Eurocode - Basis of structural and geotechnical design

Scope of FprEN 1990
(1) This document establishes principles and requirements for the safety, serviceability, robustness and durability of structures, including geotechnical structures, appropriate to the consequences of failure.
(2) This document is intended to be used in conjunction with the other Eurocodes for the design of buildings and civil engineering works, including temporary structures.
(3) This document describes the basis for structural and geotechnical design and verification according to the limit state principle.
(4) The verification methods in this document are based primarily on the partial factor method.
NOTE 1   Alternative methods are given in the other Eurocodes for specific applications.
NOTE 2   The Annexes to this document also provide general guidance concerning the use of alternative methods.
(5) This document is also applicable for:
-   structural assessment of existing structures;
-   developing the design of repairs, improvements and alterations;
-   assessing changes of use.
NOTE   Additional or amended provisions can be necessary.
(6) This document is applicable for the design of structures where materials or actions outside the scope of EN 1991 (all parts) to EN 1999 (all parts) are involved.
NOTE   In this case, additional or amended provisions can be necessary.
1.2   Assumptions
(1) It is assumed that reasonable skill and care appropriate to the circumstances is exercised in the design, based on the knowledge and good practice generally available at the time the structure is designed.
(2) It is assumed that the design of the structure is made by appropriately qualified and experienced personnel.
(3) The design rules provided in the Eurocodes assume that:
-   execution will be carried out by personnel having appropriate skill and experience;
-   adequate control and supervision will be provided during design and execution of the works, whether in factories, plants, or on site;
-   construction materials and products will be used in accordance with the Eurocodes, in the relevant product and execution standards, and project specifications;
-   the structure will be adequately maintained;
-   the structure will be used in accordance with the design assumptions.
NOTE   Guidance on management measures to satisfy the assumptions for design and execution is given in
Annex B.

Eurocode - Grundlagen der Planung von Tragwerken und geotechnischen Bauwerken

1.1   Anwendungsbereich von FprEN 1990
(1) Unter Einbeziehung der Folgen für ein Versagen legt dieses Dokument die Grundsätze und Anforderungen für und an die Sicherheit, Gebrauchstauglichkeit, Robustheit und Dauerhaftigkeit von Tragwerken, einschließlich geotechnischer Bauwerke, fest.
(2) Dieses Dokument soll zusammen mit den anderen Eurocodes für den Entwurf und die Bemessung von Hochbauten und Ingenieurbauten, einschließlich Tragwerke mit befristeter Standzeit, angewendet werden.
(3) Dieses Dokument beschreibt die Grundlagen für die Planung von Tragwerken und geotechnischen Bauwerken sowie für die Bemessung nach dem Konzept der Bemessung nach Grenzzuständen.
(4) Die in diesem Dokument angegebenen Nachweisverfahren basieren hauptsächlich auf dem Bemessungskonzept mit Teilsicherheitsbeiwerten.
ANMERKUNG 1   Alternative Verfahren sind in den anderen Eurocodes für bestimmte Anwendungsfälle angegeben.
ANMERKUNG 2   Die Anhänge dieses Dokuments enthalten zudem allgemeine Leitlinien für die Anwendung alternativer Verfahren.
(5) Dieses Dokument gilt auch für:
—   die Tragwerksbeurteilung von bestehenden Tragwerken;
—   die Planung von Instandsetzungs-, Ertüchtigungs- und Umbaumaßnahmen;
—   die Beurteilung von Nutzungsänderungen.
ANMERKUNG   Es können zusätzliche oder abgeänderte Festlegungen notwendig sein.
(6) Dieses Dokument ist auch für die Planung von Tragwerken mit Baustoffen oder Einwirkungen anwendbar, die nicht in den Anwendungsbereich von EN 1991 (alle Teile) bis EN 1999 (alle Teile) fallen.
ANMERKUNG   In diesem Fall können zusätzliche oder abgeänderte Festlegungen notwendig sein.
1.2   Annahmen
(1) Es wird angenommen, dass die Bemessung nach dem anerkannten Stand der Technik mit der für das Projekt angemessenen Befähigung und Sorgfalt durchgeführt wird.
(2) Es wird angenommen, dass die Bemessung des Tragwerks durch entsprechend qualifizierte und erfahrene Personen durchgeführt wird.
(3) Die in den Eurocodes enthaltenen Bemessungsregeln gehen davon aus, dass:
—   die Bauausführung durch ausreichend befähigte und erfahrene Personen erfolgt;
—   sachgerechte Kontrollen und Überwachungen während der Planung und der Bauausführung, sei es in Fabriken, Fertigungsanlagen oder auf der Baustelle, erfolgen;
—   die Verwendung von Baustoffen und -produkten entsprechend den Eurocodes, den maßgebenden Produkt- und Ausführungsnormen und den Projektspezifikationen erfolgt;
—   das Tragwerk sachgemäß instand gehalten wird;
—   das Tragwerk entsprechend den Planungsannahmen genutzt wird.
ANMERKUNG   Leitlinien zu Managementmaßnahmen, mit denen die Annahmen für die Planung und Bauausführung erfüllt werden, sind in Anhang B angegeben.

