SIST ISO 28591:2018
Sequential sampling plans for inspection by attributes
Sequential sampling plans for inspection by attributes
ISO 28591:2017 specifies sequential sampling plans and procedures for inspection by attributes of discrete items.
The plans are indexed in terms of the producer's risk point and the consumer's risk point. Therefore, they can be used not only for the purposes of acceptance sampling, but for a more general purpose of the verification of simple statistical hypotheses for proportions.
The purpose of this International Standard is to provide procedures for sequential assessment of inspection results that may be used to induce the supplier, through the economic and psychological pressure of non-acceptance of lots of inferior quality, to supply lots of a quality having a high probability of acceptance. At the same time, the consumer is protected by a prescribed upper limit to the probability of accepting lots of poor quality.
ISO 28591:2017 provides sampling plans that are applicable, but not limited, to inspection in different fields, such as:
- end items,
- components and raw materials,
- operations,
- materials in process,
- supplies in storage,
- maintenance operations,
- data or records, and
- administrative procedures.
ISO 28591:2017 contains sampling plans for inspection by attributes of discrete items. The sampling plans may be used when the extent of nonconformity is expressed either in terms of proportion (or percent) nonconforming items or in terms of nonconformities per item (per 100 items).
The sampling plans are based on the assumption that nonconformities occur randomly and with statistical independence. There may be good reasons to suspect that one nonconformity in an item could be caused by a condition also likely to cause others. If so, it would be better to consider the items just as conforming or not, and ignore multiple nonconformities.
The sampling plans from this International Standard should primarily be used for the analysis of samples taken from processes. For example, they may be used for the acceptance sampling of lots taken from a process that is under statistical control. However, they may also be used for the acceptance sampling of an isolated lot when its size is large, and the expected fraction nonconforming is small (significantly smaller than 10 %).
In the case of the acceptance sampling of continuing series of lots, the system of sequential sampling plans indexed by acceptance quality limit (AQL) for lot-by-lot inspection published in ISO 2859‑5 should be applied.
Plans d'échantillonnage progressif pour le contrôle par attributs
L'ISO 28591 :2017 spécifie des plans et des règles d'échantillonnage progressif pour le contrôle par attributs d'individus discrets.
Les plans sont indexés en termes de point du risque fournisseur et de point du risque client. Par conséquent, ils peuvent être utilisés pour l'échantillonnage pour acceptation mais également à des fins plus générales de vérification d'hypothèses statistiques simples concernant des proportions.
L'ISO 28591 :2017 fournit des règles, basées sur la détermination progressive des résultats de contrôle, pouvant être utilisées pour inciter le fournisseur, par des pressions économiques et psychologiques liées à la non-acceptation de lots de qualité inférieure, à fournir des lots de qualité ayant une forte probabilité d'acceptation. En même temps, le client est protégé par une limite supérieure imposée de la probabilité d'accepter des lots de faible qualité.
L'ISO 28591 :2017 fournit des plans d'échantillonnage, d'une manière non limitative, notamment aux contrôles ci-après:
? produits finis;
? composants et matières premières;
? opérations;
? matériaux en cours de fabrication;
? fournitures en stock;
? opérations d'entretien;
? informations ou enregistrements;
? procédures administratives.
Sekvenčni načrti vzorčenja za kontrolo po opisnih spremenljivkah
Ta mednarodni standard določa sekvenčne načrte vzorčenja in postopke za kontrolo po opisnih spremenljivkah diskretnih elementov.
Načrti so indeksirani glede na tveganje proizvajalca in tveganje odjemalca. Zaradi tega jih je poleg vzorčenja pri sprejemu mogoče uporabljati tudi za bolj splošne namene preverjanja preprostih statističnih hipotez glede deležev.
Namen tega mednarodnega standarda je zagotoviti postopke za sekvenčno ocenjevanje rezultatov kontrole, ki jih je mogoče uporabiti za spodbujanje dobavitelja k dobavi kakovostnih serij z visoko verjetnostjo sprejemljivosti z uporabo ekonomskih in psiholoških pritiskov zaradi nesprejemljivosti serij slabše kakovosti. Istočasno je odjemalec zaščiten zaradi predpisane zgornje meje verjetnosti
za sprejem serij slabe kvalitete.
Ta mednarodni standard zagotavlja načrte vzorčenja, ki jih je med drugim mogoče uporabiti za kontrole na različnih področjih, na primer:
– končni izdelki,
– komponente in surovine,
– postopki,
– materiali v procesu,
– zaloge v skladišču,
– vzdrževalna dela,
– podatki ali evidence in
– administrativni postopki.
Ta mednarodni standard vsebuje načrte vzorčenja za kontrolo po opisnih spremenljivkah diskretnih elementov. Načrte vzorčenja je mogoče uporabiti, če je obseg neskladnosti izražen v deležu (ali odstotkih) neskladnih primerkov ali v številu neskladnosti na element (na 100 elementov). Načrti vzorčenja temeljijo na predpostavki, da se neskladnosti pojavljajo naključno in statistično neodvisno. Morda obstajajo dobri razlogi za sum, da je posamezno neskladnost v elementu povzročila okoliščina, ki lahko verjetno povzroči tudi druge. V takšnem primeru je bolje presojati elemente samo glede tega, ali so skladni ali ne, in ignorirati večkratne neskladnosti.
Načrti vzorčenja iz tega mednarodnega standarda so primarno namenjeni uporabi za analizo vzorcev, odvzetih iz procesov. Mogoče jih je na primer uporabiti za vzorčenje pri sprejemu serij, odvzetih iz procesa, za katerega se izvaja statistični nadzor. Vendar pa jih je mogoče uporabiti tudi za vzorčenje pri sprejemu izolirane serije, če gre za serijo velike velikosti in je pričakovan delež neskladnosti majhen (bistveno manjši od 10 %).
V primeru vzorčenja pri sprejemu trajnih sklopov serij je treba uporabiti sistem sekvenčnih načrtov vzorčenja, ki so indeksirani po sprejemljivi ravni kakovosti (AQL) za kontrolo posameznih serij, objavljeni v standardu ISO 2859-5.
General Information
Relations
Standards Content (Sample)
SLOVENSKI STANDARD
01-julij-2018
1DGRPHãþD
SIST ISO 8422:2008
6HNYHQþQLQDþUWLY]RUþHQMD]DNRQWURORSRRSLVQLKVSUHPHQOMLYNDK
Sequential sampling plans for inspection by attributes
Plans d'échantillonnage progressif pour le contrôle par attributs
Ta slovenski standard je istoveten z: ISO 28591:2017
ICS:
03.120.30 8SRUDEDVWDWLVWLþQLKPHWRG Application of statistical
methods
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
INTERNATIONAL ISO
STANDARD 28591
First edition
2017-10
Sequential sampling plans for
inspection by attributes
Plans d'échantillonnage progressif pour le contrôle par attributs
Reference number
©
ISO 2017
© ISO 2017, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2017 – All rights reserved
Contents Page
Foreword .iv
Introduction .vi
1 Scope . 1
2 Normative references . 2
3 Terms and definitions . 2
4 Symbols and abbreviated terms . 6
5 Principles of sequential sampling plans for inspection by attributes .7
6 Selection of a sampling plan . 7
6.1 Producer’s risk point and consumer’s risk point . 7
6.2 Preferred values of Q and Q .
PR CR 8
6.3 Pre-operation preparations . 8
6.3.1 Obtaining the parameters h , h and g .8
A R
6.3.2 Obtaining the curtailment values . 8
7 Operation of a sequential sampling plan . 8
7.1 Specification of the plan . 8
7.2 Drawing a sample item . 8
7.3 Count and cumulative count . 8
7.3.1 Count . 8
7.3.2 Cumulative count . 8
7.4 Choice between numerical and graphical methods . 8
7.5 Numerical method . 9
7.5.1 Preparation of the acceptability table . 9
7.5.2 Making decisions . 9
7.6 Graphical method .10
7.6.1 Preparation of the acceptability chart .10
7.6.2 Making decisions .11
8 Numerical example .12
9 Tables .12
Annex A (informative) Statistical properties of the sequential sampling plan
for inspection by attributes.30
Bibliography .39
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following
URL: www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 69, Applications of statistical methods,
Subcommittee SC 5, Acceptance sampling.
This first edition of ISO 28591 cancels and replaces ISO 8422:2006, of which it constitutes a minor
revision to change the reference number from 8422 to 28591.
With the view to achieve a more consistent portfolio, TC 69/SC 5 has simultaneously renumbered the
following standards, by means of minor revisions:
Old reference New reference Title
ISO 2859-10:2006 ISO 28590:2017 Sampling procedures for inspection by attributes — Introduction
to the ISO 2859 series of standards for sampling for inspection by
attributes
ISO 8422:2006 ISO 28591:2017 Sequential sampling plans for inspection by attributes
ISO 28801:2011 ISO 28592:2017 Double sampling plans by attributes with minimal sample sizes,
indexed by producer's risk quality (PRQ) and consumer's risk
quality (CRQ)
ISO 18414:2006 ISO 28593:2017 Acceptance sampling procedures by attributes — Accept-zero sampling
system based on credit principle for controlling outgoing quality
ISO 21247:2005 ISO 28594:2017 Combined accept-zero sampling systems and process control pro-
cedures for product acceptance
ISO 14560:2004 ISO 28597:2017 Acceptance sampling procedures by attributes — Specified quality
levels in nonconforming items per million
ISO 13448-1:2005 ISO 28598-1:2017 Acceptance sampling procedures based on the allocation of priorities
principle (APP) — Part 1: Guidelines for the APP approach
ISO 13448-2:2004 ISO 28598-2:2017 Acceptance sampling procedures based on the allocation of prior-
ities principle (APP) — Part 2: Coordinated single sampling plans
for acceptance sampling by attributes
Cross references between the above listed documents have been corrected in the minor revisions.
iv © ISO 2017 – All rights reserved
A list of all documents in the new ISO 28590 - ISO 28599 series of International Standards can be found
on the ISO website.
Introduction
In contemporary production processes, quality is often expected to reach such high levels that the
−6
number of nonconforming items is reported in parts per million (10 ). Under such circumstances,
popular acceptance sampling plans, such as those presented in ISO 2859-1, require prohibitively large
sample sizes. To overcome this problem, users apply acceptance sampling plans with higher probabilities
of wrong decisions or, in extreme situations, abandon the use of acceptance sampling procedures
altogether. However, in many situations there is still a need to accept products of high quality using
standardized statistical methods. In such cases, there is a need to apply statistical procedures that
require the smallest possible sample sizes. Sequential sampling plans are the only statistical procedures
that satisfy that need as, among all possible sampling plans having similar statistical properties, the
sequential sampling plan has the smallest average sample size.
The principal advantage of sequential sampling plans is the reduction in the average sample size. The
average sample size is the weighted average of all the sample sizes that may occur under a sampling
plan for a given lot or process quality level. Like double and multiple sampling plans, the use of
sequential sampling plans leads to a smaller average sample size than single sampling plans having
the equivalent operating characteristic. However, the average savings are even greater when using a
sequential sampling plan than when a double or multiple sampling plan is used. For lots of very good
quality, the maximum savings for sequential sampling plans may reach 85 %, as compared to 37 % for
double sampling plans and 75 % for multiple sampling plans. On the other hand, when using a double,
multiple or sequential sampling plan, the actual number of items inspected for a particular lot may
exceed the sample size, n , of the corresponding single sampling plan. For double and multiple sampling
plans, there is an upper limit of 1,25 n to the actual number of items to be inspected. For classical
sequential sampling plans, there is no such limit, and the actual number of inspected items may exceed
the corresponding single sample size, n , or be even as large as the lot size, N. For the sequential sampling
plans in this International Standard, a curtailment rule has been introduced involving an upper limit n
t
on the actual number of items to be inspected.
Other factors that should be taken into account include:
a) Simplicity
The rules of a sequential sampling plan are more easily misunderstood by inspectors than the simple
rules for a single sampling plan.
b) Variability in the amount of inspection
As the actual number of items inspected for a particular lot is not known in advance, the use of
sequential sampling plans brings about various organisational difficulties. For example, scheduling of
inspection operations may be difficult.
c) Ease of drawing sample items
If drawing sample items at different times is expensive, the reduction in the average sample size by
sequential sampling plans may be cancelled out by the increased sampling cost.
d) Duration of test
If the test of a single item is of long duration and a number of items can be tested simultaneously,
sequential sampling plans are much more time-consuming than the corresponding single sampling plans.
e) Variability of quality within the lot
If the lot consists of two or more sublots from different sources and if there is likely to be a substantial
difference between the qualities of the sublots, drawing of a representative sample under a sequential
sampling plan is far more awkward than under the corresponding single sampling plan.
The advantages and disadvantages of double and multiple sampling plans always lie between those of
single and sequential sampling plans. The balance between the advantage of a smaller average sample
vi © ISO 2017 – All rights reserved
size and the above disadvantages leads to the conclusion that sequential sampling plans are suitable
only when inspection of individual items is costly in comparison with inspection overheads.
