Solid recovered fuels - Methods for the determination of the content of major elements (Al, Ca, Fe, K, Mg, Na, P, Si, Ti)

This European Standard specifies three methods of digestion for solid recovered fuels: a) microwave assisted digestion with hydrofluoric, nitric and hydrochloric acid mixture; b) hot water bath digestion of with hydrofluoric, nitric and hydrochloric acid mixture, after ashing of the SRFs sample; c) oven digestion with nitric, perchloric and hydrofluoric acid mixture. Instrumental determination of Si, Al, K, Na, Ca, Mg, Fe, P, and Ti is performed by Inductively Coupled Plasma Spectrometry with optical detection or other suitable spectroscopic techniques such as Flame Atomic Spectroscopy. The effectiveness of the digestion can be verified by qualitative X-ray fluorescence (XRF) analysis on the remaining residue. If necessary an alternative digestion method (among those proposed) needs to be used. XRF can be used for the analysis of Si, Al, K, Na, Ca, Mg, Fe, P, Ti, after ashing (550 °C) of the sample: other elements can be analysed by XRF providing that the concentration levels are above the instrumental detection limits of the XRF instrumentation and after proper preliminary testing. Method a) is recommended for general use, but the amount of the test portion can be very low in case of high concentration of organic matter. Method b) is recommended for SRFs with high organic matter concentration that can be difficult to digest with the other methods. Method c) is recommended for SRFs samples for which the other methods leave a significant insoluble residue. All the listed methods are suitable for the determination of Si, provided that closed containers are used for sample dissolution. XRF is highly recommended for Si, P and Ti analysis.

Feste Sekundärbrennstoffe - Verfahren zur Bestimmung des Gehaltes an Hauptbestandteilen (Al, Ca, Fe, K, Mg, Na, P, Si, Ti)

Diese Europäische Norm legt drei Aufschlussverfahren für feste Sekundärbrennstoffe fest:
a)   Aufschluss mittels Mikrowellengerät mit einem Gemisch aus Fluorwasserstoffsäure, Salpetersäure und Salzsäure;
b)   Aufschluss im Warmwasserbad mit einem Gemisch aus Fluorwasserstoffsäure, Salpetersäure und Salz-säure, nach der Veraschung der SRF-Probe;
c)   Aufschluss im Ofen mit einem Gemisch aus Salpetersäure, Perchlorsäure und Fluorwasserstoffsäure.
Die instrumentelle Bestimmung von Si, Al, K, Na, Ca, Mg, Fe, P und Ti erfolgt durch optische Emissions-spektrometrie mit induktiv gekoppeltem Plasma oder durch ein anderes geeignetes spektrometrisches Verfahren wie z. B. Flammen-Atomabsorptionsspektrometrie.
Die Wirksamkeit des Aufschlusses kann durch qualitative Röntgenfluoreszenzanalyse (RFA) an dem verblie-benen Rückstand verifiziert werden. Falls notwendig, muss ein alternatives Aufschlussverfahren (aus den vorgeschlagenen) eingesetzt werden.
RFA kann für die Analyse von Si, Al, K, Na, Ca, Mg, Fe, P und Ti nach der Veraschung (550 °C) der Probe angewendet werden: Weitere Elemente können mit RFA analysiert werden, vorausgesetzt, dass die Konzen-trationswerte oberhalb der Nachweisgrenzen der Geräte der RFA-Ausrüstung liegen, und nach einer geeig-neten Voruntersuchung.
Verfahren a) wird für die allgemeine Anwendung empfohlen, jedoch kann der Umfang der Prüfmenge im Fall einer hohen Konzentration von organischen Substanzen sehr gering sein. Verfahren b) wird für SRF mit einer hohen Konzentration von organischen Substanzen empfohlen, die mit anderen Verfahren möglicherweise schwer aufzuschließen sind.
Verfahren c) wird für SRF-Proben empfohlen, bei denen nach den anderen Verfahren ein signifikanter unlös-licher Rückstand verbleibt.
Sämtliche aufgeführten Verfahren sind für die Bestimmung von Si geeignet, vorausgesetzt, dass für das Auf-lösen der Proben geschlossene Behälter verwendet werden. RFA ist sehr für die Analyse von Si, P und Ti zu empfehlen.
Alternative Aufschlussverfahren können angewendet werden, wenn deren Leistungsverhalten nachweislich mit dem Leistungsverhalten der in a) bis c) angeführten Verfahren vergleichbar ist (siehe Anhang C).