Eurocodes - Bases des calculs structuraux et géotechniques

1.1   Domaine d’application de l’EN 1990
(1) Le présent document établit les principes et les exigences en matière de sécurité, d'aptitude au service, de robustesse et de durabilité des structures, y compris les ouvrages géotechniques, en fonction des conséquences d'une défaillance.
(2) Le présent document est destiné à être utilisé conjointement avec les autres Eurocodes pour la conception des bâtiments et des ouvrages du génie civil, y compris les structures provisoires.
(3) Le présent document décrit les bases de dimensionnement et de vérification des structures et des ouvrages géotechniques selon le principe de l'état-limite.
(4) Dans le présent document, les méthodes de vérification sont principalement fondées sur la méthode des facteurs partiels.
NOTE 1   Des méthodes alternatives sont données dans les autres Eurocodes pour les applications spécifiques.
NOTE 2   Les annexes du présent document fournissent également des recommandations générales concernant l'utilisation des méthodes alternatives.
(5) Le présent document s'applique également :
-   à l'évaluation structurale des structures existantes ;
-   à la projection des réparations, améliorations et altérations ;
-   à l'étude des changements d'utilisation.
NOTE   Des dispositions additionnelles ou modifiées peuvent être nécessaires.
(6) Le présent document est applicable pour le calcul de structures ne relevant pas du domaine d'application de l'EN 1991 (toutes les parties) à l'EN 1999 (toutes les parties), dans lesquelles interviennent des matériaux ou des actions non couverts par celles-ci.
NOTE   Dans ce cas, des dispositions supplémentaires ou modifiées peuvent être nécessaires.
1.2   Hypothèses
(1) Il est supposé qu'un savoir-faire et une attention raisonnables et adaptés aux circonstances sont exercés lors du calcul, sur la base des connaissances et des bonnes pratiques généralement disponibles au moment de la conception de la structure.
(2) Il est pris pour hypothèse que le calcul des structures est effectué par un personnel dûment qualifié et expérimenté.
(3) Les règles de conception fournies par les Eurocodes supposent :
-   que l'exécution sera réalisée par un personnel possédant le savoir-faire et l'expérience appropriés ;
-   qu'une maîtrise et une surveillance adéquates seront assurées pendant la conception et l'exécution des travaux, dans les usines, les entreprises ou sur le site ;
-   que les matériaux et produits de construction seront utilisés conformément aux Eurocodes, aux normes de produits et d'exécution applicables et aux spécifications du projet ;
-   que la structure bénéficiera de la maintenance adéquate ;
-   que l'utilisation de la structure sera conforme aux hypothèses admises dans le projet.
NOTE   L'Annexe B fournit des recommandations relatives aux mesures de gestion en vue de satisfaire aux hypothèses de conception et d'exécution.

Evrokod - Osnove projektiranja konstrukcij in geotehničnega projektiranja

(1) Ta dokument določa načela in zahteve za varnost, uporabnost, zanesljivost in vzdržljivost konstrukcij, vključno z geotehničnimi konstrukcijami, ki so primerni glede na posledice nepravilnega delovanja.
(2) Ta dokument je namenjen uporabi skupaj z drugimi standardi Evrokod za projektiranje zgradb in drugih gradbenih inženirskih objektov, vključno z začasnimi konstrukcijami.
(3) Ta dokument opisuje strukturno in geotehnično projektiranje ter potrjevanje v skladu z načelom mejnega stanja.
(4) Projektiranje in potrjevanje v tem dokumentu temeljita predvsem na metodi delnega faktorja.
OPOMBA 1:   Druge metode so podane v drugih standardih Evrokod za posebno uporabo.
OPOMBA 2:   Splošne smernice za uporabo drugih metod so podane tudi v dodatkih k temu dokumentu.
(5) Ta dokument se uporablja za:
–   strukturno ocenjevanje obstoječe konstrukcije;
–   projektiranje popravil, izboljšav in sprememb;
–   ocenjevanje sprememb uporabe.
(6) Ta dokument se uporablja za projektiranje konstrukcij, kadar to vključuje materiale ali vplive, ki so zunaj področja uporabe standardov EN 1991 in EN 1999.
OPOMBA:   V tem primeru so lahko potrebne dodatne ali spremenjene določbe.

General Information

Status
Published
Publication Date
21-Mar-2023
Current Stage
6060 - Definitive text made available (DAV) - Publishing
Start Date
22-Mar-2023
Due Date
07-Aug-2021
Completion Date
22-Mar-2023

Relations

Effective Date
29-Mar-2023
Effective Date
29-Mar-2023
Effective Date
29-Mar-2023
Effective Date
29-Mar-2023
Effective Date
29-Mar-2023
Effective Date
19-Jan-2023
Effective Date
18-May-2022
Effective Date
12-Jul-2023

Overview

EN 1990:2023 - Eurocode: Basis of structural and geotechnical design establishes the fundamental principles, requirements and verification framework for the safety, serviceability, robustness and durability of structures, including geotechnical works. Intended to be used together with the other Eurocodes (EN 1991 to EN 1999), EN 1990 defines the basis for structural and geotechnical design using the limit state principle and sets out verification methods primarily based on the partial factor method. It also applies to assessment and retrofit of existing structures, design of repairs and changes of use, and to structures involving materials or actions outside EN 1991–1999 (with possible additional provisions).

Key topics and requirements

  • Limit state design framework - Defines Ultimate Limit States (ULS) and Serviceability Limit States (SLS) and their role in structural verification.
  • Partial factor method - Primary verification approach for design values of actions, resistances, materials and geometry (EN 1990 gives principles; detailed application in other Eurocodes).
  • Actions and environmental influences - Classification and representative values of actions, combinations and load models for design situations (permanent, variable, accidental, seismic, etc.).
  • Reliability and robustness - Principles for structural reliability, consequence classes, robustness measures and requirements to avoid disproportionate collapse.
  • Design service life and durability - Guidance on design life, durability considerations and maintenance assumptions that influence material selection and detailing.
  • Assumptions on competence and execution - Design assumes appropriately qualified personnel, skilled execution, adequate supervision and maintenance; Annex B provides technical management guidance.
  • Supplementary guidance and annexes - Annex A (application rules for buildings, bridges, towers, silos, tanks, cranes, marine works), Annex C (reliability analysis and code calibration), Annex D (design assisted by testing), Annex E (robustness guidance), Annex F (fatigue methods).

Practical applications and users

  • Who uses EN 1990:
    • Structural and geotechnical engineers and designers
    • Bridge and infrastructure engineers
    • Construction contractors, certifiers and authorities
    • Engineers assessing existing structures, repairs or change of use
  • Typical applications:
    • Design of buildings, bridges, towers, masts, chimneys, silos, tanks, marine/coastal and temporary structures
    • Structural assessment, retrofit and strengthening projects
    • Calibration of project-specific partial factors and reliability analyses
    • Integrating testing results into design verification

Related standards

  • EN 1991 to EN 1999 (Eurocodes for actions, concrete, steel, composite, timber, masonry, geotechnical design, etc.)
  • National Annexes and project specifications that adapt EN 1990 principles to country-specific safety levels and execution standards

EN 1990:2023 is the foundational Eurocode for consistent, reliable structural and geotechnical design across Europe - essential reading for professionals applying limit state design and partial factor verification in practice.