The choice between single, double, multiple and sequential sampling plans shall be made before the
inspection of a lot is started. During inspection of a lot, it is not permitted to switch from one type
to another, because the operating characteristics of the plan may be drastically changed if the actual
inspection results influence the choice of acceptability criteria.
Although use of sequential sampling plans is on average much more economical than the use of
corresponding single sampling plans, acceptance or non-acceptance may occur at a very late stage
due to the cumulative count of nonconforming items (or nonconformities) remaining between the
acceptance number and the rejection number for a long time. When using the graphical method, this
corresponds to the random progress of the step curve remaining in the indecision zone. Such a situation
is most likely to occur when the lot or process quality level (in terms of percent nonconforming or in
nonconformities per 100 items) is close to (100g), where g is the parameter giving the slope of the
acceptance and rejection lines.
To improve upon this situation, the sample size curtailment value is set before the inspection of a
lot is begins. If the cumulative sample size reaches the curtailment value n without determination
t
of lot acceptability, inspection terminates and the acceptance and non-acceptance of the lot is then
determined using the curtailment values of the acceptance and rejection numbers.
For sequential sampling plans in common use, curtailment usually represents a deviation from their
intended usage, leading to a distortion of their operating characteristics. In this International Standard,
however, the operating characteristics of the sequential sampling plans have been determined with
curtailment taken into account, so curtailment is an integral component of the provided plans.
Sequential sampling plans for inspection by attributes are also provided in ISO 2859-5. However, the
design principle of those plans is fundamentally different from that of this International Standard. The
sampling plans in ISO 2859-5 are designed to supplement the ISO 2859-1 acceptance sampling system
for inspection by attributes. Thus, they should be used for the inspection of a continuing series of lots,
that is, a series long enough to permit the switching rules of the ISO 2859 system to function. The
application of the switching rules is the only means of providing enhanced protection to the consumer
(by means of tightened sampling inspection criteria or discontinuation of sampling inspection) when
the sequential sampling plans from ISO 2859-5 are used. However, in certain circumstances, there
is a strong need to have both the producer's and the consumer's risks under strict control. Such
circumstances occur, for example, when sampling is performed for regulatory reasons, to demonstrate
the quality of the production processes or to test hypotheses. In such cases, individual sampling plans
selected from the ISO 2859-5 sampling scheme may be inappropriate. The sampling plans from this
International Standard have been designed in order to meet these specific requirements.
INTERNATIONAL STANDARD ISO 28591:2017(E)
Sequential sampling plans for inspection by attributes
1 Scope
This International Standard specifies sequential sampling plans and procedures for inspection by
attributes of discrete items.
The plans are indexed in terms of the producer's risk point and the consumer's risk point. Therefore,
they can be used not only for the purposes of acceptance sampling, but for a more general purpose of
the verification of simple statistical hypotheses for proportions.
The purpose of this International Standard is to provide procedures for sequential assessment of
inspection results that may be used to induce the supplier, through the economic and psychological
pressure of non-acceptance of lots of inferior quality, to supply lots of a quality having a high probability
of acceptance. At the same time, the consumer is protected by a prescribed upper limit to the probability
of accepting lots of poor quality.
This International Standard provides sampling plans that are applicable, but not limited, to inspection
in different fields, such as:
— end items,
— components and raw materials,
— operations,
— materials in process,
— supplies in storage,
— maintenance operations,
— data or records, and
— administrative procedures.
This International Standard contains sampling plans for inspection by attributes of discrete items.
The sampling plans may be used when the extent of nonconformity is expressed either in terms of
proportion (or percent) nonconforming items or in terms of nonconformities per item (per 100 items).
The sampling plans are based on the assumption that nonconformities occur randomly and with
statistical independence. There may be good reasons to suspect that one nonconformity in an item
could be caused by a condition also likely to cause others. If so, it would be better to consider the items
just as conforming or not, and ignore multiple nonconformities.
The sampling plans from this International Standard should primarily be used for the analysis of
samples taken from processes. For example, they may be used for the acceptance sampling of lots taken
from a process that is under statistical control. However, they may also be used for the acceptance
sampling of an isolated lot when its size is large, and the expected fraction nonconforming is small
(significantly smaller than 10 %).
In the case of the acceptance sampling of continuing series of lots, the system of sequential sampling
plans indexed by acceptance quality limit (AQL) for lot-by-lot inspection published in ISO 2859-5 should
be applied.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 3534-1, Statistics — Vocabulary and symbols — Part 1: General statistical terms and terms used in
probability
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 3534-1 and the following apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at http://www.iso.org/obp
— IEC Electropedia: available at http://www.electropedia.org/
3.1
inspection
conformity evaluation by observation and judgement accompanied as appropriate by measurement,
testing or gauging
[SOURCE: ISO 3534-2:2006, 4.1.2]
3.2
inspection by attributes
inspection (3.1) by noting the presence, or absence, of one or more particular characteristic(s) in each
of the items in the group under consideration, and counting how many items do, or do not, possess the
characteristic(s), or how many such events occur in the item, group or opportunity space
Note 1 to entry: When inspection is performed by simply noting whether the item is nonconforming or not, the
inspection is termed inspection for nonconforming items. When inspection is performed by noting the number of
nonconformities on each unit, the inspection is termed inspection for number of nonconformities.
[SOURCE: ISO 3534-2:2006, 4.1.3]
3.3
item
entity
anything that can be described and considered separately
EXAMPLE A discrete physical item; a defined amount of bulk material; a service, activity, person, system or
some combination thereof.
[SOURCE: ISO 3534-2:2006, 1.2.11]
3.4
nonconformity
non-fulfilment of a requirement
[SOURCE: ISO 3534-2:2006, 3.1.11]
Note 1 to entry: See notes to 3.5.
2 © ISO 2017 – All rights reserved
3.5
defect
non-fulfilment of a requirement related to an intended or specified use
Note 1 to entry: The distinction between the concepts defect and nonconformity (3.4) is important as it has legal
connotations, particularly those associated with product liability issues. Consequently the term “defect” should
be used with extreme caution.
Note 2 to entry: The intended use by the customer can be affected by the nature of information, such as operating
or maintenance instructions, provided by the customer.
[SOURCE: ISO 3534-2:2006, 3.1.12]
3.6
nonconforming item
item (3.3) with one or more nonconformities (3.4)
[SOURCE: ISO 3534-2:2006, 1.2.12]
3.7
percent nonconforming
〈in a sample〉 one hundred times the number of nonconforming items (3.6) in the sample (3.13) divided
by the sample size (3.14), viz:
d
100 ×
n
where
d is the number of nonconforming items in the sample;
n is the sample size
[SOURCE: ISO 2859-1:1999, 3.1.8]
3.8
percent nonconforming
〈in a population or lot〉 one hundred times the number of nonconforming items (3.6) in the population or
lot (3.11) divided by the population or lot size (3.12), viz:
D
ni
100 ×=p 100 ×
ni
N
where
p is the proportion of nonconforming items;
ni
D is the number of nonconforming items in the population or lot;
ni
N is the population or lot size
Note 1 to entry: Adapted from ISO 2859-1:1999, 3.1.9.
Note 2 to entry: In this International Standard, the terms percent nonconforming (3.7 and 3.8) or nonconformities
per 100 items (3.9 and 3.10) are mainly used in place of the theoretical terms “proportion of nonconforming
items” and “nonconformities per item” because the former terms are the most widely used.
3.9
nonconformities per 100 items
〈in a sample〉 one hundred times the number of nonconformities (3.4) in the sample (3.13) divided by the
sample size (3.14), viz:
d
100×
n
where
d is the number of nonconformities in the sample;
n is the sample size
[SOURCE: ISO 2859-1:1999, 3.1.10]
3.10
nonconformities per 100 items
〈in a population or lot〉 100 times the number of nonconformities (3.4) in the population or lot (3.11)
divided by the population or lot size (3.12), viz:
D
nt
100×=p 100×
nt
N
where
p is the number of nonconformities per item;
nt
D is the number of nonconformities in the population or lot;
nt
N is the population or lot size
Note 1 to entry: Adapted from ISO 2859-1:1999, 3.1.11.
Note 2 to entry: An item may contain one or more nonconformities.
3.11
lot
definite part of a population constituted under essentially the same conditions as the population with
respect to the sampling purpose
Note 1 to entry: The sampling purpose can, for example, be to determine lot acceptability, or to estimate the
mean value of a particular characteristic.
[SOURCE: ISO 3534-2:2006, 1.2.4]
3.12
lot size
number of items (3.3) in a lot (3.11)
[SOURCE: ISO 2859-1:1999, 3.1.14]
3.13
sample
subset of a population made up of one or more sampling units
[SOURCE: ISO 3534-2:2006, 1.2.17]
4 © ISO 2017 – All rights reserved
3.14
sample size
number of sampling units in a sample (3.13)
[SOURCE: ISO 3534-2:2006, 1.2.26]
3.15
acceptance sampling plan
plan which states the sample size(s) (3.14) to be used and the associated criteria for lot acceptance
[SOURCE: ISO 3534-2:2006, 4.3.3]
3.16
consumer's risk quality
Q
CR
〈acceptance sampling〉 quality level of a lot (3.11) or process which, in the acceptance sampling plan
(3.15), corresponds to a specified consumer's risk
[SOURCE: ISO 3534-2:2006, 4.6.9]
Note 1 to entry: The specified consumer's risk is usually 10 %.
3.17
producer's risk quality
Q
PR
〈acceptance sampling〉 quality level of a lot (3.11) or process which, in the acceptance sampling plan
(3.15), corresponds to a specified producer's risk
[SOURCE: ISO 3534-2:2006, 4.6.10]
Note 1 to entry: The specified producer's risk is usually 5 %.
3.18
count
when inspection by attributes is performed, the result of the inspection of each sample item
Note 1 to entry: In the case of the inspection for nonconforming items, the count is set to 1 if the sample
item is nonconforming. In the case of the inspection for nonconformities, the count is set to the number of
nonconformities found in the sample item.
3.19
cumulative count
when a sequential sampling plan is used, the sum of the counts during inspection, counting from the
start of the inspection of the lot up to, and including, the sample item last inspected
3.20
cumulative sample size
when a sequential sampling plan is used, the total number of sample items during inspection, counting
from the start of the inspection of the lot up to, and including, the sample item last inspected
3.21
acceptance value
〈for sequential sampling〉 value used in the graphical method for determination of acceptance of the lot,
that is derived from the specified parameters of the sampling plan and the cumulative sample size
3.22
acceptance number
〈for sequential sampling〉 number used in the numerical method for determination of acceptance of the
lot, that is obtained by rounding the acceptance value down to the nearest integer
3.23
rejection value
〈for sequential sampling〉 value used in the graphical method for determination of non-acceptance of the
lot, that is derived from the specified parameters of the sampling plan and the cumulative sample size
3.24
rejection number
〈for sequential sampling〉 number used in the numerical method for determination of non-acceptance of
the lot, that is obtained by rounding the rejection value up to the nearest integer
3.25
acceptability table
table used for the lot acceptability determination in the numerical method
3.26
acceptability chart
chart used for the lot acceptability determination in the graphical method, consisting of the following
three zones:
— acceptance zone;
— rejection zone;
— indecision zone;
the borders being acceptance, rejection and curtailment lines
4 Symbols and abbreviated terms
The symbols and abbreviations used in this International Standard are as follows:
A acceptance value (for sequential sampling plan)
Ac acceptance number
Ac acceptance number for a corresponding single sampling plan
Ac acceptance number at curtailment (curtailment value)
t
d count
D cumulative count
g parameter giving the slope of the acceptance and rejection lines
h parameter giving the intercept of the acceptance line
A
h parameter giving the intercept of the rejection line
R
n sample size for a corresponding single sampling plan
n cumulative sample size
cum
n cumulative sample size at curtailment (curtailment value)
t
process average
P
p quality level for which the probability of acceptance is x, where x is a fraction
x
P probability of acceptance (in percent)
a
6 © ISO 2017 – All rights reserved
Q consumer's risk quality (in percent nonconforming items or in nonconformities per hun-
CR
dred items)
Q producer's risk quality (in percent nonconforming items or in nonconformities per hun-
PR
dred items)
R rejection value (for sequential sampling plan)
Re rejection number
Re rejection number for a corresponding single sampling plan
Re rejection number at curtailment (curtailment value)
t
NOTE Re = Ac + 1
t t
α producer's risk
β consumer's risk
5 Principles of sequential sampling plans for inspection by attributes
Under a sequential sampling plan by attributes, sample items are drawn at random and inspected one
by one, and the cumulative count (the total number of nonconforming items or nonconformities) is
obtained. After the inspection of each item, the cumulative count is compared with the acceptability
criteria in order to assess whether there is sufficient information to decide about the lot at that stage of
the inspection.
If, at a given stage, the cumulative count is such that the risk of accepting a lot of unsatisfactory quality
level is sufficiently low, the lot is considered acceptable and the inspection is terminated.
If, on the other hand, the cumulative count is such that the risk of non-acceptance of a lot of satisfactory
quality level is sufficiently low, the lot is considered not acceptable and the inspection is terminated.
