Indoor air - Part 19: Sampling strategy for moulds

ISO 16000-19:2012 describes the measurement strategy for the detection of fungi in indoor environments.
ISO 16000-19:2012 describes suitable sampling and analysis methods together with a description of the applicability and the interpretation of the measurement results to maximize the comparability of the measured data obtained for a given measurement objective. It does not include details on recording building characteristics or field inspections by qualified professionals which have to take place prior to any microbiological measurement.
ISO 16000-19:2012 is not applicable to a detailed description of the building physics- and building-engineering-related procedures applicable to field inspections. The methods and procedures presented do not allow quantitative exposure assessment with regard to the room occupants.
The application of ISO 16000-19:2012 presupposes the knowledge of ISO 16000-1.

Air intérieur - Partie 19: Stratégie d'échantillonnage des moisissures

L'ISO 16000-19:2012 décrit la stratégie de mesurage pour détecter les champignons dans les environnements intérieurs.
L'ISO 16000-19:2012 décrit des méthodes d'échantillonnage et d'analyse appropriées ainsi que l'applicabilité et l'interprétation des résultats de mesurage pour maximiser la comparabilité des données mesurées obtenues pour un objectif de mesurage donné. Elle ne contient pas d'indications détaillées concernant l'enregistrement des caractéristiques du bâtiment ou les inspections sur le terrain menées par des professionnels qualifiés qui doivent être effectués préalablement à tout mesurage microbiologique.
L'ISO 16000-19:2012 ne s'applique pas à une description détaillée des modes opératoires relatifs à la physique et au génie du bâtiment applicables aux inspections sur le terrain. Les méthodes et les modes opératoires présentés ne permettent pas d'évaluer l'exposition quantitative des occupants de la pièce.
L'application de l'ISO 16000-19:2012 présuppose que l'on ait pris connaissance de l'ISO 16000‑1.

Notranji zrak - 19. del: Strategija vzorčenja gliv

Ta del ISO 16000 opisuje strategijo merjenja za zaznavanje gliv v zaprtih prostorih. Opisuje primerne metode vzorčenja in analize skupaj z opisom uporabnosti in interpretacije rezultatov meritev za povečanje primerljivosti pridobljenih podatkov meritev za dani cilj meritev. Ne vključuje podrobnosti o beleženju lastnosti stavb ali strokovnem pregledu območja, ki se morata izvesti pred mikrobiološkimi merjenji. Ta del standarda ISO 16000 ne velja za podroben opis postopkov, povezanih z gradbeno fiziko ali gradbeno tehniko, ki se uporabljajo pri pregledu območja. Predstavljene metode in postopki ne omogočajo kvantitativnega ocenjevanja izpostavljenosti oseb v prostoru. Uporaba tega dela ISO 16000 predpostavlja poznavanje ISO 16000-1.

General Information

Status
Withdrawn
Public Enquiry End Date
31-May-2013
Publication Date
31-Mar-2014
Withdrawal Date
04-Mar-2015
Technical Committee
Current Stage
9900 - Withdrawal (Adopted Project)
Start Date
03-Mar-2015
Due Date
26-Mar-2015
Completion Date
05-Mar-2015

Relations

Overview

ISO 16000-19:2012 - Indoor air - Part 19: Sampling strategy for moulds defines a standardized sampling strategy for detecting fungi (moulds) in indoor environments. The standard describes suitable sampling and analysis approaches, applicability and interpretation of results to maximize comparability of measured data for a given measurement objective. It focuses on measurement strategy and methods for mould detection; it does not replace building inspections, building-physics procedures or provide quantitative exposure assessment for occupants. Application of ISO 16000-19 presupposes familiarity with ISO 16000-1 (general sampling strategy).

Key topics and requirements

  • Scope and purpose: Guidance to identify indoor mould sources and to standardize sampling to improve data comparability.
  • Properties and occurrence: Describes origin, variability and behaviour of mould spores in indoor air (seasonal and site-dependent variability; typical spore size range).
  • Sampling and detection methods: Summarizes applicable techniques (e.g., filtration, impaction, culture-based and total spore count approaches - see related parts ISO 16000-16, -17, -18 for method details).
  • Measurement strategy: Selection of appropriate procedures based on measurement objectives, site conditions and sample types; planning to reduce sampling stress and preserve biological integrity.
  • Quality requirements and uncertainty: Emphasis on quality assurance, documentation and consideration of uncertainty to improve comparability between datasets.
  • Informative annexes: Includes guidance on moisture-damage indicators, devices for total spore counts and culturable fungi, and a field inspection reporting template to document sampling and potential mould damage.
  • Exclusions: Does not cover recording building characteristics in detail, field inspections by qualified professionals, or engineering procedures related to inspections; not intended for occupant exposure quantification.

Applications and who uses it

ISO 16000-19 is designed for professionals involved in indoor air quality (IAQ) and mould assessment:

  • Environmental consultants and industrial hygienists conducting mould investigations
  • Analytical laboratories performing airborne fungal analyses
  • Facility managers and building owners seeking standardized assessment methods
  • Public health officers and regulators requiring comparable sampling protocols
  • Building remediation contractors planning investigation and verification sampling

Practical uses include identifying active mould growth sources, planning sampling campaigns, standardizing laboratory reporting and comparing results across sites or over time. Note: prior field inspection by qualified personnel is required before microbiological sampling.

Related standards

  • ISO 16000-1 (general sampling strategy)
  • ISO 16000-16 (sampling by filtration)
  • ISO 16000-17 (culture-based detection)
  • ISO 16000-18 (sampling by impaction)

Keywords: ISO 16000-19:2012, indoor air, sampling strategy for moulds, mould sampling, fungal detection, indoor air quality, mould spores, ISO 16000.

Standard
SIST ISO 16000-19:2014
English language
35 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day
Standard
ISO 16000-19:2012 - Indoor air — Part 19: Sampling strategy for moulds Released:5/31/2012
English language
29 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 16000-19:2012 - Air intérieur — Partie 19: Stratégie d'échantillonnage des moisissures Released:5/31/2012
French language
31 pages
sale 15% off
Preview
sale 15% off
Preview

Frequently Asked Questions

SIST ISO 16000-19:2014 is a standard published by the Slovenian Institute for Standardization (SIST). Its full title is "Indoor air - Part 19: Sampling strategy for moulds". This standard covers: ISO 16000-19:2012 describes the measurement strategy for the detection of fungi in indoor environments. ISO 16000-19:2012 describes suitable sampling and analysis methods together with a description of the applicability and the interpretation of the measurement results to maximize the comparability of the measured data obtained for a given measurement objective. It does not include details on recording building characteristics or field inspections by qualified professionals which have to take place prior to any microbiological measurement. ISO 16000-19:2012 is not applicable to a detailed description of the building physics- and building-engineering-related procedures applicable to field inspections. The methods and procedures presented do not allow quantitative exposure assessment with regard to the room occupants. The application of ISO 16000-19:2012 presupposes the knowledge of ISO 16000-1.

ISO 16000-19:2012 describes the measurement strategy for the detection of fungi in indoor environments. ISO 16000-19:2012 describes suitable sampling and analysis methods together with a description of the applicability and the interpretation of the measurement results to maximize the comparability of the measured data obtained for a given measurement objective. It does not include details on recording building characteristics or field inspections by qualified professionals which have to take place prior to any microbiological measurement. ISO 16000-19:2012 is not applicable to a detailed description of the building physics- and building-engineering-related procedures applicable to field inspections. The methods and procedures presented do not allow quantitative exposure assessment with regard to the room occupants. The application of ISO 16000-19:2012 presupposes the knowledge of ISO 16000-1.

SIST ISO 16000-19:2014 is classified under the following ICS (International Classification for Standards) categories: 13.040.20 - Ambient atmospheres. The ICS classification helps identify the subject area and facilitates finding related standards.

SIST ISO 16000-19:2014 has the following relationships with other standards: It is inter standard links to SIST EN ISO 16000-19:2014. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.

You can purchase SIST ISO 16000-19:2014 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of SIST standards.

Standards Content (Sample)


SLOVENSKI STANDARD
01-junij-2014
1RWUDQML]UDNGHO6WUDWHJLMDY]RUþHQMDJOLY
Indoor air - Part 19: Sampling strategy for moulds
Air intérieur - Partie 19: Stratégie d'échantillonnage des moisissures
Ta slovenski standard je istoveten z: ISO 16000-19:2012
ICS:
13.040.20 Kakovost okoljskega zraka Ambient atmospheres
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

INTERNATIONAL ISO
STANDARD 16000-19
First edition
2012-06-01
Indoor air —
Part 19:
Sampling strategy for moulds
Air intérieur —
Partie 19: Stratégie d'échantillonnage des moisissures

Reference number
©
ISO 2012
©  ISO 2012
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.
ISO copyright office
Case postale 56  CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
ii © ISO 2012 – All rights reserved

Contents Page
Foreword . iv
Introduction . vi
1  Scope . 1
2  Normative references . 1
3  Terms and definitions . 1
4  Properties, origin and occurrence of moulds in indoor environments . 4
5  Sampling and detection methods . 5
6  Measurement strategy . 6
6.1  General aspects . 6
6.2  Selection of appropriate procedure . 9
7  Quality requirements and uncertainty considerations . 17
Annex A (informative) Moisture damage indicators . 18
Annex B (informative) Devices for total spore count and detection of culturable fungi . 19
Annex C (informative) Field inspection report to describe sampling procedure and to document
potential mould damage . 21
Bibliography . 27

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 16000-19 was prepared by Technical Committee ISO/TC 146, Air quality, Subcommittee SC 6, Indoor air.
ISO 16000 consists of the following parts, under the general title Indoor air:
 Part 1: General aspects of sampling strategy
 Part 2: Sampling strategy for formaldehyde
 Part 3: Determination of formaldehyde and other carbonyl compounds in indoor air and test chamber
air — Active sampling method
 Part 4: Determination of formaldehyde — Diffusive sampling method
 Part 5: Sampling strategy for volatile organic compounds (VOCs)
 Part 6: Determination of volatile organic compounds in indoor and test chamber air by active sampling on ®
Tenax TA sorbent, thermal desorption and gas chromatography using MS or MS–FID
 Part 7: Sampling strategy for determination of airborne asbestos fibre concentrations
 Part 8: Determination of local mean ages of air in buildings for characterizing ventilation conditions
 Part 9: Determination of the emission of volatile organic compounds from building products and
furnishing — Emission test chamber method
 Part 10: Determination of the emission of volatile organic compounds from building products and
furnishing — Emission test cell method
 Part 11: Determination of the emission of volatile organic compounds from building products and
furnishing — Sampling, storage of samples and preparation of test specimens
 Part 12: Sampling strategy for polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins
(PCDDs), polychlorinated dibenzofurans (PCDFs) and polycyclic aromatic hydrocarbons (PAHs)
 Part 13: Determination of total (gas and particle-phase) polychlorinated dioxin-like biphenyls (PCBs) and
polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/PCDFs) — Collection on sorbent-backed filters
iv © ISO 2012 – All rights reserved

 Part 14: Determination of total (gas and particle-phase) polychlorinated dioxin-like biphenyls (PCBs) and
polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/PCDFs) — Extraction, clean-up and analysis by
high-resolution gas chromatography and mass spectrometry
 Part 15: Sampling strategy for nitrogen dioxide (NO )
 Part 16: Detection and enumeration of moulds — Sampling by filtration
 Part 17: Detection and enumeration of moulds — Culture-based method
 Part 18: Detection and enumeration of moulds — Sampling by impaction
 Part 19: Sampling strategy for moulds
 Part 23: Performance test for evaluating the reduction of formaldehyde concentrations by sorptive
building materials
 Part 24: Performance test for evaluating the reduction of volatile organic compound (except
formaldehyde) concentrations by sorptive building materials
 Part 25: Determination of the emission of semi-volatile organic compounds by building products —
Micro-chamber method
 Part 26: Sampling strategy for carbon dioxide (CO )
 Part 28: Determination of odour emissions from building products using test chambers
The following parts are under preparation:
 Part 21: Detection and enumeration of moulds — Sampling from materials
 Part 27: Determination of settled fibrous dust on surfaces by SEM (scanning electron microscopy) (direct
method)
 Part 29: Test methods for VOC detectors
 Part 30: Sensory testing of indoor air
 Part 31: Measurement of flame retardants and plasticizers based on organophosphorus compounds —
Phosphoric acid ester
 Part 32: Investigation of constructions on pollutants and other injurious factors — Inspections

Introduction
Mould spores and metabolites can be inhaled via the air and cause allergic and irritating reactions and/or
complex symptoms in humans. Moreover, mould growth can be associated with severe odour nuisances. In
[14][18][19]
rare cases, some mould species can cause infections (so-called mycoses) in certain risk groups.
There is sufficient epidemiological evidence that damp and mouldy buildings increase the risk of respiratory
[8]
symptoms, respiratory infections and enhances asthma symptoms of the occupants. In addition, there is
some evidence for increased risk of development of allergic rhinitis and asthma. Furthermore, there is clinical
evidence for rare symptoms like allergic alveolitis, chronic rhinosinusitis and allergic sinusitis. Toxicological
studies in vivo and in vitro show irritating and toxic reactions of microorganisms (including spores, cell
[8]
components and metabolites) from damp buildings.
Growth of microorganisms in damp buildings can lead to increased concentrations of spores, cell fragments,
allergens, mycotoxins, endotoxins, -glucanes and MVOC (microbial volatile organic compounds). From the
studies conducted so far it is not clear which compounds are the causative agents of the health effects
observed. Nevertheless, increased concentrations of each of these compounds are considered a potential
[8][18]
health risk and growth of mould in buildings should, therefore, be avoided.
The prime objective of this part of ISO 16000 is to provide assistance in identifying mould sources in indoor
environments.
vi © ISO 2012 – All rights reserved