Frequently Asked Questions

EN 1990:2023 is a standard published by the European Committee for Standardization (CEN). Its full title is "Eurocode - Basis of structural and geotechnical design". This standard covers: Scope of FprEN 1990 (1) This document establishes principles and requirements for the safety, serviceability, robustness and durability of structures, including geotechnical structures, appropriate to the consequences of failure. (2) This document is intended to be used in conjunction with the other Eurocodes for the design of buildings and civil engineering works, including temporary structures. (3) This document describes the basis for structural and geotechnical design and verification according to the limit state principle. (4) The verification methods in this document are based primarily on the partial factor method. NOTE 1 Alternative methods are given in the other Eurocodes for specific applications. NOTE 2 The Annexes to this document also provide general guidance concerning the use of alternative methods. (5) This document is also applicable for: - structural assessment of existing structures; - developing the design of repairs, improvements and alterations; - assessing changes of use. NOTE Additional or amended provisions can be necessary. (6) This document is applicable for the design of structures where materials or actions outside the scope of EN 1991 (all parts) to EN 1999 (all parts) are involved. NOTE In this case, additional or amended provisions can be necessary. 1.2 Assumptions (1) It is assumed that reasonable skill and care appropriate to the circumstances is exercised in the design, based on the knowledge and good practice generally available at the time the structure is designed. (2) It is assumed that the design of the structure is made by appropriately qualified and experienced personnel. (3) The design rules provided in the Eurocodes assume that: - execution will be carried out by personnel having appropriate skill and experience; - adequate control and supervision will be provided during design and execution of the works, whether in factories, plants, or on site; - construction materials and products will be used in accordance with the Eurocodes, in the relevant product and execution standards, and project specifications; - the structure will be adequately maintained; - the structure will be used in accordance with the design assumptions. NOTE Guidance on management measures to satisfy the assumptions for design and execution is given in Annex B.

Scope of FprEN 1990 (1) This document establishes principles and requirements for the safety, serviceability, robustness and durability of structures, including geotechnical structures, appropriate to the consequences of failure. (2) This document is intended to be used in conjunction with the other Eurocodes for the design of buildings and civil engineering works, including temporary structures. (3) This document describes the basis for structural and geotechnical design and verification according to the limit state principle. (4) The verification methods in this document are based primarily on the partial factor method. NOTE 1 Alternative methods are given in the other Eurocodes for specific applications. NOTE 2 The Annexes to this document also provide general guidance concerning the use of alternative methods. (5) This document is also applicable for: - structural assessment of existing structures; - developing the design of repairs, improvements and alterations; - assessing changes of use. NOTE Additional or amended provisions can be necessary. (6) This document is applicable for the design of structures where materials or actions outside the scope of EN 1991 (all parts) to EN 1999 (all parts) are involved. NOTE In this case, additional or amended provisions can be necessary. 1.2 Assumptions (1) It is assumed that reasonable skill and care appropriate to the circumstances is exercised in the design, based on the knowledge and good practice generally available at the time the structure is designed. (2) It is assumed that the design of the structure is made by appropriately qualified and experienced personnel. (3) The design rules provided in the Eurocodes assume that: - execution will be carried out by personnel having appropriate skill and experience; - adequate control and supervision will be provided during design and execution of the works, whether in factories, plants, or on site; - construction materials and products will be used in accordance with the Eurocodes, in the relevant product and execution standards, and project specifications; - the structure will be adequately maintained; - the structure will be used in accordance with the design assumptions. NOTE Guidance on management measures to satisfy the assumptions for design and execution is given in Annex B.

EN 1990:2023 is classified under the following ICS (International Classification for Standards) categories: 91.010.30 - Technical aspects. The ICS classification helps identify the subject area and facilitates finding related standards.

EN 1990:2023 has the following relationships with other standards: It is inter standard links to EN 1990:2002/A1:2005/AC:2010, EN 1990:2002/A1:2005, EN 1997-1:2004/A1:2013, EN 1990:2002/A1:2005/AC:2008, EN 1997-1:2004/AC:2009, EN 1990:2002, EN 1997-1:2004, EN 1990:2023/FprA1. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.

EN 1990:2023 is associated with the following European legislation: EU Directives/Regulations: 2016/797/EU, 305/2011; Standardization Mandates: M/515. When a standard is cited in the Official Journal of the European Union, products manufactured in conformity with it benefit from a presumption of conformity with the essential requirements of the corresponding EU directive or regulation.

You can purchase EN 1990:2023 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of CEN standards.

Standards Content (Sample)


SLOVENSKI STANDARD
SIST EN 1990:2023
01-september-2023
Nadomešča:
SIST EN 1990:2004
SIST EN 1990:2004/A1:2006
SIST EN 1990:2004/A1:2006/AC:2009
SIST EN 1990:2004/A1:2006/AC:2010
SIST EN 1997-1:2005
SIST EN 1997-1:2005/A1:2014
SIST EN 1997-1:2005/AC:2009
Evrokod - Osnove projektiranja konstrukcij in geotehničnega projektiranja
Eurocode - Basis of structural and geotechnical design
Eurocode - Grundlagen der Planung von Tragwerken und geotechnischen Bauwerken
Eurocodes - Bases des calculs structuraux et géotechniques
Ta slovenski standard je istoveten z: EN 1990:2023
ICS:
91.010.30 Tehnični vidiki Technical aspects
SIST EN 1990:2023 en,fr,de
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

SIST EN 1990:2023
SIST EN 1990:2023
EN 1990
EUROPEAN STANDARD
NORME EUROPÉENNE
March 2023
EUROPÄISCHE NORM
ICS 91.010.30 Supersedes EN 1990:2002, EN 1997-1:2004
English Version
Eurocode - Basis of structural and geotechnical design
Eurocodes - Bases des calculs structuraux et Eurocode - Grundlagen der Planung von Tragwerken
géotechniques und geotechnischen Bauwerken
This European Standard was approved by CEN on 2 January 2023.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and
United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION

EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2023 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN 1990:2023 E
worldwide for CEN national Members.

