SIST EN ISO 4349:2024
(Main)Solid recovered fuels - Determination of the Recycling Index for co-processing (ISO 4349:2024)
Solid recovered fuels - Determination of the Recycling Index for co-processing (ISO 4349:2024)
This document specifies the determination of the share of material recovery in the case of energy recovery (i.e. co-processing) of solid recovered fuels (SRFs), for example, in a cement kiln. This share, called the recycling index (R-index), is calculated on the basis of the ash content and the ash composition.
Feste Sekundärbrennstoffe - Verfahren zur Bestimmung des Recycling-Index für Co-Processing (ISO 4349:2024)
Dieses Dokument legt die Bestimmung des Anteils der stofflichen Verwertung im Falle der energetischen Verwertung (d. h. Co-Processing) von festen Sekundärbrennstoffen (SRF, en: solid recovered fuels) zum Beispiel in einem Zementofen fest. Dieser Anteil, der so genannte Recyclingindex (R-Index), wird auf der Grundlage des Aschegehaltes und der Aschezusammensetzung berechnet.
Combustibles solides de récupération - Détermination de l’indice de recyclage pour le cotraitement (ISO 4349:2024)
Le présent document spécifie la détermination de la part de valorisation de matière dans le cas de la valorisation énergétique (c’est-à-dire le cotraitement) des combustibles solides de récupération (CSR), par exemple, dans un four à ciment. Cette part, appelée indice de recyclage (indice R), est calculée sur la base de la teneur en cendres et de la composition des cendres.
Trdna alternativna goriva - Določitev indeksa recikliranja za soprocesiranje (ISO 4349:2024)
Ta dokument določa metodo za določanje deleža predelave materiala pri sosežigu trdnega alternativnega goriva (SRF) v cementni peči. Trdno alternativno gorivo vsebuje inertne mineralne materiale (npr. SiO2, CaO itd.), potrebne za proizvodnjo cementnega klinkerja. Pri soprocesiranju v cementni industriji je vsebovana energija obnovljena inmineralni del trdnega alternativnega goriva je vključen v klinker. Na podlagi vsebnosti pepela in njegove sestave je mogoče izračunati indeks recikliranja.
General Information
Overview
EN ISO 4349:2024 - "Solid recovered fuels - Determination of the Recycling Index for co-processing" (ISO 4349:2024) specifies a standardized method to quantify the share of material recovery occurring when solid recovered fuels (SRFs) are used for co-processing (e.g., in a cement kiln). The outcome is the Recycling Index (R‑index), expressed as a mass fraction (%) of dry matter, calculated from the SRF’s ash content (at 815 °C, dry basis) and ash composition.
Key topics and technical requirements
- Scope: Defines the R‑index for SRF co‑processing and the calculation basis (ash content + ash elemental composition).
- Sample handling: Sampling and sample preparation follow ISO 21645 and ISO 21646.
- Ash determination: Ash content determined per ISO 21656:2021 (815 °C, dry basis).
- Elemental analysis methods:
- Method A - wet digestion followed by ICP‑MS or ICP‑OES;
- Method B - fused bead preparation followed by ICP‑OES;
- Method C - pellet preparation followed by XRF analysis.
- Reagents & apparatus: Analytical acids (HNO3, HF, HCl), lithium metaborate, muffle furnace, microwave unit, ICP‑OES/ICP‑MS, XRF spectrometer, platinum crucible and press (as listed in the standard).
- Calculations: Conversion of elemental content to oxide forms (Al2O3, CaO, Fe2O3, SiO2, etc.) and stepwise computation of the R‑index for co‑processing.
- Quality & reporting: Performance characteristics, validation (informative Annex B), and required elements of the test report are specified.
- Informative data: Annex A provides typical SRF ash compositions from mixed municipal/commercial waste.
Practical applications
- Enables consistent, comparable quantification of the material fraction recycled when SRFs are co‑processed in industrial processes (notably cement clinker production).
- Supports lifecycle and circular economy claims by showing how SRF use can replace mineral raw materials as well as fossil fuels.
- Helps cement producers, SRF suppliers and waste managers assess feedstock suitability and optimize blend design for clinker chemistry.
- Provides laboratories and conformity assessment bodies with validated analytical routes (ICP, XRF, fused bead, wet digestion) to determine ash composition and compute R‑index.
Who should use this standard
- SRF producers and auditors
- Cement and co‑processing industries
- Environmental and materials testing laboratories
- Regulators, waste management authorities and sustainability analysts
- Standards developers and certification bodies
Related standards
- ISO 21645, ISO 21646 (sampling and preparation)
- ISO 21656:2021 (ash content)
- ISO 22940 / EN 15309 (XRF procedures)
- ISO 3884 (methods for elemental determination) and ISO 11885 (ICP‑OES guidance)
Keywords: EN ISO 4349:2024, Solid recovered fuels, SRF, Recycling Index, R‑index, co‑processing, ash composition, cement kiln, ICP‑OES, ICP‑MS, XRF.
Standards Content (Sample)
SLOVENSKI STANDARD
01-september-2024
Trdna alternativna goriva - Določitev indeksa recikliranja za soprocesiranje (ISO
4349:2024)
Solid recovered fuels - Determination of the Recycling Index for co-processing (ISO
4349:2024)
Feste Sekundärbrennstoffe - Verfahren zur Bestimmung des Recycling-Index für Co-
Processing (ISO 4349:2024)
Combustibles solides de récupération - Détermination de l’indice de recyclage pour le
cotraitement (ISO 4349:2024)
Ta slovenski standard je istoveten z: EN ISO 4349:2024
ICS:
75.160.10 Trda goriva Solid fuels
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
EN ISO 4349
EUROPEAN STANDARD
NORME EUROPÉENNE
May 2024
EUROPÄISCHE NORM
ICS 75.160.10
English Version
Solid recovered fuels - Determination of the Recycling
Index for co-processing (ISO 4349:2024)
Combustibles solides de récupération - Détermination Feste Sekundärbrennstoffe - Verfahren zur
de l'indice de recyclage pour le cotraitement (ISO Bestimmung des Recycling-Index für Co-Processing
4349:2024) (ISO 4349:2024)
This European Standard was approved by CEN on 17 May 2024.
CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and
United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2024 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN ISO 4349:2024 E
worldwide for CEN national Members.
Contents Page
European foreword . 3
European foreword
This document (EN ISO 4349:2024) has been prepared by Technical Committee ISO/TC 300 "Solid
recovered materials, including solid recovered fuels" in collaboration with Technical Committee
CEN/TC 343 “Solid recovered materials, including solid recovered fuels” the secretariat of which is held
by SFS.
