Aerospace series - Quality management systems - Data Matrix Quality Requirements for Parts Marking

This standard defines uniform quality and technical requirements relative to metallic parts marking
performed using “data matrix symbology” within the aviation, space, and defence industry. ISO/IEC 16022
specifies general requirements (e. g., data character encodation, error correction rules, decoding algorithm).
In addition to ISO/IEC 16022 specification, part identification with such symbology is subject to the
requirements in this standard to ensure electronic reading of the symbol.
The marking processes covered by this standard are as follows:
• Dot Peening;
• Laser;
• Electro-Chemical Etching.
Further marking processes will be included, if required.
Unless specified otherwise in the contractual business relationship, the company responsible for the design
of the part shall determine the location of the data matrix marking. Symbol position should allow optimum
illumination from all sides for readability.
This standard does not specify information to be encoded.
1.1 Convention
The following conventions are used in this standard:
• The word “shall” indicates mandatory requirements;
• The word “should” indicates requirements with some flexibility allowed in compliance methodology.
Producers choosing other approaches to satisfy a “should” shall be able to show that their approach
meets the intent of the standard’s requirement;
• The words “typical”, “example”, “for reference” or “e. g.” indicate suggestions given for guidance only;
• Appendices to this document are for information only and are provided for use as guidelines;
• Dimensions used in this document are as follows. Metric millimetre (mm) sizes followed by inches (in)
in parentheses, unless otherwise stated.

Luft- und Raumfahrt - Qualitätsmanagementsysteme - Data Matrix Qualitätsanforderungen für Teilemarkierung

Diese Norm legt einheitliche Qualitätsanforderungen und die technischen Lieferbedingungen in Bezug auf die Markierung von metallischen Teilen in der Luft-, Raumfahrt- und Verteidigungsindustrie unter Anwen-dung der "Data-Matrix-Symbologie (Codeschemata)" fest. ISO/IEC 16022 legt die allge¬meinen Anforderun-gen (z. B. Datenzeichencodierung, Regeln zur Fehlerkorrektur, Decodieralgorithmus) fest. Ergänzend zur ISO/IEC 16022-Spezifikation unterliegt die Teilekennzeichnung mit einem derartigen Codeschema den An-forderungen in der vorliegenden Norm, um ein elektronisches Lesen des Symbols sicherzustellen.
Folgende Markierverfahren sind in der vorliegenden Norm enthalten:
-   Nadelprägung (Punktprägung);
-   Lasergravur;
-   elektrochemisches Ätzen.
Bei Bedarf werden weitere Markierverfahren aufgenommen.
Falls in der vertraglichen Geschäftsbeziehung nicht anders festgelegt, muss das für die Gestaltung des Teils verantwortliche Unternehmen die Lage der Data-Matrix-Markierung bestimmen. Die Lage des Symbols sollte zur Lesbarkeit eine optimale Beleuchtung von allen Seiten ermöglichen.
Die vorliegende Norm legt nicht die zu codierenden Angaben fest.
1.1   Vereinbarungen
Folgende Vereinbarungen finden in der vorliegenden Norm Anwendung:
-   Das Wort "muss" weist auf verbindliche Anforderungen hin.
-   Das Wort "sollte" weist auf Anforderungen hin, die bei Einhaltung der grundsätzlichen Methodik eine gewisse Flexibilität zulassen. Hersteller, die andere Vorgehensweisen zur Erfüllung einer mit "sollte" verbundenen Anforderung wählen, müssen in der Lage sein aufzuzeigen, dass ihre Vorgehensweise dem Ziel der Anforderung der Norm entspricht.
-   Die Wörter "typisch", "Beispiel", "in Bezug" oder "z. B." verweisen auf Vorschläge, die nur als Leit¬faden angeführt sind.
-   Die Anhänge zu diesem Dokument dienen nur der Information und sind zur Anwendung als Leitfaden angeführt.
-   Maße werden in diesem Dokument wie folgt verwendet. Sofern nicht anders angegeben, sind nach der metrischen Größenangabe in Millimeter (mm) in runden Klammern die Angaben in inch (in) angeführt.

