Sludge, treated biowaste and soil - Determination of elements using inductively coupled plasma mass spectrometry (ICP-MS)

This Technical Specification specifies a method for the determination of the following elements in aqua regia or nitric acid digests of sludge, treated biowaste and soil: Aluminium (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), bismuth (Bi), boron (B), cadmium (Cd), calcium (Ca), cerium (Ce), cesium (Cs), chromium (Cr), cobalt (Co), copper (Cu), dysprosium (Dy), erbium (Er), europium (Eu), gadolinium (Gd), gallium (Ga), germanium (Ge), gold (Au), hafnium (Hf), holmium (Ho), indium (In), iridium (Ir), iron (Fe), lanthanum (La), lead (Pb), lithium (Li), lutetium (Lu), magnesium (Mg), manganese (Mn), mercury (Hg), molybdenum (Mo), neodymium (Nd), nickel (Ni), palladium (Pd), phosphorus (P), platinum (Pt), potassium (K), praseodymium (Pr), rhenium (Re), rhodium (Rh), rubidium (Rb), ruthenium (Ru), samarium (Sm), scandium (Sc), selenium (Se), silicon (Si), silver (Ag), sodium (Na), strontium (Sr), sulfur (S), tellurium (Te), terbium (Tb), thallium (Tl), thorium (Th), thulium (Tm), tin (Sn), titanium (Ti), tungsten (W), uranium (U), vanadium (V), ytterbium(Yb), yttrium (Y), zinc (Zn), and zirconium (Zr). The working range depends on the matrix and the interferences encountered. The limit of detection of the method is between 0,1 mg/kg dry matter and 2,0 mg/kg dry matter for most elements. The limit of detection will be higher in cases where the determination is likely to be interfered (see Clause 4) or in case of memory effects (see e.g. 8.2 of EN ISO 17294-1:2006).

Schlamm, behandelter Bioabfall und Boden - Bestimmung von Elementen mittels Massenspektrometrie mit induktiv gekoppeltem Plasma (ICP-MS)

Diese Europäische Norm legt ein Verfahren fest, nach dem in Schlamm, behandeltem Bioabfall und Boden nach Königswasser  und Salpetersäureaufschluss die folgenden Elemente bestimmt werden:
Aluminium (Al), Antimon (Sb), Arsen (As), Barium (Ba), Beryllium (Be), Wismut (Bi), Bor (B), Cadmium (Cd), Caesium (Cs), Calcium (Ca), Cer (Ce), Chrom (Cr), Cobalt (Co), Kupfer (Cu), Dysprosium (Dy) Erbium (Er), Europium (Eu), Gadolinium (Gd), Gallium (Ga), Germanium (Ge), Gold (Au), Hafnium (Hf), Holmium (Ho), Indium (In), Iridium (Ir), Eisen (Fe), Lanthan (La), Blei (Pb), Lithium (Li), Lutetium (Lu), Magnesium (Mg), Mangan (Mn), Quecksilber (Hg), Molybdän (Mo), Neodym (Nd), Nickel (Ni), Palladium (Pd), Phosphor (P), Platin (Pt), Kalium (K), Praseodym (Pr), Rubidium (Rb), Rhenium (Re), Rhodium (Rh), Ruthenium (Ru), Samarium (Sm), Scandium (Sc), Selen (Se), Silicium (Si), Silber (Ag), Natrium (Na), Strontium (Sr), Schwefel (S), Terbium (Tb), Tellur (Te), Thallium (Tl), Thorium (Th), Thulium (Tm), Zinn (Sn), Titan (Ti), Wolfram (W), Uran (U), Vanadium (V), Yttrium (Y), Ytterbium (Yb), Zink (Zn) und Zirkonium (Zr).
Der Arbeitsbereich hängt von der Matrix und den zu erwartenden Störungen ab.
Die Nachweisgrenze für die meisten Elemente liegt zwischen 0,1 mg/kg Trockenmasse und 2,0 mg/kg Trockenmasse (siehe Anhang B).
Die Nachweisgrenze wird höher ausfallen, wenn bei der Bestimmung Störungen möglich sind (siehe Abschnitt 4), oder Memoryeffekte (Verschleppungseffekte) auftreten (siehe 8.2 in EN ISO 17294 1:2006).