This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by November 2024, and conflicting national standards
shall be withdrawn at the latest by November 2024.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
Any feedback and questions on this document should be directed to the users’ national standards
body/national committee. A complete listing of these bodies can be found on the CEN website.
According to the CEN-CENELEC Internal Regulations, the national standards organizations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria,
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland,
Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of
North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and the
United Kingdom.
Endorsement notice
The text of ISO 4349:2024 has been approved by CEN as EN ISO 4349:2024 without any modification.
International
Standard
ISO 4349
First edition
Solid recovered fuels —
2024-05
Determination of the recycling
index for co-processing
Combustibles solides de récupération — Détermination de
l'indice de recyclage pour le cotraitement
Reference number
ISO 4349:2024(en) © ISO 2024
ISO 4349:2024(en)
© ISO 2024
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii
ISO 4349:2024(en)
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Symbols and abbreviated terms. 2
5 Reagents . 2
6 Apparatus . 2
7 Procedure . 3
7.1 Preparation of the test sample .3
7.2 Determination of the ash content and preparation of ash sample .3
7.3 Determination of the elemental content .3
7.4 Methods .3
7.4.1 Method A – wet digestion followed by ICP-MS or ICP-OES analysis .3
7.4.2 Method B – preparation of fused beads followed by ICP-OES analysis.4
7.4.3 Method C – preparation of pellets followed by XRF analysis .4
7.4.4 Alternative procedures .4
7.5 Calculation .4
7.5.1 Calculation of element oxides .4
7.5.2 Calculation of R-index for co-processing .5
8 Performance characteristics . 5
9 Test report . 5
Annex A (informative) SRF ash composition from mixed municipal and commercial waste . 6
Annex B (informative) Validation .15
Bibliography .23
iii
ISO 4349:2024(en)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out through
ISO technical committees. Each member body interested in a subject for which a technical committee
has been established has the right to be represented on that committee. International organizations,
governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely
with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are described
in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types
of ISO document should be noted. This document was drafted in accordance with the editorial rules of the
ISO/IEC Directives, Part 2 (see www.iso.org/directives).
ISO draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent
rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a)
patent(s) which may be required to implement this document. However, implementers are cautioned that
this may not represent the latest information, which may be obtained from the patent database available at
www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions
related to conformity assessment, as well as information about ISO's adherence to the World Trade
Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 300, Solid recovered materials, including
solid recovered fuels, in collaboration with the European Committee for Standardization (CEN) Technical
Committee CEN/TC 343, Solid recovered materials, including solid recovered fuels, in accordance with the
Agreement on technical cooperation between ISO and CEN (Vienna Agreement).
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.
iv
ISO 4349:2024(en)
Introduction
When solid recovered fuels (SRFs) are co-processed mainly in the cement industry, simultaneous energy
recovery and recycling of mineral components of waste material takes place because the ash is directly
incorporated into the clinker. SRF co-processing therefore allows for the replacement of both mineral
resources and fossil fuels.
SRF ashes contain various chemical components that are crucial raw materials for cement manufacturers,
fulfil specific tasks in cement clinker production or represent clinker phases giving the clinker its specific
properties. For example, a major part of SRF ashes from mixed municipal and commercial waste consists of
the four main chemical components that are required for cement clinker production: Al O , CaO, Fe O and
2 3 2 3
SiO (see Annex A). Additionally, minor ash constituents include MgO and TiO , both of which are present
2 2
in or as clinker phases. K O and Na O are typical constituents of feldspars that are present in the clay used
2 2
as a raw material for the process. SO , which is also present in SRF ash, or another sulfate carrier is needed
in order to convert these alkali oxides into alkali sulfates, a clinker phase that alters the clinker’s chemical
reactivity with water.
v
International Standard ISO 4349:2024(en)
Solid recovered fuels — Determination of the recycling index
for co-processing
1 Scope
This document specifies the determination of the share of material recovery in the case of energy recovery
(i.e. co-processing) of solid recovered fuels (SRFs), for example, in a cement kiln. This share, called the
recycling index (R-index), is calculated on the basis of the ash content and the ash composition.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.
1)
ISO 3884:— , Solid recovered fuels — Methods for the determination of the content of elements (Al, Ca, Fe, K,
Mg, Na, P, S, Si, Ti, As, Ba, Be, Cd, Co, Cr, Cu, Hg, Mo, Mn, Ni, Pb, Sb, Se, Sn, Tl, V, Zn)
ISO 11885, Water quality — Determination of selected elements by inductively coupled plasma optical emission
spectrometry (ICP-OES)
ISO 21645, Solid recovered fuels — Methods for sampling
ISO 21646, Solid recovered fuels — Sample preparation
ISO 21656:2021, Solid recovered fuels — Determination of ash content
ISO 22940, Solid recovered fuels — Determination of elemental composition by X-ray fluorescence
EN 15309, Characterization of waste and soil. Determination of elemental composition by X-ray fluorescence
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminology databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at https:// www .electropedia .org/
3.1
recycling index
R-index
share of SRF that can be considered as recycled on a material level, expressed as a mass fraction in per cent
of the dry matter
3.2
co-processing
use of SRF in manufacturing processes for energy recovery and simultaneously for material recovery of
mineral components
1) Under preparation. Stage at the time of publication: ISO/DIS 3884:2024.
ISO 4349:2024(en)
4 Symbols and abbreviated terms
A ash content at 815 °C on a dry basis
db
Al O aluminium(III) oxide
2 3
CaO calcium oxide
(d) dry (dry basis)
Fe O iron(III) oxide
2 3
K O potassium oxide
MgO magnesium oxide
Na O sodium oxide
SiO silicon dioxide
SO sulfur trioxide
TiO titanium dioxide
5 Reagents
Use only reagents of recognized analytical grade and only distilled water or water of equivalent purity.
5.1 Water, e.g. deionized (< 0,055 µS/cm).
5.2 Nitric acid (HNO ), approximately 15 mol/l, mass fraction of 65 % to 70 %.
5.3 Hydrofluoric acid (HF), approximately 23 mol/l, mass fraction of 40 % to 45 %.
5.4 Hydrochloric acid (HCl), approximately 12 mol/l, mass fraction of 35 % to 37 %.
5.5 Lithium metaborate (LiBO ), solid.
5.6 Binder, solid or liquid, for example wax. Specifications are given in EN 15309.
6 Apparatus
The usual laboratory apparatus and, in particular, the following shall be used.
6.1 Analytical balance, with an accuracy of 1 mg or better.
6.2 Muffle furnace, for temperatures of 1 050 °C.
6.3 Inductively coupled plasma, normal commercial instrumentation with optical or mass spectrometric
detector (ICP-OES, ICP-MS).
