Railway applications - Strength assessment of rail vehicle structures - Part 2: Static strength assessment

This document specifies a procedure for static strength assessment of rail vehicle structures.
It is part of a series of standards that specifies procedures for strength assessments of structures of rail vehicles that are manufactured, operated and maintained according to standards valid for railway applications.
The assessment procedure of the series is restricted to ferrous materials and aluminium.
This document series does not define design load cases.
This document series is not applicable for corrosive conditions or elevated temperature operation in the creep range.
This series of standards is applicable to all kinds of rail vehicles. However, it does not define in which cases or for which kinds of rail vehicles a static strength assessment is to be undertaken.

Bahnanwendungen - Festigkeitsnachweis von Schienenfahrzeugstrukturen - Teil 2: Statischer Festigkeitsnachweis

Dieses Dokument legt ein Verfahren für den statischen Festigkeitsnachweis für Schienenfahrzeugstrukturen fest.
Es ist Teil einer Normenreihe, die Verfahren zum Festigkeitsnachweis von Schienenfahrzeugstrukturen festlegt, die nach den für Bahnanwendungen geltenden Normen hergestellt, betrieben und instandgehalten werden.
Das Nachweisverfahren der Normenreihe beschränkt sich auf eisenhaltige Werkstoffe und Aluminium.
In dieser Dokumentenreihe werden keine Auslegungslastfälle definiert.
Diese Dokumentenreihe ist nicht anwendbar für Korrosionszustände oder Betrieb bei erhöhter Temperatur im Kriechbereich.
Diese Normenreihe ist für alle Arten von Schienenfahrzeugen anwendbar. Sie legt jedoch nicht fest, in welchen Fällen oder für welche Arten von Schienenfahrzeugen eine statische Festigkeitsbewertung durchzuführen ist.

Applications ferroviaires - Évaluation de la résistance des structures de véhicule ferroviaire - Partie 2 : Évaluation de la résistance statique

Le présent document spécifie la procédure pour évaluer la résistance statique des structures de véhicules ferroviaires.
Il fait partie d'une série de normes qui spécifient les procédures d'évaluation de la résistance des structures de véhicules ferroviaires qui sont fabriquées, exploitées et entretenues conformément aux normes applicables aux applications ferroviaires.
La procédure d'évaluation spécifiée dans cette série de normes se limite aux matériaux ferreux et à l'aluminium.
Cette série de normes ne définit pas de cas de charge de conception.
Cette série de normes ne s'applique pas en cas de conditions corrosives ou d'exploitation à une température élevée dans la plage de fluage.
Cette série de normes s'applique à tous les types de véhicules ferroviaires. Toutefois, elle ne spécifie pas les cas de charge et ne définit pas les cas ou les types de véhicules ferroviaires qui doivent être soumis à une évaluation de la résistance statique.

Železniške naprave - Ocenjevanje odpornosti konstrukcije železniških vozil - 2. del: Ocena statične odpornosti

Ta dokument opisuje postopek za oceno statične odpornosti konstrukcije železniških vozil, ki so izdelana, upravljana in vzdrževana v skladu s standardi za uporabo v železniških sistemih.
Postopek ocenjevanja je omejen na železne materiale in aluminij.
Ta dokument ne opredeljuje primerov konstrukcijske obremenitve.
Ta dokument se ne uporablja za korozivne pogoje ali obratovanje pri povišanih temperaturah v območju lezenja.
Ta dokument se uporablja za vse vrste železniških vozil.

General Information

Status
Published
Publication Date
16-Apr-2024
Current Stage
6060 - Definitive text made available (DAV) - Publishing
Start Date
17-Apr-2024
Due Date
01-May-2023
Completion Date
17-Apr-2024

Overview - EN 17149-2:2024 (Static strength assessment for rail vehicle structures)

EN 17149-2:2024, published by CEN, defines a procedure for the static strength assessment of rail vehicle structures. It is Part 2 of the EN 17149 series and is intended for structures manufactured, operated and maintained to railway standards. The standard covers assessment based on stresses and strains derived from calculation or test and supports both linear elastic and nonlinear elastic–plastic analyses. Key scope limits: it applies only to ferrous materials and aluminium, does not define design load cases, and is not applicable for corrosive environments or elevated-temperature (creep) operation.