INTERNATIONAL STANDARD ISO 16000-19:2012(E)

Indoor air —
Part 19:
Sampling strategy for moulds
1 Scope
This part of ISO 16000 describes the measurement strategy for the detection of fungi in indoor environments.
It describes suitable sampling and analysis methods together with a description of the applicability and the
interpretation of the measurement results to maximize the comparability of the measured data obtained for a
given measurement objective. It does not include details on recording building characteristics or field
inspections by qualified professionals which have to take place prior to any microbiological measurement.
This part of ISO 16000 is not applicable to a detailed description of the building physics- and building-
engineering-related procedures applicable to field inspections. The methods and procedures presented do not
allow quantitative exposure assessment with regard to the room occupants.
The application of this part of ISO 16000 presupposes the knowledge of ISO 16000-1.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.
ISO 16000-16, Indoor air — Part 16: Detection and enumeration of moulds — Sampling by filtration
ISO 16000-18, Indoor air — Part 18: Detection and enumeration of moulds — Sampling by impaction
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
3.1
pre-existing mouldy condition
desiccated “old” mould growth, where additional biomass growth no longer occurs and the indoor air mould
spore concentration gradually decreases with time
3.2
biological preservation efficiency
capacity of the sampler to maintain the viability of the airborne microorganisms during collection and also to
keep the microbial products intact
[6]
[SOURCE: EN 13098:2000 ]
NOTE The biological collection efficiency considers the sampling stress occurring during sampling and analysis in
addition to the physical collection efficiency.
3.3
identification of moulds
assignment of moulds to spore types or groups on the basis of defined properties (e.g. morphological,
biochemical, molecular-biological properties)
NOTE The term “differentiation” is frequently used instead of identification. The term “differentiation” is, however,
misleading because the intention is not to merely differentiate the moulds but to identify them, i.e. to assign them, e.g. to
genera or species.
3.4
filamentous fungus
fungus growing in the form of filaments of cells known as hyphae
NOTE 1 Hyphae aggregated in bundles are called mycelia.
NOTE 2 The term “filamentous fungi” differentiates fungi with hyphal growth from yeasts.
3.5
filtration
collection of particles suspended in a gas or liquid by flow through a porous medium
[6]
[SOURCE: EN 13098:2000 ]
NOTE In this part of ISO 16000, filtration is understood as the separation of microorganisms or moulds from a
defined volume of air by means of filters.
3.6
total spore count
number of (culturable and non-culturable) spores that are collected and enumerated under the microscope
NOTE For the term “spores”, see 3.19, Note 2.
3.7
yeast
unicellular fungus that does not normally produce a mycelium and reproduce by budding (budding fungi) as
against moulds, which reproduce by sporulation
3.8
impaction
sampling of particles suspended in air by inertial separation on a solid surface (culture medium or adhesive-
coated slides)
NOTE 1 See 16000-18.
NOTE 2 Sampling is carried out using either round-hole or slit impactors, for instance. As the air passes through the
orifices, it is accelerated and the particles are impacted on the medium located directly behind the nozzles as a result of
their inertia, while the air flows around the culture medium and exits the sampler. Impaction samples are only suitable for
direct analysis without further resuspension of the sample.
3.9
colony forming unit
cfu
air quality unit by which the culturable number of microorganisms is expressed
[6]
[SOURCE: EN 13098:2000 ]
NOTE 1 One colony can originate from one single microorganism, from aggregates of many microorganisms as well as
from one or many microorganisms attached to a particle.
NOTE 2 The number of colonies can depend on the cultivation conditions.
2 © ISO 2012 – All rights reserved

3.10
colony morphology type
group of colonies which due to their morphological appearance seem to belong to a specific species
3.11
colony count
air quality number of all microorganism colonies visible on a culture medium after incubation under the
selected cultivation conditions
3.12
culturable mould
mould that can be cultured under the selected cultivation conditions
NOTE Parameters governing the culturability are, for instance, the type of culture medium and the incubation
temperature.
3.13
cultivation
growing of microorganisms on culture media
3.14
mycotoxin
secondary metabolites of moulds which are toxic to humans and animals
3.15
mycelium
total of fungal hyphae
3.16
non-culturable mould
mould that cannot be cultured under the selected cultivation conditions
3.17
physical sampling efficiency
capacity of the sampler to collect particles with specific aerodynamic diameters suspended in air
[6]
[SOURCE: EN 13098:2000, modified — "aerodynamic diameters" has replaced "sizes".]
3.18
sampling stress
damage suffered by the microorganisms during sampling (e.g. through mechanical and chemical effects or
through water deprivation)
3.19
mould
filamentous fungi from several taxonomic groups, namely Ascomycetes, Zygomycetes, and their anamorphic
states formerly known as Deuteromycetes or fungi imperfecti
NOTE 1 Taxonomically, moulds do not represent a uniform group.
NOTE 2 Moulds form different types of spores depending on the taxonomic group they belong to, namely
conidiospores (conidia), sporangiospores or ascospores. In practice, all these reproductive stages are summarized under
the term “spores”.
3.20
mould damage
damage caused to building materials and surfaces by mould growth
NOTE Mould damage can result in loss in value, health risks and restrict the occupancy of the affected sites.
3.21
secondary colony
colony that does not originate from the “primary” sampling of airborne spores but from a spore released from a
colony growing on the agar plates
3.22
secondary contamination
mould contamination of surfaces not caused by mould growth but originating from a (contaminated) primary
source after aerial dispersion
3.23
cut-off value
particle size (aerodynamic diameter) for which the sampling efficiency is 50 %
3.24
total sampling efficiency
product of the physical sampling efficiency and the biological preservation efficiency
[6]
[SOURCE: EN 13098:2000 ]
4 Properties, origin and occurrence of moulds in indoor environments
Moulds are ubiquitous on our planet. They are involved in the decomposition of organic material and,
therefore, play an important role in the natural carbon cycle. Their concentration in the ambient air depends,
inter alia, on location, climate, time of the day and season. Airborne mould concentrations are subject to great
[9][10][11]
variability. This is due to the following reasons.
The mould concentration in local ambient air is mainly determined by the location relative to the respective
mould sources, wind direction and wind force. Mould spores are frequently released by specific sources such
as decaying material. Both natural processes and production processes, such as composting, recycling,
animal production facilities, grain and food processing plants as well as horticulture facilities, can be sources
of mould dispersion.
Sporulation, i.e. the production of mould spores occurs discontinuously. It is governed, inter alia, by the mould
lifecycle phase, the environmental conditions, stress factors, humidity as well as substrate composition and
availability.
Factors governing the dispersion of spores, most of which have aerodynamic diameters in the range of 2 µm
to 40 µm, are mechanically or thermally induced air movements, drying phases (leading e.g. to de-
[12][13][14]
agglomeration of deposited dust) and the capability of air dispersal of the mould spores.
Due to the ubiquitous nature of moulds, it can be assumed that they are always present in indoor air. The
presence of moulds in indoor air can be due to spores originating from ambient air on the one hand and to
recent active mould growth, pre-existing mouldy conditions or mould deposits (settled spores) on the other. To
distinguish between sources, it is, therefore, important to perform ambient air measurements for reference
[14][15]
whenever conducting indoor air measurements for moulds. In addition, the collection of a control sample
from a suitable reference room may be helpful.
Possible causes of indoor mould sources are surface moisture on building materials or moisture in the building
structure, but also rotting food, potted plants, biowaste collection, source separation of waste, deposited dust
due to poor cleaning as well as the keeping of animals in residential settings. Moisture damage can be
attributable to building defects, inappropriate ventilation and heating or unfavourable arrangement of furniture
as well as water damage (e.g. plumbing leaks or flooding events). Elevated mould levels in indoor
environments and the occurrence of certain mould species (see Annex A) are indicative of excessive moisture.
When residential environments or occupational settings are infested with moulds, the mould source shall be
located to be able to plan remedial measures.
4 © ISO 2012 – All rights reserved

Main factors affecting the intensity of mould growth and the mould species developing are moisture,
temperature, nutrient supply and the pH. If environmental conditions are favourable, a great variety of moulds
can develop. Once environmental conditions become less favourable, the species best adapted to the given
[16]
conditions will predominate.
Mould sources can release spores, mycelial fragments, but also cell components and metabolic products such
as -glucans (polysaccharides contained in the cell wall of fungi), ergosterol (steroid compound contained in
the cell membrane of fungi), toxins and MVOCs (microbial volatile organic compounds such as certain
aldehydes, alcohols, esters, ketones). On cultivation, colonies can grow not only from spores, but also from
mycelial fragments.
The number and airborne dissemination of spores released vary with the type of mould damage. For an
assessment of indoor mould sources, it is, therefore, important to differentiate the individual mould species by
their type of spore dispersal. Experience has shown that even minor mould contamination of materials can
result in elevated indoor air mould levels if the species involved have dry spores with good air dispersal
capabilities (e.g. Penicillium and Aspergillus). By contrast, airborne spore concentrations are much lower
when materials are colonized, for instance, by moulds of the genera Acremonium, Fusarium or the species
Stachybotrys chartarum that have relatively large spores embedded in slimy substances and, therefore, have
poor air dispersal capabilities.
Furthermore, it should be taken into account that mould spores are not necessarily present as individual
spores in the air or settled dust, but also occur in the form of spore aggregates or are particle-borne.
Depending on the analysis method, they are determined individually or as spore aggregate. Materials, indoor
air and house dust contain not only culturable but also non-culturable mould spores, some of which can have
the same allergenic and toxic effects as culturable spores. For this reason, techniques have been developed
that allow the microscopic determination of both culturable and non-culturable moulds.
Mould detection and identification are performed either after cultivation based on morphological criteria,
biochemical reactions and/or molecular techniques or by direct microscopic examination. Identification based
on the morphological structure (macroscopic examination, stereo-microscopy and microscopy) either after
prior cultivation or by direct microscopy is still the most prevalent approach for the detection of moulds.
Besides, there are other analytical methods based on the determination of cell components and metabolites of
[17]
moulds such as -glucans, ergosterol, toxins and MVOCs. The determination of these compounds serves,
however, only as supplementary information.
The sampling methods employed for detection of moulds are determined by the objective of the investigation.
Depending on the sampling method, the moulds suffer a sampling stress during sample collection and
preparation, which can lead to their drying-out or dying. Factors affecting the culturability of mould spores are
their physiological state as well as the culture medium employed. Some mould species cannot be cultured at
all under laboratory conditions.
NOTE The genera Stachybotrys and Chaetomium hardly grow and sporulate only poorly, if at all, on DG18 agar. The
use of this culture medium for culture-based analysis of these genera is therefore not recommended (see ISO 16000-17).
For a literature summary see References [8]–[10], [12], and [14]–[18].
5 Sampling and detection methods
Depending on the objective of the investigation, materials (see ISO 16000-21, in preparation), air (see
ISO 16000-16 and ISO 16000-18) and house dust may be sampled and analysed for culturable moulds (see
ISO 16000-17). Moulds can also be quantified and, to some extent, differentiated without prior cultivation. For
this purpose, airborne mould spores are collected on filters or directly on an adhesive-coated microscope slide,
followed by staining and subsequent direct microscopy.
Annex B gives an overview on the most common devices for total spore count measurements as well as for
sampling devices for filtration and impaction and the respective analysis methods.
6 Measurement strategy
6.1 General aspects
There is no standard procedure for measurement and assessment of mould damage. The type and amount of
measurements as well as the analytical methods employed are determined by the circumstances triggering
the investigation and the investigation objectives. A visual field inspection (walk through) by technically
qualified professionals prior to sampling is a key prerequisite for detecting and assessing mould sources in
indoor environments. Besides a good knowledge of building engineering and building physics, the
professionals conducting the inspection should have a sufficient background in indoor air hygiene and
microbiology.
Investigations are conducted with the objective of locating mould sources in indoor environments. To support
findings from visual observations and confirm suspected mould growth, professionals can draw on a variety of
sampling and analysis methods. These include methods for determining mould concentrations in or on
materials, procedures for the measurement of mould concentrations in indoor air as well as procedures for
determining mould concentrations in house dust. An example for a report accompanying sampling is attached
as Annex C.
Circumstances triggering a microbiological investigation of indoor environments may include the following (see
also Table 1):
 visible mould damage;
 material dampness without presence of visible mould growth;
 structural or non-structural building anomalies without presence of visible mould growth;
 health problems without presence of visible mould growth;
 odour problems without presence of visible mould growth;
 verification measurements during and after remediation.
In the case of visible mould damage with known source, the remediation and elimination of the underlying
causes should be addressed as a priority. In many cases, microbiological investigations is not necessary.
If mould damage is suspected without the presence of visible sources, the indoor environment can be
examined for the presence of elevated mould concentrations. Depending on the circumstances triggering the
investigation, the following media may be sampled and analysed:
a) materials and their surfaces (see 6.1.1);
b) indoor air in comparison with ambient air (see 6.1.2);
c) house dust (see 6.1.3).
The results of the measurements described in the following sections provide only indications on the damage
stage. Assessing the actual age of the mould growth is not feasible as the state of mould growth can change
drastically within very short time intervals.
The inspection of HVAC systems for lack of hygiene is not the subject of this part of ISO 16000.
In planning and performing measurements, the specific field conditions and influencing factors having a major
impact on the investigation results shall be taken into account and documented.
6 © ISO 2012 – All rights reserved

