Paper, board, pulps and cellulose nanomaterials -- Determination of acid-soluble magnesium, calcium, manganese, iron, copper, sodium and potassium

This document specifies the procedure for the determination of acid-soluble magnesium, calcium, manganese, iron, copper, sodium and potassium by atomic absorption spectrometry (AAS) or by inductively coupled plasma emission spectrometry (ICP/ES). The acid-soluble element comprises the acid-soluble part of the incineration residue, i.e. that part of the ignition residue obtained after incineration which is soluble in hydrochloric acid or nitric acid. In cases where the residue is completely soluble, the result obtained by the procedure specified in this document is a measure of the total amount of each element in the sample.
This document is applicable to all types of paper, board, pulps and cellulose nanomaterials.
The limit of determination depends on the element and on the instrument used.

Papiers, cartons, pâtes et nanomatériaux à base de cellulose -- Détermination de la teneur en magnésium, calcium, manganèse, fer, cuivre, sodium et potassium soluble dans l'acide

Le présent document spécifie le mode opératoire pour la détermination de la teneur en magnésium, calcium, mangančse, fer, cuivre, sodium et potassium soluble dans l'acide, par spectrométrie d'absorption atomique (AAS) ou par spectrométrie d'émission plasma ŕ couplage inductif (ICP/ES). L'élément soluble dans l'acide comprend la partie du résidu de calcination soluble dans l'acide, c'est-ŕ-dire la partie du résidu de calcination obtenu aprčs incinération qui est soluble dans l'acide chlorhydrique ou l'acide nitrique. Au cas oů le résidu est totalement soluble, le résultat obtenu par le mode opératoire spécifié dans le présent document est une mesure de la quantité totale de chaque élément présent dans l'échantillon.
Le présent document s'applique ŕ tous les types de papiers, cartons, pâtes et nanomatériaux ŕ base de cellulose.
La limite de détermination dépend de l'élément et de l'instrument utilisé.

Papir, karton, lepenka in vlaknine ter celulozni nanomateriali - Določevanje v kislini topnega magnezija, kalcija, mangana, železa, bakra, natrija in kalija

General Information

Status
Published
Public Enquiry End Date
14-Oct-2020
Publication Date
19-Oct-2020
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
20-Oct-2020
Due Date
25-Dec-2020
Completion Date
20-Oct-2020

Relations

Buy Standard

Standard
ISO 12830:2020
English language
24 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day
Standard
ISO 12830:2019 - Paper, board, pulps and cellulose nanomaterials -- Determination of acid-soluble magnesium, calcium, manganese, iron, copper, sodium and potassium
English language
19 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 12830:2019 - Papiers, cartons, pâtes et nanomatériaux a base de cellulose -- Détermination de la teneur en magnésium, calcium, manganese, fer, cuivre, sodium et potassium soluble dans l'acide
French language
20 pages
sale 15% off
Preview
sale 15% off
Preview
Draft
ISO 12830:2020
English language
24 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)

SLOVENSKI STANDARD
SIST ISO 12830:2020
01-november-2020
Papir, karton, lepenka in vlaknine ter celulozni nanomateriali - Določevanje v
kislini topnega magnezija, kalcija, mangana, železa, bakra, natrija in kalija
Paper, board, pulps and cellulose nanomaterials -- Determination of acid-soluble
magnesium, calcium, manganese, iron, copper, sodium and potassium
Papiers, cartons, pâtes et nanomatériaux à base de cellulose -- Détermination de la
teneur en magnésium, calcium, manganèse, fer, cuivre, sodium et potassium soluble
dans l'acide
Ta slovenski standard je istoveten z: ISO 12830:2019
ICS:
85.040 Vlaknine Pulps
85.060 Papir, karton in lepenka Paper and board
SIST ISO 12830:2020 en,fr,de
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

---------------------- Page: 1 ----------------------
SIST ISO 12830:2020

---------------------- Page: 2 ----------------------
SIST ISO 12830:2020
INTERNATIONAL ISO
STANDARD 12830
Second edition
2019-07
Paper, board, pulps and cellulose
nanomaterials — Determination of
acid-soluble magnesium, calcium,
manganese, iron, copper, sodium and
potassium
Papiers, cartons, pâtes et nanomatériaux à base de cellulose —
Détermination de la teneur en magnésium, calcium, manganèse, fer,
cuivre, sodium et potassium soluble dans l'acide
Reference number
ISO 12830:2019(E)
©
ISO 2019

---------------------- Page: 3 ----------------------
SIST ISO 12830:2020
ISO 12830:2019(E)

COPYRIGHT PROTECTED DOCUMENT
© ISO 2019
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2019 – All rights reserved

---------------------- Page: 4 ----------------------
SIST ISO 12830:2020
ISO 12830:2019(E)

Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Principle . 2
5 Reagents and materials . 2
6 Apparatus and equipment . 4
7 Sampling . 4
7.1 General considerations . 4
7.2 Paper, board and pulp sampling. 4
7.3 Cellulose nanomaterial sampling . 4
8 Procedure. 5
8.1 General . 5
8.2 Incineration of the test specimen — Paper, board and pulp . 5
8.3 Incineration of the test specimen — Cellulose nanomaterials . 5
8.4 Dissolution of the residue — Paper, board and pulp . 6
8.5 Dissolution of the residue — Cellulose nanomaterials . 6
9 Calibration solutions — Measurement considerations . 7
9.1 General . 7
9.2 Calibration solutions for AAS. 7
9.3 Calibration solutions for ICP/ES . 7
10 Blank solution . 7
10.1 Blank solution for AAS . 7
10.2 Blank solution for ICP/ES . 7
11 Determination . 7
12 Expression of results . 8
13 Test report . 9
Annex A (informative) Precision .10
Bibliography .19
© ISO 2019 – All rights reserved iii

---------------------- Page: 5 ----------------------
SIST ISO 12830:2020
ISO 12830:2019(E)

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www .iso
.org/iso/foreword .html.
This document was prepared by Technical Committee ISO/TC 6, Paper, board and pulps.
This second edition cancels and replaces the first edition (ISO 12830:2011), which has been technically
revised. The main changes to the previous edition are as follows:
— the scope has been changed to include cellulose nanomaterials in addition to paper, board and pulps;
— a definition of cellulose nanomaterial has been incorporated, along with additional instructions for
sampling, sample preparation, incineration and dissolution of the residue for cellulose nanomaterials;
— additional instructions are given on how to express results when an element is not detected.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www .iso .org/members .html.
iv © ISO 2019 – All rights reserved

---------------------- Page: 6 ----------------------
SIST ISO 12830:2020
ISO 12830:2019(E)

Introduction
This document combines the determination of the acid-soluble part of magnesium (Mg), calcium (Ca),
manganese (Mn), iron (Fe), copper (Cu), sodium (Na) and potassium (K) into a single document. The
scope of this document covers only the acid-soluble part of the elements.
[1]
ISO 17812 specifies the procedure for the determination of total magnesium, total calcium, total
manganese, total iron and total copper by atomic absorption spectrometry (AAS) or by inductively
coupled plasma emission spectrometry (ICP/ES).
In the context of this document, “cellulose nanomaterial” refers specifically to cellulose nano-objects
(see 3.1 to 3.3). Owing to their nanoscale dimensions, these cellulose nano-objects can have intrinsic
properties, behaviours or functionalities that are distinct from those associated with paper, board
and pulps.
© ISO 2019 – All rights reserved v

---------------------- Page: 7 ----------------------
SIST ISO 12830:2020

---------------------- Page: 8 ----------------------
SIST ISO 12830:2020
INTERNATIONAL STANDARD ISO 12830:2019(E)
Paper, board, pulps and cellulose nanomaterials —
Determination of acid-soluble magnesium, calcium,
manganese, iron, copper, sodium and potassium
WARNING — The method specified in this document involves the use of some hazardous
chemicals and of gases that may form explosive mixtures with air. Care should be taken to
ensure that the relevant precautions are observed.
WARNING — The method specified in this document involves the use of nanomaterials.
Care should be taken to ensure observation of the relevant precautions and guidelines for
nanotechnology laboratory safety and best practices.
1 Scope
This document specifies the procedure for the determination of acid-soluble magnesium, calcium,
manganese, iron, copper, sodium and potassium by atomic absorption spectrometry (AAS) or by
inductively coupled plasma emission spectrometry (ICP/ES). The acid-soluble element comprises
the acid-soluble part of the incineration residue, i.e. that part of the ignition residue obtained after
incineration which is soluble in hydrochloric acid or nitric acid. In cases where the residue is completely
soluble, the result obtained by the procedure specified in this document is a measure of the total
amount of each element in the sample.
This document is applicable to all types of paper, board, pulps and cellulose nanomaterials.
The limit of determination depends on the element and on the instrument used.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 186, Paper and board — Sampling to determine average quality
ISO 638, Paper, board and pulps — Determination of dry matter content — Oven-drying method
ISO 1762, Paper, board and pulps — Determination of residue (ash) on ignition at 525 °C
ISO 3696, Water for analytical laboratory use — Specification and test methods
ISO 7213, Pulps — Sampling for testing
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https: //www .iso .org/obp/
— IEC Electropedia: available at http: //www .electropedia .org/
© ISO 2019 – All rights reserved 1

---------------------- Page: 9 ----------------------
SIST ISO 12830:2020
ISO 12830:2019(E)

3.1
cellulose nanomaterial
material composed predominantly of cellulose, with any external dimension between approximately
1 nm and 100 nm, or a material having internal structure or surface structure in the nanoscale (3.4),
with the internal structure or surface structure composed predominantly of cellulose
Note 1 to entry: The terms nanocellulose and cellulosic nanomaterial are synonymous with cellulose
nanomaterial.
Note 2 to entry: Some cellulose nanomaterials can be composed of chemically modified cellulose.
Note 3 to entry: This generic term is inclusive of cellulose nano-object and cellulose nanostructured material.
Note 4 to entry: See also definitions of cellulose, nanoscale, cellulose nano-object and cellulose nanostructured
material in ISO/TS 20477:2017.
[SOURCE: ISO/TS 20477:2017, 3.3.1, modified — “1 nm to 100 nm” changed to “1 nm and 100 nm”;
abbreviations deleted from Note 1 to entry; Note 4 to entry added.]
3.2
nano-object
discrete piece of material with one, two or three external dimensions in the nanoscale (3.4)
Note 1 to entry: The second and third external dimensions are orthogonal to the first dimension and to each other.
[SOURCE: ISO/TS 80004-1:2015, 2.5]
3.3
cellulose nano-object
nano-object (3.2) composed predominantly of cellulose
[SOURCE: ISO/TS 20477:2017, 3.3.2]
3.4
nanoscale
length range approximately from 1 nm to 100 nm
Note 1 to entry: Properties that are not extrapolations from larger sizes are predominantly exhibited in this
length range.
[SOURCE: ISO/TS 80004-1:2015, 2.1]
4 Principle
A test specimen is incinerated at 525 °C and the residue is dissolved in hydrochloric acid or nitric acid.
The concentration of each element in the test solution is then determined by AAS or ICP/ES. Techniques
using other types of instrumentation, such as ICP-mass spectrometry (ICP/MS), may also be used
provided that they give at least the same level of precision as AAS or ICP/ES, and that they have been
properly validated. The use of any such instrumentation shall also be reported.
5 Reagents and materials
5.1 General
All chemicals shall be of reagent grade or better unless otherwise indicated. Water shall be distilled or
deionized, of grade 2 or better in accordance with ISO 3696.
5.2 Hydrochloric acid (HCl), 6 mol/l, trace metal grade. Dilute 500 ml of concentrated hydrochloric
acid (specific gravity 1,19 g/ml) to 1 000 ml with water.
2 © ISO 2019 – All rights reserved