SIST EN 1990:2023
Contents Page
European foreword . 6
0 Introduction . 8
1 Scope . 10
2 Normative references . 11
3 Terms, definitions and symbols . 11
3.1 Terms and definitions . 11
3.1.1 Common terms used in the Eurocodes . 11
3.1.2 Terms relating to design . 13
3.1.3 Terms relating to actions . 16
3.1.4 Terms relating to material and product properties . 19
3.1.5 Terms relating to geometrical property . 20
3.1.6 Terms relating to structural and geotechnical analysis . 20
3.1.7 Terms relating to bridges . 21
3.2 Symbols and abbreviations . 23
3.2.1 Latin upper-case letters . 23
3.2.2 Latin lower-case letters . 26
3.2.3 Greek upper-case letters . 28
3.2.4 Greek lower-case letters . 29
4 General rules . 31
4.1 Basic requirements . 31
4.2 Structural reliability . 32
4.3 Consequences of failure . 32
4.4 Robustness . 33
4.5 Design service life . 34
4.6 Durability . 34
4.7 Sustainability . 35
4.8 Quality management . 35
5 Principles of limit state design . 35
5.1 General . 35
5.2 Design situations . 35
5.3 Ultimate limit states (ULS). 36
5.4 Serviceability limit states (SLS) . 37
5.5 Structural models, geotechnical models and loading models . 37
6 Basic variables . 38
6.1 Actions and environmental influences . 38
6.1.1 Classification of actions . 38
6.1.2 Representative values of actions . 39
6.1.3 Specific types of action . 41
6.1.4 Environmental influences . 42
6.2 Material and product properties . 43
6.3 Geometrical properties . 43
SIST EN 1990:2023
7 Structural analysis and design assisted by testing . 44
7.1 Structural modelling. 44
7.1.1 General . 44
7.1.2 Static actions. 44
7.1.3 Dynamic actions . 44
7.1.4 Actions inducing fatigue . 45
7.1.5 Fire design . 45
7.2 Structural analysis . 46
7.2.1 Linear analysis . 46
7.2.2 Non-linear analysis . 46
7.3 Design assisted by testing . 46
8 Verification by the partial factor method . 47
8.1 General . 47
8.2 Limitations . 47
8.3 Verification of ultimate limit states (ULS) . 48
8.3.1 General . 48
8.3.2 Design values of the effects of actions . 48
8.3.3 Design values of actions . 51
8.3.4 Combination of actions . 53
8.3.5 Design values of resistance . 56
8.3.6 Design values of material properties . 59
8.3.7 Design values of geometrical properties . 59
8.4 Verification of serviceability limit states (SLS). 60
8.4.1 General . 60
8.4.2 Design values of the effects of actions . 60
8.4.3 Combinations of actions . 61
8.4.4 Design criteria . 62
8.4.5 Design values of material properties . 62
8.4.6 Design values of geometrical properties . 62
Annex A (normative) Application rules . 63
A.1 General application and application for buildings . 63
A.2 Application for bridges . 78
A.3 Application for towers, masts and chimneys . 114
A.4 Application for silos and tanks . 114
A.5 Application for structures supporting cranes . 114
A.6 Application for marine coastal structures . 114
Annex B (informative) Technical management measures for design and execution . 115
B.1 Use of this annex . 115
B.2 Scope and field of application . 115
B.3 Choice of technical management measures . 115
B.4 Design quality . 115
B.5 Design checking . 116
B.6 Execution quality . 117
B.7 Inspection during execution . 117
B.8 Technical management measures . 118
SIST EN 1990:2023
Annex C (informative) Reliability analysis and code calibration . 119
C.1 Use of this annex. 119
C.2 Scope and field of application. 119
C.3 Basis for reliability analysis and partial factor design. 119
C.4 Approach for calibration of design values . 126
Annex D (informative) Design assisted by testing . 132
D.1 Use of this annex. 132
D.2 Scope and field of application. 132
D.3 Types of tests . 132
D.4 Planning of tests . 133
D.5 Derivation of characteristic or design values . 136
D.6 General principles for statistical evaluations. 137
D.7 Statistical determination of a single property . 138
D.8 Statistical determination of resistance models . 140
Annex E (informative) Additional guidance for enhancing the robustness of buildings and
bridges . 148
E.1 Use of this annex. 148
E.2 Scope and field of application. 148
E.3 Design strategies . 149
E.4 Design methods . 150
Annex F (informative) Rain-flow and reservoir counting methods for the determination of
stress ranges due to fatigue . 152
F.1 Use of this annex. 152
F.2 Scope and field of application. 152
F.3 Rain-flow counting method . 152
F.4 Reservoir counting method . 153
Annex G (normative) Basis of design for bearings . 155
G.1 Use of this annex. 155

G.2 Scope and field of application. 155
G.3 General rules . 155
G.4 Principles of limit state design . 160
G.5 Basic variables – Actions and environmental influences . 161
G.6 Structural analysis - Effects of deformation of piers and abutments . 161
G.7 Verification by the partial factor method . 162
Annex H (informative) Verifications concerning vibration of footbridges due to pedestrian
traffic . 169
H.1 Use of this annex. 169
SIST EN 1990:2023
H.2 Scope and field of application . 169
H.3 Dynamic load models and traffic classes . 169
H.4 Comfort criteria . 169
H.5 Design situations. 170
Bibliography . 172