6.4 X-ray fluorescence spectrometer, an energy or wavelength dispersion system suitable for qualitative
and (semi-)quantitative analysis of the elements listed in this document.
6.5 Microwave unit, in accordance with ISO 3884:―.
ISO 4349:2024(en)
6.6 Press, in accordance with ISO 22940 or EN 15309.
6.7 Platinum crucible, e.g. Pt/Au5 %.
6.8 Inert bowl, for example made from porcelain, silicon dioxide or platinum with a depth of 10 mm to
20 mm and with a size selected in a way that the occupancy of the bottom area does not exceed 0,1 g/cm .
6.9 Magnetic stirrer, with heating function and PTFE (polytetrafluoroethylene) stirring bone.
6.10 Volumetric flasks, e.g. 250 ml.
7 Procedure
7.1 Preparation of the test sample
The sampling of SRF shall be carried out in accordance with ISO 21645 and the sample preparation in
accordance with ISO 21646, with the final sample having a nominal top size of 1,0 mm or less. Hard
impurities, i.e. inert materials or metals, that cannot be reduced in size with the apparatuses defined in
ISO 21646 are sorted out during sample preparation and are not considered in the subsequent analysis
steps. Their amount shall be documented. The sample is dried at 105 °C according to ISO 21660-3. Further
procedures and analyses are carried out with the dried sample <1,0 mm free of hard impurities.
7.2 Determination of the ash content and preparation of ash sample
The determination of the ash content shall be carried out in accordance with ISO 21656:2021, method B. If
the determination provides a sufficient amount of material to proceed with the analyses, the ashed material
shall be used for subsequent analyses. If the determination of the ash content provides insufficient amounts
of ash for the subsequent analysis steps (examples of ash content of typical constituents of SRF from mixed
municipal and commercial waste are given in Annex A), the sufficient amount of ash shall be reached by
using one or both of the following two approaches:
a) The ashing process is repeated and the ashes are collected and united in order to reach the minimum
amounts required for subsequent ash analyses. This may be the preferable approach for method A (wet
digestion/ICP-MS, requiring approximately 200 mg of ash sample) and method B (fused beads/ICP-OES,
requiring approximately 100 mg of ash sample).
b) A correspondingly larger inert bowl is used and the amount of sample is increased accordingly, which
may be the preferable option for pellet preparation and XRF analyses (method C, approximately 4,5 g
to 10 g is required). The bowl shall fulfil the requirements defined by ISO 21656 and its size shall be
selected in such a way that the occupancy of the bottom area does not exceed 0,1 g/cm .
7.3 Determination of the elemental content
The determination of the elemental content shall be carried out according to ISO 3884:― or ISO 22940. The
element content shall be determined in the ashed sample.
7.4 Methods
7.4.1 Method A – wet digestion followed by ICP-MS or ICP-OES analysis
The ash shall be digested using microwave-assisted acid digestion with hydrochloric acid, nitric acid and
hydrofluoric acid and analysed by ICP-MS or ICP-OES as described in ISO 3884:―.
ISO 4349:2024(en)
7.4.2 Method B – preparation of fused beads followed by ICP-OES analysis
100 mg (±20 mg) of the ashed sample shall be thoroughly mixed with 1 000 mg (±10 mg) of the fluxing agent
lithium metaborate in a platinum crucible. The mixture shall be melted in a muffle furnace at 1 050 °C ± 10 °C
for 20 min. The resulting fused bead is allowed to cool down and dissolved incrementally by adding 80 ml
of hydrochloric acid (c = 2 mol/l) into the crucible in small amounts. The dissolution shall be supported by
heating (to approximately 60 °C) and stirring with a PTFE stirring bone. The digest solution shall be filled
to a final volume of 250 ml with deionised water (< 0,055 µS/cm). This solution shall contain 0,4 g/l of the
sample and 4 g/l of the fluxing agent. Only clear solutions shall be subjected to subsequent analyses, turbid
digest solutions are discarded. A blank shall be prepared using the same method, but no sample is added.
The element content in the digestion solutions shall be determined by ICP-OES in accordance with ISO 11885.
7.4.3 Method C – preparation of pellets followed by XRF analysis
The pellet preparation and XRF analyses shall be performed in accordance with ISO 22940 or EN 15309.
The fine ash sample shall be mixed and homogenized with binder at a defined ratio (different ratios can be
applied and the dilution factor needs to be considered; a typical sample to wax mass ratio is 10:1) and shall
be pressed with an automatic or manual press. For a pellet with a diameter of 40 mm, about 10,0 g of the ash
sample is required. For a pellet with a diameter of 32 mm, approximately 4,5 g ash sample is required.
7.4.4 Alternative procedures
Alternative methods can be applied if their performance is proved to be comparable with those listed in the
preceding subclauses.
7.5 Calculation
7.5.1 Calculation of element oxides
The results for the concentrations of chemical elements need to be converted into concentrations of element
oxides. The conversion is performed by multiplying the concentration of the respective element, expressed
as mg/kg (d), with the corresponding conversion factor as shown in Formula (1):
cF= *c (1)
iic i
where
c
is the concentration of a selected element expressed as mg/kg (d);
i
c
is the concentration of the corresponding element oxide expressed as mg/kg (d), see Table 1;
i
F
is the corresponding conversion factor as listed in Table 1.
ci
Table 1 — Conversion factors
Element Element oxide Conversion factor F
c
Al Al O 1,889 4
2 3
Ca CaO 1,399 2
Fe Fe O 1,429 7
2 3
K K O 1,204 6
Mg MgO 1,658 3
Na Na O 1,348 0
S SO 2,496 9
Si SiO 2,139 3
Ti TiO 1,668 5
ISO 4349:2024(en)
7.5.2 Calculation of R-index for co-processing
The share of the SRF that is recycled on a material level (i.e. R-index), expressed as mass fraction in per cent
of the dry matter [% (d)], can either be calculated considering the four main chemical compounds required
for the production of cement clinker (R ) or considering additional elements that are introduced by natural
i4
raw materials and are part of clinker phases as well (R ). The R-indices shall be calculated as follows:
i9
cc++cc+
A
Al OCaO Fe OSiO
db 23 23 2
R = * (2)
i4
100 10000
cc++cc++cc++cc++c
A Al OCaO Fe OK OMgO Na OSOSiO TTiO
db 23 23 22 32 2
R = * (3)
i9
100 10000
where
A is the ash content of the general analysis sample at 815 °C on a dry basis, expressed as mass fraction
db
in per cent of the dry matter;
c is the concentration of element oxides expressed as mg/kg (d).
x
8 Performance characteristics
Data for repeatability and reproducibility for predefined solid recovered fuel samples (paper fibre sludge,
high calorific waste fraction from non-hazardous municipal solid waste) are shown in Annex B.
