Metallic powders - Determination of envelope-specific surface area from measurements of the permeability to air of a powder bed under steady-state flow conditions (ISO 10070:2019)

This document specifies a method of measuring the air permeability and the porosity of a packed bed of metal powder, and of deriving therefrom the value of the envelope-specific surface area. The permeability is determined under steady-state flow conditions, using a laminar flow of air at a pressure near atmospheric. This document does not include the measurement of permeability by a constant volume method.
Several different methods have been proposed for this determination, and several test devices are available commercially. They give similar, reproducible results, provided that the general instructions given in this document are respected, and the test parameters are identical.
This document does not specify a particular commercial test device and corresponding test procedure. However, for the convenience of the user, an informative annex has been included (see Annex A) which is intended to give some practical information on three specific methods:
—     the Lea and Nurse method, involving a test device which can be built in a laboratory (see A.1);
—     the Zhang Ruifu method, using a similar test device (see A.2);
—     the Gooden and Smith method, involving a test device which can be built in a laboratory but for which a commercial test device also exists. (Two types of commercial test device exist; one of these is no longer available for purchase, but is still being used, see A.3.)
These methods are given as examples only. Other test devices available in various countries are acceptable within the scope of this document.
This testing method is applicable to all metallic powders, including powders for hardmetals, up to 1 000 µm in diameter, but it is generally used for particles having diameters between 0,2 µm and 75,0 µm. It is not intended to be used for powders composed of particles whose shape is far from equiaxial, i.e. flakes or fibres, unless specifically agreed upon between the parties concerned.
This testing method is not applicable to mixtures of different metallic powders or powders containing binders or lubricant.
If the powder contains agglomerates, the measured surface area can be affected by the degree of agglomeration. If the powder is subjected to a de-agglomeration treatment (see Annex B), the method used is to be agreed upon between the parties concerned.

Metallpulver - Ermittlung der spezifischen Außenoberfläche durch Messung der Luftdurchlässigkeit einer Pulverprobe unter gleichförmigen Strömungsbedingungen (ISO 10070:2019)

Dieses Dokument legt ein Verfahren zur Messung der Luftpermeabilität und der Porosität eines verdichteten Pulverbetts und daraus die Ableitung des Wertes für die spezifische Außenoberfläche fest. Die Permeabilität wird unter gleichförmigen Strömungsbedingungen mithilfe eines laminaren Luftstromes bei nahezu atmosphärischem Druck bestimmt. Dieses Dokument umfasst nicht die Messung der Permeabilität mithilfe des Verfahrens bei konstantem Volumen.
Für diese Bestimmung wurden mehrere unterschiedliche Verfahren vorgeschlagen und viele kommerzielle Prüfgeräte stehen zur Verfügung. Sie ergeben ähnliche, wiederholbare Ergebnisse, vorausgesetzt, die allgemeinen Anweisungen dieses Dokuments werden eingehalten und die Prüfparameter sind identisch.
Dieses Dokument behandelt kein bestimmtes kommerzielles Prüfgerät mit dem dazugehörigen Prüfverfahren. Trotzdem ist zur besseren Benutzerfreundlichkeit ein informativer Anhang mit praktischen Hinweisen zu drei spezifischen Verfahren angefügt (siehe Anhang A):
- das Verfahren nach Lea und Nurse, einschließlich eines Prüfgeräts, das in einem Labor aufgebaut werden kann (siehe A.1);
- das Verfahren nach Zhang Ruifu mit ähnlichem Prüfgerät (siehe A.2);
- das Verfahren nach Gooden und Smith, einschließlich eines Prüfgeräts, das in einem Labor aufgebaut werden kann, für das aber auch ein kommerzielles Prüfgerät existiert. (Es stehen zwei kommerzielle Prüfgeräte zur Verfügung; eines davon ist nicht mehr käuflich erwerbbar, wird jedoch nach wie vor eingesetzt – siehe A.3).
Diese Verfahren sind lediglich Beispiele. Innerhalb des Anwendungsbereiches dieses Dokuments sind auch andere Prüfgeräte, die in den verschiedenen Ländern zur Verfügung stehen, zulässig.
Dieses Prüfverfahren ist für alle Metallpulver, einschließlich Hartmetallpulver, mit einem Teilchendurchmesser bis 1 000 µm anwendbar, wird aber im Allgemeinen für Pulverteilchen mit einem Durchmesser von 0,2 µm bis 75,0 µm angewendet. Es dient nicht dazu, bei Pulvern angewendet zu werden, deren Pulverteilchen stark von der äquiaxialen Form abweichen, d. h. flocken- und nadelförmig, außer das wurde zwischen den beteiligten Parteien speziell vereinbart.
Dieses Prüfverfahren ist nicht anwendbar bei Gemischen aus verschiedenen Metallpulvern oder bei Pulvern, die Bindemittel oder Gleitmittel enthalten.
Wenn das Pulver Agglomerate enthält, kann die gemessene Oberfläche durch den Agglomerationsgrad beeinflusst sein. Wenn das Pulver einer Desagglomerationsbehandlung unterzogen wird (siehe Anhang B), muss das angewendete Verfahren zwischen den beteiligten Parteien vereinbart werden.