Série aérospatiale - Systèmes de management de la qualité - Exigences qualité du marquage des pièces en code-barres Data Matrix

La présente norme aérospatiale définit les exigences uniformes techniques et qualité concernant le marquage des articles métalliques utilisant un encodage de type « data matrix symbology » et appliqué dans l’industrie aéronautique, spatiale et de Défense. La norme ISO/IEC 16022 spécifie les exigences générales (par exemple : encodage des caractères, règles de correction, algorithme de décodage). En complément à la norme ISO/IEC 16022, l’identification des articles avec ce type de symbole fait l’objet des exigences contenues dans ce document pour assurer une lecture électronique du symbole.
Les procédés de marquage couverts par ce standard sont les suivants :
•   Micro percussions ;
•   Laser ;
•   Marquage électrolytique.
D’autres procédés de marquage seront inclus si besoin.
Excepté des exigences particulières et contractuelles, l’organisme responsable de la conception de l’article doit déterminer l’emplacement du marquage matriciel. Il convient de s’assurer que l’emplacement du symbole doit permettre une illumination optimum pour une lisibilité de celui-ci.
Ce standard ne spécifie pas les informations devant être encodées.

Aeronavtika - Sistem vodenja kakovosti - Zahteve za kakovost črtne kode Data Matrix za označevanje delov

Ta standard določa enotne zahteve za kakovost in tehnične zahteve glede označevanja kovinskih delov s simboli Data Matrix v letalski, vesoljski in obrambni industriji. Standard ISO/IEC 16022 določa splošne zahteve (npr. znakovno kodiranje podatkov, pravila za popravljanje napak, dekodirni algoritem).
Poleg specifikacij v standardu ISO/IEC 16022 veljajo za identifikacijo delov s takšnimi simboli tudi
zahteve v tem standardu za zagotovitev elektronskega odčitavanja simbola.
Postopki označevanja, ki jih zajema ta standard, so sledeči:
• iglično označevanje;
• laser;
• elektrokemično jedkanje.
Po potrebi bodo vključeni tudi dodatni postopki označevanja.
Če ni podano drugače v pogodbenem poslovnem razmerju, mora podjetje, odgovorno za zasnovo dela, določiti lokacijo oznake Data Matrix. Položaj simbola naj bi omogočal optimalno osvetlitev z vseh strani za berljivost.
Ta standard ne določa informacij za kodiranje.
1.1 Konvencija
V tem standardu so uporabljene naslednje konvencije:
• beseda »morati« pomeni obvezne zahteve;
• beseda »naj« pomeni zahteve z nekaj prilagodljivost pri metodologiji skladnosti.
Proizvajalci, ki izberejo druge pristope za izpolnjevanje potreb besede »naj«, morajo izkazati, da njihov pristop
izpolnjuje namen zahteve standarda;
• besede »običajno«, »primer«, »za sklic« ali »npr.« pomenijo predloge, ki so podani samo kot napotki;
• dodatki tega dokumenta so samo informativne narave in se uporabljajo kot smernice;
• mere, ki se uporabljajo v tem dokumentu, so sledeče: velikosti v metričnih milimetrih (mm), katerim v oklepajih sledijo velikosti v palcih (in), če ni drugače navedeno.

General Information

Status
Published
Publication Date
05-Mar-2017
Technical Committee
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
02-Mar-2017
Due Date
07-May-2017
Completion Date
06-Mar-2017

Relations

Buy Standard

Standard
EN 9132:2017
English language
33 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)

SLOVENSKI STANDARD
SIST EN 9132:2017
01-maj-2017
1DGRPHãþD
SIST EN 9132:2009
$HURQDYWLND6LVWHPYRGHQMDNDNRYRVWL=DKWHYH]DNDNRYRVWþUWQHNRGH'DWD
0DWUL[]DR]QDþHYDQMHGHORY
Aerospace series - Quality management systems - Data Matrix Quality Requirements for
Parts Marking
Luft- und Raumfahrt - Qualitätsmanagementsysteme - Data Matrix
Qualitätsanforderungen für Teilemarkierung
Série aérospatiale - Systèmes de management de la qualité - Exigences qualité du
marquage des pièces en code-barres Data Matrix
Ta slovenski standard je istoveten z: EN 9132:2017
ICS:
03.100.70 Sistemi vodenja Management systems
03.120.10 Vodenje in zagotavljanje Quality management and
kakovosti quality assurance
49.020 Letala in vesoljska vozila na Aircraft and space vehicles in
splošno general
SIST EN 9132:2017 en,fr,de
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