---------------------- Page: 10 ----------------------
SIST ISO 12830:2020
ISO 12830:2019(E)

5.3 Nitric acid (HNO ), concentrated (specific gravity 1,4 g/ml), trace metal grade.
3
5.4 Lanthanum chloride (LaCl ), solution, ρ(La) = 50 g/l. In a 1 000 ml volumetric flask, dissolve 59 g
3
of lanthanum oxide (La O ), in small portions, in 200 ml of hydrochloric acid (5.2) and dilute to 1 000 ml
2 3
with water.
This lanthanum chloride solution is used to eliminate chemical interference when determining calcium
and magnesium in an air/acetylene flame. The solution is not required for use with the nitrous oxide/
acetylene flame or when the ICP/ES technique is used.
5.5 Cesium chloride (CsCl), solution, ρ(Cs) = 50 g/l. In a 1 000 ml volumetric flask, dissolve 63,5 g of
ultrapure cesium chloride (CsCl) in water and dilute to 1 000 ml with water.
This cesium chloride solution is used to suppress ionization of sodium and potassium in an air/acetylene
flame. It is also used to suppress ionization of calcium in a nitrous oxide/acetylene flame. The solution
is not required when the ICP/ES technique is used.
5.6 Standard stock solutions of each element, commercially available certified atomic absorption
or atomic emission standard solutions can be used. Standard stock solutions can also be prepared as
follows:
5.6.1 Magnesium, 1 000 mg/l standard solution. Dissolve 1,000 g of magnesium metal ribbon in
100 ml of 1:4 nitric acid (5.3) and dilute to 1 000 ml with water.
5.6.2 Calcium, 1 000 mg/l standard solution. Dissolve 2,497 g of primary standard calcium carbonate
(CaCO ) in a minimum volume of 1:4 nitric acid (5.3) and dilute to 1 000 ml with water.
3
5.6.3 Manganese, 1 000 mg/l standard solution. Dissolve 1,000 g of manganese metal strip or wire in
a minimum volume of 1:1 nitric acid (5.3) and dilute to 1 000 ml with water.
5.6.4 Iron, 1 000 mg/l standard solution. Dissolve 1,000 g of iron metal strip or wire in 20 ml of
hydrochloric acid (5.2) and dilute to 1 000 ml with water.
5.6.5 Copper, 1 000 mg/l standard solution. Dissolve 1,000 g of copper metal strip or wire in a
minimum volume of 1:1 nitric acid (5.3) and dilute to 1 000 ml with water.
5.6.6 Sodium, 1 000 mg/l standard solution. Ignite a portion of anhydrous sodium sulfate (Na SO ) at
2 4
550 °C in a crucible of platinum or porcelain. Allow to cool to room temperature in a desiccator. Dissolve
3,089 g of dried sodium sulfate in water and dilute to 1 000 ml with water. Store in a polyethylene bottle.
5.6.7 Potassium, 1 000 mg/l standard solution. Ignite a portion of anhydrous potassium sulfate
(K SO ) at 550 °C in a crucible of platinum or porcelain. Allow to cool to room temperature in a
2 4
desiccator. Dissolve 2,228 g of dried potassium sulfate in water and dilute to 1 000 ml with water. Store in
a polyethylene bottle.
5.7 Acetylene gas and/or nitrogen oxide gas, of a grade suitable for AAS. Nitrous oxide is used only
when measuring calcium.
WARNING — Acetylene gas forms explosive mixtures with air.
5.8 Carrier gas, appropriate gas for the inductively coupled plasma emission spectrometer. Argon is
usually recommended as a carrier gas.
© ISO 2019 – All rights reserved 3

---------------------- Page: 11 ----------------------
SIST ISO 12830:2020
ISO 12830:2019(E)

6 Apparatus and equipment
6.1 General
Ordinary laboratory equipment is used. All glassware and plastic ware shall be cleaned thoroughly and
rinsed with 0,1 mol/l hydrochloric acid or 10 % nitric acid, followed by reagent grade water, prior to use.
6.2 Filter paper, ash free, particle retention 20 μm to 25 μm.
6.3 Crucibles, platinum or fused silica, of minimum capacity 50 ml.
6.4 Muffle furnace, capable of maintaining a temperature of 525 °C ± 25 °C.
6.5 Balance, of capacity 100 g, with a scale division (readability) of 0,1 mg or better.
6.6 Atomic absorption spectrometer, equipped with air/acetylene and nitrous oxide/acetylene
burners and with hollow cathode lamps for Mg, Ca, Mn, Fe, Cu, Na and K. Multi-element lamps can also
be used.
6.7 Inductively coupled plasma/emission spectrometer.
6.8 Disposable protective gloves.
7 Sampling
7.1 General considerations
If the analysis is being made to evaluate a lot of paper, board, pulp or cellulose nanomaterial, the
sample shall be selected in accordance with ISO 186 or ISO 7213, as relevant. If the analysis is made
on another type of sample, report the source of the sample and, if possible, the sampling procedure.
Select the material to be tested so that it is representative of the sample received. A sufficient amount
of material shall be collected from the sample to allow for at least duplicate determinations. Avoid cut
edges, punched holes and other parts where metallic contamination may have occurred.
Disposable protective gloves (6.8) shall be worn when handling samples to avoid contamination.
Since iron tends to have a non-homogeneous distribution, it is recommended that a composite sample
be used.
7.2 Paper, board and pulp sampling
In the case of paper, board and pulp, tear or remove at least 30 g of small pieces from various parts of
the sample. This amount is sufficient for the duplicate determinations described in Clause 8.
7.3 Cellulose nanomaterial sampling
In some cases, it may not be practical or possible to obtain large quantities of solid material from a
cellulose nanomaterial sample. In the case of solid cellulose nanomaterials, tear or remove sufficient
material for duplicate determinations as described in Clause 8, in the form of small pieces, dry powder
or flakes from various parts of the sample. If the sample is in aqueous suspension form, remove
sufficient material for duplicate determinations as described in Clause 8 (calculated as oven-dry, i.e.
water- and moisture-free) from various portions of the aqueous suspension, and dry to give a pre-dried
sample in the form of flakes, powder or other solid, which shall be mixed to homogeneity, after which
the test specimen shall be obtained from the pre-dried sample. Filtration to concentrate dilute samples
prior to drying is not recommended as it may result in loss of dissolved material.
4 © ISO 2019 – All rights reserved

---------------------- Page: 12 ----------------------
SIST ISO 12830:2020
ISO 12830:2019(E)

8 Procedure
8.1 General
Although dry ignition followed by acid treatment is described in this document, other dissolution
methods such as wet ignition or microwave digestion using various acid combinations can also be used,
provided that the results have been validated.
WARNING — For samples with high silicon content, microwave digestion with nitric acid will
give lower results for magnesium and for some other elements.
8.2 Incineration of the test specimen — Paper, board and pulp
Carry out the procedure in duplicate.
Air-dry the test and dry matter specimens in the laboratory atmosphere until they reach moisture
equilibrium.
Determine the dry matter content on the dry matter specimen, as specified in ISO 638. Weigh this
specimen at the same time as the test specimen used for incineration.
For the determination of major elements, including magnesium, calcium, sodium and potassium, a 1 g to
2 g test specimen (calculated as oven-dry) is recommended. For minor elements, including manganese,
iron and copper, test specimens of 5 g to 10 g are recommended. If trace levels of elements are needed,
then it is recommended that test specimen masses larger than 10 g be used.
Carry out ashing of the test specimen as described in ISO 1762.
In order to avoid flames, cover the crucible with a lid. The lid should only cover the crucible partially
to avoid the occurrence of reducing conditions in the crucible, in which case acid-insoluble compounds
might be formed. Under reducing conditions, for example, copper might be lost due to the formation of
a platinum alloy.
If the minimum test specimen mass cannot fit into the crucible for any reason, the digested sample may
be reconstituted to a smaller final volume (see 8.4).
8.3 Incineration of the test specimen — Cellulose nanomaterials
Carry out the procedure in duplicate.
Air-dry the test and dry matter specimens in the laboratory atmosphere until they reach moisture
equilibrium.
Determine the dry matter content on the dry matter specimen, as specified in ISO 638. Weigh this
specimen at the same time as the test specimen used for incineration.
For the determination of major elements, including magnesium, calcium, sodium and potassium, a 1 g to
2 g test specimen (calculated as oven-dry) is recommended. For minor elements, including manganese,
iron and copper, test specimens of 5 g to 10 g are recommended. If trace levels of elements are needed,
then it is recommended that test specimen masses larger than 10 g be used. However, owing to the
possible impracticality of obtaining such quantities of cellulose nanomaterial from certain samples
such as dilute suspensions, smaller test specimen masses may be used, provided that the test specimen
masses used are stated in the report in accordance with Clause 13. It is possible that the level of
precision obtained will be lower than for larger test specimens.
Carry out ashing of the test specimen as described in ISO 1762.
In order to avoid flames, cover the crucible with a lid. The lid should only cover the crucible partially
to avoid the occurrence of reducing conditions in the crucible, in which case acid-insoluble compounds
© ISO 2019 – All rights reserved 5

---------------------- Page: 13 ----------------------
SIST ISO 12830:2020
ISO 12830:2019(E)

might be formed. Under reducing conditions, for example, copper might be lost due to the formation of
a platinum alloy.
If the minimum test specimen mass cannot fit into the crucible for any reason, the digested sample may
be reconstituted to a smaller final volume (see 8.5).
An additional ashing step at 525 °C is often needed for residue (ash content) determination in cellulose
nanocrystals. This additional procedure is not recommended for determination of acid-soluble metals
in cellulose nanocrystals, in order to avoid loss of metals during prolonged heating.
8.4 Dissolution of the residue — Paper, board and pulp
After ashing, allow the crucible to cool. To avoid splattering, carefully moisten the residue of ignition
with water and add cautiously, in a fume hood, 5 ml of hydrochloric acid (5.2) or nitric acid (5.3) to the
crucible. Evaporate to dryness on a boiling water bath or hotplate or using an infrared lamp. Repeat
this procedure.
For samples with high carbonate content, more than 10 ml of acid (2 × 5 ml) might be needed; repeat
the procedure as required.
Add a further 5 ml of hydrochloric acid (5.2) to the residue. If some insoluble residue is visible, heat,
without boiling, the crucible covered with a watch glass for a few minutes. Using the filter paper (6.2),
filter the contents of the crucible into a 100 ml volumetric flask. To ensure that the transfer is complete,
add another portion of 5 ml of hydrochloric acid (5.2) to the crucible and heat again if necessary. Filter
this last portion of acid into the main portion in the volumetric flask with the aid of some water (5.1). If
required for AAS, add 4 ml of lanthanum chloride solution (5.4) or 2 ml of cesium chloride solution (5.5)
to the volumetric flask. Fill up to the mark with water and mix. This is the test solution.
Microwave vessel size restrictions may limit the amount of sample which can be digested. If necessary,
the digested sample may be heated to dryness and reconstituted to a final volume of 25 ml such that the
proportions as described previously are respected.
8.5 Dissolution of the residue — Cellulose nanomaterials
After ashing, allow the crucible to cool. Nitric acid (5.3) is recommended for the dissolution of the
residue from cellulose nanomaterials. To avoid splattering, carefully moisten the residue of ignition
with water and add cautiously, in a fume hood, 5 ml of nitric acid (5.3) to the crucible. Evaporate to
dryness on a boiling water bath or hotplate or using an infrared lamp. Repeat this procedure.
For cellulose nanomaterial samples, more than 10 ml of acid (2 × 5 ml) might be needed; repeat the
procedure as required.
[2]
ISO 21400 provides a method for microwave dissolution of cellulose nanocrystal samples (using nitric
acid), which may be followed for cellulose nanocrystals or any other samples for which the described
microwave digestion procedure has been validated.
A
...