SIST EN 1990:2023
European foreword
This document (EN 1990:2023) has been prepared by Technical Committee CEN/TC 250 “Structural
Eurocodes”, the secretariat of which is held by BSI. CEN/TC 250 is responsible for all Structural
Eurocodes and has been assigned responsibility for structural and geotechnical design matters by CEN.
This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by September 2027 and conflicting national standards
shall be withdrawn at the latest by March 2028.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
This document supersedes EN 1990:2002 and its amendments and corrigenda.
In comparison with the previous edition, the following main changes have been made:
— extension of scope to include provisions for bearings;
— improved approach for ULS verification;
— improved provisions on robustness;
— improved provisions on fatigue verification;
— improved provisions for basis of design for geotechnical structures in alignment with EN 1997;
— inclusion of provisions for sustainability;
— improved guidance on reliability analysis and code calibration;
— improved guidance for SLS verification of buildings related to deflection limits, vibrations and
foundation movements;
— improved guidance on management of structural reliability of construction works;
— inclusion of guidance on verification of vibration of footbridges due to pedestrian traffic.
The first generation of EN Eurocodes was published between 2002 and 2007. This document forms
part of the second generation of the Eurocodes, which have been prepared under Mandate M/515
issued to CEN by the European Commission and the European Free Trade Association.
The Eurocodes have been drafted to be used in conjunction with relevant execution, material, product
and test standards, and to identify requirements for execution, materials, products and testing that are
relied upon by the Eurocodes.
The Eurocodes recognize the responsibility of each Member State and have safeguarded their right to
determine values related to regulatory safety matters at national level through the use of National
Annexes.
Any feedback and questions on this document should be directed to the users’ national standards
body. A complete listing of these bodies can be found on the CEN website.
SIST EN 1990:2023
According to the CEN-CENELEC Internal Regulations, the national standards organizations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria,
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary,
Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal,
Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye
and the United Kingdom.
SIST EN 1990:2023
0 Introduction
0.1 Introduction to the Eurocodes
The Structural Eurocodes comprise the following standards generally consisting of a number of Parts:
— EN 1990 Eurocode – Basis of structural and geotechnical design
— EN 1991 Eurocode 1: Actions on structures
— EN 1992 Eurocode 2: Design of concrete structures
— EN 1993 Eurocode 3: Design of steel structures
— EN 1994 Eurocode 4: Design of composite steel and concrete structures
— EN 1995 Eurocode 5: Design of timber structures
— EN 1996 Eurocode 6: Design of masonry structures
— EN 1997 Eurocode 7: Geotechnical design
— EN 1998 Eurocode 8: Design of structures for earthquake resistance
— EN 1999 Eurocode 9: Design of aluminium structures
— New parts are under development, e.g. Eurocode for design of structural glass
The Eurocodes are intended for use by designers, clients, manufacturers, constructors, relevant
authorities (in exercising their duties in accordance with national or international regulations),
educators, software developers, and committees drafting standards for related product, testing and
execution standards.
NOTE Some aspects of design are most appropriately specified by relevant authorities or, where not
specified, can be agreed on a project-specific basis between relevant parties such as designers and clients. The
Eurocodes identify such aspects making explicit reference to relevant authorities and relevant parties.
0.2 Introduction to EN 1990
This document gives the principles and requirements for safety, serviceability, robustness, and
durability of structures that are common to all Eurocodes parts and are to be applied when using
them.
0.3 Verbal forms used in the Eurocodes
The verb “shall" expresses a requirement strictly to be followed and from which no deviation is
permitted in order to comply with the Eurocodes.
The verb “should” expresses a highly recommended choice or course of action. Subject to national
regulation and/or any relevant contractual provisions, alternative approaches could be used/adopted
where technically justified.
The verb “may" expresses a course of action permissible within the limits of the Eurocodes.
The verb “can" expresses possibility and capability; it is used for statements of fact and clarification of
concepts.
SIST EN 1990:2023
0.4 National Annex for EN 1990
National choice is allowed in this document where explicitly stated within notes. National choice
includes the selection of values for Nationally Determined Parameters (NDPs).
The national standard implementing EN 1990 can have a National Annex containing all national
choices to be used for the design of buildings and civil engineering works to be constructed in the
relevant country.
When no national choice is given, the default choice given in this document is to be used.
When no national choice is made and no default is given in this document, the choice can be specified
by a relevant authority or, where not specified, agreed for a specific project by appropriate parties.
National choice is allowed in EN 1990 through notes to the following:
4.2(3) 4.3(1) 4.4(2) 4.7(1)
6.1.3.2(4) – 3 choices 6.1.3.2(6) 7.1.5(7) 8.3.2.1(4)
8.3.3.1(5) 8.3.3.6(1) 8.3.4.2(2) – 2 choices A.1.3(1)
A.1.4(1) A.1.6.1(1) – 3 choices A.1.6.1(2) – 2 choices A.1.6.2(1)
A.1.6.3(1) A.1.6.3(2) A.1.7(1) – 2 choices A.1.8.1(1)
A.1.8.2.2(2) A.1.8.2.3(2) A.1.8.3(1) A.1.8.3(3)
A.1.8.3(4) A.1.8.4(2) A.1.8.4(4) – 3 choices A.2.3(1)
A.2.4(1) A.2.7.1(1) – 3 choices A.2.7.3.6(1) A.2.7.4.1(1) – 2 choices
A.2.7.4.3(1) A.2.7.4.5(1) A.2.7.4.6(1) – 2 choices A.2.7.5.1(1)
A.2.7.5.3(1) A.2.7.5.4(1) – 2 choices A.2.7.6.1(1) A.2.7.6.4(1)
A.2.7.10(5) – 2 choices A.2.7.10(9) A.2.8(1) – 3 choices A.2.9.1(1)
A.2.9.3.1(5) A.2.9.3.3(1) A.2.9.3.3(3) A.2.9.3.3(4)
A.2.9.4.1(1) – 2 choices A.2.9.4.2.1(3) A.2.9.4.2.2(4) A.2.9.4.2.2(5)
A.2.9.4.2.3(1) A.2.9.4.2.3(2) A.2.9.4.2.4(2) – 2 choices A.2.9.4.2.4(4)
A.2.9.5(1) A.2.10(1) A.2.11.1(9) A.2.11.4.5(3)
A.2.11.4.7(1) B.2(1) B.4(2) B.5(1)
B.6(1) B.6(2) B.7(1) B.8(1)
C.3.1(5) C.3.4.2(3) D.4.1(1) E.4(4)
G.2(1) G.3.1(6) G.3.3.2(1) G.3.3.2(2)
G.3.4(2) G.3.4(3) G.6(2) G.7.1.2(2)
G.7.1.3(2) G.7.3.2(2) G.7.4.2(1) G.7.5.1(1)
G.7.5.2(1) – 2 choices
National choice is allowed in EN 1990 on the application of the following informative annexes:
Annex B Annex C Annex D Annex E
Annex F Annex H
The National Annex can contain, directly or by reference, non-contradictory complementary
information for ease of implementation, provided it does not alter any provisions of the Eurocodes.
SIST EN 1990:2023
1 Scope
1.1 Scope of EN 1990
(1) This document establishes principles and requirements for the safety, serviceability, robustness
and durability of structures, including geotechnical structures, appropriate to the consequences of
failure.
(2) This document is intended to be used in conjunction with the other Eurocodes for the design of
buildings and civil engineering works, including temporary structures.
(3) This document describes the basis for structural and geotechnical design and verification
according to the limit state principle.
(4) The verification methods in this document are based primarily on the partial factor method.
NOTE 1 Alternative methods are given in the other Eurocodes for specific applications.
NOTE 2 The Annexes to this document also provide general guidance concerning the use of alternative
methods.
(5) This document is also applicable for:
— structural assessment of existing structures;
— developing the design of repairs, improvements and alterations;
— assessing changes of use.
NOTE Additional or amended provisions can be necessary.
(6) This document is applicable for the design of structures where materials or actions outside the
scope of EN 1991 (all parts) to EN 1999 (all parts) are involved.
NOTE In this case, additional or amended provisions can be necessary.
1.2 Assumptions
(1) It is assumed that reasonable skill and care appropriate to the circumstances is exercised in the
design, based on the knowledge and good practice generally available at the time the structure is
designed.
(2) It is assumed that the design of the structure is made by appropriately qualified and experienced
personnel.
(3) The design rules provided in the Eurocodes assume that:
— execution will be carried out by personnel having appropriate skill and experience;
— adequate control and supervision will be provided during design and execution of the works,
whether in factories, plants, or on site;
— construction materials and products will be used in accordance with the Eurocodes, in the
relevant product and execution standards, and project specifications;
— the structure will be adequately maintained;
— the structure will be used in accordance with the design assumptions.
NOTE Guidance on management measures to satisfy the assumptions for design and execution is given in
Annex B.
SIST EN 1990:2023
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments)
applies.
NOTE See the Bibliography for a list of other documents cited that are not normative references, including
those referenced as recommendations (i.e. in ‘should’ clauses), permissions (‘may’ clauses), possibilities ('can'
clauses), and in notes.
EN 1337-3, Structural bearings - Part 3: Elastomeric bearings
EN 1991 (all parts), Eurocode 1: Actions on structures
EN 1991-2:— , Eurocode 1: Actions on structures - Part 2: Traffic loads on bridges and other civil
engineering works
EN 1992 (all parts), Eurocode 2: Design of concrete structures
EN 1993 (all parts), Eurocode 3: Design of steel structures
EN 1994 (all parts), Eurocode 4: Design of composite steel and concrete structure
EN 1995 (all parts), Eurocode 5: Design of timber structures
EN 1996 (all parts), Eurocode 6: Design of masonry structures
EN 1997 (all parts), Eurocode 7: Geotechnical design
EN 1998 (all parts), Eurocode 8: Design of structures for earthquake resistance
EN 1999 (all parts), Eurocode 9: Design of aluminium structures
3 Terms, definitions and symbols
3.1 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
3.1.1 Common terms used in the Eurocodes
3.1.1.1
construction works
everything that is constructed or results from construction operations
Note 1 to entry: The term covers both buildings and civil engineering works. It refers to the complete
construction works comprising structural members, geotechnical elements and elements other than structural.