6.1.1 Analysis of surfaces or materials
For the selection of a suitable sampling method and the definition of the sampling locations, the following
questions have to be clarified.
 Is mould growth or secondary contamination expected on the surface or the material?
 Is a surface colonization or a colonization of deeper layers expected?
 Are the moulds expected or under study culturable?
 Are criteria available for an assessment of the analysis result?
Criteria for differentiating between active mould growth and mould deposits on material surfaces or in wall
cavities originating from natural sedimentation are the mould concentration and evidence of mould structures,
e.g. mycelium or spore carriers, in the material or on its surface. The mould concentration in the material or on
the material surface varies with the type of material, especially the density of the material, and the mould
species. Different mould species grow on or in a material depending on moisture, temperature and nutrient
source. Suspected mould contamination of surfaces may be confirmed by surface sampling using the tape-lift
and contact plate methods. The contact plate method presupposes that the moulds are culturable. If the
surface has already been disinfected or if contamination with Stachybotrys chartarum is suspected, the
contact plate method is not applicable. In such cases, it is necessary that tape-lift samples of the surfaces be
examined by direct microscopy.
Surface sampling (contact plate and tape-lift methods) has limited suitability for materials with rough surfaces
(e.g. plaster, insulation materials). Usually, the samples are suspended in a buffer followed by determination
[25]
of the mould concentration by cultivation or direct microscopy.
Where no empirical threshold levels exist for classifying a material as “contaminated” or “not contaminated”,
materials displaying no visible mould growth are sampled as controls for comparison.
6.1.2 Analysis of indoor air
The objective of indoor air sampling and analysis is to determine the concentration of moulds in a
representative air sample in order to assess the likelihood of mould sources in the indoor environment.
Depending on the investigation objective, this requires a more or less complete identification of the moulds
(see 6.2). In analysing air samples, special attention is given to differences in the species spectrum present in
the indoor compared to ambient air. Moreover, the presence of moisture-indicator species (see Table A.1)
should be taken into account. At high mould spore concentrations in the ambient air due to the specific
weather conditions, the concentration of ambient air species in the indoor air can be many times higher than
the concentrations of the moisture-indicator species of interest. If the concentration of typical ambient air
species exceeds that of indoor-environment-specific moisture-indicators by a factor of more than 10, indoor air
sampling allows no conclusions as to the presence of a potential mould source because moisture indicators
may be overgrown by fungi from ambient air.
To avoid interferences, rooms in which the lowest airborne concentrations are expected should be sampled
first.
The sampling methods in accordance with ISO 16000-16 (filtration) and ISO 16000-18 (impaction) are based
on different measurement principles and do not produce the same results for all measurement tasks. For the
selection of the sampling procedure and the determination of the required number of sampling locations and
the sampling duration, the influencing parameters and conditions prevailing in the specific situation shall be
established by a prior field inspection.
For this purpose, the following questions shall be clarified.
 Is a largely constant mould concentration expected in the room?
 Are air movements present that reflect a normal activity in the room?
 Are major fluctuations in the mould concentration expected as a result of short-term influences (e.g.
occupant influences, convection or downward air flows)?
When no major occupancy-related air movements are expected and no influences leading regularly to major
variations in the airborne mould levels are evident in the rooms being assessed (e.g. residential rooms), both
short-term sampling (sampling period 1 min to 10 min) and long-term sampling (sampling period > 30 min) are
appropriate methods. In practice, sampling by impaction is the preferred procedure for short-term sampling.
This sampling method requires a prior estimate of the expected mould concentration. Different air volumes are
sampled at each sampling location to be able to cover a broader concentration range. This is accomplished by
collecting impaction samples over different sampling durations. The detection of indoor-relevant moulds
presupposes that particles with a diameter greater than 2 µm can be quantitatively collected on the culture
medium or adhesive-coated slide (for the determination of the total spore count). This presupposes that the
impactors are designed for a cut-off d < 2 µm (see Table B.2). All short-term measurements should be
conducted over a minimum period of 1 min. The sample volume should not be less than 50 l. In unoccupied
rooms, short-time measurements may be performed without occupancy simulation, since experience has
shown that especially the installation of the sampling equipments as well as their operation usually results in
air movements at the sampling location that are comparable to those during normal conditions of use.
In rooms with major “old” dust deposits, sampling can cause unintentional disturbance of settled dust, which
can lead to false positive results.
If a sampling device generates major exit air flows resulting in the disturbance of deposited dust, the exit air
stream should be conducted of the room being investigated and/or care should be taken to ensure that it is not
directed at potential mould sources, such as the floor or dusty or mouldy materials.
Filtration methods are the sole applicable option for long-term measurements. Filtration sampling is the
method of choice when sampling is carried out during normal activities in the room and when major air
movements and fluctuating mould concentrations are expected. Filtration sampling is also the preferred
method for culturable sampling when airborne mould concentrations are expected to exceed 2 000 cfu/m . At
sampling durations of 1 h and longer in unoccupied rooms, additional occupancy simulations are needed
during the sampling period. The occupancy simulation should reflect the usual occupancy of the room.
Regardless of the sampling method, the windows and doors of the room shall be closed approx. 8 h before
commencing sampling and kept closed during the sampling process. Samples should preferably be collected
in the centre of the room with a minimum distance of 1 m from enclosing walls and at a height of approx.
0,75 m to 1,5 m. In all cases, an ambient air sample shall be collected for reference. Moreover, the collection
of air samples in an appropriate reference room can be useful. Indoor and ambient air samples shall be
collected on the same day with as short a time interval in-between as possible.
NOTE In buildings with air-conditioning, shorter time intervals (2 h) between closing the windows and sampling can
be sufficient. Measurement of fungi in ambient air might not be necessary in buildings with filtered incoming air and no
windows that can be opened by the occupants.
The specific conditions at the sampling location and the climatic conditions during sampling are documented
in a sampling report (see Annex C).
6.1.3 Analysis of house dust
House dust analyses are normally only conducted to complement the results from indoor air measurements.
As there are currently no suitable procedures for the determination of non-culturable moulds in house dust,
the analysis is limited to the detection of culturable moulds. House dust analyses are a useful tool to check the
results from indoor air measurements for plausibility. Before commencing sampling, it should be clarified
[26][27]
whether suitable sampling locations with sufficient quantities of settled dust exist.
Reference data used for the assessment of the analysis results shall have been obtained by the same
sampling, sample preparation and analysis methods. Results differ greatly if total house dust or fine dust of a
certain size fraction is being used.
8 © ISO 2012 – All rights reserved

6.2 Selection of appropriate procedure
6.2.1 Field inspection
The first step of a mould assessment in indoor environments is a field inspection in order to take an inventory.
On this occasion, the circumstances triggering the investigation and details of the condition of the building,
room furnishings, etc. are assembled.
Table 1 — Recommendations to help decision-making for sampling after a field inspection
Finding and objective Matter being examined Further
procedure
Material Indoor air House dust
a b b
Identify and, if
A B B
Visible mould
1 applicable, eliminate the
damage
moisture source
A B B Identify and, if
2.1 Material dampness applicable, eliminate the
moisture source
— A B Check anomalies,
Suspected
Non-structural /
2.2 identify source, if
mould
structural anomalies
applicable, and remedy
damage
— A B Identify and remedy
2.3 Health problems
source
2.4 Odour problems — A B Identify odour source
3 Remediation monitoring A A B —
A Suitable examination to answer the questions of interest
B Supplementary examination to answer the questions of interest (optional)
a
Material sampling can be useful to answer specific questions concerning major mould damage (see 6.2.2.1).
b
If it is necessary to analyse a dispersion of the contamination.

The building structure, especially the surfaces of critical building components, is visually examined during the
inspection. Moreover, information on potential causes of mould growth should be collected. For this purpose,
relevant physical parameters such as temperature and humidity in the room and on materials (e.g.
condensate) are recorded. If the findings give no clear picture, further non-structural building investigations
(e.g. moisture measurements, thermography, Blower-Door test) may be performed. The detailed description of
the procedures used during inspection is not covered by this part of ISO 16000.
Qualified professionals normally recognize visible mould growth without the need for any elaborate sampling
and analysis methods. If sampling is required, information on the sampling location can be gathered using the
sampling report in Annex C. Table 1 lists possible options for further analysis depending on the findings of the
field inspection. The specific procedures are described in detail in 6.2.2 to 6.2.6.
When performing air and house-dust sampling after field inspection, it is necessary to take into account that
any intrusive inspections into the building structure carried out during the field inspection can have released
additional moulds to the indoor environment that are not attributable to the presence of mould growth.
6.2.2 Investigations prompted by questions related to visible mould damage
6.2.2.1 General aspects
For major visible mould damage, materials may be investigated to answer the following questions:
 confirmation of mould contamination or growth (see 6.2.2.2);
 establishing the damage extent and potential secondary contamination (see 6.2.2.3);
 contamination assessment (see 6.2.2.4);
 establishing prerequisites for remediation monitoring (see 6.2.2.5);
 investigations prompted on orders of a physician due to health problems (see 6.2.2.6).
For special investigation objectives (e.g. establishing the dispersion of mould contamination originating from a
primary source), sampling of house dust and indoor air can provide useful supplementary information.
Moreover, it cannot be ruled out that there are hidden sources in addition to the visible ones (see 6.2.2.2 to
6.2.2.6). It is necessary to take into account building design-related hidden mould sources (curtain walls, wall
cavities) in the further procedure adopted.
Investigation objectives for which further examinations are advisable are described below together with the
recommended procedure and suitable measurement methods.
6.2.2.2 Confirmation of mould contamination or growth
The question as to whether discolorations or large areas of efflorescence observed during the visual
inspection is attributable to mould growth or other causes (particle deposits, blackening, salt efflorescence)
can be answered by microscopic examinations (tape-lift samples or direct material microscopy).
With these methods, it can also be established whether mould has grown on the material, i.e. produced a
mycelium and sporulation structures, or whether only spores have sedimented on the material. Contact
plate/swab samples are unsuitable for this purpose, since in many cases they do not enable a reliable
distinction between mould growth and dust deposits with sedimented spores. Moreover, the contact
plate/swab method detects only culturable moulds. If the site investigated has been treated with fungicides,
this can lead to false negative results.
6.2.2.3 Establishing the damage extent and potential secondary contamination
ssment of the mould damage as well as for remediation planning, the extent of the damage, both
For an asse
surface and interior damage, shall be established. For the damage assessment, the colonization of surfaces
has implications other than mould growth that has penetrated into the plaster or other materials.
To establish how deeply the mould growth has penetrated into the material, core samples or material collected
layer by layer are examined.
The extent of surface mould growth is determined by collecting samples at different distances from the
damage centre. Methods recommended for this purpose are the suspension technique and, if the material is
suitable, microscopic examination (tape-lift sample or material microscopy). Microscopy provides information
as to whether the damage involves fresh, active mould growth or a dried-up, pre-existing mouldy condition.
If other rooms are being examined for contamination in addition to the areas of visible mould damage, air
sampling (see ISO 16000-16 and ISO 16000-18) and, additionally, house dust sampling are suitable methods.
Secondary contamination of objects (furniture, textiles, garments) can be detected by contact plate/swab
sampling.
10 © ISO 2012 – All rights reserved

If hidden mould growth is suspected in addition to the visible mould damage, the procedure described in 6.2.3
to 6.2.6 should be adopted.
6.2.2.4 Contamination assessment
Apart from the damage extent, the distinction between fresh active mould growth and a pre-existing mouldy
condition is an important factor for the damage assessment. With fresh active mould growth, it is likely that
high concentrations of spores are released to the indoor air and the composition of the mould species can
change relatively fast. In contrast, a pre-existing mould growth can already have reached a state where major
spore dispersion no longer occurs.
Microscopic evaluation of tape-lift samples normally provides indications as to whether the mould growth is
fresh, or desiccated and historic. In pre-existing mould growth, the mycelial structures are frequently no longer
intact or only fragments can be detected due to mite activity.
Contact plate/swab samples are only conditionally suited to a
...


INTERNATIONAL ISO
STANDARD 16000-19
First edition
2012-06-01
Indoor air —
Part 19:
Sampling strategy for moulds
Air intérieur —
Partie 19: Stratégie d'échantillonnage des moisissures

Reference number
©
ISO 2012
©  ISO 2012
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.
ISO copyright office
Case postale 56  CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
ii © ISO 2012 – All rights reserved

Contents Page
Foreword . iv
Introduction . vi
1  Scope . 1
2  Normative references . 1
3  Terms and definitions . 1
4  Properties, origin and occurrence of moulds in indoor environments . 4
5  Sampling and detection methods . 5
6  Measurement strategy . 6
6.1  General aspects . 6
6.2  Selection of appropriate procedure . 9
7  Quality requirements and uncertainty considerations . 17
Annex A (informative) Moisture damage indicators . 18
Annex B (informative) Devices for total spore count and detection of culturable fungi . 19
Annex C (informative) Field inspection report to describe sampling procedure and to document
potential mould damage . 21
Bibliography . 27

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 16000-19 was prepared by Technical Committee ISO/TC 146, Air quality, Subcommittee SC 6, Indoor air.
ISO 16000 consists of the following parts, under the general title Indoor air:
 Part 1: General aspects of sampling strategy
 Part 2: Sampling strategy for formaldehyde
 Part 3: Determination of formaldehyde and other carbonyl compounds in indoor air and test chamber
air — Active sampling method
 Part 4: Determination of formaldehyde — Diffusive sampling method
 Part 5: Sampling strategy for volatile organic compounds (VOCs)
 Part 6: Determination of volatile organic compounds in indoor and test chamber air by active sampling on ®
Tenax TA sorbent, thermal desorption and gas chromatography using MS or MS–FID
 Part 7: Sampling strategy for determination of airborne asbestos fibre concentrations
 Part 8: Determination of local mean ages of air in buildings for characterizing ventilation conditions
 Part 9: Determination of the emission of volatile organic compounds from building products and
furnishing — Emission test chamber method
 Part 10: Determination of the emission of volatile organic compounds from building products and
furnishing — Emission test cell method
 Part 11: Determination of the emission of volatile organic compounds from building products and
furnishing — Sampling, storage of samples and preparation of test specimens
 Part 12: Sampling strategy for polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins
(PCDDs), polychlorinated dibenzofurans (PCDFs) and polycyclic aromatic hydrocarbons (PAHs)
 Part 13: Determination of total (gas and particle-phase) polychlorinated dioxin-like biphenyls (PCBs) and
polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/PCDFs) — Collection on sorbent-backed filters
iv © ISO 2012 – All rights reserved