INTERNATIONAL ISO
STANDARD 12830
Second edition
2019-07
Paper, board, pulps and cellulose
nanomaterials — Determination of
acid-soluble magnesium, calcium,
manganese, iron, copper, sodium and
potassium
Papiers, cartons, pâtes et nanomatériaux à base de cellulose —
Détermination de la teneur en magnésium, calcium, manganèse, fer,
cuivre, sodium et potassium soluble dans l'acide
Reference number
ISO 12830:2019(E)
©
ISO 2019

---------------------- Page: 1 ----------------------
ISO 12830:2019(E)

COPYRIGHT PROTECTED DOCUMENT
© ISO 2019
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2019 – All rights reserved

---------------------- Page: 2 ----------------------
ISO 12830:2019(E)

Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Principle . 2
5 Reagents and materials . 2
6 Apparatus and equipment . 4
7 Sampling . 4
7.1 General considerations . 4
7.2 Paper, board and pulp sampling. 4
7.3 Cellulose nanomaterial sampling . 4
8 Procedure. 5
8.1 General . 5
8.2 Incineration of the test specimen — Paper, board and pulp . 5
8.3 Incineration of the test specimen — Cellulose nanomaterials . 5
8.4 Dissolution of the residue — Paper, board and pulp . 6
8.5 Dissolution of the residue — Cellulose nanomaterials . 6
9 Calibration solutions — Measurement considerations . 7
9.1 General . 7
9.2 Calibration solutions for AAS. 7
9.3 Calibration solutions for ICP/ES . 7
10 Blank solution . 7
10.1 Blank solution for AAS . 7
10.2 Blank solution for ICP/ES . 7
11 Determination . 7
12 Expression of results . 8
13 Test report . 9
Annex A (informative) Precision .10
Bibliography .19
© ISO 2019 – All rights reserved iii

---------------------- Page: 3 ----------------------
ISO 12830:2019(E)

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www .iso
.org/iso/foreword .html.
This document was prepared by Technical Committee ISO/TC 6, Paper, board and pulps.
This second edition cancels and replaces the first edition (ISO 12830:2011), which has been technically
revised. The main changes to the previous edition are as follows:
— the scope has been changed to include cellulose nanomaterials in addition to paper, board and pulps;
— a definition of cellulose nanomaterial has been incorporated, along with additional instructions for
sampling, sample preparation, incineration and dissolution of the residue for cellulose nanomaterials;
— additional instructions are given on how to express results when an element is not detected.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www .iso .org/members .html.
iv © ISO 2019 – All rights reserved

---------------------- Page: 4 ----------------------
ISO 12830:2019(E)

Introduction
This document combines the determination of the acid-soluble part of magnesium (Mg), calcium (Ca),
manganese (Mn), iron (Fe), copper (Cu), sodium (Na) and potassium (K) into a single document. The
scope of this document covers only the acid-soluble part of the elements.
[1]
ISO 17812 specifies the procedure for the determination of total magnesium, total calcium, total
manganese, total iron and total copper by atomic absorption spectrometry (AAS) or by inductively
coupled plasma emission spectrometry (ICP/ES).
In the context of this document, “cellulose nanomaterial” refers specifically to cellulose nano-objects
(see 3.1 to 3.3). Owing to their nanoscale dimensions, these cellulose nano-objects can have intrinsic
properties, behaviours or functionalities that are distinct from those associated with paper, board
and pulps.
© ISO 2019 – All rights reserved v

---------------------- Page: 5 ----------------------
INTERNATIONAL STANDARD ISO 12830:2019(E)
Paper, board, pulps and cellulose nanomaterials —
Determination of acid-soluble magnesium, calcium,
manganese, iron, copper, sodium and potassium
WARNING — The method specified in this document involves the use of some hazardous
chemicals and of gases that may form explosive mixtures with air. Care should be taken to
ensure that the relevant precautions are observed.
WARNING — The method specified in this document involves the use of nanomaterials.
Care should be taken to ensure observation of the relevant precautions and guidelines for
nanotechnology laboratory safety and best practices.
1 Scope
This document specifies the procedure for the determination of acid-soluble magnesium, calcium,
manganese, iron, copper, sodium and potassium by atomic absorption spectrometry (AAS) or by
inductively coupled plasma emission spectrometry (ICP/ES). The acid-soluble element comprises
the acid-soluble part of the incineration residue, i.e. that part of the ignition residue obtained after
incineration which is soluble in hydrochloric acid or nitric acid. In cases where the residue is completely
soluble, the result obtained by the procedure specified in this document is a measure of the total
amount of each element in the sample.
This document is applicable to all types of paper, board, pulps and cellulose nanomaterials.
The limit of determination depends on the element and on the instrument used.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 186, Paper and board — Sampling to determine average quality
ISO 638, Paper, board and pulps — Determination of dry matter content — Oven-drying method
ISO 1762, Paper, board and pulps — Determination of residue (ash) on ignition at 525 °C
ISO 3696, Water for analytical laboratory use — Specification and test methods
ISO 7213, Pulps — Sampling for testing
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https: //www .iso .org/obp/
— IEC Electropedia: available at http: //www .electropedia .org/
© ISO 2019 – All rights reserved 1

---------------------- Page: 6 ----------------------
ISO 12830:2019(E)

3.1
cellulose nanomaterial
material composed predominantly of cellulose, with any external dimension between approximately
1 nm and 100 nm, or a material having internal structure or surface structure in the nanoscale (3.4),
with the internal structure or surface structure composed predominantly of cellulose
Note 1 to entry: The terms nanocellulose and cellulosic nanomaterial are synonymous with cellulose
nanomaterial.
Note 2 to entry: Some cellulose nanomaterials can be composed of chemically modified cellulose.
Note 3 to entry: This generic term is inclusive of cellulose nano-object and cellulose nanostructured material.
Note 4 to entry: See also definitions of cellulose, nanoscale, cellulose nano-object and cellulose nanostructured
material in ISO/TS 20477:2017.
[SOURCE: ISO/TS 20477:2017, 3.3.1, modified — “1 nm to 100 nm” changed to “1 nm and 100 nm”;
abbreviations deleted from Note 1 to entry; Note 4 to entry added.]
3.2
nano-object
discrete piece of material with one, two or three external dimensions in the nanoscale (3.4)
Note 1 to entry: The second and third external dimensions are orthogonal to the first dimension and to each other.
[SOURCE: ISO/TS 80004-1:2015, 2.5]
3.3
cellulose nano-object
nano-object (3.2) composed predominantly of cellulose
[SOURCE: ISO/TS 20477:2017, 3.3.2]
3.4
nanoscale
length range approximately from 1 nm to 100 nm
Note 1 to entry: Properties that are not extrapolations from larger sizes are predominantly exhibited in this
length range.
[SOURCE: ISO/TS 80004-1:2015, 2.1]
4 Principle
A test specimen is incinerated at 525 °C and the residue is dissolved in hydrochloric acid or nitric acid.
The concentration of each element in the test solution is then determined by AAS or ICP/ES. Techniques
using other types of instrumentation, such as ICP-mass spectrometry (ICP/MS), may also be used
provided that they give at least the same level of precision as AAS or ICP/ES, and that they have been
properly validated. The use of any such instrumentation shall also be reported.
5 Reagents and materials
5.1 General
All chemicals shall be of reagent grade or better unless otherwise indicated. Water shall be distilled or
deionized, of grade 2 or better in accordance with ISO 3696.
5.2 Hydrochloric acid (HCl), 6 mol/l, trace metal grade. Dilute 500 ml of concentrated hydrochloric
acid (specific gravity 1,19 g/ml) to 1 000 ml with water.
2 © ISO 2019 – All rights reserved

---------------------- Page: 7 ----------------------
ISO 12830:2019(E)

5.3 Nitric acid (HNO ), concentrated (specific gravity 1,4 g/ml), trace metal grade.
3
5.4 Lanthanum chloride (LaCl ), solution, ρ(La) = 50 g/l. In a 1 000 ml volumetric flask, dissolve 59 g
3
of lanthanum oxide (La O ), in small portions, in 200 ml of hydrochloric acid (5.2) and dilute to 1 000 ml
2 3
with water.
This lanthanum chloride solution is used to eliminate chemical interference when determining calcium
and magnesium in an air/acetylene flame. The solution is not required for use with the nitrous oxide/
acetylene flame or when the ICP/ES technique is used.
5.5 Cesium chloride (CsCl), solution, ρ(Cs) = 50 g/l. In a 1 000 ml volumetric flask, dissolve 63,5 g of
ultrapure cesium chloride (CsCl) in water and dilute to 1 000 ml with water.
This cesium chloride solution is used to suppress ionization of sodium and potassium in an air/acetylene
flame. It is also used to suppress ionization of calcium in a nitrous oxide/acetylene flame. The solution
is not required when the ICP/ES technique is used.
5.6 Standard stock solutions of each element, commercially available certified atomic absorption
or atomic emission standard solutions can be used. Standard stock solutions can also be prepared as
follows:
5.6.1 Magnesium, 1 000 mg/l standard solution. Dissolve 1,000 g of magnesium metal ribbon in
100 ml of 1:4 nitric acid (5.3) and dilute to 1 000 ml with water.
5.6.2 Calcium, 1 000 mg/l standard solution. Dissolve 2,497 g of primary standard calcium carbonate
(CaCO ) in a minimum volume of 1:4 nitric acid (5.3) and dilute to 1 000 ml with water.
3
5.6.3 Manganese, 1 000 mg/l standard solution. Dissolve 1,000 g of manganese metal strip or wire in
a minimum volume of 1:1 nitric acid (5.3) and dilute to 1 000 ml with water.
5.6.4 Iron, 1 000 mg/l standard solution. Dissolve 1,000 g of iron metal strip or wire in 20 ml of
hydrochloric acid (5.2) and dilute to 1 000 ml with water.
5.6.5 Copper, 1 000 mg/l standard solution. Dissolve 1,000 g of copper metal strip or wire in a
minimum volume of 1:1 nitric acid (5.3) and dilute to 1 000 ml with water.
5.6.6 Sodium, 1 000 mg/l standard solution. Ignite a portion of anhydrous sodium sulfate (Na SO ) at
2 4
550 °C in a crucible of platinum or porcelain. Allow to cool to room temperature in a desiccator. Dissolve
3,089 g of dried sodium sulfate in water and dilute to 1 000 ml with water. Store in a polyethylene bottle.
5.6.7 Potassium, 1 000 mg/l standard solution. Ignite a portion of anhydrous potassium sulfate
(K SO ) at 550 °C in a crucible of platinum or porcelain. Allow to cool to room temperature in a
2 4
desiccator. Dissolve 2,228 g of dried potassium sulfate in water and dilute to 1 000 ml with water. Store in
a polyethylene bottle.
5.7 Acetylene gas and/or nitrogen oxide gas, of a grade suitable for AAS. Nitrous oxide is used only
when measuring calcium.
WARNING — Acetylene gas forms explosive mixtures with air.
5.8 Carrier gas, appropriate gas for the inductively coupled plasma emission spectrometer. Argon is
usually recommended as a carrier gas.
© ISO 2019 – All rights reserved 3