Boues, bio-déchets traités et sols - Détermination des éléments en traces par spectrométrie de masse avec plasma induit par haute fréquence (ICP-MS)

La présente Norme européenne spécifie une méthode de détermination des éléments suivants dans des digestats d'eau régale et d'acide nitrique de boues, de bio-déchets traités et de sols :
Aluminium (Al), antimoine (Sb), arsenic (As), baryum (Ba), béryllium (Be), bismuth (Bi), bore (B), cadmium (Cd), césium (Cs), calcium (Ca), cérium (Ce), chrome (Cr), cobalt (Co), cuivre (Cu), dysprosium (Dy), erbium (Er), europium (Eu), gadolinium (Gd), gallium (Ga), germanium (Ge), or (Au), hafnium (Hf), holmium (Ho), indium (In), iridium (Ir), fer (Fe), lanthane (La), plomb (Pb), lithium (Li), lutécium (Lu), magnésium (Mg), manganèse (Mn), mercure (Hg), molybdène (Mo), néodyme (Nd), nickel (Ni), palladium (Pd), phosphore (P), platine (Pt), potassium (K), praseodyme (Pr), rubidium (Rb), rhenium (Re), rhodium (Rh), ruthénium (Ru), samarium (Sm), scandium (Sc), sélénium (Se), silicium (Si), argent (Ag), sodium (Na), strontium (Sr), soufre (S), terbium (Tb), tellure (Te), thorium (Th), thallium (Tl), thulium (Tm), étain (Sn), titane (Ti), tungstène (W), uranium (U), vanadium (V), yttrium (Y), ytterbium(Yb), zinc (Zn) et zirconium (Zr).
L'étendue de mesure dépend de la matrice et des interférences rencontrées.
La limite de détection est comprise entre 0,1 mg/kg de matière sèche et 2,0 mg/kg de matière sèche pour la plupart des éléments (voir l'Annexe B).
La limite de détection est plus élevée lorsque la détermination est sujette à des interférences (voir l'Article 4) ou en cas d'effets mémoire (voir 8.2 de l'EN ISO 17294-1:2006).

Blato, obdelani biološki odpadki in tla - Določevanje elementov z masno spektrometrijo z induktivno sklopljeno plazmo (ICP/MS)

Ta tehnična specifikacija opredeljuje metodo za določevanje naslednjih elementov v zlatotopki ali izvlečku dušikove kisline blata, obdelanih bioloških odpadkov in tal: aluminij (Al), antimon (Sb), arzen (As), barij (Ba), berilij (Be), bizmut (Bi), bor (B), kadmij (Cd), kalcij (Ca), cerij (Ce), cezij (Cs), krom (Cr), kobalt (Co), baker (Cu), disprozij (Dy), erbij (Er), evropij (Eu), gadolinij (Gd), galij (Ga), germanij (Ge), zlato (Au), hafnij (Hf), holmij (Ho), indij (In), iridij (Ir), železo (Fe), lantan (La), svinec (Pb), litij (Li), lutecij (Lu), magnezij (Mg), mangan (Mn), živo srebro (Hg), molibden (Mo), neodim (Nd), nikelj (Ni), paladij (Pd), fosfor (P), platina (Pt), kalij (K), prazeodim (Pr), renij (Re), rodij (Rh), rutenij (Ru), samarij (Sm), skandij (Sc), selen (Se), silicij (Si), srebro (Ag), natrij (Na), stroncij (Sr), žveplo (S), telurij (Te), terbij (Tb), talij (Tl), torij (Th), tulij (Tm), kositer (Sn), titan (Ti), volfram (W), uran (U), vanadij (V), iterbij (Yb), itrij (Y), cink (Zn) in cirkonij (Zr). Delovni razpon je odvisen od matrice in motenj, ki se pojavijo. Meja detekcije te metode za večino elementov je med 0,1 in 2,0 mg/kg suhe snovi. Meja detekcije bo višja v primerih, ko obstaja možnost motnje določevanja (glej točko 4), ali v primeru spominskih učinkov (glej npr. točko 8.2 standarda EN ISO 17294-1:2006).