 Part 14: Determination of total (gas and particle-phase) polychlorinated dioxin-like biphenyls (PCBs) and
polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/PCDFs) — Extraction, clean-up and analysis by
high-resolution gas chromatography and mass spectrometry
 Part 15: Sampling strategy for nitrogen dioxide (NO )
 Part 16: Detection and enumeration of moulds — Sampling by filtration
 Part 17: Detection and enumeration of moulds — Culture-based method
 Part 18: Detection and enumeration of moulds — Sampling by impaction
 Part 19: Sampling strategy for moulds
 Part 23: Performance test for evaluating the reduction of formaldehyde concentrations by sorptive
building materials
 Part 24: Performance test for evaluating the reduction of volatile organic compound (except
formaldehyde) concentrations by sorptive building materials
 Part 25: Determination of the emission of semi-volatile organic compounds by building products —
Micro-chamber method
 Part 26: Sampling strategy for carbon dioxide (CO )
 Part 28: Determination of odour emissions from building products using test chambers
The following parts are under preparation:
 Part 21: Detection and enumeration of moulds — Sampling from materials
 Part 27: Determination of settled fibrous dust on surfaces by SEM (scanning electron microscopy) (direct
method)
 Part 29: Test methods for VOC detectors
 Part 30: Sensory testing of indoor air
 Part 31: Measurement of flame retardants and plasticizers based on organophosphorus compounds —
Phosphoric acid ester
 Part 32: Investigation of constructions on pollutants and other injurious factors — Inspections

Introduction
Mould spores and metabolites can be inhaled via the air and cause allergic and irritating reactions and/or
complex symptoms in humans. Moreover, mould growth can be associated with severe odour nuisances. In
[14][18][19]
rare cases, some mould species can cause infections (so-called mycoses) in certain risk groups.
There is sufficient epidemiological evidence that damp and mouldy buildings increase the risk of respiratory
[8]
symptoms, respiratory infections and enhances asthma symptoms of the occupants. In addition, there is
some evidence for increased risk of development of allergic rhinitis and asthma. Furthermore, there is clinical
evidence for rare symptoms like allergic alveolitis, chronic rhinosinusitis and allergic sinusitis. Toxicological
studies in vivo and in vitro show irritating and toxic reactions of microorganisms (including spores, cell
[8]
components and metabolites) from damp buildings.
Growth of microorganisms in damp buildings can lead to increased concentrations of spores, cell fragments,
allergens, mycotoxins, endotoxins, -glucanes and MVOC (microbial volatile organic compounds). From the
studies conducted so far it is not clear which compounds are the causative agents of the health effects
observed. Nevertheless, increased concentrations of each of these compounds are considered a potential
[8][18]
health risk and growth of mould in buildings should, therefore, be avoided.
The prime objective of this part of ISO 16000 is to provide assistance in identifying mould sources in indoor
environments.
vi © ISO 2012 – All rights reserved

INTERNATIONAL STANDARD ISO 16000-19:2012(E)

Indoor air —
Part 19:
Sampling strategy for moulds
1 Scope
This part of ISO 16000 describes the measurement strategy for the detection of fungi in indoor environments.
It describes suitable sampling and analysis methods together with a description of the applicability and the
interpretation of the measurement results to maximize the comparability of the measured data obtained for a
given measurement objective. It does not include details on recording building characteristics or field
inspections by qualified professionals which have to take place prior to any microbiological measurement.
This part of ISO 16000 is not applicable to a detailed description of the building physics- and building-
engineering-related procedures applicable to field inspections. The methods and procedures presented do not
allow quantitative exposure assessment with regard to the room occupants.
The application of this part of ISO 16000 presupposes the knowledge of ISO 16000-1.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.
ISO 16000-16, Indoor air — Part 16: Detection and enumeration of moulds — Sampling by filtration
ISO 16000-18, Indoor air — Part 18: Detection and enumeration of moulds — Sampling by impaction
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
3.1
pre-existing mouldy condition
desiccated “old” mould growth, where additional biomass growth no longer occurs and the indoor air mould
spore concentration gradually decreases with time
3.2
biological preservation efficiency
capacity of the sampler to maintain the viability of the airborne microorganisms during collection and also to
keep the microbial products intact
[6]
[SOURCE: EN 13098:2000 ]
NOTE The biological collection efficiency considers the sampling stress occurring during sampling and analysis in
addition to the physical collection efficiency.
3.3
identification of moulds
assignment of moulds to spore types or groups on the basis of defined properties (e.g. morphological,
biochemical, molecular-biological properties)
NOTE The term “differentiation” is frequently used instead of identification. The term “differentiation” is, however,
misleading because the intention is not to merely differentiate the moulds but to identify them, i.e. to assign them, e.g. to
genera or species.
3.4
filamentous fungus
fungus growing in the form of filaments of cells known as hyphae
NOTE 1 Hyphae aggregated in bundles are called mycelia.
NOTE 2 The term “filamentous fungi” differentiates fungi with hyphal growth from yeasts.
3.5
filtration
collection of particles suspended in a gas or liquid by flow through a porous medium
[6]
[SOURCE: EN 13098:2000 ]
NOTE In this part of ISO 16000, filtration is understood as the separation of microorganisms or moulds from a
defined volume of air by means of filters.
3.6
total spore count
number of (culturable and non-culturable) spores that are collected and enumerated under the microscope
NOTE For the term “spores”, see 3.19, Note 2.
3.7
yeast
unicellular fungus that does not normally produce a mycelium and reproduce by budding (budding fungi) as
against moulds, which reproduce by sporulation
3.8
impaction
sampling of particles suspended in air by inertial separation on a solid surface (culture medium or adhesive-
coated slides)
NOTE 1 See 16000-18.
NOTE 2 Sampling is carried out using either round-hole or slit impactors, for instance. As the air passes through the
orifices, it is accelerated and the particles are impacted on the medium located directly behind the nozzles as a result of
their inertia, while the air flows around the culture medium and exits the sampler. Impaction samples are only suitable for
direct analysis without further resuspension of the sample.
3.9
colony forming unit
cfu
air quality unit by which the culturable number of microorganisms is expressed
[6]
[SOURCE: EN 13098:2000 ]
NOTE 1 One colony can originate from one single microorganism, from aggregates of many microorganisms as well as
from one or many microorganisms attached to a particle.
NOTE 2 The number of colonies can depend on the cultivation conditions.
2 © ISO 2012 – All rights reserved

3.10
colony morphology type
group of colonies which due to their morphological appearance seem to belong to a specific species
3.11
colony count
air quality number of all microorganism colonies visible on a culture medium after incubation under the
selected cultivation conditions
3.12
culturable mould
mould that can be cultured under the selected cultivation conditions
NOTE Parameters governing the culturability are, for instance, the type of culture medium and the incubation
temperature.
3.13
cultivation
growing of microorganisms on culture media
3.14
mycotoxin
secondary metabolites of moulds which are toxic to humans and animals
3.15
mycelium
total of fungal hyphae
3.16
non-culturable mould
mould that cannot be cultured under the selected cultivation conditions
3.17
physical sampling efficiency
capacity of the sampler to collect particles with specific aerodynamic diameters suspended in air
[6]
[SOURCE: EN 13098:2000, modified — "aerodynamic diameters" has replaced "sizes".]
3.18
sampling stress
damage suffered by the microorganisms during sampling (e.g. through mechanical and chemical effects or
through water deprivation)
3.19
mould
filamentous fungi from several taxonomic groups, namely Ascomycetes, Zygomycetes, and their anamorphic
states formerly known as Deuteromycetes or fungi imperfecti
NOTE 1 Taxonomically, moulds do not represent a uniform group.
NOTE 2 Moulds form different types of spores depending on the taxonomic group they belong to, namely
conidiospores (conidia), sporangiospores or ascospores. In practice, all these reproductive stages are summarized under
the term “spores”.
3.20
mould damage
damage caused to building materials and surfaces by mould growth
NOTE Mould damage can result in loss in value, health risks and restrict the occupancy of the affected sites.
3.21
secondary colony
colony that does not originate from the “primary” sampling of airborne spores but from a spore released from a
colony growing on the agar plates
3.22
secondary contamination
mould contamination of surfaces not caused by mould growth but originating from a (contaminated) primary
source after aerial dispersion
3.23
cut-off value
particle size (aerodynamic diameter) for which the sampling efficiency is 50 %
3.24
total sampling efficiency
product of the physical sampling efficiency and the biological preservation efficiency
[6]
[SOURCE: EN 13098:2000 ]
4 Properties, origin and occurrence of moulds in indoor environments
Moulds are ubiquitous on our planet. They are involved in the decomposition of organic material and,
therefore, play an important role in the natural carbon cycle. Their concentration in the ambient air depends,
inter alia, on location, climate, time of the day and season. Airborne mould concentrations are subject to great
[9][10][11]
variability. This is due to the following reasons.
The mould concentration in local ambient air is mainly determined by the location relative to the respective
mould sources, wind direction and wind force. Mould spores are frequently released by specific sources such
as decaying material. Both natural processes and production processes, such as composting, recycling,
animal production facilities, grain and food processing plants as well as horticulture facilities, can be sources
of mould dispersion.
Sporulation, i.e. the production of mould spores occurs discontinuously. It is governed, inter alia, by the mould
lifecycle phase, the environmental conditions, stress factors, humidity as well as substrate composition and
availability.
Factors governing the dispersion of spores, most of which have aerodynamic diameters in the range of 2 µm
to 40 µm, are mechanically or thermally induced air movements, drying phases (leading e.g. to de-
[12][13][14]
agglomeration of deposited dust) and the capability of air dispersal of the mould spores.
Due to the ubiquitous nature of moulds, it can be assumed that they are always present in indoor air. The
presence of moulds in indoor air can be due to spores originating from ambient air on the one hand and to
recent active mould growth, pre-existing mouldy conditions or mould deposits (settled spores) on the other. To
distinguish between sources, it is, therefore, important to perform ambient air measurements for reference
[14][15]
whenever conducting indoor air measurements for moulds. In addition, the collection of a control sample
from a suitable reference room may be helpful.
Possible causes of indoor mould sources are surface moisture on building materials or moisture in the building
structure, but also rotting food, potted plants, biowaste collection, source separation of waste, deposited dust
due to poor cleaning as well as the keeping of animals in residential settings. Moisture damage can be
attributable to building defects, inappropriate ventilation and heating or unfavourable arrangement of furniture
as well as water damage (e.g. plumbing leaks or flooding events). Elevated mould levels in indoor
environments and the occurrence of certain mould species (see Annex A) are indicative of excessive moisture.
When residential environments or occupational settings are infested with moulds, the mould source shall be
located to be able to plan remedial measures.
4 © ISO 2012 – All rights reserved