---------------------- Page: 8 ----------------------
ISO 12830:2019(E)

6 Apparatus and equipment
6.1 General
Ordinary laboratory equipment is used. All glassware and plastic ware shall be cleaned thoroughly and
rinsed with 0,1 mol/l hydrochloric acid or 10 % nitric acid, followed by reagent grade water, prior to use.
6.2 Filter paper, ash free, particle retention 20 μm to 25 μm.
6.3 Crucibles, platinum or fused silica, of minimum capacity 50 ml.
6.4 Muffle furnace, capable of maintaining a temperature of 525 °C ± 25 °C.
6.5 Balance, of capacity 100 g, with a scale division (readability) of 0,1 mg or better.
6.6 Atomic absorption spectrometer, equipped with air/acetylene and nitrous oxide/acetylene
burners and with hollow cathode lamps for Mg, Ca, Mn, Fe, Cu, Na and K. Multi-element lamps can also
be used.
6.7 Inductively coupled plasma/emission spectrometer.
6.8 Disposable protective gloves.
7 Sampling
7.1 General considerations
If the analysis is being made to evaluate a lot of paper, board, pulp or cellulose nanomaterial, the
sample shall be selected in accordance with ISO 186 or ISO 7213, as relevant. If the analysis is made
on another type of sample, report the source of the sample and, if possible, the sampling procedure.
Select the material to be tested so that it is representative of the sample received. A sufficient amount
of material shall be collected from the sample to allow for at least duplicate determinations. Avoid cut
edges, punched holes and other parts where metallic contamination may have occurred.
Disposable protective gloves (6.8) shall be worn when handling samples to avoid contamination.
Since iron tends to have a non-homogeneous distribution, it is recommended that a composite sample
be used.
7.2 Paper, board and pulp sampling
In the case of paper, board and pulp, tear or remove at least 30 g of small pieces from various parts of
the sample. This amount is sufficient for the duplicate determinations described in Clause 8.
7.3 Cellulose nanomaterial sampling
In some cases, it may not be practical or possible to obtain large quantities of solid material from a
cellulose nanomaterial sample. In the case of solid cellulose nanomaterials, tear or remove sufficient
material for duplicate determinations as described in Clause 8, in the form of small pieces, dry powder
or flakes from various parts of the sample. If the sample is in aqueous suspension form, remove
sufficient material for duplicate determinations as described in Clause 8 (calculated as oven-dry, i.e.
water- and moisture-free) from various portions of the aqueous suspension, and dry to give a pre-dried
sample in the form of flakes, powder or other solid, which shall be mixed to homogeneity, after which
the test specimen shall be obtained from the pre-dried sample. Filtration to concentrate dilute samples
prior to drying is not recommended as it may result in loss of dissolved material.
4 © ISO 2019 – All rights reserved

---------------------- Page: 9 ----------------------
ISO 12830:2019(E)

8 Procedure
8.1 General
Although dry ignition followed by acid treatment is described in this document, other dissolution
methods such as wet ignition or microwave digestion using various acid combinations can also be used,
provided that the results have been validated.
WARNING — For samples with high silicon content, microwave digestion with nitric acid will
give lower results for magnesium and for some other elements.
8.2 Incineration of the test specimen — Paper, board and pulp
Carry out the procedure in duplicate.
Air-dry the test and dry matter specimens in the laboratory atmosphere until they reach moisture
equilibrium.
Determine the dry matter content on the dry matter specimen, as specified in ISO 638. Weigh this
specimen at the same time as the test specimen used for incineration.
For the determination of major elements, including magnesium, calcium, sodium and potassium, a 1 g to
2 g test specimen (calculated as oven-dry) is recommended. For minor elements, including manganese,
iron and copper, test specimens of 5 g to 10 g are recommended. If trace levels of elements are needed,
then it is recommended that test specimen masses larger than 10 g be used.
Carry out ashing of the test specimen as described in ISO 1762.
In order to avoid flames, cover the crucible with a lid. The lid should only cover the crucible partially
to avoid the occurrence of reducing conditions in the crucible, in which case acid-insoluble compounds
might be formed. Under reducing conditions, for example, copper might be lost due to the formation of
a platinum alloy.
If the minimum test specimen mass cannot fit into the crucible for any reason, the digested sample may
be reconstituted to a smaller final volume (see 8.4).
8.3 Incineration of the test specimen — Cellulose nanomaterials
Carry out the procedure in duplicate.
Air-dry the test and dry matter specimens in the laboratory atmosphere until they reach moisture
equilibrium.
Determine the dry matter content on the dry matter specimen, as specified in ISO 638. Weigh this
specimen at the same time as the test specimen used for incineration.
For the determination of major elements, including magnesium, calcium, sodium and potassium, a 1 g to
2 g test specimen (calculated as oven-dry) is recommended. For minor elements, including manganese,
iron and copper, test specimens of 5 g to 10 g are recommended. If trace levels of elements are needed,
then it is recommended that test specimen masses larger than 10 g be used. However, owing to the
possible impracticality of obtaining such quantities of cellulose nanomaterial from certain samples
such as dilute suspensions, smaller test specimen masses may be used, provided that the test specimen
masses used are stated in the report in accordance with Clause 13. It is possible that the level of
precision obtained will be lower than for larger test specimens.
Carry out ashing of the test specimen as described in ISO 1762.
In order to avoid flames, cover the crucible with a lid. The lid should only cover the crucible partially
to avoid the occurrence of reducing conditions in the crucible, in which case acid-insoluble compounds
© ISO 2019 – All rights reserved 5

---------------------- Page: 10 ----------------------
ISO 12830:2019(E)

might be formed. Under reducing conditions, for example, copper might be lost due to the formation of
a platinum alloy.
If the minimum test specimen mass cannot fit into the crucible for any reason, the digested sample may
be reconstituted to a smaller final volume (see 8.5).
An additional ashing step at 525 °C is often needed for residue (ash content) determination in cellulose
nanocrystals. This additional procedure is not recommended for determination of acid-soluble metals
in cellulose nanocrystals, in order to avoid loss of metals during prolonged heating.
8.4 Dissolution of the residue — Paper, board and pulp
After ashing, allow the crucible to cool. To avoid splattering, carefully moisten the residue of ignition
with water and add cautiously, in a fume hood, 5 ml of hydrochloric acid (5.2) or nitric acid (5.3) to the
crucible. Evaporate to dryness on a boiling water bath or hotplate or using an infrared lamp. Repeat
this procedure.
For samples with high carbonate content, more than 10 ml of acid (2 × 5 ml) might be needed; repeat
the procedure as required.
Add a further 5 ml of hydrochloric acid (5.2) to the residue. If some insoluble residue is visible, heat,
without boiling, the crucible covered with a watch glass for a few minutes. Using the filter paper (6.2),
filter the contents of the crucible into a 100 ml volumetric flask. To ensure that the transfer is complete,
add another portion of 5 ml of hydrochloric acid (5.2) to the crucible and heat again if necessary. Filter
this last portion of acid into the main portion in the volumetric flask with the aid of some water (5.1). If
required for AAS, add 4 ml of lanthanum chloride solution (5.4) or 2 ml of cesium chloride solution (5.5)
to the volumetric flask. Fill up to the mark with water and mix. This is the test solution.
Microwave vessel size restrictions may limit the amount of sample which can be digested. If necessary,
the digested sample may be heated to dryness and reconstituted to a final volume of 25 ml such that the
proportions as described previously are respected.
8.5 Dissolution of the residue — Cellulose nanomaterials
After ashing, allow the crucible to cool. Nitric acid (5.3) is recommended for the dissolution of the
residue from cellulose nanomaterials. To avoid splattering, carefully moisten the residue of ignition
with water and add cautiously, in a fume hood, 5 ml of nitric acid (5.3) to the crucible. Evaporate to
dryness on a boiling water bath or hotplate or using an infrared lamp. Repeat this procedure.
For cellulose nanomaterial samples, more than 10 ml of acid (2 × 5 ml) might be needed; repeat the
procedure as required.
[2]
ISO 21400 provides a method for microwave dissolution of cellulose nanocrystal samples (using nitric
acid), which may be followed for cellulose nanocrystals or any other samples for which the described
microwave digestion procedure has been validated.
Add a further 5 ml of nitric acid (5.3) to the residue. If some insoluble residue is visible, heat, without
boiling, the crucible covered with a watch glass for a few minutes. To ensure that the transfer is
complete, add 5 ml of water (5.1) to the crucible and heat again if necessary. Transfer the contents of the
crucible into a 100 ml volumetric flask with the aid of some water (5.1). If required for AAS, add 4 ml of
lanthanum chloride solution (5.4) or 2 ml of cesium chloride solution (5.5) to the volumetric flask. Fill
up to the mark with water and mix. If undissolved residue is present, the solution may be sonicated to
dissolve it. If residue does not dissolve with sonication, the solution may be filtered or the precipitate
allowed to settle and the supernatant used for analysis.
Microwave vessel size restrictions may limit the amount of sample which can be digested. If necessary,
the digested sample may be heated to dryness and reconstituted to a final volume of 25 ml such that the
proportions as described previously are respected.
6 © ISO 2019 – All rights reserved

---------------------- Page: 11 ----------------------
ISO 12830:2019(E)

9 Calibration solutions — Measurement considerations
9.1 General
It is
...

NORME ISO
INTERNATIONALE 12830
Deuxième édition
2019-07
Papiers, cartons, pâtes et
nanomatériaux à base de cellulose —
Détermination de la teneur en
magnésium, calcium, manganèse, fer,
cuivre, sodium et potassium soluble
dans l'acide
Paper, board, pulps and cellulose nanomaterials — Determination of
acid-soluble magnesium, calcium, manganese, iron, copper, sodium
and potassium
Numéro de référence
ISO 12830:2019(F)
©
ISO 2019

---------------------- Page: 1 ----------------------
ISO 12830:2019(F)

DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2019
Tous droits réservés. Sauf prescription différente ou nécessité dans le contexte de sa mise en œuvre, aucune partie de cette
publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique,
y compris la photocopie, ou la diffusion sur l’internet ou sur un intranet, sans autorisation écrite préalable. Une autorisation peut
être demandée à l’ISO à l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Case postale 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Genève
Tél.: +41 22 749 01 11
Fax: +41 22 749 09 47
E-mail: copyright@iso.org
Web: www.iso.org
Publié en Suisse
ii © ISO 2019 – Tous droits réservés