Combustibles solides de récupération - Méthodes pour la détermination de la teneur en élémentes majeurs (Al, Ca, Fe, K, Mg, Na, P, Si et Ti)

La présente Norme européenne spécifie trois méthodes de digestion des combustibles solides de récupération :
a) la digestion assistée par micro-ondes avec un mélange d’acides fluorhydrique, nitrique et chlorhydrique ;
b) la digestion dans un bain d’eau chaude avec un mélange d’acides fluorhydrique, nitrique et chlorhydrique,
après réduction à l’état de cendre de l’échantillon de combustibles solides de récupération ;
c) la digestion dans un four avec un mélange d’acides nitrique, perchlorique et fluorhydrique.
La détermination par des instruments du Si, de l’Al, du K, du Na, du Ca, du Mg, du Fe, du P et du Ti est effectuée
par la spectrométrie avec plasma couplé par induction avec détection optique ou d’autres techniques
spectroscopiques appropriées telles que la spectroscopie atomique à la flamme.
L’efficacité de la digestion peut être vérifiée par une analyse qualitative par la fluorescence de rayons X (XRF) sur
le résidu restant. Si nécessaire, une autre méthode de digestion (parmi celles proposées) doit être utilisée.
La fluorescence de rayons X peut être utilisée pour l’analyse du Si, de l’Al, du K, du Na, du Ca, du Mg, du Fe, P, Ti,
après réduction à l’état de cendre (550 °C) de l’échantillon : d’autres éléments peuvent être analysés par
fluorescence de rayons X à la condition que les niveaux de concentration soient supérieurs aux limites de la
détection instrumentale par l’instrumentation par fluorescence de rayons X et après les essais préliminaires
appropriés.
La méthode a) est recommandée pour une utilisation générale, mais la quantité de la prise d’essai peut être très
faible dans le cas d’une concentration élevée en matières organiques. La méthode b) est recommandée pour les
combustibles solides de récupération (CSR) présentant une concentration élevée en matières organiques qui peut
être difficile à digérer avec les autres méthodes.
La méthode c) est recommandée pour les échantillons de combustibles solides de récupération pour lesquels les
autres méthodes laissent un résidu insoluble significatif.
Toutes les méthodes énumérées conviennent à la détermination du Si, à condition d’utiliser des récipients fermés
pour la dissolution de l’échantillon. La fluorescence de rayons X est fortement recommandée pour les analyses du
Si, du P et du Ti.
D’autres méthodes de digestion peuvent être appliquées si leur performance s’avère compatible avec celle des
méthodes mentionnées de a) à c). Voir Annexe C).

Trdna alternativna goriva - Metode za določevanje glavnih elementov (Al, Ca, Fe, K, Mg, Na, P, Si, Ti)

