SIST ISO 1996-2:2017
Acoustics - Description, measurement and assessment of environmental noise - Part 2: Determination of sound pressure levels
Acoustics - Description, measurement and assessment of environmental noise - Part 2: Determination of sound pressure levels
ISO 1996-2:2017 describes how sound pressure levels intended as a basis for assessing environmental noise limits or comparison of scenarios in spatial studies can be determined. Determination can be done by direct measurement and by extrapolation of measurement results by means of calculation. This document is primarily intended to be used outdoors but some guidance is given for indoor measurements as well. It is flexible and to a large extent, the user determines the measurement effort and, accordingly, the measurement uncertainty, which is determined and reported in each case. Thus, no limits for allowable maximum uncertainty are set up. Often, the measurement results are combined with calculations to correct for reference operating or propagation conditions different from those during the actual measurement. This document can be applied on all kinds of environmental noise sources, such as road and rail traffic noise, aircraft noise and industrial noise.
Acoustique - Description, évaluation et mesurage du bruit de l'environnement -- Partie 2: Détermination des niveaux de pression acoustique
Akustika - Opis, merjenje in ocena hrupa v okolju - 2. del: Določanje ravni zvočnega tlaka
Ta dokument opisuje, kako je mogoče določiti ravni zvočnega tlaka kot osnovo za ocenjevanje mejnih vrednosti hrupa v okolju ali primerjavo scenarijev v prostorskih študijah. Določanje se lahko izvede z neposrednim merjenjem in ekstrapolacijo rezultatov meritev s pomočjo izračuna.
Ta dokument je namenjen predvsem uporabi na prostem, vendar je podanih tudi nekaj smernic za merjenje v zaprtih prostorih. Je prilagodljiv in uporabnik lahko v veliki meri določa merjenje in ustrezno tudi merilne negotovosti, ki so določene in podane za vsak primer. Zato niso določene nobene mejne vrednosti dovoljene največje negotovosti. Pogosto so rezultati meritev kombinirani z izračuni za popravke pri referenčnih obratovalnih pogojih ali pogojih za razširjanje, ki se razlikujejo od pogojev med dejanskim merjenjem. Ta dokument se lahko uporablja za vse vire hrupa v okolju, kot so hrup cestnega in železniškega prometa, letalski hrup in industrijski hrup.
General Information
Relations
Standards Content (Sample)
SLOVENSKI STANDARD
01-september-2017
1DGRPHãþD
SIST ISO 1996-2:2007
$NXVWLND2SLVPHUMHQMHLQRFHQDKUXSDYRNROMXGHO'RORþDQMHUDYQL
]YRþQHJDWODND
Acoustics - Description, measurement and assessment of environmental noise - Part 2:
Determination of sound pressure levels
Acoustique - Description, évaluation et mesurage du bruit de l'environnement -- Partie 2:
Détermination des niveaux de pression acoustique
Ta slovenski standard je istoveten z: ISO 1996-2:2017
ICS:
13.140 Vpliv hrupa na ljudi Noise with respect to human
beings
17.140.01 $NXVWLþQDPHUMHQMDLQ Acoustic measurements and
EODåHQMHKUXSDQDVSORãQR noise abatement in general
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
INTERNATIONAL ISO
STANDARD 1996-2
Third edition
2017-07
Acoustics — Description,
measurement and assessment of
environmental noise —
Part 2:
Determination of sound pressure levels
Acoustique — Description, évaluation et mesurage du bruit de
l’environnement —
Partie 2: Détermination des niveaux de pression acoustique
Reference number
©
ISO 2017
© ISO 2017, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2017 – All rights reserved