9 Test report
The test report shall contain at least the following information:
a) name, address and location of any laboratory involved in the analysis;
b) description and identification of the laboratory sample;
c) date of receipt of laboratory sample and date(s) of performance of test;
d) a reference to this document, i.e. ISO 4349:2024;
e) reference to the analytical standard used for the determination of each element;
f) the analytical results for R-index and/or R-index , referring to % (d);
4 9
g) amount of hard impurities, referring to % (d);
h) any details not specified in this document or which are optional, and any other factors which can have
affected the results;
i) unique identification of report (such as serial number) and of each page and total number of pages of
the report.
The laboratory should keep a trace of any analytical steps and intermediate results (raw data and calculation
details) that should be kept available in case of specific requirements.
ISO 4349:2024(en)
Annex A
(informative)
SRF ash composition from mixed municipal and commercial waste
Average ash composition (arithmetic means) of ashes of SRF for secondary firing (SRF “secondary” utilized,
for example, in the calciner, n = 30) and SRF for primary firing (SRF “primary” utilized in the main burner,
n = 50) from Austria, Croatia, Slovakia and Slovenia in mass per cent dry mass (wt% ) is provided in
DM
Figure A.1.
Comparison of ash composition of 80 investigated SRF samples from Austria, Croatia, Slovakia and Slovenia
and their average values with other fuels and raw materials relevant to the cement industry is provided in
Figure A.2.
Key
1 SRF “secondary”
2 SRF “primary”
NOTE Percentages are not normalized to 100 %.
Figure A.1 — Average ash composition (arithmetic means) of ashes of SRF for secondary firing (SRF
“secondary” utilized, for example, in the calciner, n = 30) and SRF for primary firing (SRF “primary”
utilized in the main burner, n = 50) from Austria, Croatia, Slovakia and Slovenia in mass per cent dry
[4]
mass (wt% )
DM
ISO 4349:2024(en)
Key
SRF “secondary”
SRF “primary”
average SRF “secondary”
average SRF “primary”
A CaO [%]
B SiO [%]
C Fe O +Al O [%]
2 3 2 3
1 used foundry sand
2 fuller‘s earth
3 lignite coal
4 plastics/rubber/RDF
5 hard coal
6 sewage sludge
7 clinker
8 used tyres
9 lime sludge
10 mill scale
Figure A.2 — Comparison of ash composition of 80 investigated SRF samples from Austria, Croatia,
Slovakia and Slovenia and their average values with other fuels and raw materials relevant to the
[4]
cement industry
ISO 4349:2024(en)
Ash composition, content and calculated R-index are given in Tables A.1 and A.2.
Table A.1 — Ash composition, ash content and calculated R-index of SRF “secondary” and “primary”
[4]
from Austria, Croatia, Slovakia and Slovenia
Ash composition Sum of
Ash Ash
all meas- R-index , R-index ,
wt%, 950 °C 4 9
815 °C 950 °C
SRF sample
ured 950 °C 950 °C
% %
DM DM
CaO SiO Al O Fe O SO MgO Na O K O TiO
oxides
2 2 3 2 3 3 2 2 2
Secondary 1 26,6 33,7 6,6 5,0 5,6 3,1 2,8 2,7 4,5 92,2 15,7 15,6 11,2 14,1
Secondary 2 18,6 42,7 7,0 2,5 7,6 2,9 1,4 1,6 0,9 86,2 21,5 21,0 14,9 17,9
Secondary 3 22,1 38,1 11,2 3,0 6,7 3,0 1,9 1,7 1,8 90,2 13,4 14,0 10,4 12,5
Secondary 4 30,9 34,7 11,2 7,6 5,6 2,0 2,0 1,4 2,0 99,7 8,5 7,9 6,7 7,7
Secondary 5 21,8 36,4 10,4 3,3 6,4 3,0 1,9 1,5 2,2 88,9 12,9 12,5 9,0 10,9
Secondary 6 32,0 37,4 9,0 6,6 5,5 2,8 1,5 1,3 1,3 99,0 14,2 14,5 12,3 14,1
Secondary 7 22,9 35,9 13,1 2,1 5,6 2,3 2,4 2,0 2,2 89,4 11,0 10,4 7,7 9,2
Secondary 8 25,4 28,3 6,0 8,8 4,6 3,0 1,8 1,3 1,9 81,7 16,7 16,5 11,3 13,4
Secondary 9 26,5 26,5 11,6 3,5 6,8 2,8 1,0 1,1 0,9 81,2 21,6 21,3 14,5 17,2
Secondary 10 19,2 30,5 7,2 5,4 6,8 5,4 2,0 1,7 1,8 81,0 11,4 11,3 7,0 9,0
Secondary 11 22,0 31,5 12,1 12,1 7,5 3,3 0,6 0,5 2,9 93,1 13,2 12,1 9,4 11,2