If the cumulative count does not allow either of the above decisions to be taken, then an additional
item is sampled and inspected. The process is continued until sufficient sample information has been
accumulated to warrant a decision that the lot is acceptable or not acceptable.
6 Selection of a sampling plan
6.1 Producer’s risk point and consumer’s risk point
The general method described in 6.1 and 6.2 is used when the requirements of the sequential sampling
plan are specified in terms of two points on the operating characteristic curve of the plan. The point
corresponding to the higher probability of acceptance shall be designated the producer’s risk point; the
other shall be designated the consumer’s risk point.
The first step when designing a sequential sampling plan is to choose these two points, if they have not
already been dictated by circumstances. For this purpose, the following combination is often used:
— a producer’s risk of α ≤ 00, 5 and the corresponding producer’s risk quality (Q ), and
PR
— a consumer’s risk of β ≤ 01, 0 and the corresponding consumer’s risk quality (Q ).
CR
When the desired sequential sampling plan is required to have approximately the same operating
characteristic curve as an existing single, double or multiple sampling plan, the producer’s risk point
and the consumer’s risk point may be read off from a graph or a table of the operating characteristic
of that plan. When no such plan exists, the producer’s and the consumer’s risk points have to be
determined from direct consideration of the conditions under which the sampling plan operates.
6.2 Preferred values of Q and Q
PR CR
Tables 1 and 2 give 28 preferred values of Q (producer’s risk quality) ranging from 0,020 % to 10,0 %,
PR
and 23 preferred values of Q (consumer’s risk quality) ranging from 0,200 % to 31,5 %. This
CR
International Standard is applicable only when a combination of the preferred values of Q and Q is
PR CR
chosen under the constraints α ≤ 00, 5 and β ≤ 01, 0 .
6.3 Pre-operation preparations
6.3.1 Obtaining the parameters h , h and g
A R
The criteria for acceptance and non-acceptance of a lot that are invoked at each stage of inspection are
determined from the parameters h , h , and g.
A R
Tables 1 and 2 give the values of these parameters corresponding to a combination of preferred values
of Q and Q together with a producer’s risk of α ≤ 00, 5 and a consumer’s risk ofβ ≤ 01, 0 . Table 1 is
PR CR
for percent nonconforming inspection, and Table 2 is for nonconformities per 100 items inspection.
6.3.2 Obtaining the curtailment values
The curtailment value, n , of the cumulative sample size of the sequential sampling plan is given in
t
Tables 1 and 2 together with the parameters h , h , and g.
A R
7 Operation of a sequential sampling plan
7.1 Specification of the plan
Before operation of a sequential sampling plan, the inspector shall record on the sampling document
the specified values of the parameters, h , h and g, and the curtailment values, n and Ac .
A R t t
7.2 Drawing a sample item
The individual sample items shall be drawn at random from the lot and inspected one by one in the
order in which they are drawn.
7.3 Count and cumulative count
7.3.1 Count
For inspection for percent nonconforming, if the sample item is nonconforming, the count, d, for the
sample item is 1; otherwise, the count, d, is zero.
For inspection for nonconformities per 100 items, the count, d, for the sample item is the number of
nonconformities found in the sample item.
7.3.2 Cumulative count
The cumulative count, D, is the cumulative sum of the count d from the first sample item up to the most
recent (i.e. the n ) sample item inspected so far.
cum
7.4 Choice between numerical and graphical methods
This International Standard provides two methods of operating a sequential sampling plan: a numerical
method and a graphical method, either one of which may be chosen.
8 © ISO 2017 – All rights reserved
The numerical method uses an acceptability table for operating, and has the advantage of being accurate,
thereby avoiding disputes about acceptance or non-acceptance in marginal cases. An acceptability table
can also be used as an inspection record sheet, after inscribing the inspection results.
The graphical method uses an acceptability chart for operating, and has the advantage of displaying
the increase in the information on the lot quality as additional items are inspected, information being
represented by the step curve within the indecision zone, until the line reaches, or crosses, one of the
boundaries of that zone. On the other hand, the method is less accurate, due to the inaccuracy inherent
in plotting points and in drawing lines.
The numerical method is the standard method so far as acceptance or non-acceptance is concerned (see
the caution in 7.6.2). When the numerical method is applied, it is recommended that the calculation and
preparation of an acceptability table be done using appropriate software.
7.5 Numerical method
7.5.1 Preparation of the acceptability table
When the numerical method is used, the following calculations shall be carried out and an acceptability
table shall be prepared.
For each value, n , of the cumulative sample size that is less than the curtailment value of the sample
cum
size, the acceptance value, A, is given by Equation (1):
Ag=×nh− (1)
()
cumA
and the acceptance number, Ac, is obtained by rounding the acceptance value, A, down to the nearest
integer.
For each value of n , the rejection value, R, is given by the Equation (2):
cum
Rg=×nh+ (2)
()
cumR
and the rejection number, Re, is obtained by rounding the rejection value, R, up to the nearest integer.
Whenever the value of A is negative, the cumulative sample size is too small to permit acceptance of
the lot. Conversely, whenever the value of Equation (2) is larger than the cumulative sample size, the
cumulative sample size is too small to permit non-acceptance of the lot under inspection for percent
nonconforming.
Whenever the rejection number, Re, is larger than the curtailment value, Re , the former should be
t
replaced by the latter, because no chance of acceptance remains when the cumulative count, D, exceeds
the curtailment value, Re .
t
The values, A and R, given by Equations (1) and (2) shall have the same number of digits after the
decimal point as g.
The smallest cumulative sample size permitting acceptance of the lot is obtained by rounding the value,
h /g, up to the nearest integer. The smallest cumulative sample size permitting non-acceptance of the
A
lot under inspection for percent nonconforming is obtained by rounding the value, h /(1-g), up to the
R
nearest integer. Finally, an acceptability table is established by inscribing the necessary data.
7.5.2 Making decisions
Enter the count and the cumulative count into the acceptability table prepared in accordance with 7.5.1,
after the inspection of each item.
a) If the cumulative count, D, is less than or equal to the acceptance number, Ac, for the cumulative
sample size, n , the lot shall be considered acceptable and the inspection shall be terminated.
cum
b) If the cumulative count, D, is greater than or equal to the rejection number, Re, for the cumulative
sample size, n , the lot shall be considered not acceptable and the inspection shall be terminated.
cum
c) If neither a) nor b) is satisfied, another item shall be sampled and inspected.
When the cumulative sample size reaches the curtailment value n , the rules in a) and b) apply with the
t
curtailment values of the acceptance number, Ac , and the rejection number, Re (= Ac + 1).
t t t
7.6 Graphical method
7.6.1 Preparation of the acceptability chart
When the graphical method is used, an acceptability chart shall be prepared in accordance with the
following procedures. Prepare a graph with the cumulative sample n as the horizontal axis, and the
cum
cumulative count, D, as the vertical axis. Draw two straight lines with the same slope, g, corresponding
to the acceptance and rejection values, A and R, given by Equations (1) and (2). The lower line with
the intercept of –h is designated the acceptance line, and the upper line with the intercept of h is
A R
designated the rejection line. Add a vertical line, the curtailment line, at n = n . A horizontal line, the
cum t
truncation line, should be added at D = Re .
t
The lines define three zones on the chart.
— The acceptance zone is the zone below (and including) the acceptance line together with that part of
the curtailment line that is below and includes the point (n , Ac ).
t t
— The rejection zone is the zone above (and including) the rejection line together with that part of the
curtailment line that is above and includes the point (n , Re ).
t t
— The indecision zone is the strip between acceptance and rejection lines that is to the left of the
curtailment line.
When the truncation line is added, the triangle at the top of the indecision zone bordered by the rejection
line, the curtailment line and the truncation line (including each side) should be considered as a part
of the rejection zone. In this International Standard, points on the chart representing the cumulative
count will never lie on the acceptance or rejection lines. An example of the prepared graph is given as
Figure 1.
10 © ISO 2017 – All rights reserved
Key
1 rejection zone
2 indecision zone
3 acceptance zone
4 inspection terminates
Figure 1 — Acceptability chart
7.6.2 Making decisions
When the graphical method is used, the following procedures shall be followed.
Plot the point (n ,D) on the acceptability chart prepared in accordance with 7.6.1, after the inspection
cum
of each item.
a) If the point lies in the acceptance zone, the lot shall be considered acceptable and the inspection of
that lot shall be terminated.
b) If the point lies in the rejection zone, the lot shall be considered not acceptable and the inspection of
that lot shall be terminated.
c) If the point lies in the indecision zone, another item from that lot shall be sampled and inspected.
The successive points on the acceptability chart shall be connected by a step curve to show up any
trend in the inspection results.
CAUTION — If the point is close to the acceptance or rejection lines, the numerical method shall
be used to make the decision.
8 Numerical example
The following example illustrates how to use sequential sampling plans in this International Standard.
EXAMPLE
An organization representing consumers is interested in the evaluation of the quality of a certain product. Its
producer claims that at least 99 % of its products are free of nonconformities. However, signals from the market
have revealed that this claim might not be true. Therefore, it has been decided to verify this claim against the
alternative that the real fraction nonconforming is 10 %. In order to minimise the sampling costs, it has been
decided to apply a sequential sampling plan with Q = 1 %, and Q = 10 %.
PR CR
The parameters of the plan (h , h and g) and the curtailment values (n and Ac ) of the sequential sampling plan
A R t t
are found in Table 1.
The parameters are as follows: h = 0,931, h = 0,922 and g = 0,039 4. The curtailment values are as follows; n =
A R t
65 and Ac = 2. Therefore, rejection and acceptance values (R and A) are given by the following equations:
t
Rg=×nh+= 0,,03940×n + 922
()
...
INTERNATIONAL ISO
STANDARD 28591
First edition
2017-10
Sequential sampling plans for
inspection by attributes
Plans d'échantillonnage progressif pour le contrôle par attributs
Reference number
©
ISO 2017
© ISO 2017, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2017 – All rights reserved
Contents Page
Foreword .iv
Introduction .vi
1 Scope . 1
2 Normative references . 2
3 Terms and definitions . 2
4 Symbols and abbreviated terms . 6
5 Principles of sequential sampling plans for inspection by attributes .7
6 Selection of a sampling plan . 7
6.1 Producer’s risk point and consumer’s risk point . 7
6.2 Preferred values of Q and Q .
PR CR 8
6.3 Pre-operation preparations . 8
6.3.1 Obtaining the parameters h , h and g .8
A R
6.3.2 Obtaining the curtailment values . 8
7 Operation of a sequential sampling plan . 8
7.1 Specification of the plan . 8
7.2 Drawing a sample item . 8
7.3 Count and cumulative count . 8
7.3.1 Count . 8
7.3.2 Cumulative count . 8
7.4 Choice between numerical and graphical methods . 8
7.5 Numerical method . 9
7.5.1 Preparation of the acceptability table . 9
7.5.2 Making decisions . 9
7.6 Graphical method .10
7.6.1 Preparation of the acceptability chart .10
7.6.2 Making decisions .11
8 Numerical example .12
9 Tables .12
Annex A (informative) Statistical properties of the sequential sampling plan
for inspection by attributes.30
Bibliography .39
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following
URL: www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 69, Applications of statistical methods,
Subcommittee SC 5, Acceptance sampling.
This first edition of ISO 28591 cancels and replaces ISO 8422:2006, of which it constitutes a minor
revision to change the reference number from 8422 to 28591.
With the view to achieve a more consistent portfolio, TC 69/SC 5 has simultaneously renumbered the
following standards, by means of minor revisions:
Old reference New reference Title
ISO 2859-10:2006 ISO 28590:2017 Sampling procedures for inspection by attributes — Introduction
to the ISO 2859 series of standards for sampling for inspection by
attributes
ISO 8422:2006 ISO 28591:2017 Sequential sampling plans for inspection by attributes
ISO 28801:2011 ISO 28592:2017 Double sampling plans by attributes with minimal sample sizes,
indexed by producer's risk quality (PRQ) and consumer's risk
quality (CRQ)
ISO 18414:2006 ISO 28593:2017 Acceptance sampling procedures by attributes — Accept-zero sampling
system based on credit principle for controlling outgoing quality
ISO 21247:2005 ISO 28594:2017 Combined accept-zero sampling systems and process control pro-
cedures for product acceptance
ISO 14560:2004 ISO 28597:2017 Acceptance sampling procedures by attributes — Specified quality
levels in nonconforming items per million
ISO 13448-1:2005 ISO 28598-1:2017 Acceptance sampling procedures based on the allocation of priorities
principle (APP) — Part 1: Guidelines for the APP approach
ISO 13448-2:2004 ISO 28598-2:2017 Acceptance sampling procedures based on the allocation of prior-
ities principle (APP) — Part 2: Coordinated single sampling plans
for acceptance sampling by attributes
Cross references between the above listed documents have been corrected in the minor revisions.
iv © ISO 2017 – All rights reserved
A list of all documents in the new ISO 28590 - ISO 28599 series of International Standards can be found
on the ISO website.