---------------------- Page: 2 ----------------------
ISO 12830:2019(F)

Sommaire Page
Avant-propos .iv
Introduction .v
1 Domaine d'application . 1
2 Références normatives . 1
3 Termes et définitions . 1
4 Principe . 2
5 Réactifs et matériaux . 3
6 Appareillage et équipement . 4
7 Échantillonnage . 4
7.1 Considérations générales . 4
7.2 Échantillonnage des papiers, cartons et pâtes . 5
7.3 Échantillonnage des nanomatériaux à base de cellulose . 5
8 Mode opératoire. 5
8.1 Généralités . 5
8.2 Incinération de l’éprouvette – papier, carton et pâte . 5
8.3 Incinération de l’éprouvette – nanomatériaux à base de cellulose . 6
8.4 Dissolution du résidu – papier, carton et pâte . 6
8.5 Dissolution du résidu – nanomatériaux à base de cellulose . 7
9 Solutions d’étalonnage – considérations relatives aux mesures . 7
9.1 Généralités . 7
9.2 Solutions d’étalonnage pour l’AAS . 7
9.3 Solutions d’étalonnage pour l’ICP/ES . 8
10 Solution à blanc . 8
10.1 Solution à blanc pour l’AAS . 8
10.2 Solution à blanc pour l’ICP/ES . 8
11 Détermination . 8
12 Expression des résultats. 9
13 Rapport d'essai . 9
Annexe A (informative) Fidélité.11
Bibliographie .20
© ISO 2019 – Tous droits réservés iii

---------------------- Page: 3 ----------------------
ISO 12830:2019(F)

Avant-propos
L’ISO (Organisation internationale de normalisation) est une fédération mondiale d’organismes
nationaux de normalisation (comités membres de l’ISO). L'élaboration des Normes internationales est
en général confiée aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l’ISO participent également aux travaux.
L'ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui
concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier de prendre note des différents
critères d'approbation requis pour les différents types de documents ISO. Le présent document a été
rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2 (voir www
.iso .org/directives).
L’attention est attirée sur le fait que certains des éléments du présent document peuvent faire l’objet de
droits de propriété intellectuelle ou de droits analogues. L’ISO ne saurait être tenue pour responsable
de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant
les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de
l'élaboration du document sont indiqués dans l'Introduction et/ou dans la liste des déclarations de
brevets reçues par l'ISO (voir www .iso .org/brevets).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données
pour information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un
engagement.
Pour une explication de la nature volontaire des normes, la signification des termes et expressions
spécifiques de l'ISO liés à l'évaluation de la conformité, ou pour toute information au sujet de l'adhésion
de l'ISO aux principes de l'Organisation mondiale du commerce (OMC) concernant les obstacles
techniques au commerce (OTC), voir le lien suivant: https: //www .iso .org/fr/foreword -supplementary
-information .html.
Le présent document a été élaboré par le comité technique ISO/TC 6, Papiers, cartons et pâtes.
Cette deuxième édition annule et remplace la première édition (ISO 12830:2011) qui a fait l'objet d'une
révision technique. Les principales modifications apportées à l’édition précédente sont les suivantes:
— Le domaine d'application a été modifié pour inclure les nanomatériaux à base de cellulose en plus
des papiers, cartons et pâtes;
— Une définition des nanomatériaux à base de cellulose a été incorporée, conjointement avec des
instructions supplémentaires pour l’échantillonnage, la préparation de l’échantillon, l’incinération
et la dissolution des nanomatériaux à base de cellulose;
— Des instructions supplémentaires sont données à propos de la manière d’exprimer les résultats
lorsqu’un élément n’est pas détecté.
Il convient que l’utilisateur adresse tout retour d’information ou toute question concernant le présent
document à l’organisme national de normalisation de son pays. Une liste exhaustive desdits organismes
se trouve à l’adresse www .iso .org/fr/members .html.
iv © ISO 2019 – Tous droits réservés

---------------------- Page: 4 ----------------------
ISO 12830:2019(F)

Introduction
Le présent document regroupe les déterminations de la partie soluble dans l’acide du magnésium (Mg),
du calcium (Ca), du manganèse (Mn), du fer (Fe), du cuivre (Cu), du sodium (Na) et du potassium (K)
dans un seul document. Le domaine d’application du présent document ne couvre que la partie soluble
dans l’acide de ces éléments.
[1]
L’ISO 17812 spécifie le mode opératoire de détermination de la teneur en magnésium total, calcium
total, manganèse total, fer total et cuivre total par spectrométrie d’absorption atomique (AAS) ou par
spectrométrie d’émission plasma à couplage inductif (ICP/ES).
Dans le contexte du présent document, «nanomatériau à base de cellulose» désigne spécifiquement des
nano-objets à base de cellulose (voir 3.1 à 3.3). Du fait de leurs dimensions à l’échelle nanométrique,
ces nano-objets à base de cellulose peuvent posséder des propriétés, des comportements ou des
fonctionnalités intrinsèques qui sont distincts de ceux ou celles associés aux papiers, cartons et pâtes.
© ISO 2019 – Tous droits réservés v

---------------------- Page: 5 ----------------------
NORME INTERNATIONALE ISO 12830:2019(F)
Papiers, cartons, pâtes et nanomatériaux à base de
cellulose — Détermination de la teneur en magnésium,
calcium, manganèse, fer, cuivre, sodium et potassium
soluble dans l'acide
AVERTISSEMENT — La méthode spécifiée dans le présent document implique l’utilisation de
produits chimiques et de gaz dangereux pouvant former des mélanges explosifs avec l’air. Il
convient de s’assurer que les précautions appropriées sont prises.
AVERTISSEMENT — La méthode spécifiée dans le présent document implique l’utilisation
de nanomatériaux. Il convient de veiller à garantir l’observation des précautions et lignes
directrices appropriées en matière de sécurité et de bonnes pratiques en laboratoire de
nanotechnologie.
1 Domaine d'application
Le présent document spécifie le mode opératoire pour la détermination de la teneur en magnésium,
calcium, manganèse, fer, cuivre, sodium et potassium soluble dans l’acide, par spectrométrie
d’absorption atomique (AAS) ou par spectrométrie d’émission plasma à couplage inductif (ICP/ES).
L’élément soluble dans l’acide comprend la partie du résidu de calcination soluble dans l’acide, c’est-à-dire
la partie du résidu de calcination obtenu après incinération qui est soluble dans l’acide chlorhydrique
ou l’acide nitrique. Au cas où le résidu est totalement soluble, le résultat obtenu par le mode opératoire
spécifié dans le présent document est une mesure de la quantité totale de chaque élément présent dans
l’échantillon.
Le présent document s’applique à tous les types de papiers, cartons, pâtes et nanomatériaux à base de
cellulose.
La limite de détermination dépend de l’élément et de l’instrument utilisé.
2 Références normatives
Les documents suivants sont cités en référence de manière normative, en intégralité ou en partie, dans
le présent document et sont indispensables pour son application. Pour les références datées, seule
l’édition citée s’applique. Pour les références non datées, la dernière édition du document de référence
s’applique (y compris les éventuels amendements).
ISO 186, Papier et carton — Échantillonnage pour déterminer la qualité moyenne
ISO 638, Papiers, cartons et pâtes — Détermination de la teneur en matières sèches — Méthode par séchage
à l'étuve
ISO 1762, Papier, carton et pâtes — Détermination du résidu (cendres) après incinération à 525 degrés C
ISO 3696, Eau pour laboratoire à usage analytique — Spécification et méthodes d'essai
ISO 7213, Pâtes — Échantillonnage pour essais
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions suivants s'appliquent.
© ISO 2019 – Tous droits réservés 1

---------------------- Page: 6 ----------------------
ISO 12830:2019(F)

L’ISO et l’IEC tiennent à jour des bases de données terminologiques destinées à être utilisées en
normalisation, consultables aux adresses suivantes:
— Plateforme de consultation en ligne ISO: accessible à l’adresse https: //www .iso .org/obp/
— IEC Electropedia: disponible à l'adresse http: //www .electropedia .org/
3.1
nanomatériau à base de cellulose
matériau principalement composé de cellulose, dont toutes les dimensions externes sont comprises
approximativement entre 1 nm et 100 nm, ou matériau dont la structure interne ou de surface,
principalement composée de cellulose, est à l’échelle nanométrique (3.4)
Note 1 à l'article: Les termes «nanocellulose» et «nanomatériau cellulosique» sont des synonymes du terme
«nanomatériau à base de cellulose».
Note 2 à l'article: Certains nanomatériaux à base de cellulose peuvent être composés de cellulose chimiquement
modifiée.
Note 3 à l'article: Ce terme générique englobe les nano-objets à base de cellulose et les matériaux nanostructurés
à base de cellulose.
Note 4 à l'article: Voir également les définitions de cellulose, échelle nanométrique, nano-objet à base de cellulose
et matériau nanostructuré à base de cellulose dans l’ISO/TS 20477:2017.
[SOURCE: ISO/TS 20477:2017, 3.3.1, modifiée — «1 nm à 100 nm» changé en «1 nm et 100 nm»;
abréviations supprimées de la Note 1 à l’article; Note 4 à l’article ajoutée.]
3.2
nano-objet
portion discrète de matériau dont une, deux ou trois dimensions externes sont à l’échelle
nanométrique (3.4)
Note 1 à l'article: Les deuxième et troisième dimensions externes sont orthogonales à la première dimension et
l'une par rapport à l'autre.
[SOURCE: ISO/TS 80004-1:2015, 2.5]
3.3
nano-objet à base de cellulose
nano-objet (3.2) principalement composé de cellulose
[SOURCE: ISO/TS 20477:2017, 3.3.2]
3.4
échelle nanométrique
échelle de longueur s'étendant approximativement de 1 nm à 100 nm
Note 1 à l'article: Les propriétés qui ne constituent pas des extrapolations par rapport à des dimensions plus
grandes sont principalement manifestes dans cette échelle de longueur.
[SOURCE: ISO/TS 80004-1:2015, 2.1]
4 Principe
Une éprouvette est incinérée à 525 °C et le résidu est dissous dans de l’acide chlorhydrique ou de l’acide
nitrique. La concentration de chaque élément de la solution d’essai est ensuite déterminée par AAS ou
ICP/ES. Des techniques utilisant d’autres types d’instrumentation, tels que la spectrométrie de masse
à plasma à couplage inductif (ICP/MS), peuvent également être utilisés, à condition qu’ils présentent
au moins le même niveau de fidélité que l’AAS ou l’ICP/ES, et qu’ils aient été correctement validés. Par
ailleurs, l’utilisation de tels instruments doit être consignée dans les rapports.
2 © ISO 2019 – Tous droits réservés

---------------------- Page: 7 ----------------------
ISO 12830:2019(F)

