SIST EN 17140:2021
(Main)Thermal insulation products for buildings - Factory made Vacuum Insulation Panels (VIP) - Specification
Thermal insulation products for buildings - Factory made Vacuum Insulation Panels (VIP) - Specification
This standard defines requirements for factory made Vacuum Insulation Panels (VIP), which are used for the thermal insulation of buildings. This standard describes the product properties and contains test methods and rules for conformity evaluations, identification and labelling. The determination of VIP properties influencing the service life time and VIP performance is content of this standard as well. The standard provides a test method to determine the ageing of the product including the influence of the linear thermal bridges at the edges.
This standard is applicable for all types of VIP independent of the core material or type of envelope. It is also applicable for VIP using desiccants but not getters, due to a lack of experience with ageing of these panels.
This standard does not specify the required level of a given property to be achieved by a product to demonstrate fitness for purpose in a particular application. The levels required for a given application are to be found in regulations or non-conflicting standards.
Products with a declared thermal resistance RD lower than 0,5 m2 K/W or a declared thermal conductivity λD according to Annex C of this Standard greater than 0,015 W/(m⋅K) are not covered by this standard.
This standard does not cover products intended to be used for the insulation of building equipment and industrial installations.
Wärmedämmstoffe für Gebäude - Werksmäßig hergestellte Vakuumisolationspanele (VIP) - Spezifikation
Diese Norm legt die Anforderungen für werksmäßig hergestellte Vakuumisolationspaneele (VIP) fest, die für die Wärmedämmung von Gebäuden verwendet werden. Diese Norm beschreibt die Produkteigenschaften und enthält Prüfverfahren und Regeln für Konformitätsbewertungen, Identifizierung und Kennzeichnung. Auch die Bestimmung von VIP-Eigenschaften, die die Nutzungsdauer und die Leistung der VIP beeinflussen, wird in dieser Norm behandelt. Die Norm beschreibt ein Prüfverfahren für die Alterungsbestimmung der Produkte, das auch den Einfluss linearer Wärmebrücken an den Kanten berücksichtigt.
Diese Norm gilt für alle Arten von VIP unabhängig vom Kernmaterial oder der Art der Umhüllung. Sie gilt auch für VIP, die Trocknungsmittel verwenden, jedoch nicht für solche, die Getter (gasabsorbierende Stoffe) nutzen, da keine Erfahrungswerte zur Alterung dieser Paneele vorliegen.
Die vorliegende Norm legt nicht die Stufe einer gegebenen Eigenschaft fest, die ein Produkt erreichen muss, damit in einer bestimmten Anwendung seine Gebrauchstauglichkeit nachgewiesen ist. Die für eine gegebene Anwendung erforderlichen Stufen sind in Verordnungen oder nicht in Konflikt stehenden Normen zu finden.
Produkte mit einem Nenn-Wärmedurchlasswiderstand RD unter 0,5 m2 K/W oder einer Nenn-Wärmeleit-fähigkeit λD von mehr als 0,015 W/(m⋅K) nach Anhang C dieser Norm fallen nicht unter diese Norm.
Diese Norm behandelt nicht Produkte, die für die Wärmedämmung von Gebäudetechnik und Industrie-anlagen vorgesehen sind.
Produits isolants thermiques pour le bâtiment - Panneaux Isolants sous Vide produits de façon industrielle (VIP) - Spécification
La présente norme définit les exigences pour les panneaux isolants sous vide manufacturés (VIP), qui sont utilisés pour l’isolation thermique des bâtiments. La présente norme décrit les propriétés des produits et contient des méthodes et des règles d’essai pour les évaluations de la conformité, l’identification et l’étiquetage. La détermination des propriétés des VIP influençant la durée de vie utile et la performance des VIP est également contenue dans la présente norme. La norme fournit une méthode d’essai pour déterminer le vieillissement du produit, y compris l’influence des ponts thermiques linéiques sur les bords.
La présente norme s’applique { tous les types de VIP indépendamment du matériau du coeur ou du type d’enveloppe. Elle s’applique également aux VIP utilisant des dessicants, mais pas de sorbeurs, en raison du manque d’expérience du vieillissement de ces panneaux.