Key topics and technical requirements

  • Assessment basis: Uses stresses or strains as the primary acceptance criteria; these may be obtained by calculation or measurement.
  • Analysis types: Procedures for linear elastic analysis and nonlinear elastic–plastic analysis are provided, with corresponding stress, deformation, strain and stability criteria.
  • Equivalent stress methods: Guidance for computing equivalent stresses for ductile (von Mises / Drucker–Prager approaches) and brittle materials (normal stress hypothesis). The standard addresses plane stress as characteristic for surface evaluation.
  • Material models: Support for bilinear, trilinear, multilinear or continuous stress–strain curves; allowance for ideal elastic–plastic behavior and different tensile/compressive proof strengths.
  • Welded joints: Specific treatment of parent material, heat affected zone (HAZ) and weld metal properties; effect of weld throat eccentricity may be discounted for static assessment.
  • Admissible plastic strain: Criteria and limits for exceptional and ultimate design loads are detailed.
  • Partial factors: Sets partial factors for loads, component static strength (including consequence of failure, validation degree, material hardening, casting), and instability to be used in safety evaluations.
  • Exclusions: Does not specify which load cases to use or when an assessment is required for specific vehicle types.

Practical applications and users

  • Used by structural engineers, design offices, testing teams and certification bodies performing static strength verification for rolling stock components (bodies, bogie frames, structural subassemblies).
  • Applicable when documenting compliance of structural components to European railway strength assessment procedures or when validating repairs/modifications.
  • Useful for CFD/FEA analysts implementing linear or nonlinear finite element models for static load checks and for test engineers comparing measured strains/stresses with design criteria.

Related standards

  • EN 17149-1:2024 - Part 1: General (series overview)
  • EN 17149-3 - Part 3: Fatigue strength assessment (under preparation)
  • Normative references cited: EN 12663-1/2, EN 13749, EN 15227, EN 15827, EN 17343, ISO/TR 25901-1.

Keywords: EN 17149-2:2024, static strength assessment, rail vehicle structures, railway applications, ferrous materials, aluminium, linear elastic analysis, nonlinear elastic–plastic analysis, equivalent stress, weld HAZ.

Standard
EN 17149-2:2024
English language
24 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Frequently Asked Questions

EN 17149-2:2024 is a standard published by the European Committee for Standardization (CEN). Its full title is "Railway applications - Strength assessment of rail vehicle structures - Part 2: Static strength assessment". This standard covers: This document specifies a procedure for static strength assessment of rail vehicle structures. It is part of a series of standards that specifies procedures for strength assessments of structures of rail vehicles that are manufactured, operated and maintained according to standards valid for railway applications. The assessment procedure of the series is restricted to ferrous materials and aluminium. This document series does not define design load cases. This document series is not applicable for corrosive conditions or elevated temperature operation in the creep range. This series of standards is applicable to all kinds of rail vehicles. However, it does not define in which cases or for which kinds of rail vehicles a static strength assessment is to be undertaken.

This document specifies a procedure for static strength assessment of rail vehicle structures. It is part of a series of standards that specifies procedures for strength assessments of structures of rail vehicles that are manufactured, operated and maintained according to standards valid for railway applications. The assessment procedure of the series is restricted to ferrous materials and aluminium. This document series does not define design load cases. This document series is not applicable for corrosive conditions or elevated temperature operation in the creep range. This series of standards is applicable to all kinds of rail vehicles. However, it does not define in which cases or for which kinds of rail vehicles a static strength assessment is to be undertaken.

EN 17149-2:2024 is classified under the following ICS (International Classification for Standards) categories: 45.060.01 - Railway rolling stock in general. The ICS classification helps identify the subject area and facilitates finding related standards.