5 Réactifs et matériaux
5.1 Généralités
Tous les produits chimiques doivent être de qualité analytique ou mieux, sauf indication contraire. L’eau
doit être distillée ou déminéralisée, de qualité 2 ou meilleure conformément à l’ISO 3696.
5.2 Acide chlorhydrique (HCl), 6 mol/l, qualité métaux en trace. Diluer 500 ml d’acide chlorhydrique
concentré (masse volumique 1,19 g/ml) en complétant à 1 000 ml avec de l’eau.
5.3 Acide nitrique (HNO ), concentré (masse volumique 1,4 g/ml), qualité métaux en trace.
3
5.4 Chlorure de lanthane (LaCl ), solution, ρ(La) = 50 g/l. Dans une fiole jaugée de 1 000 ml,
3
dissoudre 59 g d’oxyde de lanthane (La O ) en petites portions, dans 200 ml d’acide chlorhydrique (5.2)
2 3
et diluer en complétant à 1 000 ml avec de l’eau.
Cette solution de chlorure de lanthane est utilisée pour éliminer les interférences chimiques lors de la
détermination du calcium et du magnésium dans une flamme air/acétylène. L’utilisation de la solution
n’est pas exigée avec la flamme d’hémioxyde d’azote/acétylène ou avec la technique ICP/ES.
5.5 Chlorure de césium (CsCl), solution, ρ(Cs) = 50 g/l. Dans une fiole jaugée de 1 000 ml, dissoudre
63,5 g de chlorure de césium (CsCl) ultra pur dans de l’eau et diluer en complétant à 1 000 ml avec de l’eau.
Cette solution de chlorure de césium est utilisée pour éliminer l’ionisation du sodium et du potassium
dans une flamme d’air/acétylène. Elle est aussi utilisée pour éliminer l’ionisation du calcium dans
une flamme d’hémioxyde d’azote/acétylène. Cette solution n’est pas exigée lors de l’utilisation de la
technique ICP/ES.
5.6 Solutions étalons mères de chaque élément, des solutions étalons certifiées d’absorption
atomique ou d’émission atomique disponibles dans le commerce peuvent être utilisées. Les solutions
étalons mères peuvent aussi être préparées comme suit:
5.6.1 Magnésium, solution étalon à 1 000 mg/l. Dissoudre 1,000 g de ruban métallique de magnésium
dans 100 ml d’acide nitrique 1:4 (5.3) et compléter à 1 000 ml avec de l’eau.
5.6.2 Calcium, solution étalon à 1 000 mg/l. Dissoudre 2,497 g d’étalon primaire de carbonate de
calcium, (CaCO ), dans un volume minimal d’acide nitrique 1:4 (5.3) et compléter à 1 000 ml avec de l’eau.
3
5.6.3 Manganèse, solution étalon à 1 000 mg/l. Dissoudre 1,000 g de bande ou de fil métallique de
manganèse dans un volume minimal d’acide nitrique 1:1 (5.3) et compléter à 1 000 ml avec de l’eau.
5.6.4 Fer, solution étalon à 1 000 mg/l. Dissoudre 1,000 g de bande ou de fil métallique de fer dans
20 ml d’acide chlorhydrique (5.2) et compléter à 1 000 ml avec de l’eau.
5.6.5 Cuivre, solution étalon à 1 000 mg/l. Dissoudre 1,000 g de bande ou de fil métallique de cuivre
dans un volume minimal d’acide nitrique 1:1 (5.3) et compléter à 1 000 ml avec de l’eau.
5.6.6 Sodium, solution étalon à 1 000 mg/l. Faire brûler une portion de sulfate de sodium anhydre
(Na SO ) à 550 °C dans un creuset en platine ou en porcelaine. Laisser refroidir à température ambiante
2 4
dans un dessiccateur. Dissoudre 3,089 g de sulfate de sodium sec dans de l’eau et compléter à 1 000 ml
avec de l’eau. Stocker dans une bouteille en polyéthylène.
5.6.7 Potassium, solution étalon à 1 000 mg/l. Faire brûler une portion de sulfate de potassium
anhydre (K SO ) à 550 °C dans un creuset en platine ou en porcelaine. Laisser refroidir à température
2 4
© ISO 2019 – Tous droits réservés 3

---------------------- Page: 8 ----------------------
ISO 12830:2019(F)

ambiante dans un dessiccateur. Dissoudre 2,228 g de sulfate de potassium sec dans de l’eau et compléter
à 1 000 ml avec de l’eau. Stocker dans une bouteille en polyéthylène.
5.7 Gaz acétylène et/ou gaz d’oxyde d’azote, de qualité appropriée pour l’AAS. L’hémioxyde d’azote
n’est utilisé que lors de la mesure du calcium.
AVERTISSEMENT — Le gaz acétylène forme un mélange explosif avec l’air.
5.8 Gaz vecteur, gaz approprié au spectromètre d’émission plasma à couplage inductif. L’argon est
généralement recommandé comme gaz vecteur.
6 Appareillage et équipement
6.1 Généralités
Un équipement ordinaire de laboratoire est utilisé. Tous les éléments en verre ou en plastique doivent
être nettoyés soigneusement et rincés avec de l’acide chlorhydrique à 0,1 mol/l ou de l’acide nitrique à
10 %, suivi d’eau de qualité analytique, avant d’être utilisés.
6.2 Papier filtre, exempt de cendres, retenant des particules de 20 µm à 25 µm.
6.3 Creusets, en platine ou en verre de silice, d’une capacité minimale de 50 ml.
6.4 Four à moufle, pouvant maintenir une température de 525 °C ± 25 °C.
6.5 Balance, d’une capacité de 100 g, à graduation (lisibilité) au moins tous les 0,1 mg.
6.6 Spectromètre d’absorption atomique, équipé de brûleurs d'air/acétylène et d'hémioxyde
d’azote/acétylène, avec des lampes à cathode creuse pour le Mg, Ca, Mn, Fe, Cu, Na et K. Des lampes
multi-éléments peuvent aussi être utilisées.
6.7 Spectromètre d’émission à plasma à couplage inductif.
6.8 Gants de protection jetables.
7 Échantillonnage
7.1 Considérations générales
Si l’analyse a pour but d’évaluer un lot de papiers, cartons, pâtes ou nanomatériaux à base de cellulose,
l’échantillon doit être choisi conformément à l’ISO 186 ou à l’ISO 7213, selon le cas. Si l’analyse est
effectuée sur un autre type d’échantillon, noter la source de l’échantillon et, si possible, la méthode
d’échantillonnage. Choisir le matériau à soumettre à l’essai de sorte qu’il soit représentatif de
l’échantillon reçu. Une quantité suffisante de matériau doit être prélevée sur l’échantillon pour
permettre au moins deux déterminations. Éviter les bords coupés, les perforations et les autres parties
où une contamination métallique aurait pu se produire.
Des gants de protection jetables (6.8) doivent être portés lors de la manipulation des échantillons, afin
d’éviter toute contamination.
Comme le fer a tendance à présenter une distribution non homogène, il est recommandé d’utiliser un
échantillon composite.
4 © ISO 2019 – Tous droits réservés

---------------------- Page: 9 ----------------------
ISO 12830:2019(F)

7.2 Échantillonnage des papiers, cartons et pâtes
Dans le cas des papiers, cartons et pâtes, déchirer et extraire au moins 30 g de petites quantités prises
à différents endroits de l’échantillon. Cette quantité est suffisante pour les déterminations en double
décrites à l’Article 8.
7.3 Échantillonnage des nanomatériaux à base de cellulose
Dans certains cas, il peut être impossible en pratique d’obtenir de grandes quantités de matériau solide
à partir d’un échantillon de nanomatériau à base de cellulose. Dans le cas des nanomatériaux à base
de cellulose solides, déchirer ou extraire une quantité de matériau suffisante pour des déterminations
en double tel que décrit dans l’Article 8, sous la forme de petits morceaux, d’une poudre sèche ou de
paillettes pris à différents endroits de l’échantillon. Si l’échantillon est sous la forme d’une suspension
aqueuse, extraire une quantité de matériau suffisante pour des déterminations en double tel que décrit
dans l’Article 8 (calculée comme anhydre, c’est-à-dire exempte d’eau et d’humidité) à différents endroits
de la suspension aqueuse, et sécher pour obtenir un échantillon pré-séché sous la forme de paillettes,
de poudre ou autre solide, qui doit être mélangé jusqu’à devenir homogène, après quoi l’éprouvette doit
être obtenue à partir de l’échantillon pré-séché. Il n’est pas recommandé d’effectuer une filtration pour
concentrer les échantillons dilués avant le séchage car elle est susceptible d’entraîner une perte de
matériau dissous.
8 Mode opératoire
8.1 Généralités
Bien que le procédé d’incinération à l’état sec suivi d’un traitement acide soit décrit dans le présent
document, d’autres méthodes de dissolution comme l’incinération à l’état humide ou la minéralisation
par micro-ondes utilisant différentes combinaisons d’acides peuvent aussi être utilisées, à condition
que les résultats aient été validés.
AVERTISSEMENT — Pour les échantillons à forte teneur en silicium, la minéralisation par micro-
ondes avec de l’acide nitrique donnera des résultats moins élevés pour le magnésium et pour
certains autres éléments.
8.2 Incinération de l’éprouvette – papier, carton et pâte
Effectuer le mode opératoire en double.
Sécher à l’air les éprouvettes et les éprouvettes de matières sèches dans l’atmosphère du laboratoire
jusqu’à ce qu’elles atteignent l’équilibre en humidité.
Déterminer la teneur en matières sèches sur l’échantillon pour teneur en matière sèche, tel que spécifié
dans l’ISO 638. Peser cette éprouvette en même temps que l’éprouvette utilisée pour l’incinération.
Pour la détermination des éléments majeurs, comprenant le magnésium, le calcium, le sodium et le
potassium, une éprouvette de 1 g à 2 g (calculée comme anhydre) est recommandée. Pour les éléments
mineurs, comprenant le manganèse, le fer et le cuivre, des éprouvettes de 5 g à 10 g sont recommandées.
Si des niveaux traces d’éléments sont nécessaires, il est recommandé d’utiliser des éprouvettes d’une
masse supérieure à 10 g.
Effectuer l’incinération de l’éprouvette conformément à l’ISO 1762.
Afin d’éviter la formation de flammes, recouvrir le creuset d’un couvercle. Il convient que celui-ci ne
recouvre que partiellement le creuset pour éviter l’apparition de conditions réductrices dans le creuset,
sinon des composés insolubles dans l’acide pourraient se former. Dans des conditions réductrices, par
exemple, le cuivre peut être perdu en raison de la formation d’un alliage de platine.
Si, pour une raison quelconque, l’éprouvette ayant la masse minimale ne peut pas tenir dans le creuset,
l’échantillon minéralisé peut être reconstitué à un volume final inférieur (voir 8.4).
© ISO 2019 – Tous droits réservés 5

---------------------- Page: 10 ----------------------
ISO 12830:2019(F)

