Eurocode 1 - Actions on structures - Part 1-8: Actions from waves and currents on coastal structures

1.1      Scope of EN 1991 1 8
(1) EN 1991 1 8 gives principles and rules to determine the values of wave and current actions on structures and civil engineering works in the coastal zone, i.e. works connected to, or in close vicinity to the shore.
NOTE 1   Provisions in EN 1991 1 8 are limited to hydrodynamic actions that can be directly quantified in terms of wave and/or current induced pressures and associated forces and moments on structures or structural parts.
NOTE 2   As opposed to offshore conditions, waves or currents in the coastal zone are generally affected by the presence of the seabed or shore.
NOTE 3   The coastal zone is typically defined as the area between the shoreline and the deep-water limit.
(2) EN 1991 1 8 describes the principles for defining the hydrodynamic conditions to be used for design, including sea water levels.
(3) EN 1991 1 8 addresses specifically actions from currents and waves on the following structure types:
—   cylindrical structures;
—   subsea pipelines;
—   suspended decks;
—   vertical face structures;
—   permanently moored floating structures.
NOTE 1   Additional guidance can be needed for:
—   moored structures in the coastal zone for renewable energy production or related to oil and gas production or processing;
—   moored structures spanning areas with variable wave and current states (e.g. floating aquaculture farms or floating bridges).
NOTE 2   For hydraulic pressures caused by quasi-static water levels, and ground water, see EN 1997 (all parts).
(4) Actions addressed in EN 1991 1 8 do not cover:
—   hydraulic resonance in sheltered areas or basins (phenomena also known as harbour resonance);
—   translation waves, e.g. tsunamis;
—   waves and currents induced by maritime operations, i.e. vessel wake, berthing and mooring;
—   hydrodynamic actions induced by earthquakes;
—   ice-induced pressures and forces;
—   coastal structures where flood risk and/or erosion or sediment management is the dominant function.
1.2      Assumptions
(1) The assumptions given in EN 1990 apply to this document.
(2) In addition, it is assumed that actions from waves and currents on coastal structures are determined by personnel appropriately qualified and experienced in the following fields:
a)   physical coastal environment including physics of waves and currents, statistical properties and propagation of such;
b)   marine hydrodynamics, wave and current interaction with structures in general and wave and current actions on structures in the coastal zone including i) fixed structures, and ii) floating structures;
c)   advanced methods including probabilistic methodology and physical model testing.

Eurocode 1 - Einwirkungen auf Tragwerke - Teil 1-8: Einwirkungen infolge von Wellen und Strömungen auf Küstenbauwerke

1.1   Anwendungsbereich von EN 1991 1 8
(1) EN 1991 1 8 enthält Grundsätze und Regeln zum Bestimmen der Werte von Wellen  und Strömungseinwirkungen auf Bauwerke und Ingenieurbauwerke im Küstengebiet, d. h. Bauten in Verbindung mit der oder in unmittelbarer Nähe zur Küste.
ANMERKUNG 1   Die in EN 1991 1 8 angegebenen Bestimmungen sind auf hydrodynamische Einwirkungen begrenzt, die direkt in Bezug auf wellen  und/oder strömungsinduzierte Drücke sowie zugehörige auf Tragwerke oder Bauwerksteile einwirkende Kräfte und Momente quantifiziert werden können.
ANMERKUNG 2   Im Gegensatz zu Bedingungen auf offener See werden Wellen oder Strömungen im Küstengebiet im Allgemeinen durch das Vorhandensein von Meeresboden oder Küste beeinflusst.
ANMERKUNG 3   Das Küstengebiet wird üblicherweise als der Bereich zwischen der Küstenlinie und der Tiefwassergrenze definiert.
(2) EN 1991 1 8 beschreibt die Grundsätze zum Definieren der für die Bemessung zu verwendenden hydrodynamischen Bedingungen, einschließlich Meeresspiegel.
(3) EN 1991 1 8 behandelt insbesondere Einwirkungen infolge Strömungen und Wellen auf die folgenden Tragwerkstypen:
   zylindrische Bauwerke;
   Unterwasser-Rohrleitungen;
   Hängedecks;
   Bauwerke mit vertikaler Fläche;
   dauerhaft festgemachte schwimmende Bauwerke.
ANMERKUNG 1   Zusätzliche Hinweise können erforderlich sein für:
   festgemachte Bauwerke im Küstengebiet für die Erzeugung von erneuerbarer Energie oder in Bezug auf die Förderung oder Verarbeitung von Öl und Gas;
   festgemachte Bauwerke, die Flächen mit veränderlichen Wellen  und Strömungszuständen (z. B. schwimmende Aquakulturanlagen oder schwimmende Brücken) überspannen.
ANMERKUNG 2   Zu Wasserdrücken infolge quasi-statischer Wasserstände und Grundwasser siehe EN 1997 (alle Teile).
(4) Die in EN 1991 1 8 behandelten Einwirkungen decken Folgendes nicht ab:
   hydraulische Resonanz in geschützten Bereichen oder Becken (auch als Hafenresonanz bekannte Erscheinungen);
   Translationswellen, z. B. Tsunamis;
   Wellen und Strömungen infolge Seeverkehr, d. h. Nachstrom, Anlegen und Festmachen von Wasserfahrzeugen;
   hydrodynamische Einwirkungen infolge Erdbeben;
   Drücke und Kräfte infolge Eisbildung;
   Küstenbauwerke, bei denen der Umgang mit Überflutungsrisiken und/oder das Erosions  oder Sedimentmanagement die überwiegende Funktion darstellt.
1.2   Voraussetzungen
(1) Für dieses Dokument gelten die Voraussetzungen nach EN 1990.
(2) Darüber hinaus wird vorausgesetzt, dass Einwirkungen auf Küstenbauwerke infolge Wellen und Strömung durch Personal bestimmt werden, das angemessen erfahren und qualifiziert ist auf den folgenden Gebieten:
a)   physikalische Küstenumgebung einschließlich Physik von Wellen und Strömungen, statistische Eigenschaften und deren Ausbreitung;
b)   Hydrodynamik des Meeres, Wellen  und Strömungsinteraktionen mit Bauwerken im Allgemeinen sowie Wellen  und Strömungseinwirkungen auf Bauwerke in Küstengebieten einschließlich i) fester Bauwerke und ii) schwimmender Bauwerke;
c)   erweiterte Verfahren, einschließlich wahrscheinlichkeitsbasierter Methodik und physikalischer Modellprüfungen.

