriétés élastiques et visqueuses du matériau, permettant ainsi de définir les propriétés viscoélastiques. Ceci permet d'obtenir des informations plus précises concernant le comportement à l'écoulement des matériaux, avec pour résultat une meilleure compréhension de leurs propriétés d'application.
La méthode décrite convient particulièrement aux adhésifs chargés et en pâte. Leur utilisation fait fréquemment intervenir des systèmes automatisés de pompage et d'application dans les applications industrielles ; leur dosage doit être précis et tenir compte de leurs propriétés rhéologiques. Étant donné que le comportement rhéologique des adhésifs non durcis est très largement indépendant de leurs propriétés à l'état durci, le présent document peut également servir à l'examen d'adhésifs non structuraux.

Ugotavljanje sipkosti in uporabnosti viskoelastičnih lepil z uporabo oscilacijske reometrije

General Information

Status
Published
Publication Date
08-Sep-2020
Withdrawal Date
30-Mar-2021
Current Stage
6060 - Definitive text made available (DAV) - Publishing
Start Date
09-Sep-2020
Due Date
20-Jan-2021
Completion Date
09-Sep-2020

Buy Standard

Standard
EN 17408:2020
English language
19 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)


SLOVENSKI STANDARD
01-november-2020
Ugotavljanje sipkosti in uporabnosti viskoelastičnih lepil z uporabo oscilacijske
reometrije
Determination of the flowability and application behaviour of viscoelastic adhesives using
the oscillatory rheometry
Bestimmung des Fließ- und Applikationsverhaltens von viskoelastischen Klebstoffen mit
Hilfe der Oszillationsrheometrie
Détermination de l'attitude du fluage et de l'application des adhésifs viscoélastiques avec
la méthode de la rhéologie oscillométrique
Ta slovenski standard je istoveten z: EN 17408:2020
ICS:
83.180 Lepila Adhesives
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

EN 17408
EUROPEAN STANDARD
NORME EUROPÉENNE
September 2020
EUROPÄISCHE NORM
ICS 83.180
English Version
Determination of the flowability and application behaviour
of viscoelastic adhesives using the oscillatory rheometry
Détermination de l'aptitude à l'écoulement et à Bestimmung des Fließ- und Applikationsverhaltens
l'application des adhésifs viscoélastiques avec la von viskoelastischen Klebstoffen mit Hilfe der
méthode de la rhéologie oscillométrique Oszillationsrheometrie
This European Standard was approved by CEN on 3 August 2020.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and
United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION

EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2020 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN 17408:2020 E
worldwide for CEN national Members.

Contents Page
European foreword . 3
1 Scope . 4
2 Normative references . 4
3 Terms and definitions . 4
4 Symbols and units . 12
5 Test method . 12
5.1 General . 12
5.2 Principle of measurement . 12
5.3 Standard test . 13
5.4 Extended test . 13
6 Test equipment . 13
6.1 Oscillatory rheometer . 13
6.2 Measuring system . 14
6.3 Temperature controlling system . 15
6.4 Inerting . 15
7 Sampling and sample preparation . 15
8 Implementation . 15
8.1 General . 15
8.2 Setting parameters . 16
8.3 Standard test . 16
8.4 Extended test . 16
9 Interpretation . 16
10 Test report . 18
Bibliography . 19