Ta evropski standard določa tri metode razklopa trdnih alternativnih goriv: a) razklop z mikrovali z mešanico fluorovodikove, dušikove in klorovodikove kisline; b) razklop v vroči vodni kopeli z mešanico fluorovodikove, dušikove in klorovodikove kisline po žarjenju vzorca trdnega alternativnega goriva; c) razklop v pečici z mešanico dušikove, perklorne in fluorovodikove kisline. Instrumentalno določevanje Si, Al, K, Na, Ca, Mg, Fe, P in Ti se izvaja s spektrometrijo z induktivno sklopljeno plazmo z optično detekcijo ali drugimi ustreznimi spektroskopskimi tehnikami, npr. plamensko atomsko spektroskopijo. Učinkovitost razklopa se lahko preverja s kvalitativno rentgensko fluorescenčno (XRF) analizo ostanka. Po potrebi se mora uporabiti alternativna metoda razklopa (izmed predlaganih). XRF se lahko uporablja za analizo Si, Al, K, Na, Ca, Mg, Fe, P, Ti po žarjenju (550 °C) vzorca: drugi elementi se lahko analizirajo z XRF, če je koncentracija nad mejo zaznavanja instrumenta za XRF, in po ustreznem preliminarnem preskušanju. Metoda a) se priporoča za splošno uporabo, vendar je količina preskusnega odmerka pri visoki koncentraciji organske snovi lahko zelo nizka. Metoda b) se priporoča za trdna alternativna goriva z visoko koncentracijo organske snovi, ki jo je z drugimi metodami težko razklopiti. Metoda c) se priporoča za vzorce trdnih alternativnih goriv, pri katerih druge metode pustijo precejšen netopen ostanek. Vse navedene metode so primerne za določevanje Si, če se za raztapljanje vzorca uporabljajo zaprti vsebniki. XRF se močno priporoča za analizo Si, P in Ti.

General Information

Status
Published
Public Enquiry End Date
14-Apr-2010
Publication Date
09-Oct-2011
Technical Committee
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
13-Sep-2011
Due Date
18-Nov-2011
Completion Date
10-Oct-2011

Relations

Buy Standard

Standard
EN 15410:2011
English language
27 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)

2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.Feste Sekundärbrennstoffe - Verfahren zur Bestimmung des Gehaltes an Hauptbestandteilen (Al, Ca, Fe, K, Mg, Na, P, Si, Ti)Combustibles solides de récupération - Méthodes pour la détermination de la teneur en élémentes majeurs (Al, Ca, Fe, K, Mg, Na, P, Si et Ti)Solid recovered fuels - Methods for the determination of the content of major elements (Al, Ca, Fe, K, Mg, Na, P, Si, Ti)75.160.10Trda gorivaSolid fuelsICS:Ta slovenski standard je istoveten z:EN 15410:2011SIST EN 15410:2011en,de01-november-2011SIST EN 15410:2011SLOVENSKI
STANDARDSIST-TS CEN/TS 15410:20071DGRPHãþD



SIST EN 15410:2011



EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM
EN 15410
September 2011 ICS 75.160.10 Supersedes CEN/TS 15410:2006English Version
Solid recovered fuels - Methods for the determination of the content of major elements (Al, Ca, Fe, K, Mg, Na, P, Si, Ti)
Combustibles solides de récupération - Pour la détermination de la teneur en éléments majeurs (Al, Ca, Fe, K, Mg, Na, P, Si et Ti)
Feste Sekundärbrennstoffe - Verfahren zur Bestimmung des Gehaltes an Hauptbestandteilen (Al, Ca, Fe, K, Mg, Na, P, Si, Ti) This European Standard was approved by CEN on 15 July 2011.
CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG
Management Centre:
Avenue Marnix 17,
B-1000 Brussels © 2011 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members. Ref. No. EN 15410:2011: ESIST EN 15410:2011



EN 15410:2011 (E) 2 Contents Page Foreword .3Introduction .41Scope .52Normative references .53Terms and definitions .64Safety remarks .65Principle .66Apparatus .77Reagents .88Procedure .88.1Sample conservation and pre-treatment .88.2Sample preparation .89Digestion procedure .99.1Method A .99.2Method B .99.3Method C (informative) .910Analysis of the digestion solutions .910.1Preparation of the solution for analysis .910.2Analytical step . 1010.3XRF analysis on ashed samples – sample preparation . 1011Expression of results . 1012Quality control . 1113Performance characteristics . 1114Test report . 11Annex A (normative)
Guidelines - Characteristics of the laboratory sample for chemical analysis of SRF . 12Annex B (informative)
Performance data . 14Annex C (informative)
Major results of ruggedness testing . 23Bibliography . 27
SIST EN 15410:2011