EN 17149-2:2024 is associated with the following European legislation: EU Directives/Regulations: 2008/57/EC; Standardization Mandates: M/483. When a standard is cited in the Official Journal of the European Union, products manufactured in conformity with it benefit from a presumption of conformity with the essential requirements of the corresponding EU directive or regulation.

You can purchase EN 17149-2:2024 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of CEN standards.

Standards Content (Sample)


SLOVENSKI STANDARD
01-junij-2024
Železniške naprave - Ocenjevanje odpornosti konstrukcije železniških vozil - 2.
del: Ocena statične odpornosti
Railway applications - Strength assessment of rail vehicle structures - Part 2: Static
strength assessment
Bahnanwendungen - Festigkeitsnachweis von Schienenfahrzeugstrukturen - Teil 2:
Statischer Festigkeitsnachweis
Applications ferroviaires - Évaluation de la résistance des structures de véhicule
ferroviaire - Partie 2 : Évaluation de la résistance statique
Ta slovenski standard je istoveten z: EN 17149-2:2024
ICS:
45.060.01 Železniška vozila na splošno Railway rolling stock in
general
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

EN 17149-2
EUROPEAN STANDARD
NORME EUROPÉENNE
April 2024
EUROPÄISCHE NORM
ICS 45.060.01
English Version
Railway applications - Strength assessment of rail vehicle
structures - Part 2: Static strength assessment
Applications ferroviaires - Évaluation de la résistance Bahnanwendungen - Festigkeitsnachweis von
des structures de véhicule ferroviaire - Partie 2 : Schienenfahrzeugstrukturen - Teil 2: Statischer
Évaluation de la résistance statique Festigkeitsnachweis
This European Standard was approved by CEN on 27 February 2024.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and
United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION

EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2024 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN 17149-2:2024 E
worldwide for CEN national Members.

Contents Page
European foreword . 4
Introduction . 5
1 Scope . 6
2 Normative references . 6
3 Terms and definitions . 6
4 Stress and strain determination . 7
4.1 General. 7
4.2 Calculation of equivalent stress with linear elastic material behaviour . 7
4.2.1 General. 7
4.2.2 Equivalent stress for ductile materials . 7
4.2.3 Equivalent stress for brittle materials . 8
4.3 Calculation with nonlinear material behaviour . 8
4.3.1 Material models . 8
4.3.2 Equivalent stress . 10
4.3.3 Equivalent plastic strain. 10
4.4 Determination of stresses and strains by test . 10
5 Static strength . 11
5.1 Material properties . 11
5.1.1 General. 11
5.1.2 Parent material . 11
5.1.3 Heat affected zone (HAZ) and weld metal . 12
5.2 Admissible plastic strain . 13
5.2.1 Exceptional design loads . 13
5.2.2 Ultimate design loads . 14
6 Partial factors . 15
6.1 General. 15
6.2 Partial factor for loads γ . 15
L
6.3 Partial factor for the component static strength γ . 15
M
6.3.1 General. 15
6.3.2 Partial factor for the consequence of failure γ . 15
M,S
6.3.3 Partial factor for the degree of the validation process γ . 16
M,V
6.3.4 Partial factor for the material hardening γ . 16
M,T
6.3.5 Partial factor for casting γ . 16
M,G
6.4 Partial factor for instability γ . 17
I
7 Static strength assessment procedure . 17
7.1 General. 17
7.2 Linear elastic analysis . 17
7.2.1 Stress criterion . 17
7.2.2 Deformation criterion . 18
7.2.3 Stability criterion . 19
7.3 Nonlinear elastic-plastic analysis . 19
7.3.1 General . 19
7.3.2 Stress criterion . 19
7.3.3 Strain criterion . 20
7.3.4 Deformation criterion . 20
7.3.5 Stability criterion. 20
Annex A (informative) Additional information for the section factor n . 21
pl,ε
Bibliography . 22