Main factors affecting the intensity of mould growth and the mould species developing are moisture,
temperature, nutrient supply and the pH. If environmental conditions are favourable, a great variety of moulds
can develop. Once environmental conditions become less favourable, the species best adapted to the given
[16]
conditions will predominate.
Mould sources can release spores, mycelial fragments, but also cell components and metabolic products such
as -glucans (polysaccharides contained in the cell wall of fungi), ergosterol (steroid compound contained in
the cell membrane of fungi), toxins and MVOCs (microbial volatile organic compounds such as certain
aldehydes, alcohols, esters, ketones). On cultivation, colonies can grow not only from spores, but also from
mycelial fragments.
The number and airborne dissemination of spores released vary with the type of mould damage. For an
assessment of indoor mould sources, it is, therefore, important to differentiate the individual mould species by
their type of spore dispersal. Experience has shown that even minor mould contamination of materials can
result in elevated indoor air mould levels if the species involved have dry spores with good air dispersal
capabilities (e.g. Penicillium and Aspergillus). By contrast, airborne spore concentrations are much lower
when materials are colonized, for instance, by moulds of the genera Acremonium, Fusarium or the species
Stachybotrys chartarum that have relatively large spores embedded in slimy substances and, therefore, have
poor air dispersal capabilities.
Furthermore, it should be taken into account that mould spores are not necessarily present as individual
spores in the air or settled dust, but also occur in the form of spore aggregates or are particle-borne.
Depending on the analysis method, they are determined individually or as spore aggregate. Materials, indoor
air and house dust contain not only culturable but also non-culturable mould spores, some of which can have
the same allergenic and toxic effects as culturable spores. For this reason, techniques have been developed
that allow the microscopic determination of both culturable and non-culturable moulds.
Mould detection and identification are performed either after cultivation based on morphological criteria,
biochemical reactions and/or molecular techniques or by direct microscopic examination. Identification based
on the morphological structure (macroscopic examination, stereo-microscopy and microscopy) either after
prior cultivation or by direct microscopy is still the most prevalent approach for the detection of moulds.
Besides, there are other analytical methods based on the determination of cell components and metabolites of
[17]
moulds such as -glucans, ergosterol, toxins and MVOCs. The determination of these compounds serves,
however, only as supplementary information.
The sampling methods employed for detection of moulds are determined by the objective of the investigation.
Depending on the sampling method, the moulds suffer a sampling stress during sample collection and
preparation, which can lead to their drying-out or dying. Factors affecting the culturability of mould spores are
their physiological state as well as the culture medium employed. Some mould species cannot be cultured at
all under laboratory conditions.
NOTE The genera Stachybotrys and Chaetomium hardly grow and sporulate only poorly, if at all, on DG18 agar. The
use of this culture medium for culture-based analysis of these genera is therefore not recommended (see ISO 16000-17).
For a literature summary see References [8]–[10], [12], and [14]–[18].
5 Sampling and detection methods
Depending on the objective of the investigation, materials (see ISO 16000-21, in preparation), air (see
ISO 16000-16 and ISO 16000-18) and house dust may be sampled and analysed for culturable moulds (see
ISO 16000-17). Moulds can also be quantified and, to some extent, differentiated without prior cultivation. For
this purpose, airborne mould spores are collected on filters or directly on an adhesive-coated microscope slide,
followed by staining and subsequent direct microscopy.
Annex B gives an overview on the most common devices for total spore count measurements as well as for
sampling devices for filtration and impaction and the respective analysis methods.
6 Measurement strategy
6.1 General aspects
There is no standard procedure for measurement and assessment of mould damage. The type and amount of
measurements as well as the analytical methods employed are determined by the circumstances triggering
the investigation and the investigation objectives. A visual field inspection (walk through) by technically
qualified professionals prior to sampling is a key prerequisite for detecting and assessing mould sources in
indoor environments. Besides a good knowledge of building engineering and building physics, the
professionals conducting the inspection should have a sufficient background in indoor air hygiene and
microbiology.
Investigations are conducted with the objective of locating mould sources in indoor environments. To support
findings from visual observations and confirm suspected mould growth, professionals can draw on a variety of
sampling and analysis methods. These include methods for determining mould concentrations in or on
materials, procedures for the measurement of mould concentrations in indoor air as well as procedures for
determining mould concentrations in house dust. An example for a report accompanying sampling is attached
as Annex C.
Circumstances triggering a microbiological investigation of indoor environments may include the following (see
also Table 1):
 visible mould damage;
 material dampness without presence of visible mould growth;
 structural or non-structural building anomalies without presence of visible mould growth;
 health problems without presence of visible mould growth;
 odour problems without presence of visible mould growth;
 verification measurements during and after remediation.
In the case of visible mould damage with known source, the remediation and elimination of the underlying
causes should be addressed as a priority. In many cases, microbiological investigations is not necessary.
If mould damage is suspected without the presence of visible sources, the indoor environment can be
examined for the presence of elevated mould concentrations. Depending on the circumstances triggering the
investigation, the following media may be sampled and analysed:
a) materials and their surfaces (see 6.1.1);
b) indoor air in comparison with ambient air (see 6.1.2);
c) house dust (see 6.1.3).
The results of the measurements described in the following sections provide only indications on the damage
stage. Assessing the actual age of the mould growth is not feasible as the state of mould growth can change
drastically within very short time intervals.
The inspection of HVAC systems for lack of hygiene is not the subject of this part of ISO 16000.
In planning and performing measurements, the specific field conditions and influencing factors having a major
impact on the investigation results shall be taken into account and documented.
6 © ISO 2012 – All rights reserved

6.1.1 Analysis of surfaces or materials
For the selection of a suitable sampling method and the definition of the sampling locations, the following
questions have to be clarified.
 Is mould growth or secondary contamination expected on the surface or the material?
 Is a surface colonization or a colonization of deeper layers expected?
 Are the moulds expected or under study culturable?
 Are criteria available for an assessment of the analysis result?
Criteria for differentiating between active mould growth and mould deposits on material surfaces or in wall
cavities originating from natural sedimentation are the mould concentration and evidence of mould structures,
e.g. mycelium or spore carriers, in the material or on its surface. The mould concentration in the material or on
the material surface varies with the type of material, especially the density of the material, and the mould
species. Different mould species grow on or in a material depending on moisture, temperature and nutrient
source. Suspected mould contamination of surfaces may be confirmed by surface sampling using the tape-lift
and contact plate methods. The contact plate method presupposes that the moulds are culturable. If the
surface has already been disinfected or if contamination with Stachybotrys chartarum is suspected, the
contact plate method is not applicable. In such cases, it is necessary that tape-lift samples of the surfaces be
examined by direct microscopy.
Surface sampling (contact plate and tape-lift methods) has limited suitability for materials with rough surfaces
(e.g. plaster, insulation materials). Usually, the samples are suspended in a buffer followed by determination
[25]
of the mould concentration by cultivation or direct microscopy.
Where no empirical threshold levels exist for classifying a material as “contaminated” or “not contaminated”,
materials displaying no visible mould growth are sampled as controls for comparison.
6.1.2 Analysis of indoor air
The objective of indoor air sampling and analysis is to determine the concentration of moulds in a
representative air sample in order to assess the likelihood of mould sources in the indoor environment.
Depending on the investigation objective, this requires a more or less complete identification of the moulds
(see 6.2). In analysing air samples, special attention is given to differences in the species spectrum present in
the indoor compared to ambient air. Moreover, the presence of moisture-indicator species (see Table A.1)
should be taken into account. At high mould spore concentrations in the ambient air due to the specific
weather conditions, the concentration of ambient air species in the indoor air can be many times higher than
the concentrations of the moisture-indicator species of interest. If the concentration of typical ambient air
species exceeds that of indoor-environment-specific moisture-indicators by a factor of more than 10, indoor air
sampling allows no conclusions as to the presence of a potential mould source because moisture indicators
may be overgrown by fungi from ambient air.
To avoid interferences, rooms in which the lowest airborne concentrations are expected should be sampled
first.
The sampling methods in accordance with ISO 16000-16 (filtration) and ISO 16000-18 (impaction) are based
on different measurement principles and do not produce the same results for all measurement tasks. For the
selection of the sampling procedure and the determination of the required number of sampling locations and
the sampling duration, the influencing parameters and conditions prevailing in the specific situation shall be
established by a prior field inspection.
For this purpose, the following questions shall be clarified.
 Is a largely constant mould concentration expected in the room?
 Are air movements present that reflect a normal activity in the room?
 Are major fluctuations in the mould concentration expected as a result of short-term influences (e.g.
occupant influences, convection or downward air flows)?
When no major occupancy-related air movements are expected and no influences leading regularly to major
variations in the airborne mould levels are evident in the rooms being assessed (e.g. residential rooms), both
short-term sampling (sampling period 1 min to 10 min) and long-term sampling (sampling period > 30 min) are
appropriate methods. In practice, sampling by impaction is the preferred procedure for short-term sampling.
This sampling method requires a prior estimate of the expected mould concentration. Different air volumes are
sampled at each sampling location to be able to cover a broader concentration range. This is accomplished by
collecting impaction samples over different sampling durations. The detection of indoor-relevant moulds
presupposes that particles with a diameter greater than 2 µm can be quantitatively collected on the culture
medium or adhesive-coated slide (for the determination of the total spore count). This presupposes that the
impactors are designed for a cut-off d < 2 µm (see Table B.2). All short-term measurements should be
conducted over a minimum period of 1 min. The sample volume should not be less than 50 l. In unoccupied
rooms, short-time measurements may be performed without occupancy simulation, since experience has
shown that especially the installation of the sampling equipments as well as their operation usually results in
air movements at the sampling location that are comparable to those during normal conditions of use.
In rooms with major “old” dust deposits, sampling can cause unintentional disturbance of settled dust, which
can lead to false positive results.
If a sampling device generates major exit air flows resulting in the disturbance of deposited dust, the exit air
stream should be conducted of the room being investigated and/or care should be taken to ensure that it is not
directed at potential mould sources, such as the floor or dusty or mouldy materials.
Filtration methods are the sole applicable option for long-term measurements. Filtration sampling is the
method of choice when sampling is carried out during normal activities in the room and when major air
movements and fluctuating mould concentrations are expected. Filtration sampling is also the preferred
method for culturable sampling when airborne mould concentrations are expected to exceed 2 000 cfu/m . At
sampling durations of 1 h and longer in unoccupied rooms, additional occupancy simulations are needed
during the sampling period. The occupancy simulation should reflect the usual occupancy of the room.
Regardless of the sampling method, the windows and doors of the room shall be closed approx. 8 h before
commencing sampling and kept closed during the sampling process. Samples should preferably be collected
in the centre of the room with a minimum distance of 1 m from enclosing walls and at a height of approx.
0,75 m to 1,5 m. In all cases, an ambient air sample shall be collected for reference. Moreover, the collection
of air samples in an appropriate reference room can be useful. Indoor and ambient air samples shall be
collected on the same day with as short a time interval in-between as possible.
NOTE In buildings with air-conditioning, shorter time intervals (2 h) between closing the windows and sampling can
be sufficient. Measurement of fungi in ambient air might not be necessary in buildings with filtered incoming air and no
windows that can be opened by the occupants.
The specific conditions at the sampling location and the climatic conditions during sampling are documented
in a sampling report (see Annex C).
6.1.3 Analysis of house dust
House dust analyses are normally only conducted to complement the results from indoor air measurements.
As there are currently no suitable procedures for the determination of non-culturable moulds in house dust,
the analysis is limited to the detection of culturable moulds. House dust analyses are a useful tool to check the
results from indoor air measurements for plausibility. Before commencing sampling, it should be clarified
[26][27]
whether suitable sampling locations with sufficient quantities of settled dust exist.
Reference data used for the assessment of the analysis results shall have been obtained by the same
sampling, sample preparation and analysis methods. Results differ greatly if total house dust or fine dust of a
certain size fraction is being used.
8 © ISO 2012 – All rights reserved

6.2 Selection of appropriate procedure
6.2.1 Field inspection
The first step of a mould assessment in indoor environments is a field inspection in order to take an inventory.
On this occasion, the circumstances triggering the investigation and details of the condition of the building,
room furnishings, etc. are assembled.
Table 1 — Recommendations to help decision-making for sampling after a field inspection
Finding and objective Matter being examined Further
procedure
Material Indoor air House dust
a b b
Identify and, if
A B B
Visible mould
1 applicable, eliminate the
damage
moisture source
A B B Identify and, if
2.1 Material dampness applicable, eliminate the
moisture source
— A B Check anomalies,
Suspected
Non-structural /
2.2 identify source, if
mould
structural anomalies
applicable, and remedy
damage
— A B Identify and remedy
2.3 Health problems
source
2.4 Odour problems — A B Identify odour source
3 Remediation monitoring A A B —
A Suitable examination to answer the questions of interest
B Supplementary examination to answer the questions of interest (optional)
a
Material sampling can be useful to answer specific questions concerning major mould damage (see 6.2.2.1).
b
If it is necessary to analyse a dispersion of the contamination.

The building structure, especially the surfaces of critical building components, is visually examined during the
inspection. Moreover, information on potential causes of mould growth should be collected. For this purpose,
relevant physical parameters such as temperature and humidity in the room and on materials (e.g.
condensate) are recorded. If the findings give no clear picture, further non-structural building investigations
(e.g. moisture measurements, thermography, Blower-Door test) may be performed. The detailed description of
the procedures used during inspection is not covered by this part of ISO 16000.
Qualified professionals normally recognize visible mould growth without the need for any elaborate sampling
and analysis methods. If sampling is required, information on the sampling location can be gathered using the
sampling report in Annex C. Table 1 lists possible options for further analysis depending on the findings of the
field inspection. The specific procedures are described in detail in 6.2.2 to 6.2.6.
When performing air and house-dust sampling after field inspection, it is necessary to take into account that
any intrusive inspections into the building structure carried out during the field inspection can have released
additional moulds to the indoor environment that are not attributable to the presence of mould growth.
6.2.2 Investigations prompted by questions related to visible mould damage
6.2.2.1 General aspects
For major visible mould damage, materials may be investigated to answer the following questions:
 confirmation of mould contamination or growth (see 6.2.2.2);
 establishing the damage extent and potential secondary contamination (see 6.2.2.3);
 contamination assessment (see 6.2.2.4);
 establishing prerequisites for remediation monitoring (see 6.2.2.5);
 investigations prompted on orders of a physician due to health problems (see 6.2.2.6).
For special investigation objectives (e.g. establishing the dispersion of mould contamination originating from a
primary source), sampling of house dust and indoor air can provide useful supplementary information.
Moreover, it cannot be ruled out that there are hidden sources in addition to the visible ones (see 6.2.2.2 to
6.2.2.6). It is necessary to take into account building design-related hidden mould sources (curtain walls, wall
cavities) in the further procedure adopted.
Investigation objectives for which further examinations are advisable are described below together with the
recommended procedure and suitable measurement methods.
6.2.2.2 Confirmation of mould contamination or growth
The question as to whether discolorations or large areas of efflorescence observed during the visual
inspection is attributable to mould growth or other causes (particle deposits, blackening, salt efflorescence)
can be answered by microscopic examinations (tape-lift samples or direct material microscopy).
With these methods, it can also be established whether mould has grown on the material, i.e. produced a
mycelium and sporulation structures, or whether only spores have sedimented on the material. Contact
plate/swab samples are unsuitable for this purpose, since in many cases they do not enable a reliable
distinction between mould growth and dust deposits with sedimented spores. Moreover, the contact
plate/swab method detects only culturable moulds. If the site investigated has been treated with fungicides,
this can lead to false negative results.
6.2.2.3 Establishing the damage extent and potential secondary contamination
ssment of the mould damage as well as for remediation planning, the extent of the damage, both
For an asse
surface and interior damage, shall be established. For the damage assessment, the colonization of surfaces
has implications other than mould growth that has penetrated into the plaster or other materials.
To establish how deeply the mould growth has penetrated into the material, core samples or material collected
layer by layer are examined.
The extent of surface mould growth is determined by collecting samples at different distances from the
damage centre. Methods recommended for this purpose are the suspension technique and, if the material is
suitable, microscopic examination (tape-lift sample or material microscopy). Microscopy provides information
as to whether the damage involves fresh, active mould growth or a dried-up, pre-existing mouldy condition.
If other rooms are being examined for contamination in addition to the areas of visible mould damage, air
sampling (see ISO 16000-16 and ISO 16000-18) and, additionally, house dust sampling are suitable methods.
Secondary contamination of objects (furniture, textiles, garments) can be detected by contact plate/swab
sampling.
10 © ISO 2012 – All rights reserved

If hidden mould growth is suspected in addition to the visible mould damage, the procedure described in 6.2.3
to 6.2.6 should be adopted.
6.2.2.4 Contamination assessment
Apart from the damage extent, the distinction between fresh active mould growth and a pre-existing mouldy
condition is an important factor for the damage assessment. With fresh active mould growth, it is likely that
high concentrations of spores are released to the indoor air and the composition of the mould species can
change relatively fast. In contrast, a pre-existing mould growth can already have reached a state where major
spore dispersion no longer occurs.
Microscopic evaluation of tape-lift samples normally provides indications as to whether the mould growth is
fresh, or desiccated and historic. In pre-existing mould growth, the mycelial structures are frequently no longer
intact or only fragments can be detected due to mite activity.
Contact plate/swab samples are only conditionally suited to assess whether a mouldy condition involves fresh
active or inactive pre-existing mould growth or secondary contamination only. If the concentration of culturable
moulds is in strong contradiction with the spores identified by microscopy or the visual impression of mould
growth, it can be assumed that the mould is no longer active. This presupposes, however, that no disinfection
with fungicides has been carried out.
In addition to the actual examination of the mould growth, moisture measurements on/in materials should
always be conducted in order to assess whether a dispersion of the mould contamination is expected due to
elevated moisture levels.
The above examinations provide information only on the damage state. A determination of the mould age as
such is not feasible as the state of a mould growth can change tremendously within very short time intervals.
6.2.2.5 Prerequisites for remediation monitoring
Even if the mould damage is confined and hazards are predictable without further examination, it can be
useful to different
...