EN 15410:2011 (E) 3 Foreword This document (EN 15410:2011) has been prepared by Technical Committee CEN/TC 343 “Solid Recovered Fuels”, the secretariat of which is held by SFS. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by March 2012, and conflicting national standards shall be withdrawn at the latest by March 2012. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights. This document supersedes CEN/TS 15410:2006. This document differs from CEN/TS 15410:2006 only editorially. According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom. SIST EN 15410:2011



EN 15410:2011 (E) 4 Introduction Accurate determination of trace element content in solid recovered fuels is important for environmental and technical reasons both in the production and combustion stage. The determination of major elements such as Al, Ca, Fe, Mg, P, K, Si, Na and Ti can be helpful to predict the melting behaviour and slagging of the ash. After digestion of the solid recovered fuels using different methods, a number of analytical techniques can be used for the quantification of the trace element content. They include Inductively Coupled Plasma with optical or mass detection, Flame Atomic Spectroscopy, Graphite Furnace Atomic Absorption Spectrometry and X-ray fluorescence spectrometry. X-ray fluorescence allows the simultaneous determination of these elements after ashing of solid recovered fuel (SRF). Direct analysis of the SRF material is not possible by XRF due to the sample inhomogeneity and because suitable certified reference materials for calibration are not available. SIST EN 15410:2011



EN 15410:2011 (E) 5 1 Scope This European Standard specifies three methods of digestion for solid recovered fuels: a) microwave assisted digestion with hydrofluoric, nitric and hydrochloric acid mixture; b) hot water bath digestion of with hydrofluoric, nitric and hydrochloric acid mixture, after ashing of the SRFs sample; c) oven digestion with nitric, perchloric and hydrofluoric acid mixture. Instrumental determination of Si, Al, K, Na, Ca, Mg, Fe, P, and Ti is performed by Inductively Coupled Plasma Spectrometry with optical detection or other suitable spectroscopic techniques such as Flame Atomic Spectroscopy. The effectiveness of the digestion can be verified by qualitative X-ray fluorescence (XRF) analysis on the remaining residue. If necessary, an alternative digestion method (among those proposed) shall be used. XRF can be used for the analysis of Si, Al, K, Na, Ca, Mg, Fe, P, Ti, after ashing (550 °C) of the sample: other elements can be analysed by XRF provided that the concentration levels are above the instrumental detection limits of the XRF instrumentation and after proper preliminary testing. Method a) is recommended for general use, but the amount of the test portion can be very low in case of high concentration of organic matter. Method b) is recommended for SRFs with high organic matter concentration that can be difficult to digest with the other methods. Method c) is recommended for SRFs samples for which the other methods leave a significant insoluble residue. All the listed methods are suitable for the determination of Si, provided that closed containers are used for sample dissolution. XRF is highly recommended for Si, P and Ti analysis. Alternative digestion methods can be applied if their performance is proved to be comparable with those of the methods mentioned in a) to c) (see Annex C). 2 Normative references The following referenced documents are indispensable for the application of this European Standard. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. EN 13656, Characterization of waste — Microwave assisted digestion with hydrofluoric (HF), nitric (HNO3) and hydrochloric (HCI) acid mixture for subsequent determination of elements EN 15357:2011, Solid recovered fuels — Terminology, definitions and descriptions EN 15403, Solid recovered fuels — Determination of ash content EN 15413, Solid recovered fuels — Methods for the preparation of the test sample from the laboratory sample EN 15414-3, Solid recovered fuels — Determination of moisture content using the oven dry method — Part 3: Moisture in general analysis sample EN ISO 3696:1995, Water for analytical laboratory use — Specification and test methods (ISO 3696:1987) SIST EN 15410:2011