Poudres métalliques - Détermination de la surface spécifique d'enveloppe à partir de mesures de la perméabilité à l'air d'un lit de poudre dans des conditions d'écoulement permanent (ISO 10070:2019)

Le présent document spécifié une méthode de mesure de la perméabilité à l'air et de la porosité d'un lit de poudre métallique tassé, et permettant de déduire une valeur de la surface spécifique d'enveloppe. La perméabilité est déterminée dans des conditions d'écoulement permanent, à l'aide d'un débit d'air laminaire à une pression voisine de la pression atmosphérique. Le présent document ne traite pas de la mesure de la perméabilité à volume constant.
Plusieurs méthodes sont proposées pour remplir l'objectif fixé. De nombreux appareils d'essai, disponibles dans le commerce, permettent de mener à bien la détermination. Ces appareils d'essai donnent des résultats similaires et reproductibles dans la mesure où les instructions générales données dans le présent document sont respectées et où les paramètres d'essai identiques.
II n'est pas possible, dans le présent document, de se limiter à un appareil d'essai du commerce particulier et au mode opératoire d'essai correspondant. En vue d'aider néanmoins l'utilisateur, une annexe est prévue (voir Annexe A) pour donner des renseignements pratiques sur trois méthodes spécifiques:
—          la méthode Lea et Nurse, impliquant un appareil d'essai conçu en laboratoire (voir A.1);
—          la méthode Zhang Ruifu, utilisant un appareil d'essai similaire (voir A.2);
—          la méthode Gooden et Smith impliquant un appareil d'essai qui peut être conçu en laboratoire, mais correspond aussi à un modèle du commerce. (Deux types d'appareil d'essai du commerce existent; l'un d'eux n'est plus disponible à l'achat, mais est toujours utilisé, voir A.3.
Ces méthodes sont données uniquement à titre d'exemple, mais n'excluent pas l'emploi d'autres matériels commercialisés dans certains pays et conformes au présent document.
La méthode d'essai est applicable à toutes les poudres métalliques, y compris les poudres de métaux durs, jusqu'à 1 000 μm de diamètre, mais est généralement réservée aux particules de diamètre comprises entre 0,2 et 75 μm. Elle n'est pas destinée à être utilisée pour les poudres composées de particules dont la forme s'écarte trop de I'équiaxialité, par exemple du type flocons ou fibres. Dans ce cas, il est admis de ne l'utiliser qu'avec le consentement de toutes les parties concernées.
La méthode d'essai n'est pas utilisable pour les mélanges de poudres métalliques différentes ou de poudres renfermant des liants ou lubrifiants.
Lorsque la poudre contient des agglomérats, la surface mesurée peut être affectée par le degré d'agglomération. Si la poudre est soumise à un traitement de désagglomération (voir Annexe B), la méthode utilisée doit être subordonnée à l'accord des parties concernées.

Kovinski prah - Ugotavljanje specifične ovojne površine z merjenjem zračne prepustnosti nasute plasti prašnih delcev pri ustaljenem toku zraka skoznjo (ISO 10070:2019)