Eurocode 1 - Actions sur les structures - Partie 1-8 : Actions des vagues et des courants sur les structures côtières

Evrokod 1 - Vplivi na konstrukcije - 1-8. del: Vplivi valov in tokov na obalne konstrukcije

General Information

Status
Not Published
Publication Date
17-Mar-2026
Current Stage
6055 - CEN Ratification completed (DOR) - Publishing
Start Date
28-Dec-2025
Due Date
14-Aug-2024
Completion Date
28-Dec-2025

Overview

FprEN 1991-1-8 (Eurocode 1 - Actions from waves and currents on coastal structures) sets out principles and rules to determine wave and current actions (hydrodynamic pressures, forces and moments) on civil engineering works in the coastal zone. The standard applies to structures connected to or close to the shore and focuses on effects that can be directly quantified from waves and currents. It defines hydrodynamic conditions for design, including sea water levels, and covers design approaches and representative values of loads for coastal engineering.

Key Topics

  • Scope and limits: addresses hydrodynamic actions only; explicitly excludes harbour resonance, tsunamis, vessel-wake/berthing loads, earthquake-induced hydrodynamics, ice loads and flood/erosion-dominant coastal works.
  • Structure types covered: cylindrical structures, subsea pipelines, suspended decks, vertical-faced structures, permanently moored floating structures - with additional guidance noted for moored renewable-energy or aquaculture systems.
  • Design approaches: semi‑probabilistic, reliability‑based, risk‑informed decision-making and design assisted by physical model testing.
  • Metocean conditions: guidance on metocean data, design water levels (tides, surges), wave transformation, spectral wave description, wave kinematics, current profiles and extreme value analysis for design-event probabilities.
  • Action modelling: classification of wave/current actions, calculation of characteristic, combination, frequent and quasi‑permanent values; specific combination rules for waves, currents and wind (marginal and joint deep‑sea extremes methods).
  • Hydrodynamic phenomena: breaking and non‑breaking wave forces, slamming, wave overtopping, vortex‑induced vibration (VIV) of pipelines, dynamic amplification, seabed scour at cylindrical members and mound breakwater actions.
  • Assumptions on expertise: intended to be applied by personnel qualified in coastal physics, marine hydrodynamics and advanced probabilistic/physical testing methods.

Applications

  • Design and verification of coastal defence structures, breakwaters, quay walls and vertical-faced structures against wave and current loads.
  • Sizing and risk assessment for subsea pipelines and slender cylindrical members subject to currents and wave impact.
  • Design of moored floating structures and suspended decks where coastal wave/current interactions are critical.
  • Engineering studies using wave transformation, extreme value statistics and physical model testing to establish design load cases and serviceability/ultimate limit checks.

Who should use this standard

  • Coastal, ocean and structural engineers, geotechnical practitioners, hydraulic modelers, and consultants working on shore protection, port and marine infrastructure.
  • Project managers and regulators seeking consistency with Eurocode-based hydrodynamic load assessment.

Related standards

  • EN 1990 (Basis of structural design) - assumptions and reliability principles apply.
  • EN 1997 (Geotechnical design) - for hydraulic pressures from quasi‑static water levels and groundwater.

Keywords: Eurocode 1, FprEN 1991-1-8, waves and currents, coastal structures, hydrodynamic actions, metocean, wave transformation, extreme value analysis.