EN 15410:2011 (E) 6 EN ISO 11885, Water quality — Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES) (ISO 11885:2007) EN ISO 12020, Water quality — Determination of aluminium — Atomic absorption spectrometric methods (ISO 12020:1997) EN ISO 15586, Water quality — Determination of trace elements using atomic absorption spectrometry with graphite furnace (ISO 15586:2003) ISO 9964 (all parts), Water quality — Determination of sodium and potassium 3 Terms and definitions For the purposes of this document, the terms and definitions given in EN 15357:2011 and the following apply. 3.1 digestion mineralization of the organic matter of a sample and dissolution of its mineral part, more or less completely, when reacted with a reagent mixture 3.2 microwave unit whole microwave digestion system (oven and associated equipment) 4 Safety remarks The safety in handling of potentially hazardous materials is dealt with by the relevant national and European regulations, which every laboratory should refer to. In addition the following information is given:  Only experienced personnel can use the microwave apparatus, following the operating instructions described in the manufacturer manual;  Most of the reagents used within this European Standard are strongly corrosive and toxic. Safety precautions are absolutely necessary due to strong corrosive reagents, high temperature and high pressure;  All procedures have to be performed in a hood or in closed force-ventilated equipment. By the use of strong oxidising reagents the formation of explosive organic intermediates is possible especially when dealing with samples with a high organic content. Do not open pressurised vessels before they have cooled down. Avoid contact with the chemicals and the gaseous reaction products;  The X-ray fluorescence spectrometers on the market are generally approved fully protected apparatus. This means that the user is not subjected to any radiation when operating the apparatus. All the apparatus are subject to specific official approval and acceptance conditions;  The person responsible for managing or supervising the operation of X-ray equipment shall provide evidence of his knowledge of radiation protection according to national regulations. 5 Principle The test portion is digested using one of the proposed methods with a suitable acid mixture. The digested sample is then analysed by inductively coupled plasma atomic emission spectroscopy. SIST EN 15410:2011



EN 15410:2011 (E) 7 For XRF analysis, the sample is ashed at 550 °C and the ash is homogenised in a ball mill to obtain a uniform size dimension of the particles. The ash is then pressed in the form of pellet or fused with tetraborate. Both techniques are suitable for the analysis by XRF. Coal ash and other ashes of various origins can be used for instrument calibration. 6 Apparatus 6.1 Microwave unit Intended for laboratory use and preferably with temperature control. 6.2 Resistance heating oven A resistance heated oven or heating block that can be used at a temperature of at least 220 °C and an accuracy of ± 10 °C. 6.3 Digestion vessels The vessels used in the microwave unit shall be equipped with a pressure relieve valve or another technical equipment which avoids the bursting of the vessels at suddenly occurring excess pressure. The material of the vessels has to be inert to the acids used for digestion. The digestion vessel shall withstand the pressure of at least 8 bar. If the amount of organic carbon exceeds 100 mg it has to be ensured that the digestion vessel is capable of withstanding higher pressures. 6.4 Inductively coupled plasma Normal commercial instrumentation with optical or quadrupole mass detector (ICP-OES, ICP-MS). 6.5 X-ray fluorescence spectrometer Energy or wavelength dispersion system suitable for quantitative/qualitative analysis of the elements listed in this European Standard. 6.6 Atomic Absorption Spectrometer Normal commercial instrumentation with air-acetylene burner or with graphite tube atomizer and background correction system and with hollow cathode lamps or electrodeless discharge lamp. 6.7 Press 6.8 Balance Analytical balance with a resolution of ± 0,1 mg. 6.9 General equipment General laboratory equipment, including volumetric graduated flasks and pipettes of adequate size. Filter equipment of adequate chemical resistance and purity or centrifuge. The use of glassware shall be excluded when free hydrofluoric acid is present. When using hydrofluoric acid, a special fume cupboard can be required.
The glassware used in the digestion procedure should be accurately pre-cleaned with 10 % nitric acid solution. SIST EN 15410:2011