---------------------- Page: 1 ----------------------

SIST EN 9132:2017

---------------------- Page: 2 ----------------------

SIST EN 9132:2017


EN 9132
EUROPEAN STANDARD

NORME EUROPÉENNE

February 2017
EUROPÄISCHE NORM
ICS 03.100.70; 03.120.10; 49.020 Supersedes EN 9132:2006
English Version

Aerospace series - Quality management systems - Data
Matrix Quality Requirements for Parts Marking
Série aérospatiale - Systèmes de management de la Luft- und Raumfahrt - Qualitätsmanagementsysteme -
qualité - Exigences qualité du marquage des pièces en Data Matrix Qualitätsanforderungen für
code-barres Data Matrix Teilemarkierung
This European Standard was approved by CEN on 4 December 2016.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania,
Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Turkey and United Kingdom.





EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION

EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels
© 2017 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN 9132:2017 E
worldwide for CEN national Members.

---------------------- Page: 3 ----------------------

SIST EN 9132:2017
EN 9132:2017 (E)
Contents Page
European foreword.4
Rationale .5
Foreword .5
1 Scope .6
1.1 Convention .6
2 Normative references .6
3 Marking requirements .7
3.1 General requirements .7
3.2 Dot peening.7
3.2.1 Description of process.7
3.2.2 Requirements .8
3.3 Laser. 13
3.3.1 Description of process. 13
3.3.2 Limitations . 16
3.3.3 Requirements . 17
3.3.4 Metallographic . 18
3.3.5 Quality assurance . 19
3.4 Electro-chemical etching. 19
3.4.1 Description of process. 19
3.4.2 Scope . 19
3.4.3 Sub-surface marking . 19
3.4.4 Surface marking . 20
3.4.5 Components – Condition . 20
3.4.6 Instructions for determination of electro-chemical etch marking parameters . 20
3.4.7 Stencil material. 20
3.4.8 Electrolyte solutions . 21
3.4.9 Marking requirements . 21
3.4.10 Testing. 22
3.4.11 Corrosion protection. 22
3.4.12 Quality assurance . 22
4 Marking verification. 22
5 Marking validation and monitoring . 22
6 Notes. 23
Annex A (informative) Dot peening data capacity guidelines for selected surface textures . 24
Annex B (informative) Dot peening – Recommendation for stylus grinding . 26
Annex C (informative) Examples of required tolerances with reference to the nominal module
sizes for dot peening . 27
Annex D (informative) Visual quality guidelines – Electro-chemical etching . 29
Annex E (informative) Example methodology for checking dot peen characteristics . 30
Figures
Figure 1 — Angle of distortion .7
Figure 2 — Instructions for determination of marking parameters .8
Figure 3 — Minimum module size (inch) by surface texture (µinch) .9
Figure 4 — Minimum module size (mm) by surface texture (µm) . 10
2

---------------------- Page: 4 ----------------------

SIST EN 9132:2017
EN 9132:2017 (E)
Figure 5 — Definition of ovality. 11
Figure 6 — Definition of nominal module size, dot size, and dot centre offset . 12
Figure 7 — Detail definition of dot size . 13
Figure 8 — Laser marking data matrix example. 13
Figure 9 — Diagram illustrating typical laser beam profile at working range . 14
Figure 10 — Instructions for determination of marking parameters . 17
Figure 11 — Scale of grey density. 17
Figure 12 — Diagram showing laser marking with acceptable fill of modules. 18
Figure 13 — Diagram showing different laser engraved module profiles . 18
Figure B.1 — Tolerance on stylus . 26
Figure B.2 — Grinding . 26
Figure D.1 — Visual quality assessment. 29
Figure E.1 — Dot size and dot centre offset . 30
Figure E.2 — Angle of distortion . 30
Figure E.3 — Example with 60 degree stylus angle and .004 radius . 31
Figure E.4 — Dot size measurement. 31
Figure E.5 — Stylus wear measurement. 33
Tables
Table 1 — Minimum readable module size by surface texture (Ra) .9
Table 2 — Limits for dot size and dot centre offset . 11
Table A.1 — Surface texture with Ra = 1.50 µm or 63 microinches. 24
Table A.2 — Surface texture with Ra = 2.40 µm or 95 microinches. 24
Table A.3 — Surface texture with Ra = 3.25 µm or 125 microinches. 25
Table A.4 — Surface texture with Ra = 3.80 µm or 150 microinches. 25
Table C.1 — Requirements in inches . 27
Table C.2 — Requirements in millimetres . 28
Table E.1 — Calculated dot depth (1 of 2). 32