Frequently Asked Questions

EN 1991-1-8:2026 is a draft published by the European Committee for Standardization (CEN). Its full title is "Eurocode 1 - Actions on structures - Part 1-8: Actions from waves and currents on coastal structures". This standard covers: 1.1 Scope of EN 1991 1 8 (1) EN 1991 1 8 gives principles and rules to determine the values of wave and current actions on structures and civil engineering works in the coastal zone, i.e. works connected to, or in close vicinity to the shore. NOTE 1 Provisions in EN 1991 1 8 are limited to hydrodynamic actions that can be directly quantified in terms of wave and/or current induced pressures and associated forces and moments on structures or structural parts. NOTE 2 As opposed to offshore conditions, waves or currents in the coastal zone are generally affected by the presence of the seabed or shore. NOTE 3 The coastal zone is typically defined as the area between the shoreline and the deep-water limit. (2) EN 1991 1 8 describes the principles for defining the hydrodynamic conditions to be used for design, including sea water levels. (3) EN 1991 1 8 addresses specifically actions from currents and waves on the following structure types: — cylindrical structures; — subsea pipelines; — suspended decks; — vertical face structures; — permanently moored floating structures. NOTE 1 Additional guidance can be needed for: — moored structures in the coastal zone for renewable energy production or related to oil and gas production or processing; — moored structures spanning areas with variable wave and current states (e.g. floating aquaculture farms or floating bridges). NOTE 2 For hydraulic pressures caused by quasi-static water levels, and ground water, see EN 1997 (all parts). (4) Actions addressed in EN 1991 1 8 do not cover: — hydraulic resonance in sheltered areas or basins (phenomena also known as harbour resonance); — translation waves, e.g. tsunamis; — waves and currents induced by maritime operations, i.e. vessel wake, berthing and mooring; — hydrodynamic actions induced by earthquakes; — ice-induced pressures and forces; — coastal structures where flood risk and/or erosion or sediment management is the dominant function. 1.2 Assumptions (1) The assumptions given in EN 1990 apply to this document. (2) In addition, it is assumed that actions from waves and currents on coastal structures are determined by personnel appropriately qualified and experienced in the following fields: a) physical coastal environment including physics of waves and currents, statistical properties and propagation of such; b) marine hydrodynamics, wave and current interaction with structures in general and wave and current actions on structures in the coastal zone including i) fixed structures, and ii) floating structures; c) advanced methods including probabilistic methodology and physical model testing.

1.1 Scope of EN 1991 1 8 (1) EN 1991 1 8 gives principles and rules to determine the values of wave and current actions on structures and civil engineering works in the coastal zone, i.e. works connected to, or in close vicinity to the shore. NOTE 1 Provisions in EN 1991 1 8 are limited to hydrodynamic actions that can be directly quantified in terms of wave and/or current induced pressures and associated forces and moments on structures or structural parts. NOTE 2 As opposed to offshore conditions, waves or currents in the coastal zone are generally affected by the presence of the seabed or shore. NOTE 3 The coastal zone is typically defined as the area between the shoreline and the deep-water limit. (2) EN 1991 1 8 describes the principles for defining the hydrodynamic conditions to be used for design, including sea water levels. (3) EN 1991 1 8 addresses specifically actions from currents and waves on the following structure types: — cylindrical structures; — subsea pipelines; — suspended decks; — vertical face structures; — permanently moored floating structures. NOTE 1 Additional guidance can be needed for: — moored structures in the coastal zone for renewable energy production or related to oil and gas production or processing; — moored structures spanning areas with variable wave and current states (e.g. floating aquaculture farms or floating bridges). NOTE 2 For hydraulic pressures caused by quasi-static water levels, and ground water, see EN 1997 (all parts). (4) Actions addressed in EN 1991 1 8 do not cover: — hydraulic resonance in sheltered areas or basins (phenomena also known as harbour resonance); — translation waves, e.g. tsunamis; — waves and currents induced by maritime operations, i.e. vessel wake, berthing and mooring; — hydrodynamic actions induced by earthquakes; — ice-induced pressures and forces; — coastal structures where flood risk and/or erosion or sediment management is the dominant function. 1.2 Assumptions (1) The assumptions given in EN 1990 apply to this document. (2) In addition, it is assumed that actions from waves and currents on coastal structures are determined by personnel appropriately qualified and experienced in the following fields: a) physical coastal environment including physics of waves and currents, statistical properties and propagation of such; b) marine hydrodynamics, wave and current interaction with structures in general and wave and current actions on structures in the coastal zone including i) fixed structures, and ii) floating structures; c) advanced methods including probabilistic methodology and physical model testing.

EN 1991-1-8:2026 is classified under the following ICS (International Classification for Standards) categories: 91.010.30 - Technical aspects. The ICS classification helps identify the subject area and facilitates finding related standards.

EN 1991-1-8:2026 is associated with the following European legislation: EU Directives/Regulations: 305/2011; Standardization Mandates: M/515. When a standard is cited in the Official Journal of the European Union, products manufactured in conformity with it benefit from a presumption of conformity with the essential requirements of the corresponding EU directive or regulation.

You can purchase EN 1991-1-8:2026 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of CEN standards.

Standards Content (Sample)


SLOVENSKI STANDARD
oSIST prEN 1991-1-8:2024
01-junij-2024
Evrokod 1 - Vplivi na konstrukcije - 1-8. del: Vplivi valov in tokov na obalne
konstrukcije
Eurocode 1 - Actions on structures - Part 1-8: Actions from waves and currents on
coastal structures
Eurocode 1 - Einwirkungen auf Tragwerke - Teil 1-8: Einwirkungen durch Wellen und
Strömungen auf Küstenbauwerke
Eurocode 1 - Actions sur les structures - Partie 1-8 : Actions des vagues et des courants
sur les structures côtières
Ta slovenski standard je istoveten z: prEN 1991-1-8
ICS:
91.010.30 Tehnični vidiki Technical aspects
oSIST prEN 1991-1-8:2024 en,fr,de
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