EN 15410:2011 (E) 8 7 Reagents All reagents shall be at least of analytical grade and suitable for their specific purposes. Other specific reagents are listed and described in the reference methods for digestion or instrumental determination listed in Clause 2. NOTE Acids used in the preparation of standards and for sample processing should be of high purity. Redistilled acids are recommended because of the high sensitivity of ICP-MS. Nitric acid at less than 2 % (v/v) is required for ICP-MS to minimize damage to the interface and to minimize isobaric molecular-ion interferences with the analytes. Many more molecular-ion interferences are observed when hydrochloric and sulphuric acids are used. 7.1 Water of grade 1 as specified by EN ISO 3696:1995. 7.2 Nitric acid (HNO3), 65 % (w/w), ρ = 1,40 g/ml. 7.3 Hydrofluoric acid (HF), 40 % (w/w), ρ = 1,14 g/ml. 7.4 Perchloric acid (HClO4), 70 % (w/w), ρ = 1,62 g/ml. 7.5 Hydrochloric acid (HCl), 36 % (w/w), ρ = 1,179 g/ml. 7.6 Helium (He), minimum 99,99 purity for use as a chamber purge gas for the analysis of light elements when the vacuum is not used. 7.7
Argon (Ar), with a minimum purity of 99,99 %. 8 Procedure 8.1 Sample conservation and pre-treatment The laboratory samples shall be stored according to guidelines defined in Annex A. It is advisable to contact the people performing the sampling in order to agree a procedure for the laboratory sample preparation and storage before delivering to the laboratory. In particular, any treatment procedure which can increase the temperature of the material above 40 °C should be avoided, in order to avoid significant loss of mercury or other volatile compounds. Furthermore, any possible source of contamination during the laboratory sample preparation (e.g. grinding with metallic apparatus) shall be avoided or reduced as much as possible. The laboratory sample should be stored and delivered in sealed high-density plastic containers. 8.2 Sample preparation The test portion shall be prepared from the laboratory sample according to EN 15413. In addition, for the purposes of this method, the target size should be 1 mm or below. Depending on the used digestion method, the amount of test portion ranges between 0,2 and 0,5 g. Ash sample for XRF analysis are prepared as described in the method reported in EN 15403, starting from a quantity of material to obtain the amount of ash sufficient for the analysis (ash content can be as low as few percent on dry basis). Whereas the determination is carried out on a dry basis, the moisture content shall be determined according to EN 15414-3. SIST EN 15410:2011