NORME ISO
INTERNATIONALE 16000-19
Première édition
2012-06-01
Air intérieur —
Partie 19:
Stratégie d'échantillonnage des
moisissures
Indoor air —
Part 19: Sampling strategy for moulds

Numéro de référence
©
ISO 2012
DOCUMENT PROTÉGÉ PAR COPYRIGHT

©  ISO 2012
Droits de reproduction réservés. Sauf prescription différente, aucune partie de cette publication ne peut être reproduite ni utilisée sous
quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit
de l'ISO à l'adresse ci-après ou du comité membre de l'ISO dans le pays du demandeur.
ISO copyright office
Case postale 56  CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Publié en Suisse
ii © ISO 2012 – Tous droits réservés

Sommaire Page
Avant-propos . iv
Introduction . vi
1  Domaine d'application . 1
2  Références normatives . 1
3  Termes et définitions . 1
4  Propriétés, origine et occurrence des moisissures dans les environnements intérieurs . 4
5  Méthodes d'échantillonnage et de détection . 6
6  Stratégie de mesurage . 6
6.1  Aspects généraux . 6
6.2  Sélection d'un mode opératoire approprié . 10
7  Exigences de qualité et considérations relatives à l'incertitude . 19
Annexe A (informative) Indicateurs de dommage de moisissure . 20
Annexe B (informative) Dispositifs de détermination du nombre total de spores et de détection
des champignons cultivables . 21
Annexe C (informative) Rapport d'inspection sur le terrain pour décrire un mode opératoire de
prélèvement et pour documenter un dommage de moisissure potentiel . 23
Bibliographie . 29

Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux de
normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général confiée
aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude a le droit de faire partie du
comité technique créé à cet effet. Les organisations internationales, gouvernementales et non
gouvernementales, en liaison avec l'ISO participent également aux travaux. L'ISO collabore étroitement avec
la Commission électrotechnique internationale (CEI) en ce qui concerne la normalisation électrotechnique.
Les Normes internationales sont rédigées conformément aux règles données dans les Directives ISO/CEI,
Partie 2.
La tâche principale des comités techniques est d'élaborer les Normes internationales. Les projets de Normes
internationales adoptés par les comités techniques sont soumis aux comités membres pour vote. Leur
publication comme Normes internationales requiert l'approbation de 75 % au moins des comités membres
votants.
L'attention est appelée sur le fait que certains des éléments du présent document peuvent faire l'objet de
droits de propriété intellectuelle ou de droits analogues. L'ISO ne saurait être tenue pour responsable de ne
pas avoir identifié de tels droits de propriété et averti de leur existence.
L'ISO 16000-19 a été élaborée par le comité technique ISO/TC 146, Qualité de l'air, sous-comité SC 6, Air
intérieur.
L'ISO 16000 comprend les parties suivantes, présentées sous le titre général Air intérieur:
 Partie 1: Aspects généraux de la stratégie d'échantillonnage
 Partie 2: Stratégie d'échantillonnage du formaldéhyde
 Partie 3: Dosage du formaldéhyde et d'autres composés carbonylés dans l'air intérieur et dans l'air des
chambres d'essai — Méthode par échantillonnage actif
 Partie 4: Dosage du formaldéhyde — Méthode par échantillonnage diffusif
 Partie 5: Stratégie d'échantillonnage pour les composés organiques volatils (COV)
 Partie 6: Dosage des composés organiques volatils dans l'air intérieur des locaux et chambres d'essai ®
par échantillonnage actif sur le sorbant Tenax TA , désorption thermique et chromatographie en phase
gazeuse utilisant MS ou MS-FID
 Partie 7: Stratégie d'échantillonnage pour la détermination des concentrations en fibres d'amiante en
suspension dans l'air
 Partie 8: Détermination des âges moyens locaux de l'air dans des bâtiments pour caractériser les
conditions de ventilation
 Partie 9: Dosage de l'émission de composés organiques volatils de produits de construction et d'objets
d'équipement — Méthode de la chambre d'essai d'émission
 Partie 10: Dosage de l'émission de composés organiques volatils de produits de construction et d'objets
d'équipement — Méthode de la cellule d'essai d'émission
iv © ISO 2012 – Tous droits réservés

 Partie 11: Dosage de l'émission de composés organiques volatils de produits de construction et d'objets
d'équipement — Échantillonnage, conservation des échantillons et préparation d'échantillons pour essai
 Partie 12: Stratégie d'échantillonnage des polychlorobiphényles (PCB), des polychlorodibenzo-p-dioxines
(PCDD), des polychlorodibenzofuranes (PCDF) et des hydrocarbures aromatiques polycycliques (HAP)
 Partie 13: Dosage des polychlorobiphényles (PCB) de type dioxine et des polychlorodibenzo-p-dioxines
(PCDD)/polychlorodibenzofuranes (PCDF) totaux (en phase gazeuse et en phase particulaire) —
Collecte sur des filtres adsorbants
 Partie 14: Dosage des polychlorobiphényles (PCB) de type dioxine et des polychlorodibenzo-p-dioxines
(PCDD)/polychlorodibenzofuranes (PCDF) totaux (en phase gazeuse et en phase particulaire) —
Extraction, purification et analyse par chromatographie en phase gazeuse haute résolution et
spectrométrie de masse
 Partie 15: Stratégie d'échantillonnage du dioxyde d'azote (NO )
 Partie 16: Détection et dénombrement des moisissures — Échantillonnage par filtration
 Partie 17: Détection et dénombrement des moisissures — Méthode par culture
 Partie 18: Détection et dénombrement des moisissures — Échantillonnage par impaction
 Partie 19: Stratégie d'échantillonnage des moisissures
 Partie 23: Essai de performance pour l'évaluation de la réduction des concentrations en formaldéhyde
par des matériaux de construction sorptifs
 Partie 24: Essai de performance pour l'évaluation de la réduction des concentrations en composés
organiques volatils (sauf formaldéhyde) par des matériaux de construction sorptifs
 Partie 25: Dosage de l'émission de composés organiques semi-volatils des produits de construction —
Méthode de la micro-chambre
 Partie 26: Stratégie d'échantillonnage du dioxyde de carbone (CO )
 Partie 28: Détermination des émissions d'odeurs des produits de construction au moyen de chambres
d'essai
Les parties suivantes sont en cours d'élaboration:
 Partie 21: Détection et dénombrement des moisissures — Échantillonnage à partir de matériaux
 Partie 27: Détermination de la poussière fibreuse déposée sur les surfaces par microscopie électronique
à balayage (MEB) (méthode directe)
 Partie 29: Méthodes d'essai pour détecteurs de composés organiques volatils (COV)
 Partie 30: Essai sensoriel de l'air intérieur
 Partie 31: Mesurage des ignifugeants basés sur des composés organophosphorés — Ester d'acide
phosphorique
 Partie 32: Investigation de polluants et autres facteurs nocifs dans les constructions — Inspections

Introduction
Les spores de moisissures et les métabolites peuvent être inhalés par voie aérienne et provoquer des
réactions allergiques et d'irritation et/ou des symptômes complexes chez l'homme. En outre, la formation de
moisissures peut s'accompagner de sérieuses nuisances olfactives. Dans de rares cas, certaines espèces de
[14][18][19]
moisissures peuvent être à l'origine d'infections (appelées mycoses) dans certains groupes à risque .
Il existe suffisamment de données épidémiologiques montrant que les bâtiments humides et moisis
augmentent le risque de symptômes et d'infections respiratoires et accentuent les symptômes asthmatiques
[8]
des occupants . Le risque accru de développement de rhinites allergiques et d'asthme est en outre démontré.
Il existe par ailleurs des preuves cliniques de symptômes rares tels que l'alvéolite allergique, la rhinosinusite
chronique et la sinusite allergique. Les études toxicologiques in vivo et in vitro montrent les effets irritants et
toxiques des micro-organismes (incluant les spores, les composants cellulaires et les métabolites) des
[8]
bâtiments humides .
Le développement de micro-organismes dans les bâtiments humides peut donner lieu à des concentrations
accrues de spores, de fragments cellulaires, d'allergènes, de mycotoxines, d'endotoxines, de -glucanes et de
COVM (composés organiques volatils microbiens). Les études menées jusqu'à présent n'ont pas pu montrer
clairement quels composés sont les agents responsables des effets observés sur la santé. Les fortes
concentrations de chacun de ces composés n'en sont pas moins considérées comme un risque potentiel pour
[8][18]
la santé et il convient par conséquent d'éviter la formation de moisissures dans les bâtiments.
Le principal objectif de la présente partie de l'ISO 16000 est d'aider à l'identification des sources de
moisissures dans les environnements intérieurs.

vi © ISO 2012 – Tous droits réservés

NORME INTERNATIONALE ISO 16000-19:2012(F)

Air intérieur —
Partie 19:
Stratégie d'échantillonnage des moisissures
1 Domaine d'application
La présente partie de l'ISO 16000 décrit la stratégie de mesurage pour détecter les champignons dans les
environnements intérieurs.
Elle décrit des méthodes d'échantillonnage et d'analyse appropriées ainsi que l'applicabilité et l'interprétation
des résultats de mesurage pour maximiser la comparabilité des données mesurées obtenues pour un objectif
de mesurage donné. Elle ne contient pas d'indications détaillées concernant l'enregistrement des
caractéristiques du bâtiment ou les inspections sur le terrain menées par des professionnels qualifiés qui
doivent être effectués préalablement à tout mesurage microbiologique.
La présente partie de l'ISO 16000 ne s’applique pas à une description détaillée des modes opératoires relatifs
à la physique et au génie du bâtiment applicables aux inspections sur le terrain. Les méthodes et les modes
opératoires présentés ne permettent pas d'évaluer l'exposition quantitative des occupants de la pièce.
L'application de la présente partie de l'ISO 16000 présuppose que l'on ait pris connaissance de l'ISO 16000-1.
2 Références normatives
Les documents de référence suivants sont indispensables pour l'application du présent document. Pour les
références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du
document de référence s'applique (y compris les éventuels amendements).
ISO 16000-16, Air intérieur — Partie 16: Détection et dénombrement des moisissures — Échantillonnage par
filtration
ISO 16000-18, Air intérieur — Partie 18: Détection et dénombrement des moisissures — Échantillonnage par
impaction
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions suivants s'appliquent.
3.1
état moisi pré-existant
formation de moisissures «ancienne» desséchée où la croissance d'une biomasse additionnelle a cessé, la
concentration des spores de moisissures dans l'air intérieur diminuant avec le temps
3.2
efficacité de conservation biologique
capacité de l'échantillonneur à conserver la viabilité des micro-organismes en suspension dans l'air pendant
la collecte et à conserver les produits microbiens intacts
[6]
[EN 13098:2000 ]
NOTE L'efficacité de collecte biologique tient compte du stress de prélèvement intervenant pendant le prélèvement
et l'analyse, en plus de l'efficacité de collecte physique.
3.3
identification des moisissures
affectation des moisissures à des types ou des groupes de spores sur la base de propriétés définies (par
exemple des propriétés morphologiques, biochimiques, moléculaires-biologiques)
NOTE Le terme «différenciation» est fréquemment utilisé à la place du terme «identification». Cependant, le terme
«différenciation» est trompeur car il ne suffit pas seulement de distinguer les moisissures mais il faut les identifier,
c'est-à-dire les affecter, par exemple, à un genre ou à une espèce.
3.4
champignon filamenteux
champignon poussant sous la forme de filaments de cellules appelés hyphes
NOTE 1 Les hyphes agrégées en faisceaux sont appelées mycélium.
NOTE 2 Le terme «champignons filamenteux» distingue les champignons à hyphes des levures.
3.5
filtration
prélèvement de particules en suspension dans un gaz ou un liquide par passage à travers un milieu poreux
[6]
[EN 13098:2000 ]
NOTE Dans la présente partie de l'ISO 16000, la filtration désigne la séparation des micro-organismes ou des
moisissures d'un volume défini d'air au moyen de filtres.
3.6
nombre total de spores
nombre de spores (cultivables et non cultivables) qui sont prélevées et dénombrées au microscope
NOTE Pour le terme «spores» voir 3.19, Note 2.
3.7
levure
champignon unicellulaire qui ne produit normalement pas de mycélium et se reproduit par bourgeonnement
(champignons bourgeonnants), contrairement aux moisissures qui se reproduisent par sporulation
3.8
impaction
prélèvement de particules en suspension dans l'air par séparation inertielle sur une surface solide (milieu de
culture ou lames à revêtement adhésif)
NOTE 1 Voir l'ISO 16000-18.
NOTE 2 Le prélèvement est réalisé en utilisant soit des impacteurs à trous ronds, soit des impacteurs à fente, par
exemple. L'air est accéléré lors de son passage à travers les orifices et les particules s'impactent sur le milieu placé
directement derrière les buses sous l'effet de leur inertie; l'air, quant à lui, contourne le milieu de culture et sort de
l'échantillonneur. Les échantillons obtenus par impaction ne conviennent que pour les analyses directes, sans remise en
suspension supplémentaire de l'échantillon.
2 © ISO 2012 – Tous droits réservés