La présente norme ne spécifie pas le niveau exigé d’une propriété donnée devant être atteint par un produit pour en démontrer l’aptitude { l’emploi dans une application particulière. Les niveaux exigés pour une application donnée figurent dans les réglementations ou les normes non contradictoires.
Les produits ayant une résistance thermique déclarée RD inférieure à 0,5 m2·K/W ou une conductivité thermique déclarée λD conformément { l’Annexe C de la présente norme supérieure à 0,015 W/(m·K) ne sont pas couverts par la présente norme.
La présente norme ne couvre pas les produits conçus pour être utilisés pour l’isolation de l’équipement du bâtiment et des installations industrielles.
Toplotnoizolacijski proizvodi za stavbe - Industrijsko izdelani vakuumski izolacijski paneli (VIP) - Specifikacija
General Information
Relations
Standards Content (Sample)
SLOVENSKI STANDARD
SIST EN 17140:2021
01-januar-2021
Toplotnoizolacijski proizvodi za stavbe - Industrijsko izdelani vakuumski
izolacijski paneli (VIP) - Specifikacija
Thermal insulation products for buildings - Factory made Vacuum Insulation Panels (VIP)
- Specification
Wärmedämmstoffe für Gebäude - Werksmäßig hergestellte Vakuumisolationspanele
(VIP) - Spezifikation
Produits isolants thermiques pour le bâtiment - Panneaux Isolants sous Vide produits de
façon industrielle (VIP) - Spécification
Ta slovenski standard je istoveten z: EN 17140:2020
ICS:
91.100.60 Materiali za toplotno in Thermal and sound insulating
zvočno izolacijo materials
SIST EN 17140:2021 en,fr,de
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
---------------------- Page: 1 ----------------------
SIST EN 17140:2021
---------------------- Page: 2 ----------------------
SIST EN 17140:2021
EN 17140
EUROPEAN STANDARD
NORME EUROPÉENNE
October 2020
EUROPÄISCHE NORM
ICS 91.100.60
English Version
Thermal insulation products for buildings - Factory-made
vacuum insulation panels (VIP) - Specification
Produits isolants thermiques pour le bâtiment - Wärmedämmstoffe für Gebäude - Werksmäßig
Panneaux Isolants sous Vide produits de façon hergestellte Vakuumisolationspaneele (VIP) -
industrielle (PIV) - Spécification Spezifikation
This European Standard was approved by CEN on 1 September 2020.
CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and
United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2020 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN 17140:2020 E
worldwide for CEN national Members.
---------------------- Page: 3 ----------------------
SIST EN 17140:2021
EN 17140:2020 (E)
Contents Page
European foreword . 3
1 Scope . 4
2 Normative references . 4
3 Terms and definitions, symbols, units and abbreviated terms . 6
3.1 Terms and definitions . 6
3.2 Symbols and abbreviated terms . 7
4 Characteristics . 10
4.1 Reaction to fire . 10
4.2 Propensity to undergo continuous smouldering . 10
4.3 Release of VOCs . 11
4.4 Compressive strength . 11
4.5 Tensile/flexural strength . 11
4.6 Thermal resistance . 12
4.7 Durability aspects . 12
5 Assessment methods . 13
5.1 General . 13
5.2 Test methods . 14
6 Assessment and verification of constancy of performance - AVCP . 21
6.1 General . 21
6.2 Assessment of performance . 21
6.3 Verification of constancy of performance . 23
Annex A (normative) Determination of the expressed values of thermal resistance and
thermal conductivity . 25
Annex B (normative) Factory production control (FPC) . 27
Annex C (normative) Determination of the aged values of thermal resistance and thermal
conductivity including edge effect . 30
Annex D (normative) Measurement of p1/2 of core materials . 40
Annex E (normative) Barrier performance of the envelope . 42
Annex F (normative) Determination of desiccant service life time . 44
Annex G (normative) Measurement of inner pressure . 46
Annex H (normative) Mounting and fixing procedure for reaction to fire tests . 53
Annex ZA (informative) Relationship of this European Standard with Regulation (EU)
No.305/2011 . 58
Bibliography . 62
2
---------------------- Page: 4 ----------------------
SIST EN 17140:2021
EN 17140:2020 (E)
European foreword
This document (EN 17140:2020) has been prepared by Technical Committee CEN/TC 88 “Thermal
insulating materials and products”, the secretariat of which is held by DIN.