Secondary 12 27,5 35,8 10,2 11,2 5,7 2,7 1,6 1,6 1,9 98,6 19,5 19,2 16,3 18,9
Secondary 13 20,7 38,0 9,8 3,5 9,2 2,9 2,3 1,8 1,4 90,3 16,1 16,3 11,7 14,6
Secondary 14 32,5 27,2 11,5 3,6 7,6 2,4 1,1 1,4 2,3 90,2 14,5 15,4 11,6 13,8
Secondary 15 23,6 36,5 12,2 6,9 8,8 2,5 1,4 1,4 2,4 96,4 18,4 18,4 14,6 17,6
Secondary 16 24,7 33,4 6,6 4,1 10,7 3,0 1,3 1,5 1,5 87,4 15,6 16,1 11,1 14,0
Secondary 17 36,6 27,8 14,0 4,3 3,8 2,7 1,1 0,7 2,1 94,9 13,4 13,2 10,9 12,3
Secondary 18 31,2 35,0 6,8 2,9 9,4 3,3 2,8 2,1 1,6 96,0 16,2 15,8 12,0 15,0
Secondary 19 22,1 33,4 15,2 3,9 3,4 2,5 2,4 2,0 1,3 87,0 17,0 17,2 12,9 14,8
Secondary 20 20,0 57,7 6,5 2,8 3,0 2,4 2,5 1,9 0,8 97,8 30,6 30,2 26,3 29,5
Secondary 21 33,2 27,1 7,3 5,1 6,6 3,5 1,9 1,7 3,5 90,6 12,3 12,8 9,3 11,5
Secondary 22 22,5 44,8 12,8 5,3 4,1 3,6 1,5 1,8 1,3 98,4 25,5 25,0 21,3 24,4
Secondary 23 27,9 36,1 11,7 5,6 5,8 3,8 1,9 1,9 1,2 96,4 27,8 27,0 22,0 25,9
Secondary 24 26,3 39,6 10,3 4,6 4,9 3,7 1,5 1,6 1,3 94,5 28,9 27,2 22,0 25,5
Secondary 25 27,5 42,0 12,4 6,4 3,5 3,3 1,9 1,7 2,0 101,6 24,6 24,1 21,3 24,3
Secondary 26 21,5 40,2 13,9 4,2 3,0 3,1 1,8 1,7 1,1 90,9 30,5 30,1 24,0 27,2
Secondary 27 25,0 41,8 16,0 4,9 3,5 4,0 1,4 1,6 1,5 100,4 23,4 23,2 20,4 23,1
Secondary 28 25,9 33,4 13,5 4,8 3,0 4,3 1,9 2,3 2,2 92,6 16,5 15,2 11,8 13,9
Secondary 29 26,4 35,0 13,9 5,0 4,6 3,5 1,4 1,8 1,9 94,4 16,9 16,2 13,0 15,1
Secondary 30 31,4 28,4 9,0 4,0 5,7 4,4 1,4 1,2 2,7 89,3 12,3 12,4 9,0 10,9
Primary 1 34,5 33,1 10,1 3,2 6,3 4,1 2,3 1,2 1,4 96,6 11,0 11,5 9,3 11,1
Primary 2 29,2 27,4 7,4 2,8 4,3 4,3 0,6 2,0 4,2 82,7 10,6 10,0 6,7 8,2
Primary 3 22,7 37,5 8,3 2,3 4,2 2,6 3,3 1,9 1,2 84,4 12,6 11,6 8,2 9,7
Primary 4 20,7 48,6 7,2 2,3 3,7 2,4 2,6 1,5 0,8 89,9 23,4 18,3 14,4 16,4
Primary 5 34,3 30,5 8,9 2,7 6,5 2,4 0,7 1,0 1,8 90,0 19,4 17,3 13,2 15,4
Primary 6 32,4 26,5 10,4 1,8 3,3 1,8 2,3 4,2 1,1 85,6 19,4 16,7 11,9 14,0
Primary 7 28,5 29,9 6,5 2,4 3,6 1,7 2,8 2,8 1,1 80,5 18,6 17,6 11,8 14,0
Primary 8 31,4 27,0 7,8 2,3 6,6 3,3 2,6 2,2 0,9 84,5 26,4 24,1 16,5 20,3
Primary 9 35,7 27,9 7,2 2,7 7,7 4,0 0,9 1,2 1,5 89,3 20,6 20,7 15,2 18,4
Primary 10 33,6 26,2 7,0 2,4 5,6 4,0 3,0 2,4 1,5 86,2 29,1 27,0 18,7 23,1
Primary 11 32,1 28,1 6,0 2,0 7,8 4,4 3,3 2,9 1,1 88,0 27,8 24,8 16,9 21,7
Primary 12 31,3 27,7 6,6 2,3 7,4 3,7 2,9 2,4 1,3 86,3 23,9 22,3 15,1 19,1
Primary 13 33,1 26,7 6,3 2,5 6,2 3,8 1,9 2,0 1,2 84,2 29,9 24,3 16,7 20,3
Primary 14 34,3 28,4 17,0 2,7 8,2 4,3 1,3 1,6 1,6 101,3 20,3 17,6 14,5 17,5
ISO 4349:2024(en)
TTabablele A A.11 ((ccoonnttiinnueuedd))
Ash composition Sum of
Ash Ash
all meas- R-index , R-index ,
wt%, 950 °C 4 9
815 °C 950 °C
SRF sample
ured 950 °C 950 °C
% %
CaO SiO Al O Fe O SO MgO Na O K O TiO DM DM
oxides
2 2 3 2 3 3 2 2 2
Primary 15 32,9 27,9 7,6 6,8 7,6 3,3 1,3 1,7 2,7 92,6 22,2 22,1 16,6 20,3
Primary 16 26,3 30,7 10,5 3,1 5,8 5,4 1,5 1,9 1,5 88,9 28,2 26,8 18,9 23,2
Primary 17 29,4 37,2 6,7 2,2 8,5 3,8 3,8 2,8 1,4 96,5 17,5 17,4 13,1 16,7
Primary 18 36,9 29,4 11,1 3,3 9,1 3,1 0,9 1,3 1,9 97,4 19,4 19,1 15,4 18,5
Primary 19 30,3 12,8 31,0 1,3 3,4 1,7 0,5 0,6 4,5 86,7 16,0 16,1 12,1 13,9
Primary 20 25,6 32,5 11,3 4,2 6,3 7,1 1,7 2,5 1,4 95,8 24,3 23,1 17,0 21,4
Primary 21 20,6 10,8 43,4 1,0 2,6 1,0 0,4 0,3 2,0 82,4 12,7 12,7 9,6 10,4
Primary 22 36,4 29,1 13,2 2,3 6,0 3,0 1,4 1,6 2,0 95,7 12,7 12,8 10,4 12,2
Primary 23 31,5 33,0 9,7 2,9 6,5 3,1 1,1 1,2 2,0 91,3 20,9 20,6 15,9 18,7
Primary 24 37,4 32,4 7,8 2,5 6,1 3,3 1,7 1,6 1,1 94,3 18,0 17,8 14,2 16,7
Primary 25 26,4 20,0 34,2 1,4 4,0 1,2 0,5 0,7 3,3 92,1 14,5 14,6 12,0 13,4
Primary 26 37,1 35,5 9,5 2,6 6,5 3,1 1,0 1,3 2,0 99,1 18,8 17,9 15,2 17,6
Primary 27 32,5 30,3 23,2 0,9 3,6 0,7 0,4 0,4 2,0 94,1 29,4 29,4 25,6 27,6
Primary 28 28,1 34,9 8,1 4,6 4,8 3,0 1,2 1,2 2,3 88,7 21,4 21,5 16,3 19,0