European foreword
This document (EN 17149-2:2024) has been prepared by Technical Committee CEN/TC 256 “'Railway
applications”, the secretariat of which is held by DIN.
This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by October 2024, and conflicting national standards shall
be withdrawn at the latest by October 2024.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
This document is part of the series EN 17149 Railway applications — Strength assessment of rail vehicle
structures, which consists of the following parts:
— Part 1: General
— Part 2: Static strength assessment
The following part is under preparation:
— Part 3: Fatigue strength assessment based on cumulative damage
This document has been prepared under a mandate given to CEN by the European Commission and the
European Free Trade Association.
Any feedback and questions on this document should be directed to the users’ national standards body.
A complete listing of these bodies can be found on the CEN website.
According to the CEN-CENELEC Internal Regulations, the national standards organisations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia,
Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland,
Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North
Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and the United
Kingdom.
Introduction
This document provides procedures and criteria for the static strength assessment based on linear
analysis or nonlinear elastic plastic analysis.
It does not define load cases and does not define in which cases, for which structural components or for
which kinds of rail vehicles a static strength assessment is to be undertaken.

1 Scope
This document specifies a procedure for static strength assessment of rail vehicle structures.
It is part of a series of standards that specifies procedures for strength assessments of structures of rail
vehicles that are manufactured, operated and maintained according to standards valid for railway
applications.
The assessment procedure of the series is restricted to ferrous materials and aluminium.
This document series does not define design load cases.
This document series is not applicable for corrosive conditions or elevated temperature operation in the
creep range.
This series of standards is applicable to all kinds of rail vehicles. However, it does not define in which
cases or for which kinds of rail vehicles a static strength assessment is to be undertaken.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
EN 12663-1:2010+A2:2023, Railway applications — Structural requirements of railway vehicle bodies —
Part 1: Locomotives and passenger rolling stock (and alternative method for freight wagons)
EN 12663-2:2010+A1:2023, Railway applications — Structural requirements of railway vehicle bodies —
Part 2: Freight wagons
EN 13749:2021, Railway applications — Wheelsets and bogies — Method of specifying the structural
requirements of bogie frames
EN 15227:2020, Railway applications — Crashworthiness requirements for rail vehicles
EN 15827:2011, Railway applications — Requirements for bogies and running gears
EN 17149-1:2024, Railway applications — Strength assessment of rail vehicle structures — Part 1: General
EN 17343:2023, Railway applications — General terms and definitions
ISO/TR 25901-1:2016, Welding and allied processes — Vocabulary — Part 1: General terms
3 Terms and definitions
For the purposes of this document, the terms and definitions, symbols and abbreviations given in
ISO/TR 25901-1:2016, EN 17343:2023 and EN 17149-1:2024 apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https://www.iso.org/obp
— IEC Electropedia: available at https://www.electropedia.org/
4 Stress and strain determination
4.1 General
The assessment procedure is based on stresses or strains. These can be derived from calculation or from
measurement during testing.
Stresses and strains may be determined with linear elastic material behaviour or nonlinear material
behaviour.
For the determination of stresses or strains for the static strength assessment of welded joints, the effects
of the weld throat eccentricity e may be discounted.
W
4.2 Calculation of equivalent stress with linear elastic material behaviour
4.2.1 General
For the calculation of equivalent stress, the plane stress tensor on the surface of the component should
be used as characteristic stress value for the static strength assessment. The stress components of the
plane stress tensor are σ , σ , τ with associated principal normal stresses σ , σ .
x y xy 1 2
The equivalent stress shall be determined in dependence of the ductility of the material.
NOTE Ductile material and brittle material are defined in EN 17149-1:2024.
The equivalent stress for ductile materials shall be based on the Von Mises hypothesis (see Formula (3)).
The equivalent stress for brittle materials shall be determined in accordance with the normal stress
hypothesis (see Formula (4) and Formula (5)).
In case of a material with different tensile proof strength and compressive proof strength (e.g. cast
material) 4.2.2 and 4.2.3 may be applied.
The compressive strength factor f is the ratio of the compressive proof strength over the tensile proof
c
strength. This factor accounts for the enhanced strength of cast materials in the case of a compressive
strength condition. The value of f shall be determined by material properties specified in standards or
c
other validated data. In cases where those material properties are not available, the values given in
Table 1 may be applied.
Table 1 — Parameter f
C
Non-cast
Cast
Material group GS GJS, ADI GJL GJM
materials
aluminium
1,0
f
1,0 1,3 2,5 1,5 1,5
C
As a simplified approach, the compressive strength factor for cast material f may be generally set to 1,0.
c
4.2.2 Equivalent stress for ductile materials
The equivalent stress σ for ductile material may be determined according to the Drucker-Prager
eq
hypothesis in accordance with Formula (1).