Ta dokument določa metodo za merjenje zračne prepustnosti in poroznosti plasti kovinskega prahu in za izpeljevanje vrednosti specifične ovojne površine iz tega. Prepustnost se določa pod ustaljenimi pogoji pretoka, z uporabo laminarnega zračnega toka pri tlaku, ki je blizu atmosferskemu. Ta dokument ne vključuje merjenja prepustnosti po metodi konstantne prostornine. Za to ugotavljanje je bilo predlaganih več različnih metod in komercialno je na voljo več preskusnih naprav. Te naprave dajejo podobne rezultate z možnostjo reprodukcije pod pogojem, da se upoštevajo splošna navodila, podana v tem dokumentu, in da so preskusni parametri enaki. Ta dokument ne določa posebne komercialne preskusne naprave in ustreznega preskusnega postopka. Vendar je bil v pomoč uporabniku vključen informativni dodatek (glej dodatek A), katerega namen je podati nekaj praktičnih informacij glede treh specifičnih metod: – metoda Lea in Nurse, ki vključuje preskusno napravo, ki jo je mogoče izdelati v laboratoriju (glej A.1); – metoda Zhang Ruifu, pri kateri se uporablja podobna preskusna naprava (glej A.2); – metoda Gooden in Smith, ki vključuje preskusno napravo, ki jo je mogoče izdelati v laboratoriju, vendar zanjo obstaja tudi komercialna preskusna naprava. (Obstajata dva tipa komercialne preskusne naprave; eden od njiju ni več na voljo za nakup, a se še vedno uporablja, glej A.3.) Te metode so podane le kot primer. Druge preskusne naprave, ki so na voljo v različnih državah, so sprejemljive znotraj področja uporabe tega dokumenta. Ta metoda za preskušanje se uporablja za vse vrste kovinskega prahu, vključno s prahom za trde kovine, s premerom do 1000 μm, vendar se običajno uporablja za delce s premerom med 0,2 μm in 75,0 μm. Metoda ni namenjena za uporabo pri prahu, sestavljenem iz delcev, katerih oblika je daleč od enakoosne, tj. kosmi ali vlakna, razen če se glede tega zadevni stranki izrecno ne dogovorita drugače. Ta metoda za preskušanje se ne uporablja za mešanice različnega kovinskega prahu ali prahu, ki vsebuje veziva ali mazivo. Če prah vsebuje aglomerate, lahko stopnja aglomeracije vpliva na izmerjeno površino. Če prah ni izpostavljen deaglomeracijski obdelavi (glej dodatek B), se morata o uporabljeni metodi dogovoriti obe zadevni stranki.

General Information

Status
Published
Public Enquiry End Date
20-Jun-2019
Publication Date
14-Jan-2020
Technical Committee
I13 - Imaginarni 13
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
30-Dec-2019
Due Date
05-Mar-2020
Completion Date
15-Jan-2020

Overview

EN ISO 10070:2019 - Metallic powders: Determination of envelope-specific surface area from measurements of the permeability to air of a powder bed under steady‑state flow conditions - defines a permeametry method to measure the air permeability, porosity, and derive the envelope‑specific surface area of metallic powders. The method uses a laminar air flow at near‑atmospheric pressure under steady‑state (constant pressure drop) conditions. This standard is intended for powder metallurgy applications and is published by CEN/ISO.

Key topics and technical requirements

  • Measured quantities: air permeability of a packed powder bed, porosity, envelope‑specific surface area and (optionally) equivalent sphere diameter.
  • Flow conditions: steady‑state laminar flow (constant pressure drop); constant volume methods are excluded.
  • Applicable powders: all metallic powders (including hardmetals) up to 1 000 µm diameter, commonly used for particles 0.2–75.0 µm. Not intended for highly non‑equiaxial shapes (flakes, fibres) unless agreed by parties.
  • Limitations: not applicable to mixtures of different metallic powders or powders containing binders or lubricants. Measured surface area is the envelope surface (excludes closed/blind pores) and can differ from gas‑adsorption total surface area.
  • Formulations and models: the standard discusses permeability–porosity relationships (e.g., Carman‑Arnell and Kozeny‑Carman formulations) and the assumptions that affect calculated surface area.
  • Annexes and methods: informative Annex A describes practical implementations - Lea & Nurse, Zhang Ruifu and Gooden & Smith methods (Gooden & Smith now includes an automated/commercial device in the 2019 edition). Annex B covers de‑agglomeration treatments and their effect on results.
  • Reporting: specifies test preparation, packed bed formation, measurement procedure, expression of results and required test report details. ISO 3954 (sampling) is referenced for sample selection.

Applications and users

  • Who uses it: powder manufacturers, quality control laboratories, research & development teams in powder metallurgy, sintered component producers, and suppliers of powder testing equipment. It is also relevant for additive manufacturing and hardmetal production where powder surface area and flow/packing behavior affect processing.
  • Practical uses: characterizing powder flow/permeability for process control, comparing batches, converting envelope surface area to equivalent particle size for specification, verifying de‑agglomeration effects, and calibrating permeametry instruments.

Related standards

  • ISO 3954 (Powders for powder metallurgical purposes - Sampling) - normative reference cited in EN ISO 10070:2019.