8.3 Incinération de l’éprouvette – nanomatériaux à base de cellulose
Effectuer le mode opératoire en double.
Sécher à l’air les éprouvettes et les éprouvettes de matières sèches dans l’atmosphère du laboratoire
jusqu’à ce qu’elles atteignent l’équilibre en humidité.
Déterminer la teneur en matières sèches sur l’échantillon pour teneur en matière sèche, tel que spécifié
dans l’ISO 638. Peser cette éprouvette en même temps que l’éprouvette utilisée pour l’incinération.
Pour la détermination des éléments majeurs, comprenant le magnésium, le calcium, le sodium et le
potassium, une éprouvette de 1 g à 2 g (calculée comme anhydre) est recommandée. Pour les éléments
mineurs, comprenant le manganèse, le fer et le cuivre, des éprouvettes de 5 g à 10 g sont recommandées.
Si des niveaux traces d’éléments sont nécessaires, il est recommandé d’utiliser des éprouvettes d’une
masse supérieure à 10 g. Cependant, étant donné qu’il peut s’avérer difficile d’obtenir de telles quantités
de nanomatériau à base de cellulose à partir de certains échantillons tels que les suspensions diluées,
des éprouvettes de masse inférieure peuvent être utilisées, à condition que la masse des éprouvettes
utilisées soit mentionnée dans le rapport conformément à l’Article 13. Il est possible que le niveau de
fidélité obtenu soit inférieur pour les éprouvettes de plus grande taille.
Effectuer l’incinération de l’éprouvette conformément à l’ISO 1762.
Afin d’éviter la formation de flammes, recouvrir le creuset d’un couvercle. Il convient que celui-ci ne
recouvre que partiellement le creuset pour éviter l’apparition de conditions réductrices dans le creuset,
sinon des composés insolubles dans l’acide pourraient se former. Dans des conditions réductrices, par
exemple, le cuivre peut être perdu en raison de la formation d’un alliage de platine.
Si, pour une raison quelconque, l’éprouvette ayant la masse minimale ne peut pas tenir dans le creuset,
l’échantillon minéralisé peut être reconstitué à un volume final inférieur (voir 8.5).
Une étape d’incinération additionnelle à 525 °C est souvent nécessaire à la détermination du résidu
(cendres) dans les nanocristaux de cellulose. Afin d’éviter la perte de métaux au cours d’un chauffage
prolongé, cette opération additionnelle n’est pas recommandée pour la détermination des métaux
solubles dans l’acide dans les nanocristaux de cellulose.
8.4 Dissolution du résidu – papier, carton et pâte
Après l’incinération, laisser refroidir le creuset. Pour éviter les éclaboussures, bien mouiller le résidu
de cal
...

SLOVENSKI STANDARD
oSIST ISO 12830:2020
01-oktober-2020
Papir, karton, lepenka in vlaknine ter celulozni nanomateriali - Določevanje v
kislini topnega magnezija, kalcija, mangana, železa, bakra, natrija in kalija
Paper, board, pulps and cellulose nanomaterials -- Determination of acid-soluble
magnesium, calcium, manganese, iron, copper, sodium and potassium
Papiers, cartons, pâtes et nanomatériaux à base de cellulose -- Détermination de la
teneur en magnésium, calcium, manganèse, fer, cuivre, sodium et potassium soluble
dans l'acide
Ta slovenski standard je istoveten z: ISO 12830:2019
ICS:
85.040 Vlaknine Pulps
85.060 Papir, karton in lepenka Paper and board
oSIST ISO 12830:2020 en,fr,de
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

---------------------- Page: 1 ----------------------
oSIST ISO 12830:2020

---------------------- Page: 2 ----------------------
oSIST ISO 12830:2020
INTERNATIONAL ISO
STANDARD 12830
Second edition
2019-07
Paper, board, pulps and cellulose
nanomaterials — Determination of
acid-soluble magnesium, calcium,
manganese, iron, copper, sodium and
potassium
Papiers, cartons, pâtes et nanomatériaux à base de cellulose —
Détermination de la teneur en magnésium, calcium, manganèse, fer,
cuivre, sodium et potassium soluble dans l'acide
Reference number
ISO 12830:2019(E)
©
ISO 2019

---------------------- Page: 3 ----------------------
oSIST ISO 12830:2020
ISO 12830:2019(E)

COPYRIGHT PROTECTED DOCUMENT
© ISO 2019
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2019 – All rights reserved

---------------------- Page: 4 ----------------------
oSIST ISO 12830:2020
ISO 12830:2019(E)

Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Principle . 2
5 Reagents and materials . 2
6 Apparatus and equipment . 4
7 Sampling . 4
7.1 General considerations . 4
7.2 Paper, board and pulp sampling. 4
7.3 Cellulose nanomaterial sampling . 4
8 Procedure. 5
8.1 General . 5
8.2 Incineration of the test specimen — Paper, board and pulp . 5
8.3 Incineration of the test specimen — Cellulose nanomaterials . 5
8.4 Dissolution of the residue — Paper, board and pulp . 6
8.5 Dissolution of the residue — Cellulose nanomaterials . 6
9 Calibration solutions — Measurement considerations . 7
9.1 General . 7
9.2 Calibration solutions for AAS. 7
9.3 Calibration solutions for ICP/ES . 7
10 Blank solution . 7
10.1 Blank solution for AAS . 7
10.2 Blank solution for ICP/ES . 7
11 Determination . 7
12 Expression of results . 8
13 Test report . 9
Annex A (informative) Precision .10
Bibliography .19
© ISO 2019 – All rights reserved iii

---------------------- Page: 5 ----------------------
oSIST ISO 12830:2020
ISO 12830:2019(E)

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www .iso
.org/iso/foreword .html.
This document was prepared by Technical Committee ISO/TC 6, Paper, board and pulps.
This second edition cancels and replaces the first edition (ISO 12830:2011), which has been technically
revised. The main changes to the previous edition are as follows:
— the scope has been changed to include cellulose nanomaterials in addition to paper, board and pulps;
— a definition of cellulose nanomaterial has been incorporated, along with additional instructions for
sampling, sample preparation, incineration and dissolution of the residue for cellulose nanomaterials;
— additional instructions are given on how to express results when an element is not detected.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www .iso .org/members .html.
iv © ISO 2019 – All rights reserved

---------------------- Page: 6 ----------------------
oSIST ISO 12830:2020
ISO 12830:2019(E)

Introduction
This document combines the determination of the acid-soluble part of magnesium (Mg), calcium (Ca),
manganese (Mn), iron (Fe), copper (Cu), sodium (Na) and potassium (K) into a single document. The
scope of this document covers only the acid-soluble part of the elements.
[1]
ISO 17812 specifies the procedure for the determination of total magnesium, total calcium, total
manganese, total iron and total copper by atomic absorption spectrometry (AAS) or by inductively
coupled plasma emission spectrometry (ICP/ES).
In the context of this document, “cellulose nanomaterial” refers specifically to cellulose nano-objects
(see 3.1 to 3.3). Owing to their nanoscale dimensions, these cellulose nano-objects can have intrinsic
properties, behaviours or functionalities that are distinct from those associated with paper, board
and pulps.
© ISO 2019 – All rights reserved v

---------------------- Page: 7 ----------------------
oSIST ISO 12830:2020

---------------------- Page: 8 ----------------------
oSIST ISO 12830:2020
INTERNATIONAL STANDARD ISO 12830:2019(E)
Paper, board, pulps and cellulose nanomaterials —
Determination of acid-soluble magnesium, calcium,
manganese, iron, copper, sodium and potassium
WARNING — The method specified in this document involves the use of some hazardous
chemicals and of gases that may form explosive mixtures with air. Care should be taken to
ensure that the relevant precautions are observed.
WARNING — The method specified in this document involves the use of nanomaterials.
Care should be taken to ensure observation of the relevant precautions and guidelines for
nanotechnology laboratory safety and best practices.
1 Scope
This document specifies the procedure for the determination of acid-soluble magnesium, calcium,
manganese, iron, copper, sodium and potassium by atomic absorption spectrometry (AAS) or by
inductively coupled plasma emission spectrometry (ICP/ES). The acid-soluble element comprises
the acid-soluble part of the incineration residue, i.e. that part of the ignition residue obtained after
incineration which is soluble in hydrochloric acid or nitric acid. In cases where the residue is completely
soluble, the result obtained by the procedure specified in this document is a measure of the total
amount of each element in the sample.
This document is applicable to all types of paper, board, pulps and cellulose nanomaterials.
The limit of determination depends on the element and on the instrument used.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 186, Paper and board — Sampling to determine average quality
ISO 638, Paper, board and pulps — Determination of dry matter content — Oven-drying method
ISO 1762, Paper, board and pulps — Determination of residue (ash) on ignition at 525 °C
ISO 3696, Water for analytical laboratory use — Specification and test methods
ISO 7213, Pulps — Sampling for testing
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https: //www .iso .org/obp/
— IEC Electropedia: available at http: //www .electropedia .org/
© ISO 2019 – All rights reserved 1

---------------------- Page: 9 ----------------------
oSIST ISO 12830:2020
ISO 12830:2019(E)

3.1
cellulose nanomaterial
material composed predominantly of cellulose, with any external dimension between approximately
1 nm and 100 nm, or a material having internal structure or surface structure in the nanoscale (3.4),
with the internal structure or surface structure composed predominantly of cellulose
Note 1 to entry: The terms nanocellulose and cellulosic nanomaterial are synonymous with cellulose
nanomaterial.
Note 2 to entry: Some cellulose nanomaterials can be composed of chemically modified cellulose.
Note 3 to entry: This generic term is inclusive of cellulose nano-object and cellulose nanostructured material.
Note 4 to entry: See also definitions of cellulose, nanoscale, cellulose nano-object and cellulose nanostructured
material in ISO/TS 20477:2017.
[SOURCE: ISO/TS 20477:2017, 3.3.1, modified — “1 nm to 100 nm” changed to “1 nm and 100 nm”;
abbreviations deleted from Note 1 to entry; Note 4 to entry added.]
3.2
nano-object
discrete piece of material with one, two or three external dimensions in the nanoscale (3.4)
Note 1 to entry: The second and third external dimensions are orthogonal to the first dimension and to each other.
[SOURCE: ISO/TS 80004-1:2015, 2.5]
3.3
cellulose nano-object
nano-object (3.2) composed predominantly of cellulose
[SOURCE: ISO/TS 20477:2017, 3.3.2]
3.4
nanoscale
length range approximately from 1 nm to 100 nm
Note 1 to entry: Properties that are not extrapolations from larger sizes are predominantly exhibited in this
length range.
[SOURCE: ISO/TS 80004-1:2015, 2.1]
4 Principle
A test specimen is incinerated at 525 °C and the residue is dissolved in hydrochloric acid or nitric acid.
The concentration of each element in the test solution is then determined by AAS or ICP/ES. Techniques
using other types of instrumentation, such as ICP-mass spectrometry (ICP/MS), may also be used
provided that they give at least the same level of precision as AAS or ICP/ES, and that they have been
properly validated. The use of any such instrumentation shall also be reported.
5 Reagents and materials
5.1 General
All chemicals shall be of reagent grade or better unless otherwise indicated. Water shall be distilled or
deionized, of grade 2 or better in accordance with ISO 3696.
5.2 Hydrochloric acid (HCl), 6 mol/l, trace metal grade. Dilute 500 ml of concentrated hydrochloric
acid (specific gravity 1,19 g/ml) to 1 000 ml with water.
2 © ISO 2019 – All rights reserved

---------------------- Page: 10 ----------------------
oSIST ISO 12830:2020
ISO 12830:2019(E)