f −11f +
CC
(1)
σ 3 σσ+
eq H vM
22f f
CC
=
NOTE 1 For f =1,0 Formula (1) results in σσ= .
eq vM
C
σ is the hydrostatic stress. For the plane stress state σ is calculated in accordance with Formula (2).
H H
σσ+
σ = (2)
H
σ is the equivalent stress according to the Von Mises hypothesis. For the plane stress state σ is
vM vM
calculated in accordance with Formula (3).
σ σ−⋅σσ+σ (3)
vM 1 1 2 2
NOTE 2 Formula (1) is also valid for the general three-dimensional stress state by taking the formulae for σ
H
and σ from the technical literature.
vM
For a material where the compressive proof strength is lower than the tensile proof strength (e.g. in case
of stainless steel in hardened condition), the above method may be applied with an appropriate factor for
f but is limited to a plane stress state.
C
4.2.3 Equivalent stress for brittle materials
The equivalent stress σ for brittle materials is determined according to the normal stress hypothesis
eq
in accordance with Formula (4) and Formula (5).
(4)
σ = max σσ, , σ
( )
eq cc1 2 c3
with the principal normal stress adjusted by the compressive strength factor
σ

1,2,3
forσ < 0
 1,2,3
f
σ = (5)
 C
c1,c2,c3

σσ for ≥ 0
1,2,3 1,2,3

NOTE For f =1,0 Formula (4) results in σ = max σσ, , σ .
( )
C eq 1 2 3
4.3 Calculation with nonlinear material behaviour
4.3.1 Material models
The real material behaviour (Figure 1) may be approximated by bi-linear (Figure 2), tri-linear (Figure 3),
multilinear or continuous material models. Hardening effects for strains exceeding the proof strength
may be applied but also the application of an elastic ideal-plastic material law is allowed. Also, different
tensile proof strength and compressive proof strength may be accounted for by an appropriate stress-
strain curve.
Depending on the material model, the limit for the elastic behaviour represented by the proof strength
R can be either the upper yield strength R or the 0,2 % proof strength R as defined in
p eH p0,2
EN ISO 6892-1.
NOTE [1] and [2] give hints about the definition of the material law for the nonlinear stress strain calculation.
=
Key
1 true stress strain behaviour
2 engineering stress strain behaviour
Figure 1 — Real material behaviour a) without distinctive yield strength
b) with distinctive yield strength