Introduction
In contemporary production processes, quality is often expected to reach such high levels that the
−6
number of nonconforming items is reported in parts per million (10 ). Under such circumstances,
popular acceptance sampling plans, such as those presented in ISO 2859-1, require prohibitively large
sample sizes. To overcome this problem, users apply acceptance sampling plans with higher probabilities
of wrong decisions or, in extreme situations, abandon the use of acceptance sampling procedures
altogether. However, in many situations there is still a need to accept products of high quality using
standardized statistical methods. In such cases, there is a need to apply statistical procedures that
require the smallest possible sample sizes. Sequential sampling plans are the only statistical procedures
that satisfy that need as, among all possible sampling plans having similar statistical properties, the
sequential sampling plan has the smallest average sample size.
The principal advantage of sequential sampling plans is the reduction in the average sample size. The
average sample size is the weighted average of all the sample sizes that may occur under a sampling
plan for a given lot or process quality level. Like double and multiple sampling plans, the use of
sequential sampling plans leads to a smaller average sample size than single sampling plans having
the equivalent operating characteristic. However, the average savings are even greater when using a
sequential sampling plan than when a double or multiple sampling plan is used. For lots of very good
quality, the maximum savings for sequential sampling plans may reach 85 %, as compared to 37 % for
double sampling plans and 75 % for multiple sampling plans. On the other hand, when using a double,
multiple or sequential sampling plan, the actual number of items inspected for a particular lot may
exceed the sample size, n , of the corresponding single sampling plan. For double and multiple sampling
plans, there is an upper limit of 1,25 n to the actual number of items to be inspected. For classical
sequential sampling plans, there is no such limit, and the actual number of inspected items may exceed
the corresponding single sample size, n , or be even as large as the lot size, N. For the sequential sampling
plans in this International Standard, a curtailment rule has been introduced involving an upper limit n
t
on the actual number of items to be inspected.
Other factors that should be taken into account include:
a) Simplicity
The rules of a sequential sampling plan are more easily misunderstood by inspectors than the simple
rules for a single sampling plan.
b) Variability in the amount of inspection
As the actual number of items inspected for a particular lot is not known in advance, the use of
sequential sampling plans brings about various organisational difficulties. For example, scheduling of
inspection operations may be difficult.
c) Ease of drawing sample items
If drawing sample items at different times is expensive, the reduction in the average sample size by
sequential sampling plans may be cancelled out by the increased sampling cost.
d) Duration of test
If the test of a single item is of long duration and a number of items can be tested simultaneously,
sequential sampling plans are much more time-consuming than the corresponding single sampling plans.
e) Variability of quality within the lot
If the lot consists of two or more sublots from different sources and if there is likely to be a substantial
difference between the qualities of the sublots, drawing of a representative sample under a sequential
sampling plan is far more awkward than under the corresponding single sampling plan.
The advantages and disadvantages of double and multiple sampling plans always lie between those of
single and sequential sampling plans. The balance between the advantage of a smaller average sample
vi © ISO 2017 – All rights reserved
size and the above disadvantages leads to the conclusion that sequential sampling plans are suitable
only when inspection of individual items is costly in comparison with inspection overheads.
The choice between single, double, multiple and sequential sampling plans shall be made before the
inspection of a lot is started. During inspection of a lot, it is not permitted to switch from one type
to another, because the operating characteristics of the plan may be drastically changed if the actual
inspection results influence the choice of acceptability criteria.
Although use of sequential sampling plans is on average much more economical than the use of
corresponding single sampling plans, acceptance or non-acceptance may occur at a very late stage
due to the cumulative count of nonconforming items (or nonconformities) remaining between the
acceptance number and the rejection number for a long time. When using the graphical method, this
corresponds to the random progress of the step curve remaining in the indecision zone. Such a situation
is most likely to occur when the lot or process quality level (in terms of percent nonconforming or in
nonconformities per 100 items) is close to (100g), where g is the parameter giving the slope of the
acceptance and rejection lines.
To improve upon this situation, the sample size curtailment value is set before the inspection of a
lot is begins. If the cumulative sample size reaches the curtailment value n without determination
t
of lot acceptability, inspection terminates and the acceptance and non-acceptance of the lot is then
determined using the curtailment values of the acceptance and rejection numbers.
For sequential sampling plans in common use, curtailment usually represents a deviation from their
intended usage, leading to a distortion of their operating characteristics. In this International Standard,
however, the operating characteristics of the sequential sampling plans have been determined with
curtailment taken into account, so curtailment is an integral component of the provided plans.
Sequential sampling plans for inspection by attributes are also provided in ISO 2859-5. However, the
design principle of those plans is fundamentally different from that of this International Standard. The
sampling plans in ISO 2859-5 are designed to supplement the ISO 2859-1 acceptance sampling system
for inspection by attributes. Thus, they should be used for the inspection of a continuing series of lots,
that is, a series long enough to permit the switching rules of the ISO 2859 system to function. The
application of the switching rules is the only means of providing enhanced protection to the consumer
(by means of tightened sampling inspection criteria or discontinuation of sampling inspection) when
the sequential sampling plans from ISO 2859-5 are used. However, in certain circumstances, there
is a strong need to have both the producer's and the consumer's risks under strict control. Such
circumstances occur, for example, when sampling is performed for regulatory reasons, to demonstrate
the quality of the production processes or to test hypotheses. In such cases, individual sampling plans
selected from the ISO 2859-5 sampling scheme may be inappropriate. The sampling plans from this
International Standard have been designed in order to meet these specific requirements.
INTERNATIONAL STANDARD ISO 28591:2017(E)
Sequential sampling plans for inspection by attributes
1 Scope
This International Standard specifies sequential sampling plans and procedures for inspection by
attributes of discrete items.
The plans are indexed in terms of the producer's risk point and the consumer's risk point. Therefore,
they can be used not only for the purposes of acceptance sampling, but for a more general purpose of
the verification of simple statistical hypotheses for proportions.
The purpose of this International Standard is to provide procedures for sequential assessment of
inspection results that may be used to induce the supplier, through the economic and psychological
pressure of non-acceptance of lots of inferior quality, to supply lots of a quality having a high probability
of acceptance. At the same time, the consumer is protected by a prescribed upper limit to the probability
of accepting lots of poor quality.
This International Standard provides sampling plans that are applicable, but not limited, to inspection
in different fields, such as:
— end items,
— components and raw materials,
— operations,
— materials in process,
— supplies in storage,
— maintenance operations,
— data or records, and
— administrative procedures.
This International Standard contains sampling plans for inspection by attributes of discrete items.
The sampling plans may be used when the extent of nonconformity is expressed either in terms of
proportion (or percent) nonconforming items or in terms of nonconformities per item (per 100 items).
The sampling plans are based on the assumption that nonconformities occur randomly and with
statistical independence. There may be good reasons to suspect that one nonconformity in an item
could be caused by a condition also likely to cause others. If so, it would be better to consider the items
just as conforming or not, and ignore multiple nonconformities.
The sampling plans from this International Standard should primarily be used for the analysis of
samples taken from processes. For example, they may be used for the acceptance sampling of lots taken
from a process that is under statistical control. However, they may also be used for the acceptance
sampling of an isolated lot when its size is large, and the expected fraction nonconforming is small
(significantly smaller than 10 %).
In the case of the acceptance sampling of continuing series of lots, the system of sequential sampling
plans indexed by acceptance quality limit (AQL) for lot-by-lot inspection published in ISO 2859-5 should
be applied.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 3534-1, Statistics — Vocabulary and symbols — Part 1: General statistical terms and terms used in
probability
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 3534-1 and the following apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at http://www.iso.org/obp
— IEC Electropedia: available at http://www.electropedia.org/
3.1
inspection
conformity evaluation by observation and judgement accompanied as appropriate by measurement,
testing or gauging
[SOURCE: ISO 3534-2:2006, 4.1.2]
3.2
inspection by attributes
inspection (3.1) by noting the presence, or absence, of one or more particular characteristic(s) in each
of the items in the group under consideration, and counting how many items do, or do not, possess the
characteristic(s), or how many such events occur in the item, group or opportunity space
Note 1 to entry: When inspection is performed by simply noting whether the item is nonconforming or not, the
inspection is termed inspection for nonconforming items. When inspection is performed by noting the number of
nonconformities on each unit, the inspection is termed inspection for number of nonconformities.
[SOURCE: ISO 3534-2:2006, 4.1.3]
3.3
item
entity
anything that can be described and considered separately
EXAMPLE A discrete physical item; a defined amount of bulk material; a service, activity, person, system or
some combination thereof.
[SOURCE: ISO 3534-2:2006, 1.2.11]
3.4
nonconformity
non-fulfilment of a requirement
[SOURCE: ISO 3534-2:2006, 3.1.11]
Note 1 to entry: See notes to 3.5.
2 © ISO 2017 – All rights reserved
3.5
defect
non-fulfilment of a requirement related to an intended or specified use
Note 1 to entry: The distinction between the concepts defect and nonconformity (3.4) is important as it has legal
connotations, particularly those associated with product liability issues. Consequently the term “defect” should
be used with extreme caution.
Note 2 to entry: The intended use by the customer can be affected by the nature of information, such as operating
or maintenance instructions, provided by the customer.
[SOURCE: ISO 3534-2:2006, 3.1.12]
3.6
nonconforming item
item (3.3) with one or more nonconformities (3.4)
[SOURCE: ISO 3534-2:2006, 1.2.12]
3.7
percent nonconforming
〈in a sample〉 one hundred times the number of nonconforming items (3.6) in the sample (3.13) divided
by the sample size (3.14), viz:
d
100 ×
n
where
d is the number of nonconforming items in the sample;
n is the sample size
[SOURCE: ISO 2859-1:1999, 3.1.8]
3.8
percent nonconforming
〈in a population or lot〉 one hundred times the number of nonconforming items (3.6) in the population or
lot (3.11) divided by the population or lot size (3.12), viz:
D
ni
100 ×=p 100 ×
ni
N
where
p is the proportion of nonconforming items;
ni
D is the number of nonconforming items in the population or lot;
ni
N is the population or lot size
Note 1 to entry: Adapted from ISO 2859-1:1999, 3.1.9.
Note 2 to entry: In this International Standard, the terms percent nonconforming (3.7 and 3.8) or nonconformities
per 100 items (3.9 and 3.10) are mainly used in place of the theoretical terms “proportion of nonconforming
items” and “nonconformities per item” because the former terms are the most widely used.
3.9
nonconformities per 100 items
〈in a sample〉 one hundred times the number of nonconformities (3.4) in the sample (3.13) divided by the
sample size (3.14), viz:
d
100×
n
where
d is the number of nonconformities in the sample;
n is the sample size
[SOURCE: ISO 2859-1:1999, 3.1.10]
3.10
nonconformities per 100 items
〈in a population or lot〉 100 times the number of nonconformities (3.4) in the population or lot (3.11)
divided by the population or lot size (3.12), viz:
D
nt
100×=p 100×
nt
N
where
p is the number of nonconformities per item;
nt
D is the number of nonconformities in the population or lot;
nt
N is the population or lot size
Note 1 to entry: Adapted from ISO 2859-1:1999, 3.1.11.
Note 2 to entry: An item may contain one or more nonconformities.
3.11
lot
definite part of a population constituted under essentially the same conditions as the population with
respect to the sampling purpose
Note 1 to entry: The sampling purpose can, for example, be to determine lot acceptability, or to estimate the
mean value of a particular characteristic.
[SOURCE: ISO 3534-2:2006, 1.2.4]
3.12
lot size
number of items (3.3) in a lot (3.11)
[SOURCE: ISO 2859-1:1999, 3.1.14]
3.13
sample
subset of a population made up of one or more sampling units
[SOURCE: ISO 3534-2:2006, 1.2.17]
4 © ISO 2017 – All rights reserved
3.14
sample size
number of sampling units in a sample (3.13)
[SOURCE: ISO 3534-2:2006, 1.2.26]
3.15
acceptance sampling plan
plan which states the sample size(s) (3.14) to be used and the associated criteria for lot acceptance
[SOURCE: ISO 3534-2:2006, 4.3.3]
3.16
consumer's risk quality
Q
CR
〈acceptance sampling〉 quality level of a lot (3.11) or process which, in the acceptance sampling plan
(3.15), corresponds to a specified consumer's risk
[SOURCE: ISO 3534-2:2006, 4.6.9]
Note 1 to entry: The specified consumer's risk is usually 10 %.
3.17
producer's risk quality
Q
PR
〈acceptance sampling〉 quality level of a lot (3.11) or process which, in the acceptance sampling plan
(3.15), corresponds to a specified producer's risk
[SOURCE: ISO 3534-2:2006, 4.6.10]
Note 1 to entry: The specified producer's risk is usually 5 %.
3.18
count
when inspection by attributes is performed, the result of the inspection of each sample item
Note 1 to entry: In the case of the inspection for nonconforming items, the count is set to 1 if the sample
item is nonconforming. In the case of the inspection for nonconformities, the count is set to the number of
nonconformities found in the sample item.