oSIST prEN 1991-1-8:2024
oSIST prEN 1991-1-8:2024
DRAFT
EUROPEAN STANDARD
prEN 1991-1-8
NORME EUROPÉENNE
EUROPÄISCHE NORM
March 2024
ICS 91.010.30
English Version
Eurocode 1 - Actions on structures - Part 1-8: Actions from
waves and currents on coastal structures
Eurocode 1 - Actions sur les structures - Partie 1-8 : Eurocode 1 - Einwirkungen auf Tragwerke - Teil 1-8:
Actions des vagues et des courants sur les structures Allgemeine Einwirkungen - Einwirkungen durch
côtières Wellen und Strömungen auf Küstenbauwerke
This draft European Standard is submitted to CEN members for enquiry. It has been drawn up by the Technical Committee
CEN/TC 250.
If this draft becomes a European Standard, CEN members are bound to comply with the CEN/CENELEC Internal Regulations
which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

This draft European Standard was established by CEN in three official versions (English, French, German). A version in any other
language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC
Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and
United Kingdom.
Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are
aware and to provide supporting documentation.

Warning : This document is not a European Standard. It is distributed for review and comments. It is subject to change without
notice and shall not be referred to as a European Standard.

EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION

EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2024 CEN All rights of exploitation in any form and by any means reserved Ref. No. prEN 1991-1-8:2024 E
worldwide for CEN national Members.