Primary 29 36,4 32,6 10,8 2,6 0,6 0,3 1,0 1,2 1,9 88,0 17,0 16,4 13,5 14,3
Primary 30 33,3 18,5 35,9 1,4 4,0 1,9 0,7 0,9 4,2 101,0 14,9 14,3 12,7 14,4
Primary 31 32,3 25,1 17,6 3,4 4,1 2,4 1,5 1,2 4,1 93,2 8,0 8,1 6,4 7,4
Primary 32 29,5 24,3 21,1 2,9 3,2 2,2 1,1 1,2 4,4 91,0 8,5 8,5 6,6 7,6
Primary 33 25,7 28,1 30,2 2,0 2,3 1,6 1,8 1,7 3,0 97,5 11,4 11,4 9,8 11,0
Primary 34 21,3 33,4 26,0 2,1 2,0 1,5 3,0 2,5 2,6 95,3 13,3 13,0 10,8 12,3
Primary 35 32,0 29,1 11,6 3,3 4,8 2,4 1,8 1,7 1,8 89,6 15,2 13,4 10,2 11,9
Primary 36 22,2 31,1 5,7 2,9 9,2 5,4 0,9 1,0 1,4 80,6 21,1 21,0 13,0 16,8
Primary 37 24,4 39,6 6,5 2,6 6,4 2,6 2,2 2,0 0,8 87,7 30,8 28,7 21,0 25,0
Primary 38 26,0 21,9 31,7 2,4 2,7 2,1 1,0 1,3 4,8 94,6 8,3 8,6 7,0 8,1
Primary 39 27,0 27,0 28,0 2,6 2,6 2,3 1,2 0,8 6,4 98,8 10,5 10,2 8,6 10,0
Primary 40 23,5 25,4 31,4 4,5 2,3 2,2 1,3 1,6 4,9 97,8 9,0 9,0 7,6 8,7
Primary 41 25,4 23,5 23,9 4,4 2,0 2,3 1,0 10,3 0,6 94,1 9,0 8,9 6,9 8,3
Primary 42 31,4 29,3 23,4 2,0 2,5 1,8 1,6 1,4 2,3 96,6 9,4 9,3 8,0 8,9
Primary 43 27,5 20,8 32,5 2,1 2,7 2,6 0,8 0,7 1,6 92,3 7,1 7,2 6,0 6,6
Primary 44 35,8 29,8 5,6 2,7 8,6 5,1 0,9 1,0 1,4 91,5 23,4 24,0 17,7 21,8
Primary 45 34,6 29,5 6,5 2,4 10,0 4,3 1,1 1,1 1,6 91,9 23,3 20,8 15,2 18,9
Primary 46 32,1 33,2 7,4 2,1 8,2 3,6 1,3 1,3 1,4 91,1 25,9 26,1 19,5 23,6
Primary 47 33,8 27,1 7,6 2,2 10,7 3,7 1,5 1,5 1,4 90,1 25,9 25,8 18,3 23,1
Primary 48 41,0 20,5 8,7 7,1 5,8 2,5 1,0 0,6 2,9 91,4 9,6 9,3 7,2 8,4
Primary 49 23,6 40,6 12,7 2,2 6,5 4,3 2,0 1,8 2,3 96,4 19,6 18,8 14,9 18,0
Primary 50 21,1 39,9 10,6 2,3 7,6 4,0 2,2 1,3 2,4 91,6 29,6 29,0 21,4 26,5
Average secondary 25,8 35,6 10,6 5,1 5,8 3,2 1,7 1,6 1,9 92,3 18,0 17,7 13,9 16,2
Standard deviation
4,6 6,5 2,9 2,3 2,0 0,7 0,5 0,4 0,8 5,6 6,1 5,9 5,4 1,2
secondary
RSD (%) secondary 17,8 18,1 27,1 46,1 35,1 22,5 29,9 26,6 42,1 6,1 33,8 33,3 38,8 88,3
Minimum 18,6 26,5 6,0 2,1 3,0 2,0 0,6 0,5 0,8 81,0 8,5 7,9 6,7 4,7
Median 25,7 35,4 11,2 4,7 5,7 3,0 1,8 1,7 1,9 92,4 16,4 16,2 11,9 14,8
th
80 percentile 31,1 39,9 13,3 6,5 7,6 3,7 2,2 1,9 2,3 98,1 24,0 23,7 20,9 25,7
Maximum 36,6 57,7 16,0 12,1 10,7 5,4 2,8 2,7 4,5 101,6 30,6 30,2 26,3 44,8
Average primary 30,1 29,0 14,8 2,7 5,4 3,0 1,6 1,7 2,2 91,3 18,4 17,6 13,3 15,9
Standard deviation
5,1 6,7 10,2 1,2 2,4 1,3 0,9 1,4 1,3 5,2 6,9 6,4 4,5 2,0
primary
ISO 4349:2024(en)
TTabablele A A.11 ((ccoonnttiinnueuedd))
Ash composition Sum of
Ash Ash
all meas- R-index , R-index ,
wt%, 950 °C 4 9
815 °C 950 °C
SRF sample
ured 950 °C 950 °C
% %
CaO SiO Al O Fe O SO MgO Na O K O TiO DM DM
oxides
2 2 3 2 3 3 2 2 2
RSD (%) primary 17,0 23,0 68,9 43,1 44,4 43,8 54,0 83,0 58,5 5,7 37,8 36,4 34,2 158,6
Minimum 20,6 10,8 5,6 0,9 0,6 0,3 0,4 0,3 0,6 80,5 7,1 7,2 6,0 2,9
Median 31,4 29,1 10,3 2,5 5,8 3,0 1,3 1,5 1,8 91,5 19,1 17,6 13,4 15,3
th
80 percentile 34,4 33,2 25,0 3,2 7,7 4,1 2,3 2,1 3,0 96,5 25,1 24,1 16,8 27,7
Maximum 41,0 48,6 43,4 7,1 10,7 7,1 3,8 10,3 6,4 101,3 30,8 29,4 25,6 52,4
Average total 28,5 31,5 13,2 3,6 5,6 3,1 1,6 1,7 2,1 91,7 18,2 17,6 13,5 16,0
Standard deviation 5,3 7,3 8,5 2,1 2,3 1,1 0,7 1,2 1,1 5,4 6,6 6,2 4,8 1,8
RSD (%) 18,7 23,2 63,9 57,0 40,7 36,6 45,5 68,9 54,7 5,8 36,2 35,0 35,9 143,2
Minimum 18,6 10,8 5,6 0,9 0,6 0,3 0,4 0,3 0,6 80,5 7,1 7,2 6,0 2,7
Median 28,0 30,6 10,5 2,9 5,7 3,0 1,5 1,6 1,8 91,6 17,3 17,0 13,0 14,6
th
80 percentile 33,3 36,9 16,5 4,9 7,6 4,0 2,3 2,0 2,7 96,6 24,5 24,1 17,0 26,6
Maximum 41,0 57,7 43,4 12,1 10,7 7,1 3,8 10,3 6,4 101,6 30,8 30,2 26,3 58,1
Limit of quantifi-
0,2 0,3 0,2 0,2 0,3 0,2 0,2 0,2 0,2
cation
[5]
Table A.2 — Ash composition, ash content and calculated R-index of SRF “primary” from Germany
Ash composition Sum of
Ash Ash
all meas- R-index , R-index ,
wt%, 815 °C 4 9
815 °C 950 °C
SRF sample
ured 815 °C 815 °C
% %