Under preparation. Stage at the time of publication: prEN 1991-2:2021.
SIST EN 1990:2023
3.1.1.2
structure
part of the construction works that provides stability, resistance, and rigidity, to meet the safety,
serviceability and durability requirements
Note 1 to entry: This definition includes structures that comprise one member or a combination of connected
members.
3.1.1.3
structural member
physically distinguishable part of a structure, e.g. column, beam, plate, foundation
3.1.1.4
structural or geotechnical model
physical, mathematical, or numerical idealization of the structural or geotechnical system used for the
purposes of analysis, design, and verification
3.1.1.5
ground
soil, rock and fill existing in place prior to the execution of construction works
[SOURCE: ISO 6707-1:2020, 3.4.2.1]
3.1.1.6
geotechnical structure
structure that includes ground or a structural member that relies on the ground for resistance
3.1.1.7
elements other than structural
completion and finishing elements connected with the structure that are not classified as structural
members and that have the lowest consequence of failure
Note 1 to entry: See 4.3 for the classification of consequences of failure.
EXAMPLE Roofing; surfacing and coverings; partitions and linings; kerbs; wall cladding; suspended ceilings;
thermal insulation; bridge furniture, road surfacing; services fixed permanently to, or within, the structure such
as equipment for lifts and moving stairways; heating, ventilating and air conditioning equipment; electrical
equipment; pipes; cable trunking and conduits.
3.1.1.8
execution
all activities carried out for the physical completion of the work including procurement, the inspection
and documentation thereof
Note 1 to entry: The term covers work on site; it can also signify the fabrication of parts off site and their
subsequent erection on site.
3.1.1.9
quality
degree to which a set of inherent characteristics of an object fulfils requirements
Note 1 to entry: The term “quality” can be used with adjectives such as poor, good or excellent.
Note 2 to entry: “Inherent”, as opposed to “assigned”, means existing in the object.
[SOURCE: EN ISO 9000:2015, 3.6.2]
SIST EN 1990:2023
3.1.2 Terms relating to design
3.1.2.1
design criteria
quantitative formulations describing the conditions to be fulfilled for each limit state
3.1.2.2
design situation
physical conditions expected to occur during a certain time period for which it is to be demonstrated,
with sufficient reliability, that relevant limit states are not exceeded
3.1.2.3
persistent design situation
normal condition of use or exposure of the structure
Note 1 to entry: The duration of a persistent design situation is of the same order as the design service life of
the structure.
3.1.2.4
transient design situation
temporary conditions of use or exposure of the structure that are relevant during a period much
shorter than the design service life of the structure
Note 1 to entry: A transient design situation refers to temporary conditions of the structure, of use, or
exposure, e.g. during construction or repair.
3.1.2.5
fundamental design situation
design situation that is either a persistent or a transient design situation
3.1.2.6
accidental design situation
design situation in which the structure is subjected to exceptional events or exposure
Note 1 to entry: Caused by events such as fire, explosion, impact or local failure.
3.1.2.7
seismic design situation
design situation in which the structure is subjected to a seismic event
3.1.2.8
fatigue design situation
design situation where fatigue actions may cause fatigue failure
Note 1 to entry: For some materials, a distinction applies between low and high cycle fatigue. The other
Eurocodes give guidance, where relevant.
3.1.2.9
verification case
classification of load cases for fundamental design situations in ultimate limit states, for which a set of
partial factors is defined
3.1.2.10
fire design
design of a structure to fulfil the required performance in case of fire
SIST EN 1990:2023
3.1.2.11
design service life
assumed period for which a structure or part of it is to be used for its intended purpose with
anticipated maintenance but without major repair being necessary
3.1.2.12
load arrangement
identification of the position, magnitude, and direction of a free action
3.1.2.13
load case
compatible load arrangements, deformations and geometrical imperfections considered, where
relevant, for verification of a specific limit state
3.1.2.14
limit state
state beyond which the structure no longer satisfies the relevant design criteria
3.1.2.15
ultimate limit state
ULS
state associated with collapse or other forms of structural failure
3.1.2.16
serviceability limit state
SLS
state that corresponds to conditions beyond which specified service requirements for a structure or
structural member are no longer met
3.1.2.17
irreversible serviceability limit state
serviceability limit state in which effects of actions remain when the actions are removed
3.1.2.18
reversible serviceability limit state
serviceability limit state in which the effects of actions do not remain when the actions are removed
3.1.2.19
serviceability criterion
performance criterion for a serviceability limit state
3.1.2.20
resistance
capacity of a structure, or a part of it, to withstand actions without failure
3.1.2.21
strength
mechanical property of a material indicating its ability to resist actions, usually given in units of stress
3.1.2.22
fatigue
damaging process caused by cyclic actions or actions inducing cyclic effects that may culminate in
failure
SIST EN 1990:2023
3.1.2.23
excessive deformation
deformation that exceeds limits to such an extent that the structure can be considered to have reached
an ultimate limit state
3.1.2.24
structural reliability
ability of a structure or a structural member to fulfil the specified requirements during the service life
for which it has been designed
Note 1 to entry: Reliability covers safety, serviceability and durability of a structure.
3.1.2.25
reliability differentiation
measures intended for the socio-economic optimization of the resources to be used to execute
construction works, taking into account all the expected consequences of failure and the cost of the
construction works
3.1.2.26
basic variable
variable representing a physical quantity that characterizes actions and environmental influences,
geometrical quantities, and material properties, including ground properties
3.1.2.27
maintenance
set of activities performed during the service life of the structure so that it fulfils the requirements for
reliability
Note 1 to entry: Activities to restore the structure after an accidental or seismic event are normally outside the
scope of maintenance.
3.1.2.28
repair
activities, beyond the definition of maintenance, performed to preserve or to restore the function of a
structure
3.1.2.29
nominal value
value fixed on a non-statistical basis; for instance, on acquired experience or on physical conditions
3.1.2.30
robustness
ability of a structure to withstand unforeseen adverse events without being damaged to an extent
disproportionate to the original cause
3.1.2.31
durability
ability of a structure or structural member to satisfy, with planned maintenance, its design
performance requirements over the design service life
3.1.2.32
sustainability
ability to minimize the adverse impact of the construction works on non-renewable resources in the
environment, on society, and on economy during their entire life cycle
SIST EN 1990:2023
3.1.2.33
consequence class
categorization of the consequences of structural failure in terms of loss of human lives or personal
injury and of economic, social, or environmental losses
3.1.2.34
gross human error
error resulting from ignorance or oversight that causes a change in the behaviour or a reduction in
reliability of the structure that are unacceptable
3.1.3 Terms relating to actions
3.1.3.1
action
F
mechanical influence on a structure, or a structural member, exerted directly or indirectly from its
environment
3.1.3.2
direct action
set of forces, or loads, applied to the structure
3.1.3.3
indirect action
set of imposed deformations or accelerations
EXAMPLE Imposed deformations or accelerations caused by temperature changes, moisture variation,
uneven settlement or earthquakes.
3.1.3.4
effect of actions
E
action-effect
resulting effect, on a structural member or on the whole structure, from the application of actions
EXAMPLE Internal forces, moments, stresses, strains, deflections, and rotations.
3.1.3.5
permanent action
G
action that is likely to act throughout the design service life and for which any variation in magnitude
is either small, compared with the mean value, or monotonic; i.e. it either only increases or decreases,
until it reaches a limit value
3.1.3.6
variable action
Q
action that is likely to occur during the design service life for which the variation in magnitude with
time is neither negligible nor monotonic
3.1.3.7
fatigue action
F
fat
cyclic action or action inducing cyclic effects that can cause fatigue
--
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...