3.9
unité formant colonie
ufc
qualité de l'air unité dans laquelle est exprimé le nombre de micro-organismes cultivables
[6]
[EN 13098:2000 ]
NOTE 1 Une colonie peut provenir d'un seul micro-organisme, d'agrégats de nombreux micro-organismes ou d'un ou
plusieurs micro-organismes liés à une particule.
NOTE 2 Le nombre de colonies peut dépendre des conditions de culture.
3.10
type morphologique des colonies
groupe de colonies qui, de par leur apparence morphologique, semblent appartenir à une espèce spécifique
3.11
nombre de colonies
qualité de l'air nombre de toutes les colonies de micro-organismes visibles sur un milieu de culture après
incubation dans les conditions de culture choisies
3.12
moisissure cultivable
moisissure qui peut être cultivée dans les conditions de culture choisies
NOTE Les paramètres déterminant l'aptitude à la culture sont, par exemple, le type de milieu de culture et la
température d'incubation.
3.13
culture
développement de micro-organismes sur des milieux de culture
3.14
mycotoxine
métabolites secondaires des moisissures qui sont toxiques pour l'homme et pour les animaux
3.15
mycélium
ensemble des hyphes d'un champignon
3.16
moisissure non cultivable
moisissure qui ne peut pas être cultivée dans les conditions de culture choisies
3.17
efficacité de prélèvement physique
capacité de l'échantillonneur à recueillir des particules de diamètres aérodynamiques spécifiques en
suspension dans l'air
[6]
[EN 13098:2000 modifiée — «tailles» a été remplacé par «diamètres aérodynamiques».]
3.18
stress de prélèvement
dommages subis par les micro-organismes pendant le prélèvement (par exemple résultant d'effets
mécaniques et chimiques ou de la privation d'eau)
3.19
moisissure
champignons filamenteux appartenant à plusieurs groupes taxonomiques, notamment les Ascomycètes, les
Zygomycètes et leurs états anamorphiques auparavant connus sous le nom de Deutéromycètes ou
«champignons imparfaits» (fungi imperfecti)
NOTE 1 Les moisissures ne représentent pas un groupe taxonomique uniforme.
NOTE 2 Les moisissures forment différents types de spores selon le groupe taxonomique auquel elles appartiennent, à
savoir des conidiospores (conidies), des sporangiospores ou des ascospores. Dans la pratique, toutes ces étapes de la
reproduction sont rassemblées sous le terme «spores».
3.20
dommage de moisissure
dommage causé aux matériaux de construction et aux surfaces des bâtiments par la formation de moisissures
NOTE Un dommage de moisissure peut entraîner une dépréciation des lieux et des risques pour la santé et
restreindre l'occupation des sites affectés.
3.21
colonie secondaire
colonie qui ne provient pas du prélèvement «initial» de spores en suspension dans l'air mais d'une spore
libérée par une colonie se développant sur les boîtes de gélose
3.22
contamination secondaire
contamination de surfaces par des moisissures, causée non par la formation de moisissures mais par une
source primaire (contaminée) après dispersion aérienne
3.23
valeur seuil
taille des particules (diamètre aérodynamique) pour laquelle l'efficacité du prélèvement est de 50 %
3.24
efficacité totale de prélèvement
produit de l'efficacité de prélèvement physique par l'efficacité de conservation biologique
[6]
[EN 13098:2000 ]
4 Propriétés, origine et occurrence des moisissures dans les environnements
intérieurs
Les moisissures existent partout sur la planète. Elles interviennent dans la décomposition de la matière
organique et jouent par conséquent un rôle important dans le cycle naturel du carbone. Leur concentration
dans l'air ambiant dépend, entre autres, du lieu, du climat, de l'heure et de la saison. Les concentrations de
[9][10][11]
moisissures en suspension dans l'air sont très variables , pour les raisons suivantes.
La concentration de moisissures dans l'air ambiant local est déterminée principalement par la position par
rapport aux sources de moisissures respectives, ainsi que par la direction et la force du vent. Les spores de
moisissures sont souvent libérées par des sources spécifiques telles que la matière en décomposition. Les
sources de dispersion des moisissures résident aussi bien dans des processus naturels que dans des
processus de production tels que le compostage, le recyclage, les installations de production animale, les
usines de traitement des céréales et des aliments ou encore les installations d'horticulture.
La sporulation, c'est-à-dire la production de spores de moisissures, est un processus discontinu qui est régi,
entre autres, par la phase du cycle de vie des moisissures, les conditions environnementales, les facteurs de
stress, l'humidité, la composition et la disponibilité du substrat.
4 © ISO 2012 – Tous droits réservés

Les facteurs influençant la dispersion des spores, dont la plupart ont des diamètres aérodynamiques d'un
ordre compris entre 2 µm et 40 µm, sont les mouvements de l'air induits mécaniquement ou thermiquement,
les phases de sécheresse (entraînant, par exemple, le soulèvement des poussières déposées) et la capacité
[12][13][14]
de dispersion aérienne des spores des moisissures .
Les moisissures faisant preuve d'ubiquité, on peut partir du principe qu'elles sont toujours présentes dans l'air
intérieur. La présence de moisissures dans l'air intérieur peut être due à des spores provenant de l'air ambiant,
d'une part, et à la formation récente de moisissures actives, à des conditions favorables à la moisissure pré-
existantes ou à des dépôts de moisissures (spores déposées), d'autre part. Pour faire la différence entre ces
sources, il est donc important de procéder à des mesurages de référence de l'air ambiant à chaque fois que
[14][15]
des mesurages de l'air intérieur sont effectués pour détecter les moisissures . Le prélèvement d'un
échantillon témoin dans une pièce de référence appropriée peut en outre s'avérer utile.
Les causes possibles des sources de moisissures à l'intérieur sont l'humidité présente à la surface des
matériaux de construction ou l'humidité présente dans la structure du bâtiment, mais également la nourriture
en putréfaction, les plantes en pot, la collecte des déchets organiques, le tri des déchets à la source, la
poussière déposée en raison d'un mauvais nettoyage, de même que la présence d'animaux dans les lieux de
résidence. Les dommages de moisissures peuvent être attribués à des défauts de construction, une
ventilation et un chauffage inappropriés, un agencement inadapté du mobilier ou encore un dégât des eaux
(par exemple des fuites de plomberie ou les suites d'une inondation). Des niveaux de moisissures élevés
dans les environnements intérieurs et l'occurrence de certaines espèces de moisissures (voir Annexe A) sont
indicateurs d'un excès d'humidité. Lorsque des environnements résidentiels ou des locaux professionnels
sont infestés par des moisissures, la source de moisissures doit être localisée pour permettre la mise en place
de mesures correctives.
Les principaux facteurs influençant l'intensité de la formation de moisissures et le développement des
espèces de moisissures sont l'humidité, la température, l'apport d'éléments nutritifs et le pH. Si les conditions
environnementales sont favorables, une grande diversité de moisissures peut se développer. Lorsque les
conditions environnementales deviennent moins favorables, les espèces les mieux adaptées aux conditions
[16]
données vont être prédominantes .
Les sources de moisissures peuvent libérer des spores, des fragments de mycélium, mais également des
composants cellulaires et des produits métaboliques tels que les -glucanes (polysaccharide contenu dans la
paroi cellulaire des champignons), l'ergostérol (composé stéroïdien contenu dans la paroi cellulaire des
champignons), les toxines et les COVM (composés organiques volatils microbiens tels certains aldéhydes,
alcools, esters, cétones). En culture, les colonies peuvent se développer non seulement à partir de spores,
mais également à partir de fragments de mycélium.
Le nombre et la dissémination aérienne des spores libérées peuvent varier en fonction du type de dommage
de moisissure. Pour évaluer les sources de moisissures intérieures, il est important, par conséquent, de
différencier les espèces de moisissures individuelles d'après le mode de dispersion de leurs spores.
L'expérience a montré qu'une contamination, même mineure, de matériaux par des moisissures peut donner
lieu à des niveaux de moisissures élevés dans l'air intérieur si les espèces impliquées ont des spores sèches
présentant de bonnes capacités de dispersion aérienne (par exemple Penicillium et Aspergillus). Au contraire,
les concentrations de spores en suspension dans l'air sont beaucoup plus faibles lorsque les matériaux sont
colonisés, par exemple, par des moisissures des genres Acremonium, Fusarium ou de l'espèce Stachybotrys
chartarum, qui ont des spores relativement grandes noyées dans des substances gluantes et possèdent par
conséquent de faibles capacités de dispersion aérienne.
En outre, il convient de prendre en compte le fait que les spores de moisissures ne se présentent pas
nécessairement sous forme de spores individuelles dans l'air ou dans la poussière sédimentée, mais
également sous forme d'agrégats de spores ou de spores portées par des particules. Selon la méthode
d'analyse, elles sont déterminées en tant que spores isolées ou en tant qu'agrégats de spores. Les matériaux,
l'air intérieur et la poussière domestique contiennent non seulement des spores de moisissures cultivables,
mais également des spores de moisissures non cultivables dont certaines ont les mêmes effets allergènes et
toxiques que les spores cultivables. Pour cette raison, des techniques permettant de déterminer au
microscope aussi bien les moisissures cultivables que non cultivables ont été mises au point.
La détection et la différenciation des moisissures sont effectuées soit après culture, en se basant sur des
critères morphologiques, des réactions biochimiques et/ou des techniques moléculaires, soit par examen
direct au microscope. La différenciation basée sur la structure morphologique (examen macroscopique,
stéréo-microscopie et microscopie), soit après une culture préalable, soit par microscopie directe, demeure
l'approche la plus fréquente pour la détection des moisissures.
Il existe également d'autres méthodes d'analyse basées sur le dosage des composants cellulaires et des
[17]
métabolites des moisissures, tels que les -glucanes, l'ergostérol, les toxines et les COVM . Le dosage de
ces composés ne sert toutefois que d'information complémentaire.
Les méthodes d'échantillonnage utilisées pour la détection des moisissures sont déterminées par l'objectif de
l'investigation. Selon la méthode d'échantillonnage, les moisissures subissent un stress de prélèvement
pendant le prélèvement et la préparation des échantillons, ce qui peut entraîner leur dessèchement ou leur
mort. Les facteurs influençant l'aptitude à la culture des spores de moisissures sont leur état physiologique
ainsi que le milieu de culture utilisé. Certaines espèces de moisissures ne peuvent pas du tout être cultivées
dans des conditions de laboratoire.
NOTE Les genres Stachybotrys et Chaetomium se développent difficilement et leur sporulation sur la gélose DG18
est médiocre, voire inexistante. Par conséquent, l'utilisation de ce milieu de culture pour une analyse basée sur la culture
de ces genres est déconseillée (voir l'ISO 16000-17).
Pour un résumé de la documentation, voir les Références [8] à [10], [12] et [14] à [18].
5 Méthodes d'échantillonnage et de détection
Selon l'objectif de l'investigation, on peut échantillonner et analyser les matériaux (voir l'ISO 16000-21, en
préparation), l'air (voir l'ISO 16000-16 et l'ISO 16000-18) et la poussière domestique pour détecter des
moisissures cultivables (voir l'ISO 16000-17). Les moisissures peuvent également être quantifiées et, dans
une certaine mesure, différenciées sans culture préalable. Pour ce faire, les spores de moisissures en
suspension dans l'air sont recueillies sur des filtres ou directement sur une lame de microscope à revêtement
adhésif; après quoi elles sont colorées puis examinées par microscopie directe.
L'Annexe B fournit une vue d'ensemble des dispositifs de mesurage du nombre total de spores les plus
courants, ainsi que des dispositifs de prélèvement par filtration et par impaction et des méthodes d'analyse
respectives.
6 Stratégie de mesurage
6.1 Aspects généraux
Il n'existe pas de mode opératoire normalisé pour le mesurage et l'évaluation d'un dommage de moisissure.
Le type et le nombre de mesurages, de même que les méthodes d'analyse utilisées, sont déterminés par les
circonstances qui ont déclenché l'investigation et par les objectifs de cette dernière. Une inspection visuelle
sur le terrain (visite de diagnostic) par des professionnels techniquement qualifiés avant le prélèvement est
une condition préalable indispensable pour la détection et l'évaluation des sources de moisissures dans les
environnements intérieurs. Outre de bonnes connaissances en génie et en physique du bâtiment, il convient
que les professionnels chargés de l'inspection disposent d'une formation suffisante en matière d'hygiène de
l'air intérieur et de microbiologie.
Les investigations sont menées dans le but de localiser les sources de moisissures dans les environnements
intérieurs. Pour appuyer les conclusions de leurs observations visuelles et confirmer une suspicion de
formation de moisissures, les professionnels peuvent avoir recours à une variété de méthodes
d'échantillonnage et d'analyse. Celles-ci incluent des méthodes de détermination des concentrations de
moisissures dans ou sur les matériaux, des modes opératoires de mesurage des concentrations de
moisissures dans l'air intérieur et des modes opératoires de détermination des concentrations de moisissures
dans la poussière domestique. Un exemple de rapport accompagnant le prélèvement est joint en Annexe C.
6 © ISO 2012 – Tous droits réservés