General Information

Status
Withdrawn
Public Enquiry End Date
19-Feb-2011
Publication Date
20-Jan-2013
Withdrawal Date
06-Feb-2017
Technical Committee
Current Stage
9900 - Withdrawal (Adopted Project)
Start Date
07-Feb-2017
Due Date
02-Mar-2017
Completion Date
07-Feb-2017

Relations

Buy Standard

Technical specification
TS CEN/TS 16171:2013
English language
16 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)

SLOVENSKI STANDARD
SIST-TS CEN/TS 16171:2013
01-februar-2013
%ODWRREGHODQLELRORãNLRGSDGNLLQWOD'RORþHYDQMHHOHPHQWRY]PDVQR
VSHNWURPHWULMR]LQGXNWLYQRVNORSOMHQRSOD]PR ,&306
Sludge, treated biowaste and soil - Determination of elements using inductively coupled
plasma mass spectrometry (ICP-MS)
Schlamm, behandelter Bioabfall und Boden - Bestimmung von Elementen mittels
Massenspektrometrie mit induktiv gekoppeltem Plasma (ICP-MS)
Boues, bio-déchets traités et sols - Détermination des éléments en traces par
spectrométrie de masse avec plasma induit par haute fréquence (ICP-MS)
Ta slovenski standard je istoveten z: CEN/TS 16171:2012
ICS:
13.030.20 7HNRþLRGSDGNL%ODWR Liquid wastes. Sludge
13.080.10 .HPLMVNH]QDþLOQRVWLWDO Chemical characteristics of
soils
SIST-TS CEN/TS 16171:2013 en,fr,de
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

---------------------- Page: 1 ----------------------

SIST-TS CEN/TS 16171:2013

---------------------- Page: 2 ----------------------

SIST-TS CEN/TS 16171:2013


TECHNICAL SPECIFICATION
CEN/TS 16171

SPÉCIFICATION TECHNIQUE

TECHNISCHE SPEZIFIKATION
November 2012
ICS 13.030.01; 13.080.10
English Version
Sludge, treated biowaste and soil - Determination of elements
using inductively coupled plasma mass spectrometry (ICP-MS)
Boues, bio-déchets traités et sols - Détermination des Schlamm, behandelter Bioabfall und Boden - Bestimmung
éléments en traces par spectrométrie de masse avec von Elementen mittels Massenspektrometrie mit induktiv
plasma induit par haute fréquence (ICP-MS) gekoppeltem Plasma (ICP-MS)
This Technical Specification (CEN/TS) was approved by CEN on 16 July 2012 for provisional application.

The period of validity of this CEN/TS is limited initially to three years. After two years the members of CEN will be requested to submit their
comments, particularly on the question whether the CEN/TS can be converted into a European Standard.

CEN members are required to announce the existence of this CEN/TS in the same way as for an EN and to make the CEN/TS available
promptly at national level in an appropriate form. It is permissible to keep conflicting national standards in force (in parallel to the CEN/TS)
until the final decision about the possible conversion of the CEN/TS into an EN is reached.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania,
Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United
Kingdom.





EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION

EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: Avenue Marnix 17, B-1000 Brussels
© 2012 CEN All rights of exploitation in any form and by any means reserved Ref. No. CEN/TS 16171:2012: E
worldwide for CEN national Members.