Key
1 true stress strain behaviour
2 bi-linear approximation
Figure 2 — Bi-linear material model a) without distinctive yield strength
b) with distinctive yield strength
Key
1 true stress strain behaviour
2 tri-linear approximation
Figure 3 — Tri-linear material model a) without distinctive yield strength
b) with distinctive yield strength
4.3.2 Equivalent stress
The calculation of equivalent stress with nonlinear material behaviour follows the procedure for linear
elastic material behaviour given in 4.2.
4.3.3 Equivalent plastic strain
The equivalent plastic strain is generally calculated according to the Von Mises hypothesis and may be
determined following the technical literature or by applying Formula (6).
2 2 2 2 2 2
ε ε++εε+ ε+ε+ε (6)
( ) ( )
p,eq p,x p,y p,z p,xy p,yz p,xz
4.4 Determination of stresses and strains by test
The stresses and strains determined by testing shall be obtained from measured strains on the
component resulting from the application of the test loads. Residual stresses present prior to the
application of the test load, resulting from the manufacturing process may be discounted.
Depending on the kind of assessment procedure (see Clause 7), the stresses shall be determined from
measured strains with linear elastic material behaviour or nonlinear material models as given in 4.3.1.
=
5 Static strength
5.1 Material properties
5.1.1 General
The material properties for the static strength assessment of the parent material and welded joints under
the application temperature within the range given in the material specification are described in 5.1. If
the scope of the application is exceeded, an assessment method shall be chosen which accounts for the
specific application.
NOTE 1 As an example, FKM Guideline [33] gives guidance for higher temperatures.
The material properties shall comply with the component strength values based on a survival probability
of P = 97,5 %. Strength values taken from material standards fulfil these requirements.
S
In accordance with 7.1, at welded joints the assessment is required for the weld metal, the heat affected
zone (HAZ) and the adjacent parent material considering the width of the HAZ. The relevant thickness
and the strength values for each area to be used for the strength assessment are given in Table 2.
NOTE 2 The definition of the heat affected zone (HAZ) is given in ISO/TR 25901-1:2016, 2.1.2.2.
Table 2 — Relevant thickness and strength values
Strength values R , R , A
Area Relevant thickness
p m
Parent material Plate thickness Strength values of the parent material
Minimum of the parent material and the
Heat-affected zone Plate thickness in the heat-affected
a
HAZ zone
HAZ
Minimum of the parent material, the
Weld metal Effective throat thickness a
a b
HAZ and the weld metal
a
If the permanent elongation at rupture A for the HAZ is not available, the value for the parent material may be
applied.
b
Welding results in mixing of the weld metal with the parent material. Therefore, the effective strength value of a
weld can be higher than the minimum value of the weld metal, parent material or heat-affected zone. Higher
strength values for the heat-affected zone may be used if this is demonstrated, e. g. with tensile strength tests.

5.1.2 Parent material
Material properties shall be valid for the assessment location.
If the strength properties of semi-finished products consider the original wall thickness, the influence of
the component size is generally covered.
NOTE Semi-finished products can have significantly varying strength properties over their cross section.
Anisotropy effects due to manufacturing processes are addressed by the anisotropy factor f . For rolled
A
sheets and extrusions an anisotropy factor f shall be considered in the direction transverse to the main
A
direction of rolling in accordance with Table 3, unless this is already considered or explicitly excluded in
the material standard or component specification.
Table 3 — Anisotropy factor f for steel and aluminium
A
Material R f
m,N A
[N/mm ]
Rolled steel ≤ 600 0,9
> 600 ≤ 900 0,86
Rolled sheets and extrusions of aluminium ≤ 200 1,0
> 200 ≤ 400 0,95
> 400 ≤ 600 0,9
All other material applications  1,0
Heat-affected zone  1,0
The static material strength values of parent material for the static strength assessment are given in
Formula (7) and Formula (8).
R fR⋅ (7)
m A m,N
R fR⋅ (8)
p A p,N
5.1.3 Heat affected zone (HAZ) and weld metal
The material properties for the static strength assessment of the weld metal and the heat-affected zone
shall be derived from appropriate standards, material specifications, weld process specifications (see
EN 15085 series) or tech
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...