This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by April 2021, and conflicting national standards shall be
withdrawn at the latest by July 2022.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
This document has been prepared under a standardization request given to CEN by the European
Commission and the European Free Trade Association.
For relationship with (EU) Regulation 305/2011, see informative Annex ZA, which is an integral part of
this document.
According to the CEN-CENELEC Internal Regulations, the national standards organisations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria,
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland,
Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of
North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the
United Kingdom.
3
---------------------- Page: 5 ----------------------
SIST EN 17140:2021
EN 17140:2020 (E)
1 Scope
This document specifies characteristics of factory-made vacuum insulation panels (VIP) intended to be
used for the thermal insulation of buildings.
This document is applicable for all types of factory-made vacuum insulation panels (VIP), independent
of the core material (see 3.1.10) or type of envelope (see 3.1.11).
This document is applicable for factory-made vacuum insulation panels (VIP) with or without
desiccants (see 3.1.12) and with and without evacuation valve (3.1.14).
The products covered by this document can be used in roofs, walls, ceilings and floors.
This document specifies procedures for assessment and verification of constancy of performance
(AVCP) of characteristics of factory-made vacuum insulation panels (VIP).
This document does not cover products:
— intended to be used for the thermal insulation of building equipment and industrial installations;
— intended to be used for civil engineering works;
— intended to be used as perimeter or foundation;
2
— with a thermal resistance R lower than 0,5 m ⋅K/W;
D
— that contain getters (3.1.13);
— that have protective layers (3.1.9).
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
EN 822:2013, Thermal insulating products for building applications — Determination of length and width
EN 823:2013, Thermal insulating products for building applications — Determination of thickness
EN 824:2013, Thermal insulating products for building applications — Determination of squareness
EN 825:2013, Thermal insulating products for building applications — Determination of flatness
EN 826:2013, Thermal insulating products for building applications — Determination of compression
behaviour
EN 1604:2013, Thermal insulating products for building applications — Determination of dimensional
stability under specified temperature and humidity conditions
EN 1605:2013, Thermal insulating products for building applications — Determination of deformation
under specified compressive load and temperature conditions
EN 1606:2013, Thermal insulating products for building applications — Determination of compressive
creep
EN 1607:2013, Thermal insulating products for building applications — Determination of tensile strength
perpendicular to faces
4
---------------------- Page: 6 ----------------------
SIST EN 17140:2021
EN 17140:2020 (E)
EN 12090:2013, Thermal insulating products for building applications — Determination of shear
behaviour
EN 12664:2001, Thermal performance of building materials and products — Determination of thermal
resistance by means of guarded hot plate and heat flow meter methods — Dry and moist products of
medium and low thermal resistance
EN 12667:2001, Thermal performance of building materials and products — Determination of thermal
resistance by means of guarded hot plate and heat flow meter methods — Products of high and medium
thermal resistance
EN 13238:2010, Reaction to fire tests for building products — Conditioning procedures and general rules
for selection of substrates
EN 13501-1:2018, Fire classification of construction products and building elements — Part 1:
Classification using data from reaction to fire tests
EN 13820:2003, Thermal insulating materials for building applications — Determination of organic
content
EN 13823:2020, Reaction to fire tests for building products — Building products excluding floorings
exposed to the thermal attack by a single burning item
EN 16516:2017+A1:2020, Construction products: Assessment of release of dangerous substances —
Determination of emissions into indoor air
EN 16733:2016, Reaction to fire tests for building products — Determination of a building product's
propensity to undergo continuous smouldering
EN ISO 1182:2020, Reaction to fire tests for products — Non-combustibility test (ISO 1182:2020)
EN ISO 1716:2018, Reaction to fire tests for products — Determination of the gross heat of combustion
(calorific value) (ISO 1716:2018)
EN ISO 10211:2017, Thermal bridges in building construction — Heat flows and surface temperatures —
Detailed calculations (ISO 10211:2017)
1
EN ISO 10456:2007, Building materials and products — Hygrothermal properties — Tabulated design
values and procedures for determining declared and design thermal values (ISO 10456:2007)
EN ISO 11925-2:2020, Reaction to fire tests — Ignitability of products subjected to direct impingement of
flame - Part 2: Single-flame source test (ISO 11925-2:2020)
ISO 16269-6:2014, Statistical interpretation of data — Part 6: Determination of statistical tolerance
intervals
1
As impacted by corrigendum EN ISO 10456:2007/AC:2009.