---------------------- Page: 3 ----------------------

SIST-TS CEN/TS 16171:2013
CEN/TS 16171:2012 (E)
Contents Page
Foreword .3
Introduction .4
1 Scope .5
2 Normative references .5
3 Principle .5
4 Interferences .6
4.1 General .6
4.2 Spectral interferences .6
4.2.1 Isobaric elemental interferences .6
4.2.2 Isobaric molecular and doubly-charged ion interferences .6
4.2.3 Non-spectral interferences .6
5 Reagents .7
6 Apparatus .9
7 Procedure . 10
7.1 Test sample solution . 10
7.2 Test solution . 11
7.3 Instrument set-up. 11
7.4 Calibration . 11
7.4.1 Linear calibration function . 11
7.4.2 Standard addition calibration . 12
7.4.3 Determination of correction factors. 12
7.4.4 Variable isotope ratio . 12
7.5 Sample measurement . 12
8 Calculation . 13
9 Expression of results . 13
10 Performance characteristics . 13
10.1 Blank . 13
10.2 Calibration check . 14
10.3 Internal standard response . 14
10.4 Interference . 14
10.5 Recovery . 14
10.6 Precision . 14
11 Test report . 14
Annex A (informative) Selected isotopes and spectral interferences for quadrupole ICP-MS
instruments . 15
Bibliography . 16

2

---------------------- Page: 4 ----------------------

SIST-TS CEN/TS 16171:2013
CEN/TS 16171:2012 (E)
Foreword
This document (CEN/TS 16171:2012) has been prepared by Technical Committee CEN/TC 400 “Project
Committee - Horizontal standards in the fields of sludge, biowaste and soil”, the secretariat of which is held by
DIN.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.
This document has been prepared under a mandate given to CEN by the European Commission and the
European Free Trade Association.
The preparation of this document by CEN is based on a mandate by the European Commission (Mandate
M/330), which assigned the development of standards on sampling and analytical methods for hygienic and
biological parameters as well as inorganic and organic determinants, aiming to make these standards
applicable to sludge, treated biowaste and soil as far as this is technically feasible.
According to the CEN/CENELEC Internal Regulations, the national standards organisations of the following
countries are bound to announce this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech
Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece,
Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal,
Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.
3

---------------------- Page: 5 ----------------------

SIST-TS CEN/TS 16171:2013
CEN/TS 16171:2012 (E)
Introduction
This Technical Specification is applicable for several types of matrices as indicated in Table 1.
Table 1 — Matrices for which this Technical Specification is applicable
Matrix Materials tested
Sludge Municipal sludge
Biowaste Compost
Soil Sludge amended soils

WARNING — Persons using this Technical Specification should be familiar with usual laboratory
practice. This Technical Specification does not purport to address all of the safety problems, if any,
associated with its use. It is the responsibility of the user to establish appropriate safety and health
practices and to ensure compliance with any national regulatory conditions.
IMPORTANT — It is absolutely essential that tests conducted according to this Technical
Specification be carried out by suitably trained staff.
4