SIST EN 17149-2:2024 표준은 철도 차량 구조의 정적 강도 평가를 위한 절차를 규정한 문서로서, 철도 애플리케이션에 대한 유효한 표준에 따라 제조, 운영 및 유지보수되는 철도 차량 구조의 강도 평가 절차를 설정하는 일련의 표준의 일부입니다. 이 표준의 주요 범위는 철강 및 알루미늄과 같은 금속 재료에 국한되어 있으며, 다양한 철도 차량의 모든 형태에 적용될 수 있습니다. 이 표준의 강점 중 하나는 명확한 정적 강도 평가 절차를 제공함으로써, 철도 차량의 구조적 안전성을 높이고, 이를 통해 운전자의 안전과 승객의 편의를 보장할 수 있다는 점입니다. 또한, 이 문서는 강도 평가 과정에서 고려해야 할 특정 설계 하중 케이스를 정의하지 않기 때문에, 사용자가 자신의 특정 요구 사항에 따라 맞춤형으로 적용할 수 있는 유연성을 제공합니다. 그러나 SIST EN 17149-2:2024 표준은 부식 조건이나 고온 작동에서의 크리프 범위를 다루지 않기 때문에, 이러한 특정 조건에서 운용되는 철도 차량의 구조물에 대한 강도 평가를 별도로 고려해야 할 필요가 있습니다. 따라서 이 표준은 여러 환경에서의 적용 가능성을 높이고, 다양한 철도 차량에 대한 신뢰성을 강화하는 데 기여할 수 있습니다. 결론적으로, SIST EN 17149-2:2024 표준은 철도 차량 구조의 정적 강도 평가를 위한 기본적인 지침을 제공하며, 철도 분야에서의 강도 평가 방법론 확립에 중요한 역할을 하고 있습니다. 이 표준은 철도 안전성 및 효율성을 높이는 데 필수적인 도구로, 업계 전반에 걸쳐 유용하게 활용될 수 있습니다.

標準EN 17149-2:2024は、鉄道用車両構造の静的強度評価に関する手続きを定めた文書であり、鉄道アプリケーションに関連する基準を遵守して製造、運用、維持管理される鉄道車両の構造物に対する強度評価のための系列基準の一部です。この標準は、鉄鋼素材およびアルミニウムに限定された強度評価手続きを明確にしています。 この標準の強みとして、明確な手続きが提供されることにより、鉄道車両の構造安全性を確保するための基準が整備されている点が挙げられます。また、この文書は、鉄道車両の静的強度評価の手続きを一貫して適用できる基盤を提供しているため、設計者やエンジニアはさまざまな種類の鉄道車両に対して統一された方法で評価を実施できます。 ただし、この文書は設計荷重ケースを定義せず、腐食条件やクリープ範囲における高温操作に関しては適用されません。この点は、特定の環境条件下での評価において制約があることを示しています。したがって、使用される材料や環境条件に沿った評価手法を選択する際には、十分な注意が必要です。 EN 17149-2:2024は、鉄道用の全ての種類の車両に適用可能であり、様々な設計ニーズに対応できる柔軟性がありますが、どの車両に対して静的強度評価を実施すべきかについてのガイダンスが含まれていないため、現場での判断が必要となります。この標準は、鉄道車両の安全性と性能を向上させるための重要なツールであり、鉄道業界の専門家にとって欠かせない文書です。

Le document SIST EN 17149-2:2024 constitue une avancée significative dans le domaine des applications ferroviaires, spécifiquement axé sur l'évaluation de la résistance statique des structures des véhicules ferroviaires. Ce standard offre une procédure détaillée pour l'évaluation de la résistance statique, garantissant ainsi la sécurité et l'efficacité des véhicules ferroviaires. L'un des principaux atouts de ce standard réside dans sa portée, qui s'applique à tous types de véhicules ferroviaires, en tenant compte des matériaux ferreux et de l'aluminium. Cette inclusivité permet de répondre aux besoins variés du secteur ferroviaire tout en assurant une cohérence dans l'application des critères d'évaluation. Un autre point fort est la clarté des procédures spécifiées pour l'évaluation. Cela aide les concepteurs et les ingénieurs à suivre des directives précises, facilitant ainsi la mise en œuvre d'évaluations de la résistance adaptées aux structures existantes et nouvelles. Toutefois, il est important de noter que ce document ne couvre pas les cas de charges de conception ni les conditions corrosives ou les opérations à température élevée dans la plage de fluage, ce qui limite son application dans certaines situations spécifiques. En matière de pertinence, le document SIST EN 17149-2:2024 est essentiel dans le cadre des normes applicables aux véhicules ferroviaires, en fournissant un cadre robuste pour assurer que les structures répondent aux exigences de sécurité indispensables. En conséquence, il représente une ressource précieuse pour les fabricants, exploitants et mainteneurs de matériel roulant ferroviaire, renforçant ainsi la confiance dans la durabilité et la sécurité des systèmes ferroviaires. En somme, le standard SIST EN 17149-2:2024 est un élément clé pour l'évaluation de la résistance statique des structures des véhicules ferroviaires, apportant des procédures claires et des critères d'évaluation pertinents pour une large gamme d'applications dans le secteur ferroviaire.