Keywords: EN ISO 10070:2019, metallic powders, envelope-specific surface area, permeability to air, powder bed, steady-state flow, permeametry, Carman-Kozeny, de-agglomeration, powder metallurgy.

Standard

SIST EN ISO 10070:2020

English language
26 pages
Preview
Preview
e-Library read for
1 day

Frequently Asked Questions

SIST EN ISO 10070:2020 is a standard published by the Slovenian Institute for Standardization (SIST). Its full title is "Metallic powders - Determination of envelope-specific surface area from measurements of the permeability to air of a powder bed under steady-state flow conditions (ISO 10070:2019)". This standard covers: This document specifies a method of measuring the air permeability and the porosity of a packed bed of metal powder, and of deriving therefrom the value of the envelope-specific surface area. The permeability is determined under steady-state flow conditions, using a laminar flow of air at a pressure near atmospheric. This document does not include the measurement of permeability by a constant volume method. Several different methods have been proposed for this determination, and several test devices are available commercially. They give similar, reproducible results, provided that the general instructions given in this document are respected, and the test parameters are identical. This document does not specify a particular commercial test device and corresponding test procedure. However, for the convenience of the user, an informative annex has been included (see Annex A) which is intended to give some practical information on three specific methods: — the Lea and Nurse method, involving a test device which can be built in a laboratory (see A.1); — the Zhang Ruifu method, using a similar test device (see A.2); — the Gooden and Smith method, involving a test device which can be built in a laboratory but for which a commercial test device also exists. (Two types of commercial test device exist; one of these is no longer available for purchase, but is still being used, see A.3.) These methods are given as examples only. Other test devices available in various countries are acceptable within the scope of this document. This testing method is applicable to all metallic powders, including powders for hardmetals, up to 1 000 µm in diameter, but it is generally used for particles having diameters between 0,2 µm and 75,0 µm. It is not intended to be used for powders composed of particles whose shape is far from equiaxial, i.e. flakes or fibres, unless specifically agreed upon between the parties concerned. This testing method is not applicable to mixtures of different metallic powders or powders containing binders or lubricant. If the powder contains agglomerates, the measured surface area can be affected by the degree of agglomeration. If the powder is subjected to a de-agglomeration treatment (see Annex B), the method used is to be agreed upon between the parties concerned.

This document specifies a method of measuring the air permeability and the porosity of a packed bed of metal powder, and of deriving therefrom the value of the envelope-specific surface area. The permeability is determined under steady-state flow conditions, using a laminar flow of air at a pressure near atmospheric. This document does not include the measurement of permeability by a constant volume method. Several different methods have been proposed for this determination, and several test devices are available commercially. They give similar, reproducible results, provided that the general instructions given in this document are respected, and the test parameters are identical. This document does not specify a particular commercial test device and corresponding test procedure. However, for the convenience of the user, an informative annex has been included (see Annex A) which is intended to give some practical information on three specific methods: — the Lea and Nurse method, involving a test device which can be built in a laboratory (see A.1); — the Zhang Ruifu method, using a similar test device (see A.2); — the Gooden and Smith method, involving a test device which can be built in a laboratory but for which a commercial test device also exists. (Two types of commercial test device exist; one of these is no longer available for purchase, but is still being used, see A.3.) These methods are given as examples only. Other test devices available in various countries are acceptable within the scope of this document. This testing method is applicable to all metallic powders, including powders for hardmetals, up to 1 000 µm in diameter, but it is generally used for particles having diameters between 0,2 µm and 75,0 µm. It is not intended to be used for powders composed of particles whose shape is far from equiaxial, i.e. flakes or fibres, unless specifically agreed upon between the parties concerned. This testing method is not applicable to mixtures of different metallic powders or powders containing binders or lubricant. If the powder contains agglomerates, the measured surface area can be affected by the degree of agglomeration. If the powder is subjected to a de-agglomeration treatment (see Annex B), the method used is to be agreed upon between the parties concerned.

SIST EN ISO 10070:2020 is classified under the following ICS (International Classification for Standards) categories: 77.160 - Powder metallurgy. The ICS classification helps identify the subject area and facilitates finding related standards.

You can purchase SIST EN ISO 10070:2020 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of SIST standards.