---------------------- Page: 6 ----------------------

SIST-TS CEN/TS 16171:2013
CEN/TS 16171:2012 (E)
1 Scope
This Technical Specification specifies a method for the determination of the following elements in aqua regia
or nitric acid digests of sludge, treated biowaste and soil:
Aluminium (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), bismuth (Bi), boron (B),
cadmium (Cd), calcium (Ca), cerium (Ce), cesium (Cs), chromium (Cr), cobalt (Co), copper (Cu),
dysprosium (Dy), erbium (Er), europium (Eu), gadolinium (Gd), gallium (Ga), germanium (Ge), gold (Au),
hafnium (Hf), holmium (Ho), indium (In), iridium (Ir), iron (Fe), lanthanum (La), lead (Pb), lithium (Li),
lutetium (Lu), magnesium (Mg), manganese (Mn), mercury (Hg), molybdenum (Mo), neodymium (Nd),
nickel (Ni), palladium (Pd), phosphorus (P), platinum (Pt), potassium (K), praseodymium (Pr), rhenium (Re),
rhodium (Rh), rubidium (Rb), ruthenium (Ru), samarium (Sm), scandium (Sc), selenium (Se), silicon (Si),
silver (Ag), sodium (Na), strontium (Sr), sulfur (S), tellurium (Te), terbium (Tb), thallium (Tl), thorium (Th),
thulium (Tm), tin (Sn), titanium (Ti), tungsten (W), uranium (U), vanadium (V), ytterbium(Yb), yttrium (Y),
zinc (Zn), and zirconium (Zr).
The working range depends on the matrix and the interferences encountered.
The limit of detection of the method is between 0,1 mg/kg dry matter and 2,0 mg/kg dry matter for most
elements.
The limit of detection will be higher in cases where the determination is likely to be interfered (see Clause 4) or
in case of memory effects (see e.g. 8.2 of EN ISO 17294-1:2006).
2 Normative references
The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.
EN 15934, Sludge, treated biowaste, soil and waste — Calculation of dry matter fraction after determination of
dry residue or water content
EN 16173, Sludge, treated biowaste and soil — Digestion of nitric acid soluble fractions of elements
EN 16174, Sludge, treated biowaste and soil — Digestion of aqua regia soluble fractions of elements
EN ISO 3696, Water for analytical laboratory use — Specification and test methods (ISO 3696)
EN ISO 17294-1:2006, Water quality — Application of inductively coupled plasma mass spectrometry
(ICP-MS) — Part 1: General guidelines (ISO 17294-1:2004)
3 Principle
Digests of sludge, treated biowaste or soil with nitric acid or aqua regia (see EN 16173 and EN 16174) are
analysed by ICP-MS to get a multi-elemental determination of analytes.
The method measures ions produced by a radio-frequency inductively coupled plasma. Analyte species
originating in the digest solution are nebulised and the resulting aerosol is transported by argon gas into the
plasma. The ions produced by the high temperatures of the plasma are entrained in the plasma gas and
introduced, by means of an interface, into a mass spectrometer, sorted according to their mass-to-charge
ratios and quantified with a detector (e.g. channel electron multiplier).
5

---------------------- Page: 7 ----------------------

SIST-TS CEN/TS 16171:2013
CEN/TS 16171:2012 (E)
4 Interferences
4.1 General
Interferences shall be assessed and valid corrections applied. Interference correction shall include
compensation for background ions contributed by the plasma gas, reagents, and constituents of the sample
matrix.
Detailed information on spectral and non-spectral interferences is given in EN ISO 17294-1:2006, Clause 6.
4.2 Spectral interferences
4.2.1 Isobaric elemental interferences
Isobaric elemental interferences are caused by isotopes of different elements of closely matched nominal
mass-to-charge ratio and which cannot be separated due to an insufficient resolution of the mass
114 114
spectrometer in use (e.g. Cd and Sn).
Element interferences from isobars may be corrected by taking into account the influence from the interfering
element (see EN ISO 17294-1:2006). The isotopes used for correction shall be free of interference if possible.
Correction options are often included in the software supplied with the instrument. Common isobaric
interferences are given in Table A.1.
4.2.2 Isobaric molecular and doubly-charged ion interferences
Isobaric molecular and doubly-charged ion interferences in ICP-MS are caused by ions consisting of more
40 35 + 40 35 + 75
than one atom or charge, respectively. Examples include Ar Cl and Ca Cl ion on the As signal or
98 16 + 114 +
Mo O ions on the Cd signal. Natural isotope abundances are available from the literature.
The accuracy of correction equations is based upon the constancy of the observed isotopic ratios for the
interfering species. Corrections that presume a constant fraction of a molecular ion relative to the "parent" ion
have not been found to be reliable, e.g. oxide levels can vary with operating conditions. If a correction for an
oxide ion is based upon the ratio of parent-to-oxide ion intensities, this shall be determined by measuring the
interference solution just before the sequence is started. The validity of the correction coefficient should be
checked at regular intervals within a sequence.
Another possibility to remove isobaric molecular interferences is the use of an instrument with
collision/reaction cell technology. The use of high resolution ICP-MS avoids these interferences and
additionally double-charged ion interferences.
The response of the analyte of interest shall be corrected for the contribution of isobaric molecular and doubly
charged interferences if their impact can be higher than three times the detection limit or higher than half the
lowest concentration to be reported.
More information about the use of correction factors is given in EN ISO 17294-1.
4.2.3 Non-spectral interferences
Physical interferences are associated with sample nebulisation and transport processes as well as with ion-
transmission efficiencies. Nebulisation and transport processes can be affected if a matrix component causes
a change in surface tension or viscosity. Changes in matrix composition can cause significant signal
suppression or enhancement. Solids can be deposited on the nebuliser tip of a pneumatic nebuliser and on
the cones.
It is recommended to keep the level of total dissolved solids below 0,2 % (2 000 mg/l) to minimise deposition
of solids in the sample introduction system of the plasma torch. An internal standard can be used to correct for
physical interferences if it is carefully matched to the analyte, so that the two elements are similarly affected
6