3.19
cumulative count
when a sequential sampling plan is used, the sum of the counts during inspection, counting from the
start of the inspection of the lot up to, and including, the sample item last inspected
3.20
cumulative sample size
when a sequential sampling plan is used, the total number of sample items during inspection, counting
from the start of the inspection of the lot up to, and including, the sample item last inspected
3.21
acceptance value
〈for sequential sampling〉 value used in the graphical method for determination of acceptance of the lot,
that is derived from the specified parameters of the sampling plan and the cumulative sample size
3.22
acceptance number
〈for sequential sampling〉 number used in the numerical method for determination of acceptance of the
lot, that is obtained by rounding the acceptance value down to the nearest integer
3.23
rejection value
〈for sequential sampling〉 value used in the graphical method for determination of non-acceptance of the
lot, that is derived from the specified parameters of the sampling plan and the cumulative sample size
3.24
rejection number
〈for sequential sampling〉 number used in the numerical method for determination of non-acceptance of
the lot, that is obtained by rounding the rejection value up to the nearest integer
3.25
acceptability table
table used for the lot acceptability determination in the numerical method
3.26
acceptability chart
chart used for the lot acceptability determination in the graphical method, consisting of the following
three zones:
— acceptance zone;
— rejection zone;
— indecision zone;
the borders being acceptance, rejection and curtailment lines
4 Symbols and abbreviated terms
The symbols and abbreviations used in this International Standard are as follows:
A acceptance value (for sequential sampling plan)
Ac acceptance number
Ac acceptance number for a corresponding single sampling plan
Ac acceptance number at curtailment (curtailment value)
t
d count
D cumulative count
g parameter giving the slope of the acceptance and rejection lines
h parameter giving the intercept of the acceptance line
A
h parameter giving the intercept of the rejection line
R
n sample size for a corresponding single sampling plan
n cumulative sample size
cum
n cumulative sample size at curtailment (curtailment value)
t
process average
P
p quality level for which the probability of acceptance is x, where x is a fraction
x
P probability of acceptance (in percent)
a
6 © ISO 2017 – All rights reserved
Q consumer's risk quality (in percent nonconforming items or in nonconformities per hun-
CR
dred items)
Q producer's risk quality (in percent nonconforming items or in nonconformities per hun-
PR
dred items)
R rejection value (for sequential sampling plan)
Re rejection number
Re rejection number for a corresponding single sampling plan
Re rejection number at curtailment (curtailment value)
t
NOTE Re = Ac + 1
t t
α producer's risk
β consumer's risk
5 Principles of sequential sampling plans for inspection by attributes
Under a sequential sampling plan by attributes, sample items are drawn at random and inspected one
by one, and the cumulative count (the total number of nonconforming items or nonconformities) is
obtained. After the inspection of each item, the cumulative count is compared with the acceptability
criteria in order to assess whether there is sufficient information to decide about the lot at that stage of
the inspection.
If, at a given stage, the cumulative count is such that the risk of accepting a lot of unsatisfactory quality
level is sufficiently low, the lot is considered acceptable and the inspection is terminated.
If, on the other hand, the cumulative count is such that the risk of non-acceptance of a lot of satisfactory
quality level is sufficiently low, the lot is considered not acceptable and the inspection is terminated.
If the cumulative count does not allow either of the above decisions to be taken, then an additional
item is sampled and inspected. The process is continued until sufficient sample information has been
accumulated to warrant a decision that the lot is acceptable or not acceptable.
6 Selection of a sampling plan
6.1 Producer’s risk point and consumer’s risk point
The general method described in 6.1 and 6.2 is used when the requirements of the sequential sampling
plan are specified in terms of two points on the operating characteristic curve of the plan. The point
corresponding to the higher probability of acceptance shall be designated the producer’s risk point; the
other shall be designated the consumer’s risk point.
The first step when designing a sequential sampling plan is to choose these two points, if they have not
already been dictated by circumstances. For this purpose, the following combination is often used:
— a producer’s risk of α ≤ 00, 5 and the corresponding producer’s risk quality (Q ), and
PR
— a consumer’s risk of β ≤ 01, 0 and the corresponding consumer’s risk quality (Q ).
CR
When the desired sequential sampling plan is required to have approximately the same operating
characteristic curve as an existing single, double or multiple sampling plan, the producer’s risk point
and the consumer’s risk point may be read off from a graph or a table of the operating characteristic
of that plan. When no such plan exists, the producer’s and the consumer’s risk points have to be
determined from direct consideration of the conditions under which the sampling plan operates.
6.2 Preferred values of Q and Q
PR CR
Tables 1 and 2 give 28 preferred values of Q (producer’s risk quality) ranging from 0,020 % to 10,0 %,
PR
and 23 preferred values of Q (consumer’s risk quality) ranging from 0,200 % to 31,5 %. This
CR
International Standard is applicable only when a combination of the preferred values of Q and Q is
PR CR
chosen under the constraints α ≤ 00, 5 and β ≤ 01, 0 .
6.3 Pre-operation preparations
6.3.1 Obtaining the parameters h , h and g
A R
The criteria for acceptance and non-acceptance of a lot that are invoked at each stage of inspection are
determined from the parameters h , h , and g.
A R
Tables 1 and 2 give the values of these parameters corresponding to a combination of preferred values
of Q and Q together with a producer’s risk of α ≤ 00, 5 and a consumer’s risk ofβ ≤ 01, 0 . Table 1 is
PR CR
for percent nonconforming inspection, and Table 2 is for nonconformities per 100 items inspection.
6.3.2 Obtaining the curtailment values
The curtailment value, n , of the cumulative sample size of the sequential sampling plan is given in
t
Tables 1 and 2 together with the parameters h , h , and g.
A R
7 Operation of a sequential sampling plan
7.1 Specification of the plan
Before operation of a sequential sampling plan, the inspector shall record on the sampling document
the specified values of the parameters, h , h and g, and the curtailment values, n and Ac .
A R t t
7.2 Drawing a sample item
The individual sample items shall be drawn at random from the lot and inspected one by one in the
order in which they are drawn.
7.3 Count and cumulative count
7.3.1 Count
For inspection for percent nonconforming, if the sample item is nonconforming, the count, d, for the
sample item is 1; otherwise, the count, d, is zero.
For inspection for nonconformities per 100 items, the count, d, for the sample item is the number of
nonconformities found in the sample item.
7.3.2 Cumulative count
The cumulative count, D, is the cumulative sum of the count d from the first sample item up to the most
recent (i.e. the n ) sample item inspected so far.
cum
7.4 Choice between numerical and graphical methods
This International Standard provides two methods of operating a sequential sampling plan: a numerical
method and a graphical method, either one of which may be chosen.
8 © ISO 2017 – All rights reserved
The numerical method uses an acceptability table for operating, and has the advantage of being accurate,
thereby avoiding disputes about acceptance or non-acceptance in marginal cases. An acceptability table
can also be used as an inspection record sheet, after inscribing the inspection results.
The graphical method uses an acceptability chart for operating, and has the advantage of displaying
the increase in the information on the lot quality as additional items are inspected, information being
represented by the step curve within the indecision zone, until the line reaches, or crosses, one of the
boundaries of that zone. On the other hand, the method is less accurate, due to the inaccuracy inherent
in plotting points and in drawing lines.
The numerical method is the standard method so far as acceptance or non-acceptance is concerned (see
the caution in 7.6.2). When the numerical method is applied, it is recommended that the calculation and
preparation of an acceptability table be done using appropriate software.
7.5 Numerical method
7.5.1 Preparation of the acceptability table
When the numerical method is used, the following calculations shall be carried out and an acceptability
table shall be prepared.
For each value, n , of the cumulative sample size that is less than the curtailment value of the sample
cum
size, the acceptance value, A, is given by Equation (1):
Ag=×nh− (1)
()
cumA
and the acceptance number, Ac, is obtained by rounding the acceptance value, A, down to the nearest
integer.
For each value of n , the rejection value, R, is given by the Equation (2):
cum
Rg=×nh+ (2)
()
cumR
and the rejection number, Re, is obtained by rounding the rejection value, R, up to the nearest integer.
Whenever the value of A is negative, the cumulative sample size is too small to permit acceptance of
the lot. Conversely, whenever the value of Equation (2) is larger than the cumulative sample size, the
cumulative sample size is too small to permit non-acceptance of the lot under inspection for percent
nonconforming.
Whenever the rejection number, Re, is larger than the curtailment value, Re , the former should be
t
replaced by the latter, because no chance of acceptance remains when the cumulative count, D, exceeds
the curtailment value, Re .
t
The values, A and R, given by Equations (1) and (2) shall have the same number of digits after the
decimal point as g.
The smallest cumulative sample size permitting acceptance of the lot is obtained by rounding the value,
h /g, up to the nearest integer. The smallest cumulative sample size permitting non-acceptance of the
A
lot under inspection for percent nonconforming is obtained by rounding the value, h /(1-g), up to the
R
nearest integer. Finally, an acceptability table is established by inscribing the necessary data.
7.5.2 Making decisions
Enter the count and the cumulative count into the acceptability table prepared in accordance with 7.5.1,
after the inspection of each item.
a) If the cumulative count, D, is less than or equal to the acceptance number, Ac, for the cumulative
sample size, n , the lot shall be considered acceptable and the inspection shall be terminated.
cum
b) If the cumulative count, D, is greater than or equal to the rejection number, Re, for the cumulative
sample size, n , the lot shall be considered not acceptable and the inspection shall be terminated.
cum
c) If neither a) nor b) is satisfied, another item shall be sampled and inspected.
When the cumulative sample size reaches the curtailment value n , the rules in a) and b) apply with the
t
curtailment values of the acceptance number, Ac , and the rejection number, Re (= Ac + 1).
t t t
7.6 Graphical method
7.6.1 Preparation of the acceptability chart
When the graphical method is used, an acceptability chart shall be prepared in accordance with the
following procedures. Prepare a graph with the cumulative sample n as the horizontal axis, and the
cum
cumulative count, D, as the vertical axis. Draw two straight lines with the same slope, g, corresponding
to the acceptance and rejection values, A and R, given by Equations (1) and (2). The lower line with
the intercept of –h is designated the acceptance line, and the upper line with the intercept of h is
A R
designated the rejection line. Add a vertical line, the curtailment line, at n = n . A horizontal line, the
cum t
truncation line, should be added at D = Re .
t
The lines define three zones on the chart.
— The acceptance zone is the zone below (and including) the acceptance line together with that part of
the curtailment line that is below and includes the point (n , Ac ).
t t
— The rejection zone is the zone above (and including) the rejection line together with that part of the
curtailment line that is above and includes the point (n , Re ).
t t
— The indecision zone is the strip between acceptance and rejection lines that is to the left of the
curtailment line.
When the truncation line is added, the triangle at the top of the indecision zone bordered by the rejection
line, the curtailment line and the truncation line (including each side) should be considered as a part
of the rejection zone. In this International Standard, points on the chart representing the cumulative
count will never lie on the acceptance or rejection lines. An example of the prepared graph is given as
Figure 1.
10 © ISO 2017 – All rights reserved
Key
1 rejection zone
2 indecision zone
3 acceptance zone
4 inspection terminates
Figure 1 — Acceptability chart
7.6.2 Making decisions
When the graphical method is used, the following procedures shall be followed.
Plot the point (n ,D) on the acceptability chart prepared in accordance with 7.6.1, after the inspection
cum
of each item.
a) If the point lies in the acceptance zone, the lot shall be considered acceptable and the inspection of
that lot shall be terminated.
b) If the point lies in the rejection zone, the lot shall be considered not acceptable and the inspection of
that lot shall be terminated.
c) If the point lies in the indecision zone, another item from that lot shall be sampled and inspected.
The successive points on the acceptability chart shall be connected by a step curve to show up any
trend in the inspection results.
CAUTION — If the point is close to the acceptance or rejection lines, the numerical method shall
be used to make the decision.
8 Numerical example
The following example illustrates how to use sequential sampling plans in this International Standard.
EXAMPLE
An organization representing consumers is interested in the evaluation of the quality of a certain product. Its
producer claims that at least 99 % of its products are free of nonconformities. However, signals from the market
have revealed that this claim might not be true. Therefore, it has been decided to verify this claim against the
alternative that the real fraction nonconforming is 10 %. In order to minimise the sampling costs, it has been
decided to apply a sequential sampling plan with Q = 1 %, and Q = 10 %.
PR CR
The parameters of the plan (h , h and g) and the curtailment values (n and Ac ) of the sequential sampling plan
A R t t
are found in Table 1.
The parameters are as follows: h = 0,931, h = 0,922 and g = 0,039 4. The curtailment values are as follows; n =
A R t
65 and Ac = 2. Therefore, rejection and acceptance values (R and A) are given by the following equations:
t
Rg=×nh+= 0,,03940×n + 922
() ()
cumR cum
and
Ag=×nh−= 0,,03940×n − 931
()
()
cumA cum
When the numerical method is to be used, rejection and acceptance values (R and A) can be calculated for n = 1
cum
to n − 1 (equal to 64), and then rounded to acceptance and rejection numbers (Ac and Re), respectively. When the
t
rejection number (Re) is larger than the curtailment value (Re = 3), each Re should be replaced by 3.
t
Suppose now that consecutive items randomly selected from the products available on the market are submitted
for inspection. The results of the inspection are as follows:
n D
cum
1 0
— —
14 0
15 1
— —
50 1
For n = 50 we have D = 1, and this value is smaller than the calculated acceptance value A = 1,039. Hence, the
cum
inspection is terminated, and the producer's claim has not been rejected. The acceptability chart for this example
is presented as Figure 1.