oSIST prEN 1991-1-8:2024
prEN 1991-1-8:2024 (E)
Contents
European foreword . 10
Introduction . 11
1 Scope . 14
1.1 Scope of EN 1991-1-8 . 14
1.2 Assumptions . 15
2 Normative references . 15
3 Terms, definitions and symbols . 16
3.1 Terms and definitions . 16
3.1.1 Terms relating to physical environment and environmental processes. 16
3.1.2 Terms relating to analysis of metocean parameters . 19
3.1.3 Terms relating to statistical metocean parameters . 22
3.1.4 Terms relating to metocean effects in interaction with structures . 27
3.1.5 Terms relating to coastal structures . 30
3.2 Symbols and abbreviations . 33
3.2.1 Latin upper-case letters . 33
3.2.2 Latin lower-case letters . 36
3.2.3 Greek upper-case letters . 37
3.2.4 Greek lower-case letters . 37
4 Basis of wave and current action assessment . 39
4.1 General. 39
4.2 Design approaches . 39
4.2.1 General. 39
4.2.2 Semi-probabilistic design approach . 39
4.2.3 Reliability-based design approach . 39
4.2.4 Risk-informed decision-making design approach . 40
4.2.5 Design assisted by physical testing . 40
4.3 Action modelling . 40
4.3.1 Classification of actions from waves and currents . 40
4.3.2 Metocean parameters. 40
4.3.3 General methods for the assessment of the hydrodynamic loads . 41
4.4 Design situations . 41
4.5 Geometrical parameters . 42
4.6 Hydrodynamic estimate approaches . 43
4.7 Representative values of hydrodynamic loads . 45
4.7.1 General. 45
4.7.2 Characteristic value . 47
4.7.3 Combination value . 47
4.7.4 Frequent value . 47
4.7.5 Quasi-permanent value . 48
4.8 Design value and importance factor . 48
4.9 Specific combinations rules for metocean parameters . 49
4.9.1 General provisions . 49
4.9.2 Combination rules using marginal distributions of the metocean parameters
(marginal deep-sea extremes method) . 50
4.9.3 Combination rules using joint distributions of the metocean parameters (joint deep-
sea extremes method) . 50
4.9.4 Specific combination rules between waves, currents and wind . 51
4.10 Accidental metocean events . 52
oSIST prEN 1991-1-8:2024
prEN 1991-1-8:2024 (E)
5 Hydrodynamic conditions . 53
5.1 General . 53
5.1.1 Metocean design description . 53
5.1.2 Metocean data . 53
5.1.3 Wave and current interactions with structures . 53
5.2 Design event probability and extreme values analysis . 54
5.2.1 General . 54
5.2.2 Extreme value analysis . 55
5.3 Water levels . 56
5.3.1 Design water level . 56
5.3.2 Water level measurements . 56
5.3.3 Tides . 56
5.3.4 Surges . 57
5.4 Waves . 57
5.4.1 General . 57
5.4.2 Wave set-up . 58
5.4.3 Frequency and directional distribution of waves . 58
5.4.4 Spectral wave description . 58
5.4.5 Storm-representative wave parameters . 59
5.4.6 Wave data sources . 59
5.4.7 Wave transformation . 60
5.4.8 Wave data for extreme value analysis . 61
5.4.9 Nearshore wave processes . 61
5.4.10 Regular wave theories . 62
5.4.11 Wave shape and kinematics . 62
5.4.12 Long waves . 64
5.5 Currents . 65
5.5.1 General . 65
5.5.2 Current data sources . 65
5.5.3 Current velocity and profile . 66
5.6 Climate change . 66
6 Wave and current actions on fixed cylindrical structures and suspended decks . 67
6.1 General . 67
6.1.1 Applications . 67
6.1.2 Principles for assessing actions from waves and currents . 68
6.1.3 Conditions for disregarding actions from waves and currents . 69
6.1.4 Current actions . 69
6.1.5 Wave and current actions on cylinders from non- breaking waves . 70
6.1.6 Wave and current actions from breaking waves . 72
6.1.7 Slamming actions from waves . 72
6.1.8 Wave actions on small diameter pipelines . 72
6.1.9 Current and wave induced vibrations . 72
6.1.10 Seabed scour at cylinders due to waves and currents . 72
6.2 Current actions on slender structures . 72
6.3 Wave Actions on slender bodies . 73
6.3.1 Wave actions on single slender cylinder . 73
6.3.2 Wave actions on clusters of circular cylinders . 75
6.4 Wave Actions on large volume bodies . 75
6.5 Wave Impact and slamming actions . 76
6.5.1 Wave slamming on slender structures . 76
6.5.2 Wave in deck forces and air gap . 76
6.5.3 Dynamic amplification and vibrations . 76
oSIST prEN 1991-1-8:2024
prEN 1991-1-8:2024 (E)
6.6 Wave actions on pipelines and subsea structures . 76
6.7 Vortex induced vibration (VIV) of pipelines . 77
7 Wave and current actions on mound breakwaters . 77
7.1 Introduction and structure types . 77
7.2 Design approach for wave and current actions on mound breakwaters . 78
7.2.1 General. 78
7.2.2 Return periods for the verification of serviceability limit states . 79
7.2.3 Return periods for the verification of ultimate limit states . 81
7.3 Wave and current actions . 83
7.3.1 General. 83
7.3.2 Wave action on the seaward slope . 83
7.3.3 Wave actions on the seaward toe . 83
7.3.4 Wave overtopping. 84
7.3.5 Wave action on the rear armour slope. 84
7.3.6 Wave action on geotechnical member . 84
7.3.7 Wave actions on roundheads . 85
7.3.8 Wave action on breakwater crest and crown walls. 85
7.3.9 Wave and current action on filter layers and underlayers . 86
7.3.10 Wave action related to stresses in armour units. 86
7.3.11 Wave and current actions related to local seabed scour . 86
8 Wave and current actions on vertical face breakwaters . 86
8.1 Introduction and structure types . 86
8.2 Design approach for wave and current actions on vertical face breakwaters . 87
8.3 Hydrodynamic loads due to waves and currents . 88
8.3.1 Types of wave actions . 88
8.3.2 Wave pressure, uplift, and buoyancy . 88
8.3.3 Wave overtopping. 89
8.3.4 Effect of wave action on geotechnical failure . 89
8.3.5 Wave and current actions related to local seabed scour . 89
9 Wave and current actions on composite breakwaters . 89
9.1 Introduction and structure types . 89
9.2 Design approach for wave and current actions on composite breakwaters . 90
9.3 Wave and current actions on vertical-composite breakwaters . 90
9.3.1 Main types of wave action . 90
9.3.2 Wave overtopping. 91
9.3.3 Wave action on mound filter layers . 91
9.3.4 Wave action on prefabricated armour units . 91
9.3.5 Effect of wave action on geotechnical failure . 91
9.3.6 Wave and current actions at the vertical face toe . 91
9.3.7 Wave and current actions on the seaward toe of the mound . 91
9.4 Wave and current actions on horizontal-composite breakwaters . 92
9.4.1 Main types of wave action . 92
9.4.2 Wave overtopping. 92
9.4.3 Effect of wave action on geotechnical failure . 92
9.4.4 Wave action on roundheads . 92
9.4.5 Wave action on breakwater crest . 92
9.4.6 Wave action on filter layers . 92
9.4.7 Wave action related to stresses in armour units. 93
9.4.8 Wave and current actions related to local seabed scour . 93
10 Wave and current actions on coastal embankments . 94
10.1 Introduction and structure types . 94
oSIST prEN 1991-1-8:2024
prEN 1991-1-8:2024 (E)
10.2 Design approach of wave and current actions on coastal embankments . 94
10.3 Revetments . 95
10.3.1 Type of wave and current actions . 95
10.3.2 Wave action on seaward slope . 95
10.3.3 Wave action on seaward toe . 96
10.3.4 Wave overtopping . 96
10.3.5 Effect of wave action on geotechnical failure . 96
10.3.6 Wave and current actions related to local seabed scour . 96
10.4 Seawalls . 96
10.4.1 Types of wave and current actions . 96
10.4.2 Wave reflection . 97
10.4.3 Wave actions on seaward toe . 97
10.4.4 Wave overtopping . 97
10.4.5 Wave-induced forces . 97
10.4.6 Seabed scour due to waves and currents . 98
11 Wave and current actions on floating structures . 98
11.1 Definitions and types of floating structures . 98
11.2 Wave actions on floating structures . 101
11.2.1 General . 101
11.2.2 Analytical approach . 101
11.2.3 Numerical modelling approach . 102
11.2.4 Physical modelling approach . 103
11.3 Current actions on floating structures . 103
11.4 Physical modelling approach . 104
12 Wave and current action assessment assisted by physical model testing . 104
12.1 General . 104
12.2 Purposes of testing . 104
12.3 Organization of a physical model study . 105
12.4 Physical model concept and layout . 105
12.4.1 Input data . 105
12.4.2 Contents of the modelling methodology (test plan) . 107
12.4.3 Scaling laws and model scale . 108
12.4.4 Choice of a facility . 109
12.4.5 Model layout . 110
12.4.6 Construction of the model: bathymetry and tested structure . 111
12.4.7 Measurement equipment . 112
12.4.8 Installation and calibration of the instrumentation . 113
12.4.9 Validation of input conditions . 113
12.5 Model testing . 114
12.5.1 General . 114
12.5.2 Wave and current generation procedure . 114
12.5.3 Data acquisition and processing . 115
12.5.4 Analysis of hydraulic measurements . 115
12.5.5 Analysis of wave overtopping . 116
12.5.6 Assessment of stability of rubble mound structures . 116
12.5.7 Analysis of pressure and load measurements . 116
12.5.8 Assessment of floating structures motions and of forces on mooring equipment . 117
12.6 Reporting of test results . 117
12.7 Miscellaneous . 117
12.7.1 Inherent model uncertainty and model setup effects . 117
12.7.2 Minimizing model scale effects . 118
12.7.3 Instrument accuracy . 118
oSIST prEN 1991-1-8:2024
prEN 1991-1-8:2024 (E)
13 Wave and current actions in reliability analysis . 118
13.1 Introduction . 118
13.2 Probability models for wave and current actions on coastal structures . 119
13.3 Extrapolation of exceedance probability . 120
13.4 Target reliability . 120
13.5 Resilience . 121
Annex A (informative) Additional guidance on environmental sea conditions . 122
A.1 Use of this annex . 122
A.2 Scope and field of application . 122
A.3 Water levels . 122
A.3.1 Tide levels . 122
A.3.2 Design water levels . 122
A.4 Waves . 123
A.4.1 Short-term wave condition . 123
A.4.2 Wave climate (long-term) statistics . 128
A.4.3 Extreme wave statistics . 129
A.4.4 Wave kinematics . 131
A.4.5 Wave transformations . 133
A.5 Currents . 133
A.5.1 General. 133
A.5.2 Stretching of current to wave surface . 134
A.5.3 Numerical simulation of current flows – current hindcast . 136
A.5.4 Current properties . 136
Annex B (informative) Additional guidance for fixed cylindrical structures and suspended
decks . 138
B.1 Use of this annex . 138
B.2 Scope and field of application . 138
B.3 Classification. 138
B.4 Principles of design . 139
B.4.1 General. 139
B.4.2 Storm-representative wave approach . 140
B.5 Wave and current actions on structures . 141
B.5.1 General. 141
B.5.2 Waves and current actions on slender structures . 141
B.5.3 Waves actions on large volume bodies . 148
B.6 Seabed scour at cylinders due to waves and currents . 150
B.7 Clusters of cylinders . 150
B.8 Long-crested and short-crested wave action . 151
B.9 Wave impact and slamming actions . 151
B.9.1 General. 151
B.9.2 Slamming actions on vertical and inclined cylinders on uniformly sloping or
horizontal bottoms . 152
B.9.3 Wave actions, including slamming actions, on vertical cylinders on reefs and shoals
................................................................................................................................................................ 154
B.9.4 Wave-in-deck forces . 154
B.9.5 Air gap calculations and recommendations . 156
B.9.6 Dynamic amplification and vibrations . 157
B.10 Subsea pipelines . 158
B.11 Vortex induced vibration of pipelines . 160
B.12 Tools to support design . 161
B.12.1 Numerical models . 161
B.12.2 Model tests . 162
oSIST prEN 1991-1-8:2024
prEN 1991-1-8:2024 (E)
Annex C (informative) Additional guidance for mound breakwaters . 163
C.1 Use of this annex . 163
C.2 Scope and field of application . 163
C.3 Conventional mound breakwaters . 164
C.3.1 Failure modes . 164
C.3.2 Fault tree . 165
C.3.3 Design approaches and formulae . 167
C.3.4 Wave action on the seaward rock-armoured slope . 169
C.3.5 Wave action on the seaward slope of artificial units . 169
C.3.6 Wave actions on the seaward toe. 169
C.3.7 Wave run-up and wave overtopping . 170
C.3.8 Wave action on the rear armour slope . 170
C.3.9 Wave actions on roundheads . 171
C.3.10 Wave action on crown walls . 171
C.3.11 Local seabed and underlayers erosion . 171
C.4 Berm breakwaters . 172
C.4.1 Introduction . 172
C.4.2 Failure modes . 172
C.4.3 Fault tree . 173
C.4.4 Design approach and formulae . 173
C.4.5 Wave action on the seaward face . 173
C.4.6 Rear side stability . 173
C.4.7 Stability and reshaping of the berm breakwater head . 174
C.4.8 Wave overtopping . 174
C.4.9 Abrasion and crushing of stones . 174
C.4.10 Local scour and scour protection . 175
C.5 Low-crested and submerged mound breakwaters . 175
C.5.1 Failure modes . 175
C.5.2 Fault tree . 175
C.5.3 Design approach and formulae . 175
C.5.4 Wave action on the seaward rock-armoured slope . 175
C.5.5 Wave action on the crest and rear armour slope . 176
C.5.6 Wave overtopping in low-crested mound breakwaters . 176
C.5.7 Wave transmission . 176
C.6 Qualitative cumulative damage assessment of mound breakwaters loaded by waves
and currents . 176
Annex D (informative) Additional guidance for vertical face and composite breakwaters
................................................................................................................................................................ 178
D.1 Use of this annex . 178
D.2 Scope and field of application .
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...