5
---------------------- Page: 7 ----------------------
SIST EN 17140:2021
EN 17140:2020 (E)
3 Terms and definitions, symbols, units and abbreviated terms
3.1 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
• ISO Online browsing platform: available at https://www.iso.org/obp
• IEC Electropedia: available at http://www.electropedia.org/
3.1.1
vacuum insulation panel
VIP
insulation product made of a sealed barrier envelope containing a core material with an open porosity
structure, where the gas pressure inside the sealed barrier envelope is lowered below atmospheric
pressure
3.1.2
centre of panel
COP
area of the VIP whose thermal performance is not affected by the edge effect
3.1.3
edge effect
form of thermal bridging along the edge due to the higher thermal conductivity of the outer envelope,
both through the material of the envelope itself and the sealed folded envelope, compared to the core
3.1.4
inner pressure
total gas pressure within the VIP, measured in mbar
3.1.5
pressure compensation method
method of testing inner pressure of a VIP using a laminate-lift-off technique with a vacuum chamber or
suction bell
Note 1 to entry: In some literature also called foil-lift-off technique.
3.1.6
vacuum chamber
device to remove air or other gases from a volume around a VIP to determine the inner pressure of a
VIP by the pressure compensation method
3.1.7
suction bell
device to remove air or other gases from a volume connected to a part of a VIP to determine the inner
pressure of a VIP by the pressure compensation method
3.1.8
pressure sensor
device to measure the inner pressure of a VIP
6
---------------------- Page: 8 ----------------------
SIST EN 17140:2021
EN 17140:2020 (E)
3.1.9
protective layer
functional surface material, e.g. paper, glass fibre textile or rubber, which is not considered as separate
thermal insulation layer to be added to the thermal resistance of the product, intended to improve the
handling of the product and protect it from damage
3.1.10
core material
insulation material with an open porosity structure constituting the main component inside the VIP
envelope
3.1.11
envelope
airtight and water-tight outer layer of the VIP securing the vacuum inside the VIP
3.1.12
desiccant
additive material different from the core material which intends to absorb or adsorb water vapour in
the sealed panel
3.1.13
getter
additive material different from the core material which intends to absorb or adsorb other gases than
water vapour in the sealed panel
3.1.14
evacuation valve
device to connect the VIP to a vacuum pump
3.2 Symbols and abbreviated terms
For the purposes of this document, the following symbols, units and abbreviated terms apply.
2
A surface area of the VIP m
2
A metering area of the GHP or HFM apparatus used for the m
m
measurement
b core width m
c
b working width m
w
CS(Y) compressive stress/strength(Y=yield) kPa
d thickness m
dambient thickness of the ventilated VIP m
d nominal thickness of the product m
N
f acceleration factor for dry air of the VIP envelope –
air
f acceleration factor for water vapour of the VIP envelope –
v
k factor related to the number of test results available –
l core length m
c
l working length m
w
l length of the joints within the metering area m
ψ
7
---------------------- Page: 9 ----------------------
SIST EN 17140:2021
EN 17140:2020 (E)
N number of test results –
3 2
P air permeability of the VIP envelope m Pa/ (m ⋅s)
air
2
P water intake rate of the VIP envelope kg/(m ⋅s)
v
p pressure inside the VIP Pa
air
p maximum value of the inner pressure measured at least Pa
lim
24 h after production
p water vapour pressure inside the VIP Pa
v
p initial value of the inner pressure Pa
0
p inner pressure of a VIP, where λ increases by 1/2 of the Pa
1/2
thermal conductivity of still air.