The standard EN 1990:2023, known as the Eurocode for the Basis of Structural and Geotechnical Design, presents a comprehensive framework for the safety, serviceability, robustness, and durability of structures, encompassing both structural and geotechnical elements. The primary strength of this document lies in its ability to establish clear principles and requirements that ensure structures are designed with their potential failure consequences in mind. The scope of EN 1990:2023 is significant as it provides fundamental guidelines applicable to a wide range of engineering practices, including the design of buildings, civil engineering works, and temporary structures. Its integration with other Eurocodes enhances its applicability across various project types, while ensuring a standardized approach to structural and geotechnical design. A notable feature of the standard is its reliance on the limit state principle for design and verification, utilizing the partial factor method as the main verification strategy. This method provides a practical approach to addressing uncertainties in structural design, allowing for more reliable and safer constructions. Furthermore, the standard accommodates alternative methods listed in other Eurocodes, adding flexibility for specific applications. The document also extends its scope to cover the assessment of existing structures and guides the development of design repairs, improvements, and alterations. This aspect is essential for maintaining infrastructure and adapting to changing usage requirements. Additionally, it emphasizes the need for amendments or additional provisions when dealing with materials or actions beyond the confines of the specified Eurocode sections. EN 1990:2023 sets forth essential assumptions regarding the competence and conditions under which design must be performed. It underscores the necessity for skilled personnel and adequate supervision during both design and execution phases, as well as the importance of maintaining structures aligned with the original design assumptions. Such guidance is critical for maintaining overall structural integrity. In conclusion, EN 1990:2023 represents a vital component of structural and geotechnical design standards, providing a rigorous basis for ensuring safety and durability. Its comprehensive scope and clear principles make it a cornerstone for engineers and designers, reinforcing the importance of adherence to established norms and practices within the construction industry.

La norme EN 1990:2023, intitulée "Eurocode - Base de conception structurelle et géotechnique", constitue un document fondamental dans le domaine de l'ingénierie civile et de la construction. Son objectif principal est d'établir des principes et des exigences relatifs à la sécurité, la durabilité, la robustesse et le service des structures, y compris les structures géotechniques, en tenant compte des conséquences potentielles d'un échec. L'importance de cette norme réside dans son intégration harmonieuse avec les autres Eurocodes, facilitant ainsi la conception de bâtiments et d'ouvrages de génie civil, y compris les structures temporaires. Cela permet d'assurer une approche cohérente et unifiée, essentielle pour la validité des projets de construction. Un des points forts de l'EN 1990:2023 est son fondement sur le principe de l'état limite. Ce cadre conceptuel permet une vérification rigoureuse des conceptions structurelles et géotechniques, garantissant que les structures répondront aux critères nécessaires de sécurité et de fonctionnalité. La méthode des facteurs partiels qui est principalement utilisée pour la vérification dans ce document est un atout considérable, car elle permet de gérer les incertitudes dans les matériaux et les charges appliquées. De plus, le fait que des méthodes alternatives soient mentionnées dans les autres Eurocodes, allant des applications spécifiques, montre une flexibilité appréciable dans le processus de conception et de vérification. La norme se révèle également pertinente pour l'évaluation structurelle des constructions existantes, ce qui en fait un outil précieux pour le développement de réparations, d'améliorations et d'altérations. Cela est particulièrement convaincant dans un contexte où la durabilité et l'optimisation des ressources existantes sont essentielles. Enfin, l’EN 1990:2023 stipule que le calcul doit être effectué par du personnel qualifié, ce qui garantit que les conceptions reposent sur les meilleures pratiques disponibles. Cela protège non seulement l'intégrité des structures, mais également la sécurité des utilisateurs finaux. En résumé, la norme EN 1990:2023 représente une avancée significative dans les principes de conception structurelle et géotechnique, offrant un cadre fiable et bien défini qui s'intègre harmonieusement dans le corpus plus large des Eurocodes. Sa portée, ses méthodes de vérification robustes et sa flexibilité en font un atout indiscutable pour les ingénieurs et les concepteurs d'aujourd'hui.