Le document FprEN 1991-1-8, intitulé "Eurocode 1 - Actions sur structures - Partie 1-8 : Actions des vagues et des courants sur les structures côtières", présente une portée importante sur la conception et l’évaluation des actions hydrodynamiques sur du génie civil situé en zone côtière. Ce standard établit des principes et des règles essentielles pour déterminer les valeurs des actions des vagues et des courants, en se concentrant spécifiquement sur les structures à proximité immédiate du littoral. L'un des principaux atouts de cette norme réside dans sa capacité à offrir un cadre adapté à différents types de structures, notamment les structures cylindriques, les pipelines sous-marins, les ponts suspendus, les structures à face verticale, et les structures flottantes amarrées en permanence. Cette variété met en évidence la pertinence du standard pour les ingénieurs et les concepteurs travaillant dans des environnements côtiers, où les forces exercées par les vagues et les courants peuvent avoir des impacts significatifs sur l'intégrité des constructions. Le standard prend également en compte les caractéristiques spécifiques de l'environnement côtier, en soulignant que les vagues ou les courants dans cette zone sont généralement influencés par la présence du fond marin ou du rivage. De plus, EN 1991-1-8 aborde des questions cruciales telles que la définition des conditions hydrodynamiques nécessaires au design, y compris les niveaux d'eau de mer. Cela garantit que les projets soient conçus avec une connaissance approfondie des enjeux locaux. Cependant, il est important de noter que la norme ne couvre pas certains phénomènes comme la résonance hydraulique dans les zones abritées ni les vagues et courants induits par les opérations maritimes, ce qui pourrait nécessiter un complément d'expertise en fonction des projets spécifiques. Les hypothèses formulées dans ce document, qui s'appuient sur les principes énoncés dans EN 1990, offrent également une base solide pour s'assurer que les actions des vagues et des courants sont évaluées par des professionnels qualifiés. En somme, le standard FprEN 1991-1-8 est un outil essentiel pour les professionnels du génie civil et de la construction côtière, car il leur permet de répondre aux défis spécifiques de la conception face aux actions hydrodynamiques dans la zone côtière. Sa portée étendue et ses principes clairement articulés font de ce document une référence pertinente pour l’ingénierie des structures côtières, contribuant ainsi à la sécurité et à la durabilité des travaux dans ces environnements délicats.