3

---------------------- Page: 5 ----------------------

SIST EN 9132:2017
EN 9132:2017 (E)
European foreword
This document (EN 9132:2017) has been prepared by the Aerospace and Defence Industries Association of
Europe - Standardization (ASD-STAN).
After enquiries and votes carried out in accordance with the rules of this Association, this Standard has
received the approval of the National Associations and the Official Services of the member countries of ASD,
prior to its presentation to CEN.
This European Standard shall be given the status of a national standard, either by publication of an identical
text or by endorsement, at the latest by August 2017, and conflicting national standards shall be withdrawn
at the latest by August 2017.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.
This document supersedes EN 9132:2006.
According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following
countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech
Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece,
Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland,
Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

4

---------------------- Page: 6 ----------------------

SIST EN 9132:2017
EN 9132:2017 (E)
Rationale
This standard has been revised to clean up the general text/content and to reformat the document to
the latest format/style guide. This standard was created to provide for uniform quality and technical
requirements relative to metallic parts marking performed within the aviation, space, and defence
industry. This standard can be invoked as a stand-alone requirement or used in conjunction with
EN 9100-series standards (i. e., EN 9100, EN 9110, EN 9120).
Foreword
To assure customer satisfaction, the aviation, space, and defence industry organizations must produce
and continually improve safe, reliable products that meet or exceed customer and regulatory authority
requirements. The globalization of the industry, and the resulting diversity of regional/national
requirements and expectations, has complicated this objective. End-product organizations face the
challenge of assuring the quality of, and integrating, product purchased from suppliers throughout the
world and at all levels within the supply chain. Furthermore, suppliers and processors, within the
industry, face the challenge of delivering product to multiple customers having varying quality
expectations and requirements.
The aviation, space, and defence industry established the International Aerospace Quality Group (IAQG)
for the purpose of achieving significant improvements in quality and safety, and reductions in cost,
throughout the value stream. This organization includes representation from companies in the
Americas, Asia/Pacific, and Europe. This document standardizes data matrix quality requirements for
parts marking for the industry. The establishment of common requirements, for use at all levels of the
supply-chain by organizations, should result in improved quality and safety, and decreased costs, due to
the elimination or reduction of organization-unique requirements and the resultant variation inherent
in these multiple expectations.
5

---------------------- Page: 7 ----------------------

SIST EN 9132:2017
EN 9132:2017 (E)
1 Scope
This standard defines uniform quality and technical requirements relative to metallic parts marking
performed using “data matrix symbology” within the aviation, space, and defence industry. ISO/IEC 16022
specifies general requirements (e. g., data character encodation, error correction rules, decoding algorithm).
In addition to ISO/IEC 16022 specification, part identification with such symbology is subject to the
requirements in this standard to ensure electronic reading of the symbol.
The marking processes covered by this standard are as follows:
• Dot Peening;
• Laser;
• Electro-Chemical Etching.
Further marking processes will be included, if required.
Unless specified otherwise in the contractual business relationship, the company responsible for the design
of the part shall determine the location of the data matrix marking. Symbol position should allow optimum
illumination from all sides for readability.
This standard does not specify information to be encoded.
1.1 Convention
The following conventions are used in this standard:
• The word “shall” indicates mandatory requirements;
• The word “should” indicates requirements with some flexibility allowed in compliance methodology.
Producers choosing other approaches to satisfy a “should” shall be able to show that their approach
meets the intent of the standard’s requirement;
• The words “typical”, “example”, “for reference” or “e. g.” indicate suggestions given for guidance only;
• Appendices to this document are for information only and are provided for use as guidelines;
• Dimensions used in this document are as follows. Metric millimetre (mm) sizes followed by inches (in)
in parentheses, unless otherwise stated.
2 Normative references
The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.
EN 9102, Quality Systems — First article inspection requirement
ISO/IEC 16022, Information technology — Automatic identification and data capture techniques — Data
Matrix bar code symbology specification
6