この標準文書「EN 1990:2023 (Eurocode - Basis of structural and geotechnical design)」は、構造物および地盤工学の設計に関する基礎を提供するものであり、その適用範囲は非常に広い。この文書は、構造物の安全性、使用性、堅牢性、耐久性に関する原則と要求を確立しており、特に故障の結果に応じた適切な設計を行うための指針を提供している。 この標準の強みは、他のEurocodeと組み合わせて使用することにより、建物や土木工事、さらには一時的な構造物の設計に対応できる点にある。また、限界状態原則に基づく構造および地盤工学の設計と検証の基盤を説明しており、部分係数法に基づく検証方法を主に採用している。特定の適用に対しては、他のEurocodeで代替方法が提供されており、附属書でも代替方法の使用に関する一般的なガイダンスが示されていることも重要である。 さらに、この標準は既存構造物の構造評価や、修理、改善、改造の設計の開発、使用変更の評価にも適用可能であり、設計の状況に応じて追加または修正された規定が必要となることも考慮されている。また、EN 1991からEN 1999にかけての範囲外の材料や作用が関与する構造物の設計にも適用できる柔軟性を持っている。 設計に関する仮定としては、設計時に利用可能な知識や良好な実践を基にした合理的な技術と注意が必要であること、適切な資格と経験を持つ専門家によって設計が行われることが前提とされている。また、実行は適切な技術と経験を持つ者によって行われ、十分な管理と監視が設計および作業の実行中に提供されることが求められている。これにより、構造物の安全性と信頼性が一層高まる。 「EN 1990:2023」は、構造および地盤工学の設計に不可欠な基盤を提供するものであり、その実用性と信頼性は、建設業界において極めて重要な資源となっている。

SIST EN 1990:2023 문서는 구조 및 지반 설계의 기초를 설정하며, 안전성, 서비스성, 견고성 및 내구성에 대한 원칙과 요구사항을 제시합니다. 이 표준은 구조물의 실패에 따른 결과를 고려하여 설계 됩니다. 특히, 임시 구조물을 포함한 건축물 및 토목 공사의 설계에 다른 유로코드와 함께 사용될 수 있도록 고안되었습니다. 이 표준의 강점 중 하나는 제한 상태 원칙에 따라 구조 및 지반 설계와 검증의 기초를 설명하고 있다는 점입니다. 검증 방법은 주로 부분 계수 방법에 기반하고 있으며, 이는 구조물이 안전하게 설계될 수 있도록 도와줍니다. 또한, Annexes에서는 특정 응용에 대한 대체 방법이 제공되어 보다 다양한 설계 상황에 적응할 수 있습니다. SIST EN 1990:2023은 기존 구조물의 구조적 평가, 수리 및 개선의 설계 개발, 용도 변경의 평가에도 적용 가능하여 그 범위가 넓고 유연합니다. 이러한 적용 가능성은 다양한 구조물과 건축 환경에 맞춰 요구 사항을 조정할 수 있도록 경량화된 설계를 제공합니다. 이 표준은 또한 EN 1991부터 EN 1999까지의 범위를 넘어서는 재료나 작용이 포함된 구조물의 설계에도 적용될 수 있으며, 이 경우 추가 조항이 필요할 수 있음을 명시하고 있습니다. 이는 건축가와 엔지니어가 프로젝트의 특수성을 고려하여 다양한 설계 옵션을 탐색할 수 있는 기회를 제공합니다. 결론적으로, SIST EN 1990:2023은 구조물의 설계와 검증에 있어 현대 건축 요구 사항을 충족하기 위한 필수적인 토대이며, 안전하고 효율적인 건축물을 창출하기 위한 중요한 가이드라인을 제공합니다.

Die Norm SIST EN 1990:2023, die auch als Eurocode – Basis der strukturellen und geotechnischen Planung bekannt ist, stellt eine grundlegende Richtlinie für die Sicherheits-, Betriebs- und Dauerhaftigkeitsanforderungen von Bauwerken, einschließlich geotechnischer Strukturen, dar. Mit einem klaren Fokus auf die Konsequenzen von Versagen wird die Norm im Rahmen der Eurocodes verwendet, die für die Planung von Gebäuden und Ingenieurbauten, ebenso wie für temporäre Strukturen, unerlässlich sind. Ein herausragendes Merkmal dieser Norm ist die Festlegung der Grundlagen für das strukturelle und geotechnische Design sowie die Überprüfung gemäß dem Grenzzustandsprinzip. Der vorherrschende Ansatz zur Überprüfung basiert auf dem partiellen Faktorverfahren, was die Anwendung in der praktischen Planung erheblich vereinfacht. Die Norm enthält zudem Alternative Methoden in anderen Eurocodes für spezifische Anwendungen und bietet in den Anhängen allgemeine Hinweise zur Nutzung dieser alternativen Verfahren. Besonders hervorzuheben ist die Anwendbarkeit der Norm auf bestehende Bauwerke, die Planung von Reparaturen, Verbesserungen und Änderungen sowie die Bewertung von Nutzungsänderungen. Dies zeigt die Flexibilität und Relevanz der Norm, die auch zusätzliche oder geänderte Bestimmungen in speziellen Fällen einbeziehen kann. Zu den Annahmen der Norm gehört, dass eine angemessene Fachkenntnis und Sorgfalt in der Planung erwartet werden, und dass diese von qualifiziertem und erfahrenem Personal durchgeführt wird. Auch die Durchführung und Kontrolle der Bauarbeiten müssen von kompetentem Personal erfolgen, was einen hohen Standard in der Bauausführunggrundlage darstellt. Des Weiteren wird betont, dass Baustoffe und Produkte gemäß den Eurocodes sowie den einschlägigen Normen und Projektspezifikationen verwendet werden müssen. Insgesamt bietet die Norm SIST EN 1990:2023 einen umfassenden Rahmen für das strukturelle und geotechnische Design, der sicherstellt, dass alle relevanten Aspekte des Bausystems und der Bauausführung berücksichtigt werden, was sie zu einem unverzichtbaren Dokument für Fachleute im Bauwesen macht.