9 Tables
Table 1 — Parameters for sequential sampling plans for percent nonconforming. (Master table for
αβ ≤≤0,05 and0 ,10 )
Table 2 — Parameters for sequential sampling plans for nonconformities per 100 items. (Master
table for αβ ≤≤0,05 and0 ,10 )
NOTE The values of h steadily decrease along rows and st
...
NORME ISO
INTERNATIONALE 28591
Première édition
2017-10
Plans d'échantillonnage progressif
pour le contrôle par attributs
Sequential sampling plans for inspection by attributes
Numéro de référence
©
ISO 2017
DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2017, Publié en Suisse
Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée
sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie, l’affichage sur
l’internet ou sur un Intranet, sans autorisation écrite préalable. Les demandes d’autorisation peuvent être adressées à l’ISO à
l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2017 – Tous droits réservés
Sommaire Page
Avant-propos .iv
Introduction .vi
1 Domaine d'application . 1
2 Références normatives . 2
3 Termes et définitions . 2
4 Symboles et termes abrégés . 6
5 Principes des plans d'échantillonnage progressif pour contrôle par attributs .7
6 Sélection d'un plan d'échantillonnage . 7
6.1 Point du risque fournisseur et point du risque client . 7
6.2 Valeurs recommandées de Q et de Q .
RF RC 8
6.3 Opérations préliminaires . 8
6.3.1 Obtention des paramètres h , h et g .8
A R
6.3.2 Obtention des valeurs de troncage. 8
7 Mise en œuvre d'un plan d'échantillonnage progressif . 8
7.1 Spécification du plan . 8
7.2 Prélèvement d'un individu. 8
7.3 Cumul et résultat du cumul . 8
7.3.1 Cumul . 8
7.3.2 Résultat du cumul . 9
7.4 Choix entre méthode numérique et méthode graphique . 9
7.5 Méthode numérique . 9
7.5.1 Préparation de la table d'acceptabilité . 9
7.5.2 Prise de décisions .10
7.6 Méthode graphique .10
7.6.1 Préparation du graphique d'acceptabilité .10
7.6.2 Prise de décisions .11
8 Exemple numérique .12
9 Tableaux .12
Annexe A (informative) Propriétés statistiques du plan d'échantillonnage progressif pour
contrôle par attributs .31
Bibliographie .40
Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes
nationaux de normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est
en général confiée aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l'ISO participent également aux travaux.
L'ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui
concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier de prendre note des différents
critères d'approbation requis pour les différents types de documents ISO. Le présent document a été
rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2 (voir www.
iso.org/directives).
L'attention est appelée sur le fait que certains des éléments du présent document peuvent faire l'objet de
droits de propriété intellectuelle ou de droits analogues. L'ISO ne saurait être tenue pour responsable
de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant
les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de
l'élaboration du document sont indiqués dans l'Introduction et/ou dans la liste des déclarations de
brevets reçues par l'ISO (voir www.iso.org/brevets).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données
pour information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un
engagement.
Pour une explication de la nature volontaire des normes, la signification des termes et expressions
spécifiques de l'ISO liés à l'évaluation de la conformité, ou pour toute information au sujet de l'adhésion
de l'ISO aux principes de l’Organisation mondiale du commerce (OMC) concernant les obstacles
techniques au commerce (OTC), voir le lien suivant: www.iso.org/iso/fr/avant-propos.html
Le présent document a été élaboré par le comité technique ISO/TC 69, Application des méthodes
statistiques, sous-comité SC 5, Échantillonnage en vue d'acceptation.
Cette première édition de l’ISO 28591 annule et remplace l’ISO 8422:2006, qui a fait l’objet d’une révision
mineure pour changer l’ancien numéro de référence, 8422, par le nouveau, 28591.
En vue d’obtenir un portfolio plus cohérent, le TC 69/SC 5 a renuméroté simultanément les normes
suivantes, par le biais de révisions mineures:
Ancienne référence Nouvelle référence Titre
ISO 2859-10:2006 ISO 28590:2017 Règles d'échantillonnage pour les contrôles par attributs
— Introduction au système d'échantillonnage pour les
contrôles par attributs de l'ISO 2859
ISO 8422:2006 ISO 28591:2017 Plans d'échantillonnage progressif pour le contrôle par
attributs
ISO 28801:2011 ISO 28592:2017 Plans d'échantillonnage double par attributs, avec taille
d'échantillon minimale, indexés par la qualité du risque du
fournisseur (QRF) et la qualité du risque du client (QRC)
ISO 18414:2006 ISO 28593:2017 Procédures d'échantillonnage par attributs pour accepta-
tion — Système d'échantillonnage de tolérance zéro-défaut
basé sur le principe de crédit pour le contrôle de la qualité à
la sortie
ISO 21247:2005 ISO 28594:2017 Systèmes d'échantillonnage de tolérance zéro-défaut et pro-
cédures de maîtrise des processus combinés pour l'accepta-
tion de produits
iv © ISO 2017 – Tous droits réservés
ISO 14560:2004 ISO 28597:2017 Règles d'échantillonnage par attributs en vue d'acceptation
— Niveaux spécifiés de qualité en termes d'individus non
conformes pour un million d'individus
ISO 13448-1:2005 ISO 28598-1:2017 Règles d'échantillonnage pour acceptation fondées sur le
principe d'attribution de priorités (APP) — Partie 1: Lignes
directrices relatives à l'approche APP
ISO 13448-2:2004 ISO 28598-2:2017 Règles d'échantillonnage pour acceptation fondées sur le
principe d'attribution de priorités (APP) — Partie 2: Plans
d'échantillonnage simple coordonnés pour l'échantillonnage
pour acceptation par attributs
Les références croisées entre les documents énumérés ci-dessous ont été corrigées dans les révisions
mineures.
Une liste de tous les documents de la nouvelle série de normes ISO 28590 - ISO 28599 se trouve sur le
site Web de l’ISO.
Introduction
Les processus de production actuels prévoient le plus souvent d'atteindre des niveaux élevés de qualité
−6
tels que le nombre d'individus non conformes est exprimé en parties par million (10 ). Dans de telles
circonstances, les plans d'échantillonnage pour acceptation les plus utilisés, tels que ceux présentés
dans l'ISO 2859-1, nécessitent des effectifs d'échantillon d'une importance telle qu'il est difficile de
les traiter. Pour pallier ce problème, les utilisateurs appliquent des plans d'échantillonnage pour
acceptation présentant des probabilités très élevées de décisions erronées ou, dans des cas extrêmes,
ils préfèrent ne pas utiliser du tout les règles d'échantillonnage pour acceptation. Cependant, dans
bon nombre de situations, l'acceptation de produits de haute qualité nécessite encore d'utiliser des
méthodes statistiques normalisées. Dans ce cas, il est nécessaire d'appliquer des règles statistiques
impliquant les plus faibles effectifs d'échantillon possibles. Les plans d'échantillonnage progressif
constituent les seules règles statistiques permettant de satisfaire cette nécessité dans la mesure où
parmi tous les plans d'échantillonnage disponibles ayant des propriétés statistiques similaires, le plan
d'échantillonnage progressif a l'effectif moyen d'échantillon le plus faible.
Les plans d'échantillonnage progressif présentent le principal avantage de réduire l'effectif moyen
d'échantillon. L'effectif moyen d'échantillon est la moyenne pondérée de tous les effectifs d'échantillon
susceptibles d'être obtenus pour un plan d'échantillonnage pour un niveau de qualité d'un lot ou
processus donné. Comme pour les plans d'échantillonnage double et multiple, l'utilisation de plans
d'échantillonnage progressif conduit à un effectif moyen d'échantillon inférieur à celui qu'il faut pour
des plans d'échantillonnage simple ayant la même efficacité. Cependant, les économies moyennes sont
souvent plus importantes lors de l'utilisation d'un plan d'échantillonnage progressif que d'un plan
d'échantillonnage double ou multiple. Pour des lots de très bonne qualité, les économies maximales
pour des plans d'échantillonnage progressif peuvent atteindre 85 %, comparées à une économie de
37 % pour des plans d'échantillonnage double et de 75 % pour des plans d'échantillonnage multiple.
D'autre part, le nombre réel d'individus contrôlés pour un lot particulier en plan d'échantillonnage
double, multiple ou progressif, peut dépasser l'effectif d'échantillon, n , du plan d'échantillonnage simple
correspondant. Pour des plans d'échantillonnage double et multiple, il existe une limite supérieure de
1,25n au nombre réel d'individus à contrôler. Pour les plans d'échantillonnage progressif classiques, il
n'existe pas une telle limite et le nombre réel d'individus contrôlés peut excéder l'effectif d'échantillon
du plan d'échantillonnage simple correspondant, n , voire dépasser l'effectif du lot, N. Pour les plans
d'échantillonnage progressif de la présente Norme internationale, une règle de troncage a été introduite
qui implique une limite supérieure n au nombre réel d'individus à contrôler.
t
Les autres facteurs dont il convient de tenir compte comprennent:
a) Simplicité
Les règles d'un plan d'échantillonnage progressif sont plus facilement mal interprétées par les
contrôleurs que les règles plus faciles d'un plan d'échantillonnage simple.
b) Variabilité du nombre de contrôles
Dans la mesure où le nombre réel d'individus contrôlés pour un lot particulier n'est pas connu à l'avance,
l'utilisation de plans d'échantillonnage progressif peut présenter des difficultés organisationnelles. Par
exemple, des difficultés de planification des opérations de contrôle.
c) Facilité de prélèvement des individus
Si le prélèvement des individus à différents moments se révèle coûteux, l'intérêt de réduire l'effectif
moyen d'échantillon en utilisant des plans d'échantillonnage progressif peut être annulé par
l'augmentation du coût d'échantillonnage.
d) Durée de l'essai
vi © ISO 2017 – Tous droits réservés
Lorsque la durée de l'essai d'un individu simple est longue et qu'il est possible de vérifier un certain
nombre d'individus en même temps, les plans d'échantillonnage progressif sont plus longs à réaliser
que les plans d'échantillonnage simples correspondants.
e) Variabilité de la qualité au sein du lot
Si le lot comprend deux sous-lots ou plus provenant de différentes sources et s'il est probable qu'il
existe une différence substantielle en termes de qualité des sous-lots, le prélèvement d'un échantillon
représentatif pour un plan d'échantillonnage progressif est beaucoup plus difficile à réaliser que pour
le plan d'échantillonnage simple correspondant.
Les avantages et les inconvénients des plans d'échantillonnage double et multiple sont toujours fonction
de ceux que présentent les plans d'échantillonnage simple et progressif. Le résultat de la balance entre
l'avantage d'un effectif moyen d'échantillon plus petit et les inconvénients cités ci-dessus est que les
plans d'échantillonnage progressif ne sont appropriés que lorsque le contrôle des individus discrets est
coûteux par rapport aux frais généraux de contrôle.
Le choix entre des plans d'échantillonnage simple, double, multiple et progressif doit être fait avant le
début du contrôle d'un lot. Il n'est pas possible pendant le contrôle d'un lot de changer un type de plan
d'échantillonnage pour un autre, car l'efficacité du plan peut être radicalement modifiée si les résultats
du contrôle réel influencent le choix du critère d'acceptation.
Bien que l'utilisation de plans d'échantillonnage progressif soit en moyenne plus économique que
l'utilisation des plans d'échantillonnage simple correspondants, l'acceptation ou la non-acceptation peut
survenir à un stade très tardif, le résultat du cumul d'individus non conformes (ou de non-conformités)
restant compris très longtemps entre les critères d'acceptation et de rejet. Pour la méthode graphique,
cela se traduit par la progression aléatoire de la courbe en escalier dans la zone d'indécision. Une
telle situation est d'autant plus probable que le niveau de qualité du lot ou du processus (en termes de
pourcentage de non conformes ou en nombre de non-conformités pour 100 individus) est proche de
100g, où g représente le paramètre donnant la pente des lignes d'acceptation et de rejet.
Afin d'améliorer cette situation, la valeur de troncage de l'effectif d'échantillon est établie avant le début
du contrôle d'un lot. Si l'effectif cumulé d'échantillon atteint la valeur de troncage n sans détermination
t
de l'acceptabilité du lot, le contrôle est arrêté; l'acceptation ou la non-acceptation du lot est alors
déterminée selon les valeurs de troncage des critères d'acceptation et de rejet.
Pour les plans d'échantillonnage progressif d'usage courant, le troncage représente généralement un
écart par rapport à leurs usages prévus, donnant lieu à une déformation de leurs efficacités. Cependant,
dans la présente Norme internationale, les efficacités des plans d'échantillonnage progressif ont été
déterminées en tenant compte du troncage de sorte qu'il fasse partie intégrante des plans fournis.