European foreword
This document (EN 17408:2020) has been prepared by Technical Committee CEN/TC 193 “Adhesives”,
the secretariat of which is held by UNE.
This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by March 2021, and conflicting national standards shall
be withdrawn at the latest by March 2021.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
According to the CEN-CENELEC Internal Regulations, the national standards organisations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria,
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland,
Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of
North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the
United Kingdom.
SAFETY WARNING — Persons using this document are expected to be familiar with normal laboratory
practice. This document cannot address all safety problems that could be associated with its
application. It is the responsibility of the user to define measures for health and safety at work and
ensure that these correspond with the European and national regulations.
ENVIRONMENTAL PROTECTION NOTE — The materials approved in this document can have negative
effects on the environment. As soon as technological progress leads to better alternatives to these
materials, they will be removed from the standard as far as possible. At the end of the test, the user is
expected to ensure a suitable disposal of the waste according to regional conditions.
1 Scope
This document specifies a measuring method for the characterization of rheological properties of
structural adhesives using oscillatory rheometry. Moreover, the testing procedure can be applied to the
reactive mixture of several components or the components of a reactive bonding paste material. The
advantage of the method in comparison to rotational viscometry measurements lies in the separation of
elastic and viscous material properties, thus allowing the defining of the viscoelastic properties. This
enables more precise information concerning the flow behaviour of the materials, thereby resulting in a
better understanding of their processing properties.
The method described is particularly suitable for filled and paste-like adhesives. These are frequently
processed using automated pump and application systems in industrial applications and will be set
precisely considering their rheological properties. As the rheological behaviour of uncured adhesives is
mostly independent of their properties in the cured state, the document can also serve for the
examination of non-structural adhesives.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
EN 923, Adhesives - Terms and definitions
3 Terms and definitions
For the purposes of this document, the terms and definitions given in EN 923 and the following apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— IEC Electropedia: available at http://www.electropedia.org/
— ISO Online browsing platform: available at https://www.iso.org/obp
3.1
shear deformation
γ
relation of deflection s to the distance between the plates geometry or gap width H of a sample located
between two plates at linear deflection of the upper plate in accordance with the tangent of the angle of
deflection φ (see Figure 1)
γϕ= s / H = tan (1)
( )
Figure 1 — Deflection s and angle of deflection φ of the test portion in the shear gap H [1]
Note 1 to entry: For a circular deflection in the plate/plate measuring system of a rheometer, this relation only
applies for an infinitesimal surface element. The deflection here depends on the distance to the axis of rotation
and is hence not uniform within the shear gap. The deformation value is, therefore, usually related to the plate
edge (i.e. to r ), sometimes also to a mean distance to the axis of rotation (e.g. 2/3 r ). In this document, the
max max
plate edge is used as a reference value. The cone/plate configuration yields a constant deformation based on the
gap width H raise equivalent to the deflection s increasing outwards in the entire shear gap.
3.2
deformation function
γ (t)
mathematical representation of the sinusoidal change in the deformation during oscillatory tests with
controlled deformation
γγ tt= sin()ω (2)
( )
A
where
γ (t) is the deformation at the time point t;
γ is the maximum deformation (deformation amplitude);
A
ω is the angular frequency, in rad/s, with ω = 2 π f.
3.3
shear stress function
τ (t)
the deformation as phase-shifted sinusoidal function of the shear stress related to the response of the
sample located in the gap (see Figure 2)
τ ttτ sin ωδ + (3)
( ) ( )
A
where
τ (t) is the shear stress at the time point t;
τ is the maximum shear stress (shear stress amplitude);
A
ω is the angular frequency, in rad/s, with ω = 2 π f;
δ is the angle phase shift (loss angle).
Note 1 to entry: In the case of ideal-elastic behaviour (according to Hooke), the loss angle δ is 0°, i.e.
deformation and shear stress are always in the same phase. Maximum shear stress is measured at maximum
deformation. In the case of ideal-viscous behaviour (according to Newton), the loss angle δ = is 90°, i.e. the shear
stress curve is ahead of the deformation curve by 90°. The maximum shear stress at deformation zero results
here, i.e. at highest angular velocity of the test specimen.

Figure 2 — Deformation and shear stress function during oscillation test [3]
=
3.4
storage modulus
G'
calculated from the energy stored during deformation, completely available for recovering after the end
of the deformation process
τ
A
G′ = cos δ (4)
( )
γ
A
where
τ is the maximum shear stress (shear stress amplitude);
A
γ is the maximum deformation (deformation amplitude);
A
δ is the angle phase shift (loss angle).
Note 1 to entry: The storage modulus represent the elastic portion of the applied energy and describes a typical
solid property (solid like).
3.5
loss modulus
G''
calculated from the energy irreversibly consumed during the deformation, dissipated as heat
τ
A
G′′ = sin()δ (5)
γ
A
where
τ is the maximum shear stress (shear stress amplitude);
A
γ is the maximum deformation (deformation amplitude);
A
δ is the angle phase shift (loss angle).
Note 1 to entry: The loss modulus represents the viscous (liquid like) portion of the applied energy dissipated
as heat or work.
3.6
complex shear modulus
G*
vector sum of storage modulus G' and loss modulus G''
*
G τγ t / t G′′ + iG · ′ (6)
( ) ( )
* ' 2 '' 2
G GG+ (7)
where
τ (t) is the shear stress at the time point t;
γ (t) is the deformation at the time point t;
G' is the storage modulus;
G'' is the loss modulus;
i is the imaginary part.
Note 1 to entry: When pe
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.