CaO SiO Al O Fe O SO MgO Na O K O TiO DM DM
oxides
2 2 3 2 3 3 2 2 2
Primary 1 23,8 40,9 9,4 2,3 4,1 2,1 6,5 2,9 1,1 93,2 12,9 - 9,8 12,0
Primary 2 27,0 35,1 11,0 2,3 4,0 3,0 4,9 3,1 3,0 93,6 7,6 - 5,7 7,1
Primary 3 21,0 37,0 14,9 2,3 4,3 1,9 5,0 3,3 1,1 91,0 12,9 - 9,7 11,7
Primary 4 25,9 38,9 11,4 2,9 4,6 2,2 5,6 3,5 1,1 96,4 11,5 - 9,1 11,0
Primary 5 21,0 40,2 9,7 2,4 3,9 2,4 6,3 3,9 1,1 91,1 11,8 - 8,6 10,7
Primary 6 29,1 35,5 18,5 2,1 2,8 1,9 3,8 1,9 6,3 102,2 7,1 - 6,1 7,3
Primary 7 25,2 26,7 29,7 2,2 3,0 1,7 3,3 1,5 6,7 100,1 7,2 - 6,0 7,2
Primary 8 22,9 38,1 23,2 2,2 3,2 1,8 3,2 2,1 4,3 101,2 10,6 - 9,1 10,7
Primary 9 29,9 34,2 14,7 2,5 3,5 2,3 4,5 1,6 6,3 99,7 7,1 - 5,8 7,1
Primary 10 27,6 28,2 23,4 2,1 3,6 2,1 5,0 1,4 7,9 101,4 6,4 - 5,2 6,5
Primary 11 30,1 23,1 19,1 2,0 2,9 1,9 2,2 1,4 6,9 89,7 6,4 - 4,8 5,8
Primary 12 26,4 26,7 21,4 1,8 2,6 2,5 2,4 1,4 6,3 91,6 6,6 - 5,0 6,0
Primary 13 20,3 27,4 20,8 2,0 3,8 2,0 2,8 1,5 5,4 85,9 6,9 - 4,9 5,9
Primary 14 26,4 23,3 19,3 1,5 3,5 1,8 2,4 1,6 5,2 85,2 7,1 - 5,0 6,0
Primary 15 34,6 23,1 16,7 1,8 3,6 1,7 2,3 1,4 6,1 91,2 7,1 - 5,4 6,5
Primary 16 27,7 25,9 23,6 1,9 2,8 2,2 2,9 1,9 6,3 95,3 6,9 - 5,4 6,5
Primary 17 32,9 21,8 22,1 1,9 4,0 2,0 2,3 1,5 6,7 95,3 6,5 - 5,1 6,2
Primary 18 28,0 27,6 21,7 3,4 4,1 2,0 2,3 1,7 6,9 97,8 7,6 - 6,1 7,4
Primary 19 29,8 26,3 20,2 2,5 3,2 2,0 2,3 1,6 6,8 94,8 6,6 - 5,2 6,3
Primary 20 31,6 26,5 20,8 2,4 4,2 2,0 2,6 1,8 5,3 97,3 7,0 - 5,7 6,8
Primary 21 29,9 33,6 16,9 5,2 4,8 2,3 1,8 1,4 4,5 100,6 10,0 - 8,6 10,0
Primary 22 30,9 29,1 26,1 2,7 4,6 1,9 1,6 1,1 4,5 102,6 9,5 - 8,4 9,7
Primary 23 35,8 31,4 21,5 3,2 4,9 2,0 2,1 1,3 4,3 106,8 10,4 - 9,5 11,1
Primary 24 36,4 34,7 18,9 2,6 5,4 1,9 2,3 1,4 4,4 108,1 10,2 - 9,4 11,0
Primary 25 33,7 31,4 18,9 2,3 4,7 3,3 1,6 1,1 4,7 101,8 10,2 - 8,8 10,3
Primary 26 33,6 35,7 14,2 2,8 5,3 2,4 1,7 1,2 4,2 101,2 10,8 - 9,3 10,9
Primary 27 30,4 37,2 17,2 3,2 5,0 2,1 2,1 1,3 4,6 103,3 9,8 - 8,6 10,1
Primary 28 29,1 33,6 21,9 2,5 4,8 1,8 2,0 1,3 4,4 101,6 9,7 - 8,4 9,8
ISO 4349:2024(en)
TTabablele A A.22 ((ccoonnttiinnueuedd))
Ash composition Sum of
Ash Ash
all meas- R-index , R-index ,
wt%, 815 °C 4 9
815 °C 950 °C
SRF sample
ured 815 °C 815 °C
% %
CaO SiO Al O Fe O SO MgO Na O K O TiO DM DM
oxides
2 2 3 2 3 3 2 2 2
Primary 29 31,6 30,2 15,3 2,4 8,2 2,1 2,2 1,1 5,6 98,9 8,3 - 6,6 8,2
Primary 30 29,0 35,9 14,9 3,3 5,4 2,2 2,4 1,5 5,0 99,9 10,4 - 8,6 10,3
Primary 31 33,9 28,2 19,5 3,2 3,5 1,9 2,0 1,3 4,4 98,0 7,9 - 6,7 7,7
Primary 32 27,7 27,2 29,9 2,0 2,8 2,1 2,5 1,3 7,2 102,7 7,1 - 6,1 7,2
Primary 33 30,6 18,2 17,3 2,4 5,5 1,4 1,1 0,6 3,0 80,3 10,0 - 6,9 8,0
Primary 34 31,5 26,7 15,5 5,4 3,5 2,3 4,4 1,7 4,9 96,0 8,9 - 7,0 8,5
Primary 35 37,8 26,5 17,9 4,0 3,8 2,1 1,8 1,3 6,7 102,0 6,6 - 5,7 6,8
Primary 36 26,2 38,3 26,5 2,2 3,2 1,7 3,8 1,6 5,2 108,8 9,9 - 9,2 10,7
Primary 37 34,4 25,0 24,4 3,0 4,1 2,2 1,6 0,9 4,6 100,3 8,4 - 7,3 8,4
Primary 38 33,4 17,8 39,9 6,3 3,4 1,8 1,6 0,8 4,6 109,8 9,1 - 8,8 9,9
Primary 39 40,6 27,2 26,5 2,2 4,4 2,6 3,0 1,4 4,2 112,2 9,1 - 8,7 10,2
Primary 40 22,9 21,2 21,2 2,2 4,8 1,6 1,5 0,9 4,3 80,9 12,2 - 8,3 9,9
Primary 41 31,5 28,0 18,9 2,4 2,8 2,0 1,8 1,3 5,2 94,1 8,9 - 7,2 8,3
Primary 42 33,0 25,7 25,3 2,7 3,1 1,9 2,3 1,3 5,6 101,1 7,3 - 6,3 7,4
Primary 43 31,8 31,9 19,7 2,7 3,1 1,8 2,1 1,3 3,8 98,1 9,7 - 8,3 9,5
Primary 44 30,8 28,2 16,2 2,4 3,0 1,7 2,0 1,3 4,5 90,3 9,9 - 7,7 8,9
Primary 45 36,0 24,4 21,0 3,0 3,4 2,2 1,5 0,9 4,6 97,0 9,6 - 8,1 9,3
Primary 46 26,9 36,2 15,6 4,4 2,6 1,7 3,2 2,0 3,2 95,9 5,9 - 4,9 5,7
Primary 47 33,2 27,4 21,4 5,4 3,8 1,9 2,6 1,4 4,7 101,8 8,2 - 7,2 8,4
Primary 48 32,7 35,3 21,2 2,4 4,2 1,8 2,9 2,0 8,0 110,6 9,5 - 8,7 10,5
Primary 49 36,0 34,0 17,9 2,9 3,5 2,0 2,2 1,3 5,1 104,9 9,5 - 8,6 10,0
Primary 50 40,4 20,9 20,4 2,2 3,7 2,0 1,7 0,9 2,8 95,2 9,5 - 8,0 9,1