EN 15410:2011 (E) 9 9 Digestion procedure 9.1 Method A Weigh between 0,2 g to 0,5 g of the sample, to the nearest 0,1 mg, prepared according to Clause 8 and transfer it into the vessel. If necessary, the sample may be moistened with a minimum amount of water. Proceed according to the general principle of EN 13656. After cooling, the solutions are transferred to volumetric flasks of suitable volume (e.g. 50 ml). Any residue shall be separated by filtration or centrifugation and the composition is controlled by XRF: if a significant amount (5 % of the measured amount) of the elements of interested is detected, an alternative digestion method for the dissolution of the residual material is necessary. 9.2 Method B Weight 0,2 g of ashed sample according to EN 15403 in a low pressure teflon bomb with relief valve and proceed according to the general principle of method reported in EN 13656. 4 ml aqua regia and 1 ml concentrated HF are added. After closing, the bombs are placed in a water bath at 90 °C for 3 h. After cooling, the solutions are transferred to volumetric flasks of suitable volume (e.g. 50 ml). Any residue shall be separated by filtration or centrifugation and the composition is controlled by XRF or any other suitable technique: if a significant amount (5 % of the measured amount) of the elements of interested is detected, an alternative digestion method for the dissolution of the residual material is necessary. NOTE This method has been validated (see Annex B) only using XRF as instrumental analytical technique. 9.3 Method C (informative) Weight 0,5 g of sample in a teflon bomb. Add 10 ml of a acid mixture prepared by mixing 950 ml of nitric acid and 50 ml of perchloric acid. After closing the bombs are placed in an oven at 190 °C for at least 10 h (including heating up time). After cooling the solutions are transferred to 50 ml plastic bottles and the bombs are washed with 5 ml of 0,1 M nitric acid solution and 0,5 ml of concentrated hydrofluoric acid. The solutions are taken to volume with 0,1 M nitric acid. In the case of incomplete digestion, the residue should be separated by filtration or centrifugation and then dissolved with nitric/perchloric/hydrofluoric acid mixture (5/0,5/4,5) in ultrasonic bath at 50 °C. After cooling, the solutions are transferred to volumetric flasks of suitable volume (e.g. 50 ml). Any residue shall be separated by filtration or centrifugation and the composition is controlled by XRF or any other suitable technique: if a significant amount of the elements of interested is detected, an alternative digestion method for the dissolution of the residual material is necessary. 10 Analysis of the digestion solutions 10.1 Preparation of the solution for analysis If the digested sample contains particles which might clog the nebulizers of the measurement apparatus or which might interfere with the injection of the sample into the instrument, the sample solution may be centrifuged, allowed to settle or be filtered. In the case of filtration, dilute the content of the vessel before filtering, rinse and then fill to the mark of the volumetric flask. The method used has to be reported in the test report. Solution containing hydrofluoric acid shall be processed with HF resistant apparatus. SIST EN 15410:2011



EN 15410:2011 (E) 10 10.2 Analytical step Inductively coupled plasma atomic emission spectroscopy according to EN ISO 11885, Flame Spectroscopy according to ISO 9964 (all parts), EN ISO 12020 and EN ISO 15586 shall be used for the analysis of the digested solution following the general principles outlined in the above mentioned methods. Instruments shall be set up and calibrated following the manufacturers' instructions and the used reference methods. 10.3 XRF analysis on ashed samples – sample preparation The sample is prepared following the general principle of EN 15403. A sufficient amount of sample shall be ashed in order to obtain a suitable amount of sample (at least 1 g to 2 g of ash): the total ash content can be very low for some type a sample (5 % or less). The sample preparation is a critical stage for the analysis by x-ray fluorescence. The quality of the sample preparation will strongly influence the standard deviation on repeated measurements. The available preparation techniques for solids are powder, pressed pellets and fused glass disc. NOTE 1 The error of the light elements Na to S decreases with pressed pellets in the preparation technique. NOTE 2 By using a fused glass, particle size effects are eliminated. NOTE 3 The particle size of the solid sample will strongly influence the standard deviation on repeated measurements. In order to achieve a homogeneous and representative test portion and to reduce the standard deviation on repeated measurements, the solid sample should be crushing and/or milling directly or after a drying stage. The resulting ashes are analysed in the form of pressed pellets or fused glass disc. The analysis of the sample prepared as described can be performed following the general principles of several methods. NOTE 4 An example of such methods is ASTM D4326. With the used procedure the results are referred to the ashed sample: calculation on dry basis of the original sample is performed using the equation reported in Clause 11. 11 Expression of results The results shall be expressed in milligrams per kilogram on a dry basis. For XRF procedure on SRF ash, the following equation shall be used to express the results on dry original matter: 100ashashdACC×= where Cd
is the concentration on dry basis in the original sample; Cash is the concentration in the ash; Aash is the ash content (%). SIST EN 15410:2011