표준 EN 1991-1-8은 해안 구조물에 대한 파동 및 해류의 영향을 평가하는 데 필요한 기본 원칙과 규칙을 제공하는 중요한 문서입니다. 이 표준의 범위는 해안 지역, 즉 해안 근처와 연결된 구조물 및 토목 공사에 적용됩니다. 해안지대에서 발생하는 수압 및 힘과 모멘트를 직접 양적 평가할 수 있는 수력학적 작용에 한정되어 있다는 점이 특징입니다. 이러한 명확한 범위 설정은 사용자가 특정한 상황에서 요구되는 조치를 이해하고 이를 기반으로 설계를 진행할 수 있도록 돕습니다. EN 1991-1-8은 구조물의 설계를 위한 수력학적 조건을 정의하는 원칙을 설명하며, 해수면 수준을 포함한 설계 요소들을 철저히 분석합니다. 특히 원통형 구조물, 해저 파이프라인, 매달린 갑판, 수직 면 구조물, 그리고 영구 부표형 구조물 등 다양한 구조물 유형에 대한 파동과 해류의 작용을 다루고 있습니다. 이 점은 해양 환경에서의 안전성과 안정성을 확보하는 데 중요한 역할을 합니다. 이 표준은 해양 구조물이 직면할 수 있는 여러 복잡한 해양 환경을 고려하여, 선박이 일으키는 파장이나 항구 공전, 지진에 의한 수력학적 작용 등은 다루지 않는다는 점도 주목할 만합니다. 이러한 제한사항은 사용자가 특정 상황에 맞는 정보를 정확히 파악하도록 돕습니다. 또한, 해양 구조물 설계에 필요한 고급 방법론 및 물리적 모델 테스트의 활용을 강조하여, 이 분야에 대한 전문 지식과 경험이 얼마나 중요한지를 부각시키고 있습니다. 결론적으로, EN 1991-1-8 표준은 해안 구조물에 대한 파동 및 해류의 작용을 과학적이고 체계적으로 다루며, 관련 전문가들이 신뢰성 있는 설계를 수행할 수 있도록 필요한 지침을 제공합니다. 이는 해양 구조물을 설계하는 모든 이들에게 필수적으로 참고해야 할 문서입니다.