Average primary 30,3 29,8 19,9 2,8 3,9 2,0 2,8 1,6 4,9 98,0 8,8 - 7,3 8,6
Standard deviation
4,7 5,9 5,4 1,0 1,0 0,3 1,3 0,7 1,6 7,0 1,8 - 1,6 1,8
primary
RSD (%) primary 15,5 19,7 27,2 36,5 25,5 16,1 46,5 43,0 33,9 7,1 20,6 - 22,0 21,3
Minimum 20,3 17,8 9,4 1,5 2,6 1,4 1,1 0,6 1,1 80,3 5,9 - 4,8 5,7
Median 30,5 28,2 19,6 2,4 3,8 2,0 2,3 1,4 4,7 98,5 9,0 - 7,3 8,5
th
80 percentile 33,7 35,6 23,3 3,2 4,7 2,2 3,4 1,8 6,3 102,3 10,2 - 8,7 10,4
Maximum 40,6 40,9 39,9 6,3 8,2 3,3 6,5 3,9 8,0 112,2 12,9 - 9,8 12,0
Limit of quantifica-
0,2 0,3 0,2 0,2 0,3 0,2 0,2 0,2 0,2
tion
Total inorganic carbon content (TIC) and ash content for different ash samples are given in Table A.3.
Table A.3 — Total inorganic carbon content (TIC) and ash content for different ash samples in
[6]
relation to the incineration temperature
TIC TIC TIC
Ash content Ash content Ash content
ash residue ash residue ash residue
550 °C 815 °C 950 °C
SRF sample
550 °C 815 °C 950 °C
wt% wt% wt%
wt% wt% wt%
Primary 1 3,1 0,3 0,1 12,3 11,0 11,5
Primary 3 4,4 0,2 0,2 15,8 12,6 11,6
Primary 4 3,3 0,6 0,4 25,5 23,4 18,3
Primary 5 4,0 0,3 0,4 22,1 19,4 17,3
Primary 6 4,5 0,7 0,6 26,3 19,4 16,7
Primary 7 4,0 0,7 0,5 22,2 18,6 17,6
Primary 19 4,3 0,7 < 0,1 17,5 16,0 16,1
ISO 4349:2024(en)
TTabablele A A.33 ((ccoonnttiinnueuedd))
TIC TIC TIC
Ash content Ash content Ash content
ash residue ash residue ash residue
550 °C 815 °C 950 °C
SRF sample
550 °C 815 °C 950 °C
wt% wt% wt%
wt% wt% wt%
Primary 20 2,7 0,6 0,4 25,3 24,3 23,1
Primary 22 3,9 0,5 0,3 14,9 12,7 12,8
Primary 27 5,5 0,5 0,4 36,0 29,4 29,4
Primary 32 4,1 0,6 0,4 9,7 8,5 8,5
Primary 36 3,8 0,2 0,1 29,1 21,1 21,0
Primary 40 1,7 0,2 < 0,1 9,8 9,0 9,0
Primary 41 2,1 0,7 0,5 9,9 9,0 8,9
Primary 44 4,0 0,5 0,4 27,5 23,4 24,0
Secondary 17 3,1 0,4 0,5 15,2 13,4 13,2
Secondary 18 2,0 0,1 0,1 19,9 16,2 15,8
Secondary 19 4,0 0,6 0,8 18,9 17,0 17,2
Secondary 20 3,3 0,2 0,2 31,7 30,6 30,2
Secondary 21 1,7 0,2 0,1 16,1 12,3 12,8
Secondary 24 1,7 0,3 0,3 32,9 28,9 27,2
Secondary 28 4,1 0,6 0,4 19,2 16,5 15,2
Ash content and element composition of selected material fractions of SRF “primary” from mixed commercial
and municipal waste are given in Table A.4.
Table A.4 — Ash content and element composition of selected material fractions of SRF “primary”
[7]
from mixed commercial and municipal waste
Ash
SRF
Al Ca Fe K Mg Na S Si Ti
Sorted material frac-
(815 °C)
sample
tion
no.
% mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg
DM DM DM DM D
...
Frequently Asked Questions
SIST EN ISO 4349:2024 is a standard published by the Slovenian Institute for Standardization (SIST). Its full title is "Solid recovered fuels - Determination of the Recycling Index for co-processing (ISO 4349:2024)". This standard covers: This document specifies the determination of the share of material recovery in the case of energy recovery (i.e. co-processing) of solid recovered fuels (SRFs), for example, in a cement kiln. This share, called the recycling index (R-index), is calculated on the basis of the ash content and the ash composition.
This document specifies the determination of the share of material recovery in the case of energy recovery (i.e. co-processing) of solid recovered fuels (SRFs), for example, in a cement kiln. This share, called the recycling index (R-index), is calculated on the basis of the ash content and the ash composition.
SIST EN ISO 4349:2024 is classified under the following ICS (International Classification for Standards) categories: 75.160.10 - Solid fuels. The ICS classification helps identify the subject area and facilitates finding related standards.
You can purchase SIST EN ISO 4349:2024 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of SIST standards.








Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...