5.3 Nitric acid (HNO ), concentrated (specific gravity 1,4 g/ml), trace metal grade.
3
5.4 Lanthanum chloride (LaCl ), solution, ρ(La) = 50 g/l. In a 1 000 ml volumetric flask, dissolve 59 g
3
of lanthanum oxide (La O ), in small portions, in 200 ml of hydrochloric acid (5.2) and dilute to 1 000 ml
2 3
with water.
This lanthanum chloride solution is used to eliminate chemical interference when determining calcium
and magnesium in an air/acetylene flame. The solution is not required for use with the nitrous oxide/
acetylene flame or when the ICP/ES technique is used.
5.5 Cesium chloride (CsCl), solution, ρ(Cs) = 50 g/l. In a 1 000 ml volumetric flask, dissolve 63,5 g of
ultrapure cesium chloride (CsCl) in water and dilute to 1 000 ml with water.
This cesium chloride solution is used to suppress ionization of sodium and potassium in an air/acetylene
flame. It is also used to suppress ionization of calcium in a nitrous oxide/acetylene flame. The solution
is not required when the ICP/ES technique is used.
5.6 Standard stock solutions of each element, commercially available certified atomic absorption
or atomic emission standard solutions can be used. Standard stock solutions can also be prepared as
follows:
5.6.1 Magnesium, 1 000 mg/l standard solution. Dissolve 1,000 g of magnesium metal ribbon in
100 ml of 1:4 nitric acid (5.3) and dilute to 1 000 ml with water.
5.6.2 Calcium, 1 000 mg/l standard solution. Dissolve 2,497 g of primary standard calcium carbonate
(CaCO ) in a minimum volume of 1:4 nitric acid (5.3) and dilute to 1 000 ml with water.
3
5.6.3 Manganese, 1 000 mg/l standard solution. Dissolve 1,000 g of manganese metal strip or wire in
a minimum volume of 1:1 nitric acid (5.3) and dilute to 1 000 ml with water.
5.6.4 Iron, 1 000 mg/l standard solution. Dissolve 1,000 g of iron metal strip or wire in 20 ml of
hydrochloric acid (5.2) and dilute to 1 000 ml with water.
5.6.5 Copper, 1 000 mg/l standard solution. Dissolve 1,000 g of copper metal strip or wire in a
minimum volume of 1:1 nitric acid (5.3) and dilute to 1 000 ml with water.
5.6.6 Sodium, 1 000 mg/l standard solution. Ignite a portion of anhydrous sodium sulfate (Na SO ) at
2 4
550 °C in a crucible of platinum or porcelain. Allow to cool to room temperature in a desiccator. Dissolve
3,089 g of dried sodium sulfate in water and dilute to 1 000 ml with water. Store in a polyethylene bottle.
5.6.7 Potassium, 1 000 mg/l standard solution. Ignite a portion of anhydrous potassium sulfate
(K SO ) at 550 °C in a crucible of platinum or porcelain. Allow to cool to room temperature in a
2 4
desiccator. Dissolve 2,228 g of dried potassium sulfate in water and dilute to 1 000 ml with water. Store in
a polyethylene bottle.
5.7 Acetylene gas and/or nitrogen oxide gas, of a grade suitable for AAS. Nitrous oxide is used only
when measuring calcium.
WARNING — Acetylene gas forms explosive mixtures with air.
5.8 Carrier gas, appropriate gas for the inductively coupled plasma emission spectrometer. Argon is
usually recommended as a carrier gas.
© ISO 2019 – All rights reserved 3

---------------------- Page: 11 ----------------------
oSIST ISO 12830:2020
ISO 12830:2019(E)

6 Apparatus and equipment
6.1 General
Ordinary laboratory equipment is used. All glassware and plastic ware shall be cleaned thoroughly and
rinsed with 0,1 mol/l hydrochloric acid or 10 % nitric acid, followed by reagent grade water, prior to use.
6.2 Filter paper, ash free, particle retention 20 μm to 25 μm.
6.3 Crucibles, platinum or fused silica, of minimum capacity 50 ml.
6.4 Muffle furnace, capable of maintaining a temperature of 525 °C ± 25 °C.
6.5 Balance, of capacity 100 g, with a scale division (readability) of 0,1 mg or better.
6.6 Atomic absorption spectrometer, equipped with air/acetylene and nitrous oxide/acetylene
burners and with hollow cathode lamps for Mg, Ca, Mn, Fe, Cu, Na and K. Multi-element lamps can also
be used.
6.7 Inductively coupled plasma/emission spectrometer.
6.8 Disposable protective gloves.
7 Sampling
7.1 General considerations
If the analysis is being made to evaluate a lot of paper, board, pulp or cellulose nanomaterial, the
sample shall be selected in accordance with ISO 186 or ISO 7213, as relevant. If the analysis is made
on another type of sample, report the source of the sample and, if possible, the sampling procedure.
Select the material to be tested so that it is representative of the sample received. A sufficient amount
of material shall be collected from the sample to allow for at least duplicate determinations. Avoid cut
edges, punched holes and other parts where metallic contamination may have occurred.
Disposable protective gloves (6.8) shall be worn when handling samples to avoid contamination.
Since iron tends to have a non-homogeneous distribution, it is recommended that a composite sample
be used.
7.2 Paper, board and pulp sampling
In the case of paper, board and pulp, tear or remove at least 30 g of small pieces from various parts of
the sample. This amount is sufficient for the duplicate determinations described in Clause 8.
7.3 Cellulose nanomaterial sampling
In some cases, it may not be practical or possible to obtain large quantities of solid material from a
cellulose nanomaterial sample. In the case of solid cellulose nanomaterials, tear or remove sufficient
material for duplicate determinations as described in Clause 8, in the form of small pieces, dry powder
or flakes from various parts of the sample. If the sample is in aqueous suspension form, remove
sufficient material for duplicate determinations as described in Clause 8 (calculated as oven-dry, i.e.
water- and moisture-free) from various portions of the aqueous suspension, and dry to give a pre-dried
sample in the form of flakes, powder or other solid, which shall be mixed to homogeneity, after which
the test specimen shall be obtained from the pre-dried sample. Filtration to concentrate dilute samples
prior to drying is not recommended as it may result in loss of dissolved material.
4 © ISO 2019 – All rights reserved

---------------------- Page: 12 ----------------------
oSIST ISO 12830:2020
ISO 12830:2019(E)

8 Procedure
8.1 General
Although dry ignition followed by acid treatment is described in this document, other dissolution
methods such as wet ignition or microwave digestion using various acid combinations can also be used,
provided that the results have been validated.
WARNING — For samples with high silicon content, microwave digestion with nitric acid will
give lower results for magnesium and for some other elements.
8.2 Incineration of the test specimen — Paper, board and pulp
Carry out the procedure in duplicate.
Air-dry the test and dry matter specimens in the laboratory atmosphere until they reach moisture
equilibrium.
Determine the dry matter content on the dry matter specimen, as specified in ISO 638. Weigh this
specimen at the same time as the test specimen used for incineration.
For the determination of major elements, including magnesium, calcium, sodium and potassium, a 1 g to
2 g test specimen (calculated as oven-dry) is recommended. For minor elements, including manganese,
iron and copper, test specimens of 5 g to 10 g are recommended. If trace levels of elements are needed,
then it is recommended that test specimen masses larger than 10 g be used.
Carry out ashing of the test specimen as described in ISO 1762.
In order to avoid flames, cover the crucible with a lid. The lid should only cover the crucible partially
to avoid the occurrence of reducing conditions in the crucible, in which case acid-insoluble compounds
might be formed. Under reducing conditions, for example, copper might be lost due to the formation of
a platinum alloy.
If the minimum test specimen mass cannot fit into the crucible for any reason, the digested sample may
be reconstituted to a smaller final volume (see 8.4).
8.3 Incineration of the test specimen — Cellulose nanomaterials
Carry out the procedure in duplicate.
Air-dry the test and dry matter specimens in the laboratory atmosphere until they reach moisture
equilibrium.
Determine the dry matter content on the dry matter specimen, as specified in ISO 638. Weigh this
specimen at the same time as the test specimen used for incineration.
For the determination of major elements, including magnesium, calcium, sodium and potassium, a 1 g to
2 g test specimen (calculated as oven-dry) is recommended. For minor elements, including manganese,
iron and copper, test specimens of 5 g to 10 g are recommended. If trace levels of elements are needed,
then it is recommended that test specimen masses larger than 10 g be used. However, owing to the
possible impracticality of obtaining such quantities of cellulose nanomaterial from certain samples
such as dilute suspensions, smaller test specimen masses may be used, provided that the test specimen
masses used are stated in the report in accordance with Clause 13. It is possible that the level of
precision obtained will be lower than for larger test specimens.
Carry out ashing of the test specimen as described in ISO 1762.
In order to avoid flames, cover the crucible with a lid. The lid should only cover the crucible partially
to avoid the occurrence of reducing conditions in the crucible, in which case acid-insoluble compounds
© ISO 2019 – All rights reserved 5

---------------------- Page: 13 ----------------------
oSIST ISO 12830:2020
ISO 12830:2019(E)

might be formed. Under reducing conditions, for example, copper might be lost due to the formation of
a platinum alloy.
If the minimum test specimen mass cannot fit into the crucible for any reason, the digested sample may
be reconstituted to a smaller final volume (see 8.5).
An additional ashing step at 525 °C is often needed for residue (ash content) determination in cellulose
nanocrystals. This additional procedure is not recommended for determination of acid-soluble metals
in cellulose nanocrystals, in order to avoid loss of metals during prolonged heating.
8.4 Dissolution of the residue — Paper, board and pulp
After ashing, allow the crucible to cool. To avoid splattering, carefully moisten the residue of ignition
with water and add cautiously, in a fume hood, 5 ml of hydrochloric acid (5.2) or nitric acid (5.3) to the
crucible. Evaporate to dryness on a boiling water bath or hotplate or using an infrared lamp. Repeat
this procedure.
For samples with high carbonate content, more than 10 ml of acid (2 × 5 ml) might be needed; repeat
the procedure as required.
Add a further 5 ml of hydrochloric acid (5.2) to the residue. If some insoluble residue is visible, heat,
without boiling, the crucible covered with a watch glass for a few minutes. Using the filter paper (6.2),
filter the contents of the crucible into a 100 ml volumetric flask. To ensure that the transfer is complete,
add another portion of 5 ml of hydrochloric acid (5.2) to the crucible and heat again if necessary. Filter
this last portion of acid into the main portion in the volumetric flask with the aid of some water (5.1). If
required for AAS, add 4 ml of lanthanum chloride solution (5.4) or 2 ml of cesium chloride solution (5.5)
to the volumetric flask. Fill up to the mark with water and mix. This is the test solution.
Microwave vessel size restrictions may limit the amount of sample which can be digested. If necessary,
the digested sample may be heated to dryness and reconstituted to a final volume of 25 ml such that the
proportions as described previously are respected.
8.5 Dissolution of the residue — Cellulose nanomaterials
After ashing, allow the crucible to cool. Nitric acid (5.3) is recommended for the dissolution of the
residue from cellulose nanomaterials. To avoid splattering, carefully moisten the residue of ignition
with water and add cautiously, in a fume hood, 5 ml of nitric acid (5.3) to the crucible. Evaporate to
dryness on a boiling water bath or hotplate or using an infrared lamp. Repeat this procedure.
For cellulose nanomaterial samples, more than 10 ml of acid (2 × 5 ml) might be needed; repeat the
procedure as required.
[2]
ISO 21400 provides a method for microwave dissolution of cellulose nanocrystal samples (using nitric
acid), which may be followed for cellulose nanocrystals or any other samples for which the described
microwave digestion procedure has bee
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.