---------------------- Page: 8 ----------------------

SIST EN 9132:2017
EN 9132:2017 (E)
3 Marking requirements
3.1 General requirements
a) Rows and columns:
Rows and columns connected with data matrix symbology shall conform to Error Checking and
Correcting (ECC) 200 (see ISO/IEC 16022).
b) Square versus rectangle:
Matrix may be square or rectangular within ECC 200 requirements (see ISO/IEC 16022). Square is
preferred for easier reading.
c) Quiet zone:
The quiet zone (margin) around the matrix shall be equal to or greater than one module size.
d) Round surface:
If the marking is made on a round/curved surface, the symbol coverage shall be equal to or less than
16 % of the diameter or 5 % of circumference.
e) Symbol size:
To facilitate electronic reading of the symbol, the overall symbol size should be less than 25,4 mm
(1 000 inch), outside dimension, longest side. Irrespective of matrix size used, the requirements
included in this standard shall be applied.
f) Angular distortion of the symbol:
Angular deviation of 90-degree axes between row and column shall not exceed ±7 degrees (see Figure 1).

Key
1 Angle of Distortion
Figure 1 — Angle of distortion
3.2 Dot peening
3.2.1 Description of process
a) Dot-peen marking technology typically produces round indentations on a part’s surface with a
pneumatically or electromechanically driven pin, otherwise known as a stylus. Critical to the readability
of dot-peen marked symbols are the indented dot’s shape, size, and spacing. The dot size and
appearance are determined mostly by the stylus cone angle, marking force, and material hardness. The
7

---------------------- Page: 9 ----------------------

SIST EN 9132:2017
EN 9132:2017 (E)
indented dot created should be suitable to trap or reflect light and large enough to be distinguishable
from the parts surface roughness. It should also have spacing wide enough to accommodate varying
module sizes, placement, and illumination (see Figure 2).

Determine minimum module size according to the
surface texture. See Table 1, Figure 3 (inch), or
Figure 4 (mm).
Calculate dot size with regard to the above minimum
module size in choosing stylus angle (i. e., 60°, 90°,
or 120°) depending on maximum depth allowed by
engineering design requirements (see Table 2 for
the optimum dot size).
Determine matrix size depending on the information
coded in the matrix (reference tables presented in
Appendix A for minimum matrix size based on
available marking area)
Set up machine (e. g., height, air pressure, force) for
desired dot geometry)

Figure 2 — Instructions for determination of marking parameters
b) The issues involved in marking and reading dot-peen-marked symbols on metals are different than
symbols printed on paper. The first fundamental difference is that the contrast between dark and light
fields is created by artificial illumination of the symbol. Therefore, the module’s shape, size, spacing, and
part surface finish can all affect symbol readability.
c) The key to a successful dot-peen marking and reading project is to control the variables affecting the
consistency of the process. Symbol reading verification systems can provide feedback of the process
parameters to some extent. Marking system operating and maintenance procedures shall be established
to help ensure consistent symbol quality. Regular maintenance schedules should be established to check
for issues such as stylus wear.
d) Additional processes, like machining dedicated surfaces, may be necessary to improve the symbol
readability. Cleaning the part surfaces, prior to marking, with an abrasive pad to remove coatings, rust,
and discolouration, or using an air knife to blow away excess machining fluids, debris, or oil can increase
the symbol readability.
3.2.2 Requirements
a) Data matrix symbol nominal module size:
The surface texture of the part affects the quality of a data matrix symbol produced by dot peening.
Table 1 and Figure 3 and Figure 4 show the minimum readable module size requirements for the
surface texture of the part. The engineering design authority shall approve changes to the minimum
module size.
8

---------------------- Page: 10 ----------------------

SIST EN 9132:2017
EN 9132:2017 (E)
Table 1 — Minimum readable module size by surface texture (Ra)
Surface Texture (Ra) Minimum Module Size
Microinches Micrometres Inches Millimetres
32 0.8 0.0075 0,19
63 1.6 0.0087 0,22
95 2.4 0.0122 0,31
125 3.2 0.0161 0,41
250 6.3 0.0236 0,60