2
R R at centre of panel plus ageing m ⋅K/W
COP,90/90aged 90/90
2
R expressed thermal resistance including ageing, edge-effect m ⋅K/W
D
and rounding rules
2
R mean thermal resistance m ⋅K/W
mean
2
R one test result of thermal resistance m ⋅K/W
i
2
R 90 % fractile with a confidence level of 90 % for the m ⋅K/W
90/90
thermal resistance
2
S top surface area (length x width) of the VIP m
S deviation from squareness on width or length mm/m
b
S deviation from flatness mm
max
S nominal perimeter of the product m
N
2
s estimate of the standard deviation of the thermal m ⋅K/W
R
resistance
s estimate of the standard deviation of the thermal W/(m⋅K)
λ
conductivity
s estimate of the standard deviation of the initial thermal W/(m⋅K)
λi
conductivity within 90 days of production
T temperature K
t time s
t service life time of the desiccant a
Des
Χ water content inside the VIP mass-%
change of water content with time at 50°C 70 % RH mass-%/s
X´
t,50/70
X compressive creep mm
ct
X total thickness reduction mm
t
λ thermal conductivity W/(m⋅K)
λ thermal conductivity of a ventilated VIP at centre of the W/(m⋅K)
ambient
panel
λ thermal conductivity for centre of panel W/(m·K)
COP
8
---------------------- Page: 10 ----------------------
SIST EN 17140:2021
EN 17140:2020 (E)
λ (25years) average value of thermal conductivity over the first 25 W/(m⋅K)
COP,mean
years in use at centre of panel
λ , λ at centre of panel plus ageing W/(m⋅K)
COP 90/90,aged 90/90
λ expressed thermal conductivity including ageing, edge- W/(m⋅K)
D
effect and rounding rules
λ equivalent thermal conductivity including edge effects for W/(m·K)
eq ja
the specific joint assembly
λ mean value of thermal conductivity W/(m⋅K)
mean
λ one test result of thermal conductivity W/(m⋅K)
i
λ’ change of thermal conductivity with pressure W/(m⋅K⋅Pa)
p
λ’ change of thermal conductivity with time W/(m⋅K⋅s)
t
λ’ change of thermal conductivity with humidity W/(m⋅K)/mass-%
Χ
λ 90 % fractile with a confidence level of 90 % for the W/(m⋅K)
90/90
thermal conductivity
λ’ change of thermal conductivity with time at 23°C 50 % RH W/(m⋅K⋅a)
t, 23, 50
’ change of thermal conductivity with time at 50°C 70 % RH W/(m⋅K⋅a)
λ
t, 50, 70
λ(t) time-dependent thermal conductivity value W/(m⋅K)
λ(t) time dependent value of thermal conductivity at 23°C W/(m⋅K)
, 23, 50
50 % RH
λ* (t = 0) interpolated initial value of thermal conductivity W/(m∙K)
σ compressive stress kPa
c
σ compressive strength kPa
m
σ tensile strength perpendicular to faces kPa
mt
σ compressive stress at 10 % deformation kPa
10
τ shear strength kPa
Φ relative humidity inside the VIP %
Φ’ change of relative humidity inside the VIP as function of (rel. humidity-
X
water content %)/(mass-%)
Ψ linear thermal transmittance W/(m∙K)
ψ linear thermal transmittance for the joints in the metering W/(m·K)
m
area
9
---------------------- Page: 11 ----------------------
SIST EN 17140:2021
EN 17140:2020 (E)
Abbreviated terms used in this document:
VIP vacuum insulation panel
COP centre of panel
AVCP assessment and verification of constancy of performance (previously named attestation of
conformity)
DoP declaration of performance
FPC factory production control
STP standard condition for temperature and pressure
RtF reaction to fire
ThIB thermal insulation for buildings
VOC volatile organic compounds
4 Characteristics
4.1 Reaction to fire
4.1.1 Determination
Reaction to fire classification shall be determined according to 5.2.1.