L'ISO 2859-5 fournit également des plans d'échantillonnage progressif pour le contrôle par attributs.
Cependant, le principe de conception de ces plans est fondamentalement différent de celui spécifié
dans la présente Norme internationale. Les plans d'échantillonnage de l'ISO 2859-5 sont conçus pour
compléter le système d'échantillonnage pour acceptation pour le contrôle par attributs de l'ISO 2859-1.
Il convient par conséquent de les utiliser pour le contrôle d'une série continue de lots, c'est-à-dire une
série suffisamment longue pour pouvoir appliquer les règles de modification (passage) du système de
l'ISO 2859. L'application des règles de modification constitue le seul moyen de renforcer la protection
du client (au moyen de critères de contrôle par échantillonnage renforcé ou l'interruption du contrôle
par échantillonnage) lorsqu'on utilise les plans d'échantillonnage progressif de l'ISO 2859-5. Cependant,
dans certaines circonstances, il est absolument nécessaire de totalement maîtriser les risques
fournisseur et client. De telles situations peuvent par exemple survenir lorsque l'échantillonnage est
réalisé pour des raisons d'ordre réglementaire, pour démontrer la qualité des processus de production
ou pour vérifier des hypothèses. Dans ce cas, le choix d'utiliser les plans d'échantillonnage individuels
spécifiés dans les procédures d'échantillonnage de l'ISO 2859-5 peut se révéler inapproprié. Les plans
d'échantillonnage donnés dans la présente Norme internationale ont été conçus pour satisfaire ces
conditions spécifiques.
NORME INTERNATIONALE ISO 28591:2017(F)
Plans d'échantillonnage progressif pour le contrôle par
attributs
1 Domaine d'application
La présente Norme internationale spécifie des plans et des règles d'échantillonnage progressif pour le
contrôle par attributs d'individus discrets.
Les plans sont indexés en termes de point du risque fournisseur et de point du risque client. Par
conséquent, ils peuvent être utilisés pour l'échantillonnage pour acceptation mais également à des fins
plus générales de vérification d'hypothèses statistiques simples concernant des proportions.
La présente Norme internationale fournit des règles, basées sur la détermination progressive des
résultats de contrôle, pouvant être utilisées pour inciter le fournisseur, par des pressions économiques
et psychologiques liées à la non-acceptation de lots de qualité inférieure, à fournir des lots de qualité
ayant une forte probabilité d'acceptation. En même temps, le client est protégé par une limite supérieure
imposée de la probabilité d'accepter des lots de faible qualité.
La présente Norme internationale fournit des plans d'échantillonnage, d'une manière non limitative,
notamment aux contrôles ci-après:
— produits finis;
— composants et matières premières;
— opérations;
— matériaux en cours de fabrication;
— fournitures en stock;
— opérations d'entretien;
— informations ou enregistrements;
— procédures administratives.
La présente Norme internationale contient des plans d'échantillonnage pour le contrôle par attributs
d'individus discrets. Les plans d'échantillonnage peuvent être utilisés lorsque l'évaluation de la non-
conformité s'exprime soit en termes de proportion (ou pourcentage) d'individus non conformes, soit en
termes de non-conformités par individu (pour 100 individus).
Les plans d'échantillonnage sont fondés sur l'hypothèse selon laquelle les non-conformités surviennent
de façon aléatoire et sont statistiquement indépendantes. Il peut exister de bonnes raisons de supposer
qu'une non-conformité dans un individu puisse être provoquée par une condition qui provoquerait des
non-conformités également dans d'autres individus. Dans ce cas, mieux vaudrait considérer les individus
comme étant simplement conformes ou non conformes, et ignorer les non-conformités multiples.
Il convient d'utiliser les plans d'échantillonnage de la présente Norme internationale principalement
pour l'analyse d'échantillons prélevés de processus. Par exemple, ils peuvent être utilisés pour
l'échantillonnage pour acceptation de lots prélevés d'un processus sous maîtrise statistique. Par ailleurs,
ils peuvent également être utilisés pour l'échantillonnage pour acceptation d'un lot isolé dont l'effectif
est important et la proportion prévue de non-conformités est faible (sensiblement inférieure à 10 %).
Dans le cas de l'échantillonnage pour acceptation d'une série continue de lots, il convient d'appliquer le
système des plans d'échantillonnage progressif pour le contrôle lot par lot, indexés d'après le niveau de
qualité acceptable (NQA) de l'ISO 2859-5.
2 Références normatives
Les documents suivants cités dans le texte constituent, pour tout ou partie de leur contenu, des
exigences du présent document. Pour les références datées, seule l’édition citée s’applique. Pour les
références non datées, la dernière édition du document de référence s'applique (y compris les éventuels
amendements).
ISO 3534-1, Statistique — Vocabulaire et symboles — Partie 1: Termes statistiques généraux et termes
utilisés en calcul des probabilités
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions donnés dans l'ISO 3534-1 ainsi que les
suivants s'appliquent.
L'ISO et l'IEC tiennent à jour des bases de données terminologiques destinées à être utilisées en
normalisation, consultables aux adresses suivantes:
— IEC Electropedia: disponible à l’adresse http://www.electropedia.org/.
— ISO Online browsing platform: disponible à l’adresse http://www.iso.org/obp.
3.1
contrôle
évaluation de la conformité par observation et jugement, accompagnés le cas échéant par des mesurages,
essais et passages au calibre
[SOURCE: ISO 3534-2:2006, 4.1.2]
3.2
contrôle par attributs
contrôle (3.1) consistant à noter la présence ou l'absence d'une ou plusieurs caractéristiques pour
chacun des individus du groupe considéré, et à compter combien de ces individus possèdent ou ne
possèdent pas cette (ces) caractéristique(s), ou encore à compter combien d'événements de même
nature se produisent dans l'individu, le groupe ou l'aire d'occurrence
Note 1 à l'article: Lorsque le contrôle consiste uniquement à noter si l'individu est conforme ou non conforme, le
contrôle est appelé contrôle d'individus non conformes. Lorsque le contrôle consiste à noter le nombre de non-
conformités par unité, le contrôle est appelé contrôle du nombre de non-conformités.
[SOURCE: ISO 3534-2:2006, 4.1.3]
3.3
individu
entité
tout ce qui peut être décrit et considéré individuellement
EXEMPLE Une entité physique discrète, une quantité définie de matériau en vrac, un service, une activité,
une personne, un système ou une combinaison de l'ensemble.
[SOURCE: ISO 3534-2:2006, 1.2.11]
3.4
non-conformité
non-satisfaction d'une exigence
[SOURCE: ISO 3534-2:2006, 3.1.11]
Note 1 à l'article: Voir les notes au 3.5.
2 © ISO 2017 – Tous droits réservés
3.5
défaut
non-satisfaction d'une exigence relative à une utilisation prévue ou spécifiée
Note 1 à l'article: La distinction faite entre les concepts «défaut» et non-conformité (3.4) est importante car elle
comporte des connotations juridiques, particulièrement celles liées à la responsabilité du fait du produit. En
conséquence, il convient d'utiliser le terme «défaut» avec une extrême précaution.
Note 2 à l'article: L'utilisation prévue, telle que prévue par le client, peut être affectée par la nature des
informations, par exemple les notices d'utilisation ou d'entretien, transmises par le client.
[SOURCE: ISO 3534-2:2006, 3.1.12]
3.6
individu non conforme
individu (3.3) avec une ou plusieurs non-conformités (3.4)
[SOURCE: ISO 3534-2:2006, 1.2.12]
3.7
pourcentage de non-conformes
〈dans un échantillon〉 cent fois le nombre d'individus non conformes (3.6) de l'échantillon (3.13) divisé
par l'effectif d'échantillon (3.14), soit:
d
100 ×
n
où
d est le nombre d'individus non conformes de l'échantillon;
n est l'effectif d'échantillon
[SOURCE: ISO 2859-1:1999, 3.1.8]
3.8
pourcentage de non-conformes
〈dans une population ou dans un lot〉 cent fois le nombre d'individus non conformes (3.6) de la population
ou du lot (3.11) divisé par l'effectif du lot (3.12) ou de la population, soit:
D
ni
100×=p 100×
ni
N
où
p est la proportion d'individus non conformes;
ni
D est le nombre d'individus non conformes de la population ou du lot;
ni
N est l'effectif de la population ou du lot
Note 1 à l'article: Adapté de l'ISO 2859-1:1999, 3.1.9.
Note 2 à l'article: Dans la présente Norme internationale, les termes pourcentage de non-conformes (3.7 et 3.8)
et nombre de non-conformités pour 100 individus (3.9 et 3.10) sont principalement employés à la place des termes
théoriques «proportion d'individus non conformes» et «nombre de non-conformités par individu», car les deux
termes précités sont les plus largement répandus.
3.9
nombre de non-conformités pour 100 individus
〈dans un échantillon〉 cent fois le nombre de non-conformités (3.4) de l'échantillon (3.13) divisé par
l'effectif d'échantillon (3.14), soit:
d
100×
n
où
d est le nombre de non-conformités trouvées dans l'échantillon;
n est l'effectif d'échantillon
[SOURCE: ISO 2859-1:1999, 3.1.10]
3.10
nombre de non-conformités pour 100 individus
〈dans une population ou dans un lot〉 100 fois le nombre de non-conformités (3.4) de la population ou du
lot (3.11) divisé par l'effectif du lot (3.12) ou de la population, soit:
D
nt
100×=p 100×
nt
N
où
p est le nombre de non-conformités par individu;
nt
D est le nombre de non-conformités de la population ou du lot;
nt
N est l'effectif de la population ou du lot
Note 1 à l'article: Adapté de l'ISO 2859-1:1999, 3.1.11.
Note 2 à l'article: Un individu peut contenir une ou plusieurs non-conformités.
3.11
lot
partie définie d'une population constituée essentiellement dans les mêmes conditions que la population
pour ce qui concerne l'échantillonnage
Note 1 à l'article: L'échantillonnage peut par exemple être réalisé pour déterminer l'acceptabilité d'un lot ou pour
estimer la valeur moyenne d'une caractéristique particulière.
[SOURCE: ISO 3534-2:2006, 1.2.4]
3.12
effectif du lot
nombre d'individus (3.3) dans un lot (3.11)
[SOURCE: ISO 2859-1:1999, 3.1.14]
3.13
échantillon
sous-ensemble d'une population constitué d'une ou de plusieurs unités d'échantillonnage
[SOURCE: ISO 3534-2:2006, 1.2.17]
4 © ISO 2017 – Tous droits réservés
3.14
taille de l'échantillon
nombre d'unités d'échantillonnage constituant un échantillon (3.13)
[SOURCE: ISO 3534-2:2006, 1.2.26]
3.15
plan d'échantillonnage pour acceptation
plan définissant la taille de l'échantillon (3.14) ou des échantillons à utiliser et les critères associés pour
l'acceptation du lot
[SOURCE: ISO 3534-2:2006, 4.3.3]
3.16
qualité du risque du client
Q
RC
〈échantillonnage pour acceptation〉 niveau de qualité d'un lot (3.11) ou d'un processus qui, dans le plan
d'échantillonnage pour acceptation (3.15), correspond à un risque du client spécifié
[SOURCE: ISO 3534-2:2006, 4.6.9]
Note 1 à l'article: Le risque du client spécifié est généralement de 10 %.
3.17
qualité du risque du fournisseur
Q
RF
〈échantillonnage pour acceptation〉 niveau de qualité d'un lot (3.11) ou d'un processus qui, dans le plan
d'échantillonnage pour acceptation (3.15), correspond à un risque du fournisseur spécifié
[SOURCE: ISO 3534-2:2006, 4.6.10]
Note 1 à l'article: Le risque du fournisseur spécifié est généralement de 5 %.
3.18
cumul
lorsqu'un contrôle par attributs est effectué, résultat du contrôle de chaque individu
Note 1 à l'article: Pour le contrôle des individus non conformes, le cumul est fixé à 1 si l'individu est non conforme.
Pour le contrôle du nombre de non-conformités, le cumul est fixé au nombre de non-conformités trouvées dans
l'individu.