Standards Content (Sample)


SLOVENSKI STANDARD
01-marec-2020
Kovinski prah - Ugotavljanje specifične ovojne površine z merjenjem zračne
prepustnosti nasute plasti prašnih delcev pri ustaljenem toku zraka skoznjo (ISO
10070:2019)
Metallic powders - Determination of envelope-specific surface area from measurements
of the permeability to air of a powder bed under steady-state flow conditions (ISO
10070:2019)
Metallpulver - Ermittlung der spezifischen Außenoberfläche durch Messung der
Luftdurchlässigkeit einer Pulverprobe unter gleichförmigen Strömungsbedingungen (ISO
10070:2019)
Poudres métalliques - Détermination de la surface spécifique d'enveloppe à partir de
mesures de la perméabilité à l'air d'un lit de poudre dans des conditions d'écoulement
permanent (ISO 10070:2019)
Ta slovenski standard je istoveten z: EN ISO 10070:2019
ICS:
77.160 Metalurgija prahov Powder metallurgy
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

EN ISO 10070
EUROPEAN STANDARD
NORME EUROPÉENNE
December 2019
EUROPÄISCHE NORM
ICS 77.160
English Version
Metallic powders - Determination of envelope-specific
surface area from measurements of the permeability to air
of a powder bed under steady-state flow conditions (ISO
10070:2019)
Poudres métalliques - Détermination de la surface Metallpulver - Bestimmung der spezifischen
spécifique d'enveloppe à partir de mesures de la Außenoberfläche durch Messung der Permeabilität von
perméabilité à l'air d'un lit de poudre dans des Luft in einem Pulverbett unter gleichförmigen
conditions d'écoulement permanent (ISO 10070:2019) Strömungsbedingungen (ISO 10070:2019)
This European Standard was approved by CEN on 14 December 2019.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and
United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION

EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2019 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN ISO 10070:2019 E
worldwide for CEN national Members.

Contents Page
European foreword . 3

European foreword
This document (EN ISO 10070:2019) has been prepared by Technical Committee ISO/TC 119 "Powder
metallurgy" in collaboration with Technical Committee CEN/SS M11 “Powder metallurgy” the
secretariat of which is held by CCMC.
This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by June 2020, and conflicting national standards shall be
withdrawn at the latest by June 2020.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
According to the CEN-CENELEC Internal Regulations, the national standards organizations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria,
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland,
Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of
North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the
United Kingdom.
Endorsement notice
The text of ISO 10070:2019 has been approved by CEN as EN ISO 10070:2019 without any modification.

INTERNATIONAL ISO
STANDARD 10070
Second edition
2019-12
Metallic powders — Determination of
envelope-specific surface area from
measurements of the permeability to
air of a powder bed under steady-state
flow conditions
Poudres métalliques — Détermination de la surface spécifique
d'enveloppe à partir de mesures de la perméabilité à l'air d'un lit de
poudre dans des conditions d'écoulement permanent
Reference number
ISO 10070:2019(E)
©
ISO 2019
ISO 10070:2019(E)
© ISO 2019
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2019 – All rights reserved

ISO 10070:2019(E)
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Symbols . 3
5 General principles . 4
5.1 Permeability . 4
5.2 Carman-Arnell and Kozeny-Carman formulae . 4
5.3 General . 5
5.4 Envelope density . 5
6 Procedure. 6
6.1 Preparation of test portion . 6
6.2 Preparation of packed powder bed . 6
6.3 Determination . 6
7 Expression of results . 6
8 Test report . 7
Annex A (informative) Examples of methods of determining the permeability to air of a
powder bed . 8
Annex B (informative) Preliminary treatment of powder for de-agglomeration .17
Bibliography .18
ISO 10070:2019(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to
the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see
www .iso .org/ iso/ foreword .html.
This document was prepared by Technical Committee ISO/TC 119, Powder metallurgy, Subcommittee
SC 2, Sampling and testing methods for powders (including powders for hardmetals).
This second edition cancels and replaces the first edition (ISO 10070:1991), which has been technically
revised.
The main changes compared to the previous edition are as follows:
— introduction of an automated test device based on the Gooden and Smith method, including
procedure and calibration.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www .iso .org/ members .html.
iv © ISO 2019 – All rights reserved