Key
Y Minimum call size [inch]
X Surface texture Ra (μ inch)
Figure 3 — Minimum module size (inch) by surface texture (µinch)
9

---------------------- Page: 11 ----------------------

SIST EN 9132:2017
EN 9132:2017 (E)

Key
Y Minimum call size [inch]
X Surface texture Ra (μ inch)
Figure 4 — Minimum module size (mm) by surface texture (µm)
b) Data capacity:
Tables in Appendix A for dot peening show the symbol size and the data capacity compared to the
nominal module size and the number of rows and columns relative to surface texture. These tables are
based on practical testing.
c) Data matrix symbol quality requirements:
Below are the symbol quality requirements of the data matrix and marking equipment, but these may
vary according to the design requirements and responsibility:
• Dot depth is subject to engineering design requirements. The dot depth is based upon the
requirements for process, environment survivability, and other material considerations;
• Stylus radius is an engineering design requirement. The maximum tolerance shall not exceed 10 %
of the stylus radius;
• Surface colour and colour consistency may be specified as an engineering design requirement. In
order to maximize readability, variation in surface colour should be minimized;
• Stylus cone angle (reference α in Appendix B) is an engineering design requirement. The cone
angles permitted are 60, 90 and 120 degrees. The tolerance on the cone angle shall be ±2 degrees.
For general quality of mark and stylus life, stylus cone angle of 120 degrees is preferred;
• Stylus point finish shall be polished. Surface texture shall not exceed 32 µin or 0.8 µm. Guidance
instructions for grinding are provided in Appendix B;
• Stylus point concentricity should be 0,04 mm (0.0016 inch) total indicator reading or 0,02 mm
(0.0008 inch) radial point displacement. Point concentricity is referenced to stylus centreline. Hand
held grinding of stylus points is not permitted;
• Dot size shall not exceed 105 % of the nominal module size and not be less than 60 % of the
nominal module size. The ovality (see Figure 5) of the dot shall not exceed 20 % of the module size.
10

---------------------- Page: 12 ----------------------

SIST EN 9132:2017
EN 9132:2017 (E)
No more than 2 % of the total number of modules may contain dots that are outside of these ranges.
The minimum dot size shall not be less than 0,132 mm (0.0054 inch), unless approved by
engineering design authority:

Key
1 Module
Figure 5 — Definition of ovality
(D-d ≤ 20 % of the module size)
• Table 2 gives limits for dot size and dot centre offset useable; whatever the nominal module size:
Table 2 — Limits for dot size and dot centre offset
Characteristic Requirement
Stylus Angle 120, 90 or 60 degrees
Stylus Point Radius Subject to Engineering Design Requirements
Dot Size
60 to 105 %
(% of the nominal module size)
Dot Centre Offset
0 to 20 %
(% of the nominal module size)
Angle of Distortion ±7 degrees
• Figure 6 and Figure 7 show definition of nominal module size, dot centre offset, and dot size;
• Appendix C contains examples of required tolerances in comparison to the nominal module sizes
(Table C.1 in inches and Table C.2 in millimetres).
d) Data matrix symbology marking on coloured or coated surfaces:
When marking is located on a coloured or coated surface, the marking parameters should be validated
in an actual production line environment on production or representative parts. The marking process
shall demonstrate all requirements contained herein, and be verified and validated as defined in
sections 4 and 5.

11

---------------------- Page: 13 ----------------------

SIST EN 9132:2017
EN 9132:2017 (E)

Key
1 Nominal module size
2 Dot centre offset
3 Dot size min.
4 Dot size max.
Figure 6 — Definition of nominal module size, dot size, and dot centre offset
12

---------------------- Page: 14 ----------------------

SIST EN 9132:2017
EN 9132:2017 (E)

Key
1 Dot size
Figure 7 — Detail definition of dot size
e) Data matrix symbology marking on surfaces which are subject to further surface treatments by abrasive
methods:
Surface treatments like shot peening and spindle deburr can affect the quality of a data matrix symbol.
Therefore, the marking parameters should be validated in an actual production line environment on
production parts post-surface treatment. The marking process shall demonstrate all requirements
contained herein, and be verified and validated as defined in sections 4 and 5.
3.3 Laser
3.3.1 Description of process
a) Laser marking:
Laser mar
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.