The EN 17149-2:2024 standard provides a critical procedure for the static strength assessment of rail vehicle structures, playing a significant role in the railway applications sector. Its scope emphasizes the standardization of assessment procedures specifically for structures constructed from ferrous materials and aluminum, ensuring consistency across various rail vehicles. One of the strengths of this standard is its comprehensive framework within a broader series of documents dedicated to strength assessments of rail vehicles. This interconnectedness allows for a unified approach to the evaluation of structural integrity, enhancing safety and performance in rail transport. The focus on static strength assessment is particularly relevant in terms of ensuring that rail vehicles meet necessary engineering standards under normal operational conditions. The standard does have limitations; it does not specify design load cases or address corrosive conditions and elevated temperature operations in the creep range. This focus on specific parameters may streamline the assessment process but indicates a need for complementary standards when dealing with other operational challenges. Furthermore, while the series is applicable to all rail vehicle types, it intentionally does not dictate the circumstances under which a static strength assessment is required, providing flexibility for manufacturers and operators while implicitly encouraging informed decision-making based on industry best practices. In summary, EN 17149-2:2024 is a vital resource for the railway industry, ensuring rigorous static strength assessments of rail vehicle structures. Its structured approach, along with clear delineations of scope and applicability, reinforces its significance in standardizing safety and performance assessments across diverse rail vehicle applications.

Die Norm EN 17149-2:2024 bietet eine klare und präzise Grundlage für die statische Festigkeitsbewertung von Fahrzeugstrukturen im Schienenverkehr. Sie legt ein Verfahren fest, das es ermöglicht, die strukturelle Integrität von Schienenfahrzeugen zu beurteilen, die gemäß geltenden Normen für Eisenbahnanwendungen hergestellt, betrieben und gewartet werden. Ein wesentlicher Vorteil dieser Norm ist die Fokussierung auf ferromagnetische Materialien und Aluminium, wodurch sichergestellt wird, dass die häufigsten Materialien, die im Schienenfahrzeugbau verwendet werden, abgedeckt sind. Durch diese gezielte Materialauswahl ist eine effektive und zuverlässige Bewertung der statischen Festigkeit möglich. Besonders hervorzuheben ist, dass diese Reihe von Normen für alle Arten von Schienenfahrzeugen anwendbar ist, was ihre Relevanz im Bereich der Bahnanwendungen stärkt. Sie schafft ein gemeinsames Verständnis und eine einheitliche Vorgehensweise bei der Bewertung von Fahrzeugstrukturen, was entscheidend ist, um die Sicherheit und Leistungsfähigkeit der Schienenfahrzeuge zu gewährleisten. Es ist jedoch wichtig zu beachten, dass die Norm keine spezifischen Konstruktionslastfälle definiert und nicht für korrosive Bedingungen oder den Betrieb bei erhöhten Temperaturen im Kriechbereich gilt. Diese Einschränkungen sollten bei der Anwendung der Norm berücksichtigt werden, um sicherzustellen, dass die statische Festigkeitsbewertung unter den richtigen Bedingungen durchgeführt wird. Insgesamt bietet die EN 17149-2:2024 eine solide und relevante Grundlagennorm für die statische Festigkeitsbewertung im Bereich der Schienenfahrzeuge und stellt sicher, dass die hohen Anforderungen an Sicherheit und Zuverlässigkeit erfüllt werden.