ISO 10070:2019(E)
Introduction
The measurement of the permeability of a packed powder bed to a laminar gas flow is the basis of this
document. The determination can be made either at constant pressure drop (steady-state flow) or at
variable pressure drop (constant volume). This document deals only with determinations made under
steady-state flow conditions.
The permeability measured is influenced by the porosity of the powder bed. For a given particle shape,
the values of permeability and porosity can be used to calculate a specific surface area of the powder by
means of different formulae.
The surface area so calculated includes only those walls of the pores in the powder bed which are swept
by the gas flow. It does not take into account closed or blind pores. It is known as the envelope-specific
surface area. It can be very different from the total surface area of particles as measured, for instance,
by gas adsorption methods.
A single equation is used in the standard methods described in this document. It entails certain
limitations with respect to the type of powder (particle shape) and the porosity of the powder bed for
which the method is applicable. Consequently, this is not an absolute method, and the value obtained
depends upon the procedure used and the assumptions made.
The specific surface area determined can be converted into a mean equivalent spherical diameter (see
Clause 3).
INTERNATIONAL STANDARD ISO 10070:2019(E)
Metallic powders — Determination of envelope-specific
surface area from measurements of the permeability to air
of a powder bed under steady-state flow conditions
1 Scope
This document specifies a method of measuring the air permeability and the porosity of a packed
bed of metal powder, and of deriving therefrom the value of the envelope-specific surface area. The
permeability is determined under steady-state flow conditions, using a laminar flow of air at a pressure
near atmospheric. This document does not include the measurement of permeability by a constant
volume method.
Several different methods have been proposed for this determination, and several test devices are
available commercially. They give similar, reproducible results, provided that the general instructions
given in this document are respected, and the test parameters are identical.
This document does not specify a particular commercial test device and corresponding test procedure.
However, for the convenience of the user, an informative annex has been included (see Annex A) which
is intended to give some practical information on three specific methods:
— the Lea and Nurse method, involving a test device which can be built in a laboratory (see A.1);
— the Zhang Ruifu method, using a similar test device (see A.2);
— the Gooden and Smith method, involving a test device which can be built in a laboratory but for
which a commercial test device also exists. (Two types of commercial test device exist; one of these
is no longer available for purchase, but is still being used, see A.3.)
These methods are given as examples only. Other test devices available in various countries are
acceptable within the scope of this document.
This testing method is applicable to all metallic powders, including powders for hardmetals, up to
1 000 µm in diameter, but it is generally used for particles having diameters between 0,2 µm and
75,0 µm. It is not intended to be used for powders composed of particles whose shape is far from
equiaxial, i.e. flakes or fibres, unless specifically agreed upon between the parties concerned.
This testing method is not applicable to mixtures of different metallic powders or powders containing
binders or lubricant.
If the powder contains agglomerates, the measured surface area can be affected by the degree of
agglomeration. If the powder is subjected to a de-agglomeration treatment (see Annex B), the method
used is to be agreed upon between the parties concerned.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 3954, Powders for powder metallurgical purposes — Sampling
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO 10070:2019(E)
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at http:// www .electropedia .org/
3.1
envelope density
mass of a powder bed divided by its envelope volume (3.3)
Note 1 to entry: The envelope density may be less than the solid density when particles contain pores that do not
contribute to the gas flow through the powder bed.
3.2
envelope-specific surface area
specific surface area of a powder as determined by gas permeametry
3.3
envelope volume
volume occupied by the particles in a powder bed, excluding the volume of the interstices (3.5)
Note 1 to entry: In permeametry, the envelope volume comprises the volume of the solid matter plus the volume
of all the pores which do not contribute to gas flow (closed pores, blind pores, micropores, surface micropores,
surface roughness, etc.). Since this volume cannot be measured by any known method, it is taken, for the purposes
of this document, as being equal to the effective volume, as determined by pyknometry.
3.4
equivalent sphere diameter
diameter of theoretical non-porous spherical particles of identical size, with which the same method
of permeametry as that used for the powder under examination would give the same volume-specific
surface area (3.9)
3.5
interstices
spaces between particles in a powder bed, through which the air flows
3.6
mass-specific surface area
surface area of a powder divided by its mass
Note 1 to entry: This area depends on the type of method used for its determination.
3.7
permeability
ability of a porous material to allow a fluid to flow through it
Note 1 to entry: to entry In this document, the fluid used is dry air.
3.8
permeable porosity
volume of interstices (3.5) divided by the volume of the powder bed
3.9
volume-specific surface area
surface area of a powder divided by its effective volume (i.e. by its envelope volume)
2 © ISO 2019 – All rights reserved