3.19
résultat du cumul
lorsqu'un plan d'échantillonnage progressif est utilisé, la somme des cumuls obtenus pendant le
contrôle, comptés à partir du début du contrôle du lot jusqu'au dernier individu contrôlé inclus
3.20
effectif cumulé d'échantillon
lorsqu'un plan d'échantillonnage progressif est utilisé, nombre total d'individus contrôlés, comptés à
partir du début du contrôle du lot jusqu'au dernier individu contrôlé inclus
3.21
valeur d'acceptation
〈pour l'échantillonnage progressif〉 valeur utilisée dans la méthode graphique pour déterminer
l'acceptation du lot qui est déduite des paramètres spécifiés du plan d'échantillonnage et de l'effectif
cumulé d'échantillon
3.22
critère d'acceptation
〈pour l'échantillonnage progressif〉 critère utilisé dans la méthode numérique pour déterminer
l'acceptation du lot qui est obtenu en arrondissant la valeur d'acceptation au plus proche entier inférieur
3.23
valeur de rejet
〈pour l'échantillonnage progressif〉 valeur utilisée dans la méthode graphique pour déterminer la non-
acceptation du lot qui est déduite des paramètres spécifiés du plan d'échantillonnage et de l'effectif
cumulé d'échantillon
3.24
critère de rejet
〈pour l'échantillonnage progressif〉 critère utilisé dans la méthode numérique pour déterminer la non-
acceptation du lot qui est obtenu en arrondissant la valeur de rejet au plus proche entier supérieur
3.25
table d'acceptabilité
table utilisée dans la méthode numérique pour déterminer l'acceptabilité du lot
3.26
graphique d'acceptabilité
graphique utilisé dans la méthode graphique pour déterminer l'acceptabilité du lot et constitué des
trois zones suivantes:
— zone d'acceptation,
— zone de rejet,
— zone d'indécision,
délimitées par les lignes d'acceptation, de rejet et de troncage
4 Symboles et termes abrégés
Les symboles et termes abrégés utilisés dans la présente Norme internationale sont les suivants:
A valeur d'acceptation (pour le plan d'échantillonnage progressif).
Ac critère d'acceptation
Ac critère d'acceptation pour un plan d'échantillonnage simple correspondant
Ac critère d'acceptation au troncage (valeur de troncage)
t
d cumul
D résultat du cumul
g paramètre donnant la pente de la ligne d'acceptation et de la ligne de rejet
h paramètre donnant l'ordonnée à l'origine de la ligne d'acceptation
A
h paramètre donnant l'ordonnée à l'origine de la ligne de rejet
R
n effectif d'échantillon pour un plan d'échantillonnage simple correspondant
n effectif cumulé d'échantillon
cum
n effectif cumulé d'échantillon au troncage (valeur de troncage)
t
moyenne du processus
P
p niveau de qualité pour lequel la probabilité d'acceptation est x, où x est une décimale
x
6 © ISO 2017 – Tous droits réservés
P probabilité d'acceptation (en pourcentage)
a
Q qualité du risque du client (en pourcentage d'individus non conformes ou en nombre de non-
RC
conformités par individus)
Q qualité du risque du fournisseur (en pourcentage d'individus non conformes ou en nombre
RF
de non-conformités par individus)
R valeur de rejet (pour le plan d'échantillonnage progressif)
Re critère de rejet
Re critère de rejet pour un plan d'échantillonnage simple correspondant
Re critère de rejet au troncage (valeur de troncage)
t
NOTE Re = Ac + 1
t t
α risque du fournisseur
β risque du client
5 Principes des plans d'échantillonnage progressif pour contrôle par attributs
Dans un plan d'échantillonnage progressif par attributs, les individus sont prélevés au hasard et
soumis au contrôle un par un et le résultat du cumul (le nombre total d'individus non conformes ou de
non-conformités) est obtenu. Après le contrôle de chaque individu, le résultat du cumul est comparé
aux critères d'acceptabilité pour décider si l'information est suffisante pour juger le lot à ce stade du
contrôle.
Si, à un stade donné, le résultat du cumul est tel que le risque d'accepter un lot d'un niveau de qualité
non satisfaisant est suffisamment bas, le lot est considéré comme acceptable et le contrôle est arrêté.
Si, en revanche, le résultat du cumul est tel que le risque de non-acceptation d'un lot de niveau de qualité
satisfaisant est suffisamment bas, le lot est considéré comme non acceptable et le contrôle est arrêté.
Si le résultat du cumul ne permet de prendre aucune des deux décisions ci-dessus, alors un individu
supplémentaire est échantillonné et contrôlé. Le processus est poursuivi jusqu'à ce que l'information
nécessaire ait été accumulée afin de pouvoir prendre une décision sur l'acceptabilité ou la non-
acceptabilité du lot.
6 Sélection d'un plan d'échantillonnage
6.1 Point du risque fournisseur et point du risque client
La méthode générale décrite en 6.1 et 6.2 est utilisée lorsque les données d'un plan d'échantillonnage
progressif sont spécifiées par deux points de la courbe d'efficacité du plan. Le point correspondant à
la plus haute probabilité d'acceptation doit être appelé le point du risque fournisseur; l'autre doit être
appelé le point du risque client.
La première étape dans la détermination d'un plan d'échantillonnage progressif est le choix de ces deux
points, si ceux-ci n'ont pas déjà été dictés par les circonstances. Pour ce faire, la combinaison suivante
est souvent utilisée:
— un risque fournisseur de α ⩽ 0,05 et la qualité du risque du fournisseur (Q ) correspondante, et
RF
— un risque client de β ⩽ 0,10 et la qualité du risque du client (Q ) correspondante.
RC
Lorsque le plan d'échantillonnage progressif souhaité doit avoir approximativement la même courbe
d'efficacité qu'un plan d'échantillonnage simple, double ou multiple, le point du risque fournisseur et
le point du risque client peuvent être choisis à l'aide d'un graphique ou d'une table de l'efficacité de ce
plan. Quand un tel plan n'existe pas, les points des risques client et fournisseur seront déterminés en
considérant directement les conditions dans lesquelles l'échantillonnage sera effectué.
6.2 Valeurs recommandées de Q et de Q
RF RC
Les Tableaux 1 et 2 donnent 28 valeurs recommandées de Q (qualité du risque du fournisseur)
RF
comprises entre 0,020 % et 10,0 %, et 23 valeurs recommandées de Q (qualité du risque du client)
RC
comprises entre 0,200 % et 31,5 %. La présente Norme internationale ne s'applique que dans le cas
d'une combinaison des valeurs recommandées de Q et de Q choisie dans les conditions α ⩽ 0,05 et
RF RC
β ⩽ 0,10.
6.3 Opérations préliminaires
6.3.1 Obtention des paramètres h , h et g
A R
Les critères d'acceptation et de non-acceptation d'un lot utilisés à chaque stade du contrôle sont
déterminés à partir des paramètres h , h , et g.
A R
Les valeurs de ces paramètres correspondant à une combinaison des valeurs recommandées de Q et
RF
de Q , ainsi qu'à un risque fournisseur de α ⩽ 0,05 et un risque client de β ⩽ 0,10, sont données dans
RC
les Tableaux 1 et 2. Le Tableau 1 concerne le contrôle du pourcentage de non conformes et le Tableau 2
concerne le contrôle du nombre de non-conformités pour 100 individus.
6.3.2 Obtention des valeurs de troncage
La valeur de troncage, n , pour l'effectif cumulé d'échantillon du plan d'échantillonnage progressif est
t
donnée dans les Tableaux 1 et 2 ainsi que les paramètres h , h , et g.
A R
7 Mise en œuvre d'un plan d'échantillonnage progressif
7.1 Spécification du plan
Avant la mise en œuvre d'un plan d'échantillonnage progressif, le contrôleur doit enregistrer les
valeurs spécifiées des paramètres h , h et g, et les valeurs de troncage, n et Ac , sur le document de
A R t t
l'échantillonnage.
7.2 Prélèvement d'un individu
Les individus doivent être prélevés au hasard du lot et contrôlés un par un, dans l'ordre où ils ont été
prélevés.
7.3 Cumul et résultat du cumul
7.3.1 Cumul
Pour le contrôle du pourcentage de non conformes, si l'individu est non conforme, le cumul, d, pour
l'individu est égal à 1; autrement le cumul, d, est égal à zéro.
Pour le contrôle du nombre de non-conformités pour 100 individus, le cumul, d, pour l'individu
correspond au nombre de non-conformités trouvées dans l'individu.
8 © ISO 2017 – Tous droits réservés
7.3.2 Résultat du cumul
Le résultat du cumul, D, est la somme cumulée du cumul, d, à partir du premier individu et jusqu'au plus
récent (à savoir le n ) individu de l'échantillon contrôlé jusqu'à présent.
cum
7.4 Choix entre méthode numérique et méthode graphique
La présente Norme internationale donne deux méthodes de mise en œuvre d'un plan d'échantillonnage
progressif: une méthode numérique et une méthode graphique, l'une ou l'autre pouvant être choisie.
La méthode numérique utilise pour la mise en œuvre une table d'acceptabilité et présente l'avantage
d'être précise. Elle permet ainsi dans des cas marginaux d'éviter des discussions sur l'acceptation ou la
non-acceptation. Une table d'acceptabilité peut également être utilisée comme feuille d'enregistrement
de contrôle après report des résultats du contrôle.
La méthode graphique utilise, pour la mise en œuvre, un graphique d'acceptabilité. Elle présente
l'avantage de visualiser l'évolution de l'information sur la qualité du lot lorsque des individus
supplémentaires sont contrôlés, l'information étant représentée par la courbe en escalier (ligne brisée)
à l'intérieur de la zone d'indécision, jusqu'à ce que la ligne atteigne ou dépasse une des limites de cette
zone. La méthode est cependant moins précise à cause de l'imprécision inhérente au marquage de
points et au dessin de droites.
La méthode numérique est la méthode de référence en ce qui concerne l'acceptation ou la non-
acceptation d'un lot (voir l'avertissement en 7.6.2). Lorsque la méthode numérique est appliquée, il est
recommandé d'effectuer le calcul et la préparation d'une table d'acceptabilité en utilisant un logiciel
approprié.
7.5 Méthode numérique
7.5.1 Préparation de la table d'acceptabilité
Lorsque la méthode numérique est utilisée, les calculs suivants doivent être réalisés et une table
d'acceptabilité doit être préparée.
Pour chaque valeur, n , de l'effectif cumulé d'échantillon, qui est inférieure à la valeur de troncage de
cum
l'effectif d'échantillon, la valeur d'acceptation A est donnée par l'Équation (1):
Ag=×nh− (1)
()
cumA
et le critère d'acceptation Ac est obtenu en arrondissant la valeur d'acceptation, A, au plus proche entier
inférieur.
Pour chaque valeur de n , la valeur de rejet R est donnée par l'Équation (2):
cum
Rg=×nh+ (2)
()
cumR
et le critère de rejet, Re, est obtenu en arrondissant la valeur de rejet, R, au plus proche entier supérieur.
Partout où la valeur de A est négative, l'effectif cumulé d'échantillon est trop petit pour permettre
l'acceptation du lot. Inversement, partout où la valeur de l'Équation (2) est supérieure à l'effectif
cumulé d'échantillon, celui-ci est trop petit pour permettre une non-acceptation du lot contrôlé pour le
pourcentage de non conformes.
Partout où le critère de rejet, Re, est supérieur à la valeur de troncage, Re , il convient de remplacer la
t
première valeur précitée par la dernière dans la mesure où il ne subsiste aucune chance d'acceptation
lorsque le résultat du cumul, D, dépasse la valeur de troncage, Re .
t
Les valeurs, A et R, données par les Équations (1) et (2) doivent être déterminées avec les mêmes
décimales que g.
L'effectif minimal cumulé d'échantillon permettant l'acceptation du lot est obtenu en arrondissant la
valeur, h /g, au plus proche entier supérieur. L'effectif minimal cumulé d'échantillon permettant la non-
A
acceptation du lot pour le contrôle du pourcentage de non conformes est obtenu en arrondissant la
valeur, h /(1 − g), au plus proche entier supérieur. En dernier lieu, une table d'acceptabilité est établie
R
en reportant les données nécessaires.
7.5.2 Prise de décisions
Reporter le cumul et le résultat du cumul sur la table d'acceptabilité préparée selon 7.5.1, après le
contrôle de chaque individu.
a) Si le résultat du cumul, D, est inférieur ou égal au critère d'acceptation, Ac, pour l'effectif cumulé
d'échantillon, n , le lot doit être considéré acceptable et le contrôle doit être arrêté.
cum
b) Si le résultat du cumul, D, est supérieur ou égal au critère de rejet, Re, pour l'effectif cumulé
d'échantillon, n , le lot doit être considéré non acceptable et le contrôle doit être arrêté.
cum
c) Si ni a) ni b) n'est satisfait, un autre individu doit être échantillonné et contrôlé.
Lorsque l'effectif cumulé d'échantillon atteint la valeur de troncage, n , les règles a) et b) s'appliquent
t
avec les valeurs de troncage du critère d'acceptation, Ac , et du critère de rejet, Re (= Ac + 1).
t t t
7.6 Méthode graphique
7.6.1 Préparation du graphique d'acceptabilité
Lorsque la méthode graphique est utilisée, un graphique d'acceptabilité doit être préparé conformément
aux règles suivantes. Préparer un graphique avec pour axe horizontal l'échantillon (effectif) cumulé
n et pour axe vertical le résultat du cumul, D. Tracer deux droites de même pente, g, correspondant
cum
à la valeur d'acceptation et à la valeur de rejet, A et R, données par les Équations (1) et (2). La droite
inférieure, d'ordonnée à l'origine −h est appelée la ligne d'acceptation, et la droite supérieure,
A
d'ordonnée à l'origine h est appelée la ligne de rejet. Ajouter une ligne vertical
...












Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...