Les circonstances déclenchant une investigation microbiologique des environnements intérieurs peuvent
inclure (voir également Tableau 1):
 un dommage de moisissure visible;
 l'humidité des matériaux sans présence de formation visible de moisissures;
 des anomalies structurelles ou non structurelles du bâtiment sans présence de formation visible de
moisissures;
 des plaintes relatives à la santé sans présence de formation visible de moisissures;
 des problèmes d'odeurs sans présence de formation visible de moisissures;
 des mesures de vérification pendant et après les actions correctives.
En cas de dommage de moisissure visible de source connue, il convient de traiter en priorité les actions
correctives et l'élimination des causes sous-jacentes. Souvent, les investigations microbiologiques sont alors
inutiles.
Si un dommage de moisissure est suspecté sans présence visible des sources, l'environnement intérieur peut
être inspecté pour détecter la présence de concentrations de moisissures élevées. Selon les circonstances
qui ont déclenché l'investigation, les milieux suivants peuvent être échantillonnés et analysés:
a) les matériaux et leurs surfaces (voir 6.1.1);
b) l'air intérieur comparé à l'air ambiant (voir 6.1.2);
c) la poussière domestique (voir 6.1.3).
Les résultats des mesurages décrits dans les paragraphes qui suivent ne fournissent que des indications sur
l'état du dommage. L'évaluation de l'âge réel de la formation de moisissures n'est pas possible car l'état de
cette formation peut changer de manière spectaculaire en l'espace d'intervalles de temps très courts.
L'inspection des systèmes CVCA (chauffage, ventilation et conditionnement de l'air) pour détecter un manque
d'hygiène n'est pas le sujet de la présente partie de l'ISO 16000.
Lors de la planification et de l'exécution des mesurages, les conditions de terrain et les facteurs d'influence
spécifiques ayant un impact majeur sur le résultat de l'investigation doivent être pris en considération et
documentés.
6.1.1 Analyse des surfaces ou des matériaux
La sélection d'une méthode d'échantillonnage appropriée et la définition des emplacements d'échantillonnage
supposent que des réponses soient apportées aux questions suivantes:
 La formation de moisissures ou une contamination secondaire est-elle prévisible sur la surface du
matériau?
 Une colonisation superficielle ou une colonisation de couches plus profondes est-elle prévisible?
 Les moisissures suspectées ou soumises à l'étude sont-elles cultivables?
 Des critères d'évaluation du résultat de l'analyse sont-ils disponibles?
Des critères de différenciation entre une formation de moisissures actives et des dépôts de moisissures sur
les surfaces des matériaux ou dans des cavités de mur provenant d'une sédimentation naturelle sont la
concentration de moisissures et la mise en évidence de structures de moisissures, par exemple le mycélium
ou des porteurs de spores, dans le matériau ou à sa surface. La concentration de moisissures dans le
matériau ou sur la surface du matériau varie en fonction du type de matériau, en particulier de la densité du
matériau, et de l'espèce de moisissures. Des espèces de moisissures différentes se développent sur un
matériau ou dans un matériau en fonction de l'humidité, de la température et de la source d'éléments nutritifs.
La suspicion d'une contamination de surfaces par des moisissures peut être confirmée par des prélèvements
de surface à l'aide des méthodes du ruban adhésif et des boîtes de contact. La méthode des boîtes de
contact présuppose que les moisissures sont cultivables. Si la surface a déjà été désinfectée ou si une
contamination par Stachybotrys chartarum est suspectée, la méthode des boîtes de contact n'est pas
applicable. Dans ce cas, des échantillons prélevés par ruban adhésif sur les surfaces doivent être examinés
directement au microscope.
Le prélèvement de surface (méthodes des boîtes de contact et du ruban adhésif) a une efficacité limitée pour
les matériaux à surfaces rugueuses (par exemple le plâtre, les isolants). Habituellement, les échantillons sont
mis en suspension dans une solution tampon, après quoi la concentration de moisissures est déterminée par
[25]
culture ou par microscopie directe .
Lorsqu'il n'existe pas de niveaux de seuil empiriques pour classer un matériau dans la catégorie «contaminé»
ou «non contaminé», les matériaux ne présentant pas de formation visible de moisissures sont échantillonnés
pour servir de témoins de comparaison.
6.1.2 Analyse de l'air intérieur
L'objectif de l'échantillonnage et de l'analyse de l'air intérieur consiste à déterminer la concentration de
moisissures dans un échantillon d'air représentatif afin d'évaluer la probabilité de sources de moisissures
dans l'environnement intérieur. Selon l'objectif de l'investigation, cette détermination nécessite une
identification plus ou moins totale des moisissures (voir 6.2). L'analyse d'échantillons d'air requiert qu'une
attention particulière soit apportée aux différences dans le spectre des espèces présentes dans l'air intérieur
par rapport à l'air ambiant. De plus, il convient de prendre en considération la présence d'espèces indicatrices
d'humidité (voir Tableau A.1). Lorsque les concentrations en spores de moisissures dans l'air ambiant sont
élevées en raison des conditions météorologiques particulières, la concentration des espèces de l'air ambiant
dans l'air intérieur peut être plusieurs fois supérieure aux concentrations des espèces indicatrices d'humidité
d'intérêt. Si la concentration des espèces caractéristiques de l'air ambiant dépasse d'un facteur plus grand
que 10 celle des indicateurs d'humidité spécifiques de l'environnement intérieur, l'échantillonnage de l'air
intérieur ne permet pas de tirer des conclusions quant à la présence d'une source de moisissures potentielle
parce que les indicateurs d'humidité peuvent être envahis par des champignons provenant de l'air ambiant.
Pour éviter les interférences, il convient d'échantillonner en premier les pièces dans lesquelles on s'attend à
relever les plus faibles concentrations en suspension dans l'air.
Les méthodes d'échantillonnage conformes à l'ISO 16000-16 (filtration) et à l'ISO 16000-18 (impaction) sont
basées sur des principes de mesurage différents et ne produisent pas les mêmes résultats pour tous les
mesurages réalisés. Pour la sélection du mode opératoire de prélèvement, la détermination du nombre
d'emplacements d'échantillonnage requis et la durée d'échantillonnage, les paramètres d'influence et les
conditions prédominantes dans la situation spécifique doivent être déterminés par une inspection préalable
sur le terrain.
À cet effet, des réponses claires doivent être apportées aux questions suivantes:
 Peut-on s'attendre à une concentration de moisissures très stable dans la pièce?
 Existe-t-il des mouvements d'air reflétant une activité normale dans la pièce?
 D'importantes fluctuations de la concentration de moisissures sous l'effet d'influences à court terme sont-
elles prévisibles (par exemple influence des occupants, flux d'air de convection ou flux d'air
descendants)?
Lorsque aucun mouvement d'air important lié à l'occupation n'est à prévoir et qu'aucune influence entraînant
régulièrement d'importantes variations des niveaux de moisissures en suspension dans l'air n'est mise en
évidence dans les pièces soumises à évaluation (par exemple des pièces d'habitation), les méthodes
8 © ISO 2012 – Tous droits réservés

d'échantillonnage à court terme (durée d'échantillonnage de 1 min à 10 min) et d'échantillonnage à long terme
(durée d'échantillonnage supérieure à 30 min) conviennent toutes les deux. Dans la pratique, le prélèvement
par impaction est le mode opératoire privilégié pour l'échantillonnage à court terme. Cette méthode
d'échantillonnage nécessite une estimation préalable de la concentration de moisissures attendue. Différents
volumes d'air sont échantillonnés à chaque emplacement d'échantillonnage pour permettre de couvrir une
plus large gamme de concentrations. Cela est réalisé en prélevant des échantillons par impaction sur
différentes durées d'échantillonnage. La détection de moisissures d'intérieur présuppose que des particules
d'un diamètre supérieur à 2 µm peuvent être collectées quantitativement sur le milieu de culture ou sur la
lame à revêtement adhésif (pour la détermination du nombre total de spores). Cela présuppose que les
impacteurs sont conçus pour une valeur seuil d < 2 µm (voir Tableau B.2). Il convient que tous les
mesurages à court terme soient effectués sur une durée minimale de 1 min. Il convient que le volume des
échantillons ne soit pas inférieur à 50 l. Dans les pièces inoccupées, des mesurages de courte durée peuvent
être effectués sans simulation d'occupation puisque l'expérience a, en particulier, montré que l'installation du
matériel de prélèvement, ainsi que son fonctionnement, entraînent des mouvements d'air au niveau de
l'emplacement d'échantillonnage qui sont comparables aux mouvements existant pendant les conditions
normales d'utilisation.
Dans les pièces contenant d'importants dépôts de poussières «anciennes», le prélèvement peut provoquer un
dérangement non intentionnel de la poussière sédimentée qui peut induire des résultats «faux positifs».
Si un dispositif de prélèvement génère d'importants flux d'air en sortie qui dérangent les poussières déposées,
il convient de conduire le flux d'air de sortie à l'extérieur de la pièce soumise à l'investigation et/ou il convient
de s'assurer que ce flux d'air n'est pas dirigé vers des sources de moisissures potentielles telles que le sol ou
des matériaux poussiéreux ou moisis.
Les méthodes par filtration sont la seule option applicable pour les mesurages à long terme. Le prélèvement
par filtration est la méthode idéale lorsque le prélèvement est réalisé simultanément au déroulement des
activités normales dans la pièce et lorsque d'importants mouvements d'air et d'importantes variations des
concentrations de moisissures sont prévus. Le prélèvement par filtration est également la méthode privilégiée
pour le prélèvement d'échantillons cultivables lorsque des concentrations de moisissures en suspension dans
l'air supérieures à 2 000 ufc/m sont attendues. Pour des durées d'échantillonnage de 1 h et plus dans les
pièces inoccupées, il est nécessaire de prévoir en plus des simulations d'occupation pendant la durée de
l'échantillonnage. Il convient que la simulation d'occupation reflète l'occupation habituelle de la pièce.
Indépendamment de la méthode d'échantillonnage, les fenêtres et les portes de la pièce doivent être fermées
environ 8 h avant le début du prélèvement et doivent demeurer fermées pendant le processus
d'échantillonnage. Il convient que les échantillons soient prélevés de préférence au centre de la pièce, à une
distance minimale de 1 m des murs et à une hauteur d'environ 0,75 m à 1,5 m. Dans tous les cas, un
échantillon d'air ambiant doit être prélevé pour servir de référence. En outre, il peut être utile de prélever des
échantillons d'air dans une pièce de référence appropriée. Les échantillons d'air intérieur et d'air ambiant
doivent être prélevés le même jour; les prélèvements doivent être aussi rapprochés que possible dans le
temps.
NOTE Dans les bâtiments climatisés, des intervalles de temps plus courts (2 h) entre la fermeture des fenêtres et
l'échantillonnage peuvent être suffisants. Le mesurage dans l'air ambiant des champignons peut être inutile dans les
bâtiments pourvus d'entrées d'air filtrées et dont les fenêtres ne peuvent être ouvertes par les occupants.
Les conditions spécifiques à l'emplacement d'échantillonnage et les conditions climatiques pendant
l'échantillonnage doivent être documentées dans un rapport d'échantillonnage (voir Annexe C).
6.1.3 Analyse des poussières domestiques
Les analyses de poussière domestique ne sont normalement réalisées qu'en complément des résultats des
mesurages de l'air intérieur. Étant donné qu'il n'existe actuellement aucun mode opératoire approprié pour la
détection des moisissures non cultivables dans la poussière domestique, l'analyse se limite à la détection des
moisissures cultivables. Les analyses de poussière domestique sont un outil utile pour vérifier la plausibilité
des résultats des mesurages de l'air intérieur. Avant de commencer le prélèvement, il convient de s'assurer
de l'existence d'emplacements d'échantillonnage appropriés présentant des quantités suffisantes de
[26][27]
poussière sédimentée .
Les données de référence utilisées pour l'évaluation des résultats des analyses doivent avoir été obtenues
par les mêmes méthodes d'échantillonnage, de préparation des échantillons et d'analyse. Les résultats
diffèrent considérablement si la totalité de la poussière domestique ou des poussières fines d'une certaine
fraction granulaire sont utilisées.
6.2 Sélection d'un mode opératoire approprié
6.2.1 Inspection sur le terrain
La première étape d'une évaluation des moisissures dans des environnements intérieurs consiste en une
inspection sur le terrain pour procéder à un inventaire. Il s'agit de consigner à cette occasion les
circonstances ayant déclenché l'investigation ainsi que les détails concernant l'état du bâtiment, les meubles
de la pièce, etc.
Tableau 1 — Recommandations pour aider à la prise de décision
concernant l'échantillonnage après une inspection sur le terrain
Milieu examiné
Action à
Résultat et objectif
Matériau Air intérieur Poussière
entreprendre
domestique
Identifier et, le cas
a b b
1 Dommage de moisissure visible échéant, éliminer la
A B B
source d'humidité
Identifier et, le cas
2.1 Humidité du matériau A B B échéant, éliminer la
source d'humidité
Vérifier les anomalies,
Anomalies non
identifier la
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...