ISO 10070:2019(E)
4 Symbols
Table 1 — Symbols used in the text
Symbol Meaning Unit Observations
Powder bed
A Cross-sectional area m Area of whole cross-section of
powder bed perpendicular to
flow direction:
πd
A=
d Diameter of measuring cell m
L Thickness (or height) m
m Mass of powder kg
ϱ Envelope density kg/m
e
ϱ Solid density kg/m
ɛ Permeable porosity
m
p
ε =−1
p
AL
e
ɛ Total porosity
m
ε= 1−
AL
Gas flow
q Volume flow rate m /s Converted to standard conditions
(STP - 0 °C, 1 atm)
p Mean gas pressure N/m
Δp Pressure drop N/m
η Viscosity of gas Ns/m
T Temperature of gas K
M Molar mass of gas kg/mol M = 0,029 kg/mol for air
R Molar gas constant
J J
R=83, 1
molK molK
Calculation
K Kozeny-Carman factor For the purposes of this document,
K = 5,0
δK Compound constant For the purposes of this document,
the generally accepted value of
2,25 is used
S Mass-specific surface area m /kg
w
−1
S Kozeny term m Formula (3)
K
−1
S Slip flow term m Formula (4)
m
−1
S Volume-specific surface area m
SS=
V
Ve w
Φ Permeability m
D Equivalent sphere diameter m
D==
SS
Vwe
ISO 10070:2019(E)
5 General principles
5.1 Permeability
Basically, permeametry is the experimental determination of the permeability, Φ, of a powder bed, the
porosity of which is known.
The permeability is determined by measuring the volume flow rate, q, and the drop-in pressure, Δp, of a
dry gas (generally air) continuously traversing the powder bed under laminar flow conditions.
The permeability is then calculated from Darcy's law, as shown in Formula (1):
qLη
Φ= (1)
ApΔ
5.2 Carman-Arnell and Kozeny-Carman formulae
The Carman-Arnell formula, as shown in Formula (2), relates specific surface area to the porosity and
permeability of a packed bed of powder and takes into account both the viscous flow and the slip flow.
This formula can be written as:
 
ε ε δηK ε
pp 8 2RT 0 p
 
Φ = +× (2)
 
Kη 3 πM
2 pS 1−ε
()
S 1−ε
Vp
()
 
Vp
 
The solution of Formula (2), which is quadratic in S , can be simplified by calculating the value of two
V
terms, the Kozeny term S and the slip flow term S , and then combining them to give S .
K m V
The Kozeny term S is given by Formula (3):
K
ApΔ ε
p
S = (3)
K
KL1−εηq
()
p
The Kozeny term is identical to the Kozeny-Carman formula for S and gives the contribution to the
V
surface area of the powder due to streamline flow.
The slip flow term S is given by Formula (4)
m
δεK
ApΔ 8 2RT
0 p
S =× × (4)
m
KLq 3 πM
p 1−ε
()
p
or, in the case of air, Formula (5):
1−εη
()
p
SS=×81 T (5)
mK

p
S is then given by Formula (6):
v
SS
mm
S =+ +S (6)
V K
4 © ISO 2019 – All rights reserved

ISO 10070:2019(E)
and the mass-specific surface area S by Formula (7):
w
S
V
S = (7)
w

e
The equivalent sphere diameter D is given by Formula (8):
D== (8)
SS
Ve w
The Carman-Arnell formula, Formula (2), shall be used when the volume-specific surface area is greater
6 −1
than 10 m (mean particle size less than 6 µm), because the slip flow component of the permeability
becomes significant in addition to the viscous flow term.
For coarser powders, the Kozeny-Carman formula, Formula (3), may be used by agreement between the
parties concerned; the error introduced by neglecting slip flow is about 10 % at a mean particle size of
6 µm and increases as the powder becom
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...

記事タイトル:SIST EN ISO 10070:2020 - 金属粉末 - 定常流動条件下での粉体層の気体透過性測定に基づく包被特異表面積の決定方法(ISO 10070:2019) 記事内容:本文書は、金属粉末のパックされたベッドの気体透過性と多孔性を測定し、それに基づいて包被特異表面積の値を導出する方法を規定しています。気体透過性は、大気圧近くの圧力での層流による空気の透過性を定常流動条件下で測定します。本文書には一定体積法による透過性の測定は含まれていません。この測定には、いくつかの異なる方法が提案されており、商業的に利用可能ないくつかの試験装置があります。これらは、本文書の一般的な指示に従い、試験パラメータが同一である場合に類似で再現性のある結果を提供します。本文書では特定の商業試験装置と対応する試験手順を指定していません。ただし、利用者の便宜のために、付録Aに関する情報が含まれています(付録Aを参照)。付録Aでは、次の3つの具体的な方法に関する実用的な情報を提供することを目的としています:- レアおよびナース法:実験室で作成できる試験装置を使用(A.1を参照)- 張瑞福法:同様の試験装置を使用(A.2を参照)- グーデンとスミス法:実験室で作成できる試験装置であり、商業試験装置も存在する(商業試験装置は2種類あり、1つは購入不可だがまだ使用されている、A.3を参照)。これらの方法は例として示されています。本文書の範囲内で異なる国で利用可能な他の試験装置も受け入れられます。この試験方法は、1,000μmまでの直径の金属粉末、ハードメタル用の粉末を含むものに適用されますが、一般的には0.2μmから75.0μmの粒子の直径に使用されます。これは、フレークや繊維などの非等軸性の粒子から成る粉末には使用されません。また、異なる金属粉末の混合物やバインダーや潤滑剤を含む粉末には適用されません。粉末に凝集体が含まれている場合、測定される表面積は凝集度の度合いに影響を受けることがあります。粉末に凝集体の解体処理が施された場合(付録B参照)、使用する方法は当事者間で合意されるべきです。