4.1.2 Expression
The reaction to fire shall be classified and expressed according to EN 13501-1:2018, Clause 11.
EXAMPLE Class E.
4.2 Propensity to undergo continuous smouldering
4.2.1 Determination
Propensity to undergo continuous smouldering of the core material shall be determined according to
5.2.2.
4.2.2 Evaluation and expression
Propensity to undergo continuous smouldering shall be expressed according to EN 16733:2016, Clause
11. If the test according to EN 16733:2016, Clause 11 has been passed, the result shall be expressed as
follows: “the product does not show propensity for continuous smouldering combustion”. If the test
according to EN 16733:2016, Clause 11 has been failed, the result shall be expressed as follows: “the
product shows propensity for continuous smouldering combustion”. If the assessment was not possible
according to EN 16733:2016, Clause 11, the result shall be expressed as follows: “assessment of the
propensity for continuous smouldering combustion is not possible”.
If a designation code is given, the following abbreviations shall be used:
— the product does not show propensity for continuous smouldering combustion: NoS
— the product shows propensity for continuous smouldering combustion: S
— the assessment of the propensity for continuous smouldering combustion is not possible: ANP.
EXAMPLE NoS.
10
---------------------- Page: 12 ----------------------
SIST EN 17140:2021
EN 17140:2020 (E)
4.3 Release of VOCs
4.3.1 Determination
The release of VOCs into indoor air shall be determined according to 5.2.3.
4.3.2 Expression
The release of VOCs into indoor air shall be expressed as values in accordance with
EN 16516:2017+A1:2020, 10.6.
4.4 Compressive strength
4.4.1 Determination
The compressive strength shall be determined according to 5.2.4.
4.4.2 Evaluation and expression
The compressive strength shall be expressed as a designation code CS(Y)i or CS(10)i, depending on the
result of the testing of 5.2.4. The test result i shall be rounded downwards in steps of 10 kPa.
EXAMPLE 1 CS(Y)120.
EXAMPLE 2 CS(10)120.
4.5 Tensile/flexural strength
4.5.1 Tensile strength perpendicular to faces
4.5.1.1 Determination
The tensile strength perpendicular to faces, σ , shall be determined according to 5.2.5.1.
mt
4.5.1.2 Expression
The tensile strength perpendicular to faces, σ , shall be expressed as a designation code TRi. The value i
mt
of the tensile strength shall be rounded downwards in steps of 10 kPa.
EXAMPLE TR80.
4.5.2 Shear strength
4.5.2.1 Determination
Shear strength, τ, shall be determined according to 5.2.5.2.
4.5.2.2 Expression
The shear strength shall be expressed as a designation code SSi. The value i of the shear strength shall
be rounded downwards in steps of 50 kPa.
EXAMPLE SS150.
11
---------------------- Page: 13 ----------------------
SIST EN 17140:2021
EN 17140:2020 (E)
4.6 Thermal resistance
4.6.1 Thermal resistance of the VIP
4.6.1.1 Determination
The thermal resistance shall be determined according to 5.2.6.1.
4.6.1.2 Expression
2
The thermal resistance shall be rounded downwards to the nearest 0,05 m ⋅K/W and be expressed as a
2
value in m ⋅K/W. It shall be expressed together with thermal conductivity rounded upwards in steps of
0,000 5 W/(m⋅K) and expressed as a value in W/(m⋅K). It shall be expressed together with the thickness
given as a value in mm.
2
EXAMPLE RD= 4,60 m ⋅K/W (λD= 0,0065 W/(m⋅K), d= 30 mm).
4.6.2 Thermal resistance of the ventilated VIP under ambient pressure due to damage
4.6.2.1 Determination
The thermal resistance of the ventilated VIP under ambient pressure due to damage shall be
determined according to 5.2.6.2.