FprEN 1991-1-8の標準は、沿岸構造物に対する波や流れの作用に関する原則と規則を提供し、特に沿岸ゾーンにおける土木工事に適用されます。この標準は、波や流れに起因する圧力、力、モーメントを直接定量化できる水力学的作用に限定されており、海岸近くの工事に特に焦点を当てています。 この標準の強みは、具体的な構造タイプに対するアプローチを定めている点です。円筒構造、海底パイプライン、吊りデッキ、垂直面構造、常時係留された浮体構造に関する行動を明確に規定しています。これにより、設計者は特有の条件に基づいた信頼性の高い設計が可能となります。また、海水位の変動を考慮した水力学的条件を定義する原則も含まれており、実際の環境に即した信頼性ある計算が行えます。 また、FprEN 1991-1-8は、特定の流れや波の動力学に精通した専門家によって波と流れの作用を評価されることを前提としており、技術的信頼性を高めています。この標準は、ワークフローにおいて期待される水力学的条件の計算に対し、高度な方法論や物理モデル試験を採用することを推奨しており、科学的根拠に基づく設計が促進されます。 さらに、この標準は、特定の制約や除外事項が明示されているため、設計者は注意深く適用範囲を把握することができ、設計の安全性と効果を向上させることが可能です。たとえば、港湾共鳴や津波による影響を除外することにより、具体的なシナリオを考慮した設計が促進されます。 このように、FprEN 1991-1-8は、沿岸構造物における波と流れの作用に対する理解を深め、設計基準としての重要性を示しています。これは特に沿岸開発や再生可能エネルギーの分野において、持続可能な infrastructureの構築に寄与するものと評価されます。

Die Norm FprEN 1991-1-8 stellt ein wichtiges Regelwerk dar, das die Prinzipien und Regeln zur Bestimmung der Auswirkungen von Wellen und Strömungen auf Bauwerke und Ingenieurbauten in der Küstenzone definiert. Die Norm ist von grundlegender Bedeutung für den modernen Küstenbau, da sie spezifisch auf die hydrodynamischen Bedingungen spezialisiert ist, die in Küstennähe auftreten. Dies unterscheidet sie von anderen Normen, die möglicherweise nicht die besonderen Gegebenheiten der Küstenzone berücksichtigen. Die Stärken der Norm liegen in ihrer detaillierten Herangehensweise zur Definition der hydrodynamischen Bedingungen, die für das Design von Bauwerken unerlässlich sind. Sie behandelt konkret die Auswirkungen von Wellen und Strömungen auf verschiedene Strukturtypen, wie z.B. zylindrische Bauwerke und unterseeische Pipelines. Dies zeigt die Relevanz der Norm für eine Vielzahl von Ingenieuranwendungen, insbesondere in Bezug auf die Konstruktion von Festmachten und schwimmenden Strukturen. Zudem bietet sie wichtige Hinweise zur Berücksichtigung von Energiestrukturen, die in der Küstenzone angesiedelt sind und die die Herausforderungen variabler Wellen- und Strömungsbedingungen bewältigen müssen. Ein zusätzliches Merkmal der Norm FprEN 1991-1-8 ist, dass sie klare Grenzen für die Anwendbarkeit festlegt. Die Norm schließt bestimmte hydrodynamische Effekte wie hydraulische Resonanz in geschützten Bereichen oder Erdbeben-induced aktion aus, was ihre Fokussierung auf die wesentlichen Aspekte der Wellen- und Strömungswirkungen unterstreicht. Dadurch wird sichergestellt, dass die entsprechenden Regelungen für Planer und Ingenieure präzise und gerichtete Anwendungen bieten. Die Annahmen in der Norm erfordern qualifiziertes Personal mit Fachwissen in Bereichen wie der physikalischen Küstenumwelt und der marinen Hydrodynamik. Dies stellt sicher, dass nur erfahrene Fachleute für die Bewertung der Einwirkungen von Wellen und Strömungen auf Küstenstrukturen verantwortlich sind. Insgesamt bietet FprEN 1991-1-8 einen essentiellen Rahmen für die Bewertung und das Design von Küstenbauwerken, was sie zu einem unverzichtbaren Dokument für Ingenieure in diesem spezifischen Bereich macht.

The standard FprEN 1991-1-8, titled "Eurocode 1 - Actions on structures - Part 1-8: Actions from waves and currents on coastal structures," presents a comprehensive framework for engineering professionals working within the coastal zone. Its scope is well-defined, focusing specifically on the principles and rules necessary to quantify wave and current actions on structures and civil engineering works in proximity to shorelines. One of the key strengths of EN 1991-1-8 is its targeted application to various types of structures, including cylindrical structures, subsea pipelines, suspended decks, vertical face structures, and permanently moored floating structures. This specificity ensures that practitioners have clear guidelines that pertain directly to their projects, enhancing the safety and success of coastal engineering initiatives. Additionally, the document underscores the importance of considering the unique hydrodynamic conditions of the coastal zone, which are influenced by the seabed and shoreline's presence. By addressing the nuances of wave and current actions, the standard sets the groundwork for robust design practices. Furthermore, it emphasizes the need for expertise in marine hydrodynamics and related fields, reinforcing the standard's relevance, as it requires that qualified personnel carry out the assessment of actions on coastal structures. While the standard offers substantial guidance, it does clearly delineate the limitations regarding additional phenomena not covered, such as hydraulic resonance, tsunami waves, and ice-induced forces. This clarity is beneficial in directing engineers towards where further research and consultation may be necessary, thereby fostering a more accurate and effective approach to project planning and risk management. Overall, FprEN 1991-1-8 stands as a vital document for professionals involved in the design and assessment of coastal structures, enhancing the understanding of wave and current actions and supporting the development of safe, reliable coastal engineering practices. The standard's focus on detailed hydrodynamic conditions, along with its guidelines for specific structure types, establishes its critical role in the field of civil engineering related to coastal environments.