---------------------- Page: 8 ----------------------

SIST-TS CEN/TS 16171:2013
CEN/TS 16171:2012 (E)
by matrix changes. Other possibilities to minimise non-spectral interferences are matrix matching, particularly
matching of the acid concentration, and standard addition.
When intolerable physical interferences are present in a sample, a significant suppression of the internal
standard signals (to less than 30 % of the signals in the calibration solution) will be observed. Dilution of the
sample (e.g. fivefold) usually eliminates the problem.
5 Reagents
For the determination of elements at trace and ultra-trace level, the reagents shall be of adequate purity. The
concentration of the analyte or interfering substances in the reagents and the water should be negligible
compared to the lowest concentration to be determined.
5.1 Water, grade 1 as specified in EN ISO 3696 for all sample preparations and dilutions.
5.2 Nitric acid, HNO , ρ(HNO ) = 1,4g/ml, c(HNO ) = 15 mol/l, w(HNO ) = 650 g/kg.
3 3 3 3
5.3 Hydrochloric acid, HCl, ρ(HCl) = 1,18 g/ml, c(HCl) = 12 mol/l, w(HCl) = 370 g/kg.
5.4 Single-element standard stock solutions
Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, In, Ir, K, La,
Li, Lu, Mg, Mn, Mo, Na, Nd, Ni, P, Pb, Pd, Pr, Pt, Rb, Re, Rh, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Tb, Te, Th,
Ti, Tl, Tm, U, V, W, Y, Yb, Zn, Zr, ρ(element) = 1 000 mg/l each.
Preferably, nitric acid preservation should be applied in order to minimise interferences by chloropolyatom
molecules. Bi, Hf, Hg, Mo, Sn, Sb, Te, W and Zr may need hydrochloric acid for preservation.
Both single-element standard stock solutions and multi-element standard stock solutions with adequate
specification stating the acid used and the preparation technique are commercially available.
These solutions are considered to be stable for more than one year, but in reference to guaranteed stability,
the recommendations of the manufacturer should be considered.
5.5 Anion standard stock solutions
− 3− 2−
Cl ,PO , SO , ρ(anion) = 1 000 mg/l each.
4 4
Prepare these solutions from the respective acids. The solutions are commercially available.
These solutions are considered to be stable for more than one year, but in reference to guaranteed stability,
the recommendations of the manufacturer should be considered.
5.6 Multi-element standard stock solutions
Depending on the scope, different multi-element standard stock solutions may be necessary. In general, when
combining multi-element standard stock solutions, their chemical compatibility and the possible hydrolysis of
the components shall be regarded. Care shall be taken to prevent chemical reactions (e.g. precipitation).
The multi-element standard stock solutions are considered to be stable for several months if stored in the
dark. This does not apply to multi-element standard stock solutions that are prone to hydrolysis, in particular
solutions of Bi, Mo, Sn, Sb, Te, W, Hf and Zr.
Mercury standard stock solutions can be stabilised by adding 1 mg/l Au in nitric acid (5.2) or by adding
hydrochloric acid (5.3) up to 0,6 %.
7

---------------------- Page: 9 ----------------------

SIST-TS CEN/TS 16171:2013
CEN/TS 16171:2012 (E)
NOTE When Au is to be used as a modifier, the instrument is not suitable for accurate Au determination.
Multi-element standard stock solutions with more elem
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.