4.6.2.2 Expression
The thermal resistance of the ventilated VIP under ambient pressure due to damage shall be rounded
2 2
downwards to the nearest 0,05 m ⋅K/W and be expressed as a value in m ⋅K/W. It shall be expressed
together with the thickness given as a value in mm.
2
EXAMPLE R = 1,00 m ⋅K/W (d = 20 mm).
ambient, eff ambient
4.7 Durability aspects
4.7.1 Dimensional stability under specified temperature and humidity conditions
4.7.1.1 Determination
Dimensional stability under specified temperature or under specified temperature and humidity
conditions shall be determined according to 5.2.7.1.
4.7.1.2 Expression
Dimensional stability under specified temperature or under specified temperature and humidity
conditions shall be expressed as a code in the following way: If the relative changes in core length and
core width do not exceed 1 % and the relative reduction in thickness does not exceed 3 %, the code
shall be DS. Otherwise, the code shall be NoDS .
EXAMPLE DS.
12
---------------------- Page: 14 ----------------------
SIST EN 17140:2021
EN 17140:2020 (E)
4.7.2 Dimensional stability under specified compressive load and temperature conditions
4.7.2.1 Determination
Dimensional stability under specified compressive load and temperature conditions shall be
determined according to 5.2.7.2.
4.7.2.2 Expression
Dimensional stability under specified compressive load and temperature conditions shall be expressed
as a code in the following way: If the relative changes in thickness do not exceed 3 %, the code shall be
DSC. Otherwise, the code shall be NoDSC.
EXAMPLE DSC.
4.7.3 Compressive creep
4.7.3.1 Determination
The compressive creep shall be determined according to 5.2.7.3.
4.7.3.2 Expression
Compressive creep, X , shall be expressed as a designation code CC(i /i /y)σ together with the total
ct 1 2 c
thickness reduction, X . The value of the total thickness reduction i and the value of compressive creep
t 1
i after y years shall be given in steps of 0,1 mm and at the expressed stress σ .
2 c
EXAMPLE CC(2,5/2/10)50.
5 Assessment methods
5.1 General
5.1.1 Sampling
Unlike other insulating materials, VIP cannot be cut to the sizes required by the test standards. They
shall be produced in the sizes stated in Table 1.
5.1.2 Conditioning
Conditioning of the test specimens shall be at least 24 h at (23 ± 5) °C unless otherwise specified in the
test standard. In case of dispute, the test specimens shall be stored at (23 ± 2) °C and (50 ± 5) % relative
humidity for at least 24 h prior to testing.
13
---------------------- Page: 15 ----------------------
SIST EN 17140:2021
EN 17140:2020 (E)
Table 1 — Characteristics and test specimens
Clause Test specimen
length and width
No Title
5.2.1 Reaction to fire See Annex H
Propensity to undergo 800 x 300
5.2.2
continuous smouldering
5.2.3 Release of VOCs Full-size
Compressive stress or ≥ 200
5.2.4
compressive strength
Tensile strength ≥ 200
5.2.5
perpendicular to faces
5.2.5 Shear strength 200 x 100
Thermal resistance and ≥ 300
5.2.6
thermal conductivity
Inner pressure at least ≥ 300
5.2.6
24 h after production
5.2.6 Length and width Full-size
Squareness on length Full-size
5.2.6
and width
5.2.6 Flatness Full-size
5.2.6 Thickness Full-size
Dimensional stability ≥ 200
5.2.7 according to specified
temperature conditions
Deformation under ≥ 200
specified compressive
5.2.7
load and temperature
conditions
5.2.7 Compressive creep ≥ 200
5.2 Test methods
5.2.1 Reaction to fire
Reaction to fire classification shall be determined using the test standards referred to within
EN 13501-1:2018, Clause 8 for the claimed class. For specific tests, the mounting and fixing procedure
shall be as given in Annex H.
14
---------------------- Page: 16 ----------------------
SIST EN 17140:2021
EN 17140:2020 (E)
5.2.2 Propensity to undergo continuous smouldering
The propensity to undergo continuous smouldering of the VIP shall be tested on the core material. The
material shall be tested according to EN 16733:2016. The following conditions and
...
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.