기사 제목: SIST EN ISO 10070:2020 - 금속 분말 - 안정 상태 유속 조건에서 분말 침투도를 측정하여 포장된 분말 침대의 표면적을 결정하는 방법 (ISO 10070:2019) 기사 내용: 이 문서는 금속 분말로 이루어진 패킹된 침대의 공기 침투도와 다공성을 측정하고, 거기에서 포장된 분말 침대의 표면적 값을 도출하는 방법을 명시합니다. 공기 침투도는 대기압 근처에서의 점성있는 공기의 안정 상태 유속을 사용하여 결정됩니다. 이 문서에는 일정한 부피 방법에 의한 침투도 측정 방법이 포함되어 있지 않습니다. 이를 위한 몇 가지 다른 방법이 제안되었으며, 여러 가지 시험 장치가 상업적으로 이용 가능합니다. 이러한 방법들은 이 문서에 기재된 일반적인 지침을 준수하고 시험 매개변수가 동일한 경우 유사하고 반복 가능한 결과를 제공합니다. 이 문서는 특정 상용 시험 장치와 해당하는 시험 절차를 지정하지 않습니다. 그러나 사용자의 편의를 위해 관련 정보가 포함된 부록 A가 있습니다(부록 A 참조). 부록 A에서는 세 가지 구체적인 방법에 대한 몇 가지 실용적인 정보를 제공하기 위한 것으로, - 실험실에서 제작 가능한 시험 장치를 사용하는 Lea 및 Nurse 방법(부록 A.1 참조) - 유사한 시험 장치를 사용하는 Zhang Ruifu 방법(부록 A.2 참조) - 실험실에서 제작 가능한 시험 장치로, 상용 시험 장치도 존재하는 Gooden과 Smith 방법(두 가지 상용 시험 장치 존재, 하나는 구매불가능하지만 여전히 사용 중, 부록 A.3 참조) 이러한 방법들은 단지 예시로 제공됩니다. 다른 국가에서 사용 가능한 다른 시험 장치는 이 문서의 범위 내에서 허용됩니다. 이 시험 방법은 1,000μm까지의 직경을 가진 금속 분말, 포함하여 하드 메탈용 분말에 적용될 수 있지만, 일반적으로 0.2μm에서 75.0μm 직경을 가진 입자에 사용됩니다. 이 방법은 플레이크나 섬유와 같이 직교성에서 상당히 먼 입자로 이루어진 분말에는 사용되지 않습니다. 또한, 혼합된 다른 금속 분말이나 바인더나 윤활제가 포함된 분말에는 적용되지 않습니다. 분말에 응집체가 포함되어 있는 경우 측정된 표면적은 응집도의 정도에 영향을 받을 수 있습니다. 분말에 응집 해제 처리가 가해진 경우(부록 B 참조), 사용하는 방법은 당사자 간 합의된 방법으로 결정됩니다.

The article discusses the SIST EN ISO 10070:2020 standard, which specifies a method for measuring the air permeability, porosity, and envelope-specific surface area of a packed bed of metal powder. The permeability is determined under steady-state flow conditions using air pressure. The standard does not include measurements by a constant volume method. The document does not specify a particular test device but provides information on three example methods. The testing method is applicable to metallic powders up to 1,000 μm in diameter, but it is generally used for particles with diameters between 0.2 μm and 75.0 μm. The method is not suitable for powders composed of non-equiaxial particles such as flakes or fibers, or powders with binders or lubricants. The article also discusses the impact of agglomerates on the measured surface area and the possibility of using de-agglomeration treatment.