EN 15410:2011 (E) 11 12 Quality control To detect possible contaminations from vessels and/or reagents, blank tests shall be carried out by the same sample preparation procedure, using the same quantities of reagents. If available, the use of standard reference materials is recommended. The trueness of the analytical method shall be checked by applying it to a certified reference material (CRM) or a reference material (RM) if existing. Calculate the analytical result for the CRM/RM, and compare it with the reference or certified value. 13 Performance characteristics
Data about performances of the methods will be available after validation in QUOVADIS project. 14 Test report The test report shall contain at least the following information: a) name, address and location of any laboratory involved in the analysis; b) description and identification of the laboratory sample; c) date of receipt of laboratory sample and date(s) of performance of test; d) reference to this European Standard, i.e. EN 15410; e) reference to the analytical standard used for the determination for each element; f) the analytical results, referring to Clause 11; g) any details not specified in this European Standard or which are optional, and any other factors which may have affected the results; h) unique identification of report (such as serial number) and of each page and total number of pages of the report. The laboratory should keep a trace of any analytical steps and intermediate results (chromatograms, raw data and calculation details) that should be kept available in case of specific requirements.
SIST EN 15410:2011



EN 15410:2011 (E) 12 Annex A (normative)
Guidelines - Characteristics of the laboratory sample for chemical analysis of SRF The following requirements apply when preparing the laboratory sample for the chemical characterisation of SRF samples according to this European Standard. NOTE Equivalent requirements apply in all chemical test method specifications for SRF, i.e. EN 15407, EN 15408, EN 15410, EN 15411, CEN/TS 15412 and EN 15413. A maximum amount of laboratory sample of 10 kg and maximum particle size of 1 cm is established on the basis of number and type of parameters to be determined, sample representativity and practical reasons for handling samples. In the following table the requirements are summarised both for single or grouped chemical parameters. Table A.1 – Requirements for the laboratory sample for the analysis of SRF Parameter (single or group) Minimum laboratory sample amount (g) a Short term storage conditions before delivery to the lab
Long term storage condition before delivery to the labContainer material C, H, N 100 In the same condition of SRF production refrigeration 4 °C plastic bottle or bag Cl, S, Br, F 100 In the same condition of SRF production refrigeration 4 °C non-PVC plastic bottle or bag Metallic Al 200 In the same condition of SRF production refrigeration 4 °C plastic bottle or bag
Major elements 400 In the same condition of SRF production refrigeration 4 °C plastic bottle or bag
Trace elements excluding Hg 200 In the same condition of SRF production refrigeration 4 °C plastic bottle or bag
Hg 100 In the same condition of SRF production refrigeration 4 °C Glass or PFA bottle C, H, N, Cl, S, Br, F 150 In the same condition of SRF production refrigeration 4 °C non-PVC plastic bottle or bag Major elements + Trace elements excluding Hg 500 In the same condition of SRF production refrigeration 4 °C plastic bottle or bag Major elements + Trace elements + Hg
600 In the same condition of SRF production refrigeration 4 °C Glass bottle (100 g) + plastic bottle or bag SIST EN 15410:2011



EN 15410:2011 (E) 13 Table A.1 (concluded) Major elements + Trace elements + Hg + metallic Al 700 In the same condition of SRF production refrigeration 4 °C Glass bottle (100 g) + plastic bottle or bag Complete analysis 800 In the same condition of SRF production refrigeration 4 °C Glass bottle (100 g) + non-PVC plastic bottle or bag a
The maximum particle size (mm) is related to the laboratory sample amount (g) in order to guarantee sample homogeneity. It is established following the rules reported in EN 15413.
SIST EN 15410:2011



EN 15410:2011 (E) 14 Annex B (informative)
Performance data Inter-laboratory trials were carried out by laboratories in Austria, Finland, France, Germany, Italy, the Netherlands, Poland, Sweden and the United Kingdom. The variety of instruments and other analytical conditions used conformed to the quality parameters specified in the method.
The performance data for Methods A and B, according to ISO 5725-2, are presented in Tables B.1 to B.17. The statistical evaluation for other methods was not significant due to the too limited number of participating laboratories. The data derive from laboratories participating in the above-mentioned inter-laboratory
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.