Contents Page
Foreword .v
Introduction .vi
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Measurement uncertainty . 3
5 Instrumentation for acoustical measurements . 5
5.1 General . 5
5.2 Calibration . 6
5.3 Verification . 6
5.4 Long-term monitoring . 6
6 Principles . 6
6.1 General . 6
6.2 Independent measurements . 7
7 Operation of the source . 8
7.1 General . 8
7.2 Road traffic . 8
7.2.1 L measurement . 8
eq
7.2.2 L measurement . 9
max
7.3 Rail traffic . 9
7.3.1 L measurement . 9
eq
7.3.2 L measurement . 9
max
7.4 Air traffic .10
7.4.1 L measurement .10
eq
7.4.2 L measurement .11
max
7.5 Industrial plants . .11
7.5.1 L measurement .11
eq
7.5.2 L measurement .11
max
8 Meteorological conditions .12
8.1 General .12
8.2 Favourable propagation .13
8.3 Effects of precipitation on measurements .13
9 Measurement procedures .13
9.1 Selection of measurement time interval .13
9.1.1 Long-term measurements .13
9.1.2 Short-term measurements .14
9.2 Microphone location .14
9.2.1 Outdoors .14
9.2.2 Indoors .15
9.3 Measurements .15
9.3.1 Long-term unattended measurements .15
9.3.2 Short-term attended measurements .16
9.3.3 Residual sound .17
9.3.4 Frequency range of measurements .17
9.3.5 Measurements of meteorological parameters .17
10 Evaluation of the measurement results .18
10.1 General .18
10.2 Determination of L , L and L .
E,T eq,T N,T 18
10.2.1 L and L .
E,T eq,T 18
10.2.2 L .
N,T 18
10.3 Treatment of incomplete or corrupted data .19
10.3.1 General.19
10.3.2 Wind sound .19
10.4 Level correction for residual sound .19
10.5 Determination of standard uncertainty .19
10.6 Determination of L .
den 20
10.6.1 Determination from long-term L measurements .20
eq
10.6.2 Determination from long-term L measurements of individual events.20
E
10.6.3 Determination from short-term measurements .21
10.7 Maximum level, L .
max 22
11 Extrapolation to other locations .22
11.1 General .22
11.2 Extrapolation by means of calculations.22
11.3 Extrapolation by means of measured attenuation functions .23
12 Calculation .23
12.1 General .23
12.2 Calculation methods .24
12.2.1 General.24
12.2.2 Specific procedures .24
13 Information to be recorded and reported .24
Annex A (informative) Determination of radius of curvature .26
Annex B (informative) Microphone locations relative to reflecting surfaces .29
Annex C (informative) Selection of measurement/monitoring site .34
Annex D (informative) Correction to reference condition .36
Annex E (informative) Elimination of unwanted sound .41
Annex F (informative) Measurement uncertainty .42
Annex G (informative) Examples of uncertainty calculations .44
Annex H (informative) Maximum sound pressure levels .49
Annex I (informative) Measurement of residual sound .52
Annex J (informative) Objective method for assessing the audibility of tones in noise —
Engineering method .54
Annex K (informative) Objective method for assessing the audibility of tones in noise —
Survey method .56
Annex L (informative) National and European source specific calculation models .57
Bibliography .60
iv © ISO 2017 – All rights reserved
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment,
as well as information about ISO’s adherence to the World Trade Organization (WTO) principles in the
Technical Barriers to Trade (TBT) see the following URL: www . i so .org/ iso/ foreword .html.
This document was prepared by Technical Committee ISO/TC 43, Acoustics, Subcommittee SC 1, Noise.
This third edition cancels and replaces the second edition (ISO 1996-2:2007), which has been technically
revised.
A list of all the parts in the ISO 1996 series can be found on the ISO website.
Introduction
Measurements of environmental noise are complicated because there is a great number of variables to
consider when planning and performing the measurements. As each measurement occasion is subject
to current source and meteorological conditions which cannot be controlled by the operator, it is often
not possible to control the resulting uncertainty of the measurements. Instead, the uncertainty is
determined after the measurements based on an analysis of the acoustic measurements and collected
data on source operating conditions and on meteorological parameters important for the sound
propagation.
Because this document has the ambition both to comply with new and stricter requirements on
measurement uncertainty calculations and to cover all kinds of sources and meteorological conditions,
it has become more complicated than what a standard covering a single, specific source and application
could have been. The best use of the standard is to use it as a basis for developing more dedicated
standards serving specific sources and aims.
vi © ISO 2017 – All rights reserved
INTERNATIONAL STANDARD ISO 1996-2:2017(E)
Acoustics — Description, measurement and assessment of
environmental noise —
Part 2:
Determination of sound pressure levels
1 Scope
This document describes how sound pressure levels intended as a basis for assessing environmental
noise limits or comparison of scenarios in spatial studies can be determined. Determination can be
done by direct measurement and by extrapolation of measurement results by means of calculation.
This document is primarily intended to be used outdoors but some guidance is given for indoor
measurements as well. It is flexible and to a large extent, the user determines the measurement effort
and, accordingly, the measurement uncertainty, which is determined and reported in each case. Thus,
no limits for allowable maximum uncertainty are set up. Often, the measurement results are combined
with calculations to correct for reference operating or propagation conditions different from those
during the actual measurement. This document can be applied on all kinds of environmental noise
sources, such as road and rail traffic noise, aircraft noise and industrial noise.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 1996-1:2016, Acoustics — Description, measurement and assessment of environmental noise — Part 1:
Basic quantities and assessment procedures
ISO 20906:2009/Amd 1:2013, Acoustics — Unattended monitoring of aircraft sound in the vicinity of
airports — Amendment 1
ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories
ISO/IEC Guide 98-3, Uncertainty of measurement — Part 3: Guide to the expression of uncertainty in
me a s ur ement (GUM: 1995)
IEC 60942, Electroacoustics — Sound calibrators
IEC 61260, Electroacoustics — Octave-band and fractional-octave-band filters
IEC 61672-1, Electroacoustics — Sound level meters — Part 1: Specifications
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 1996-1 and the following apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— IEC Electropedia: available at http:// www .electropedia .org/
— ISO Online browsing platform: available at http:// www .iso .org/ obp
3.1
measurement time interval
time interval during which measurements are conducted
Note 1 to entry: For measurements of sound exposure level or equivalent-continuous sound pressure level, the
measurement time interval is the time period of integration.
Note 2 to entry: For measurements of maximum sound pressure level or percent exceedance level, etc., the
measurement time interval is the observation time interval (3.2).
3.2
observation time interval
time interval during which a series of measurements is conducted
3.3
prediction time interval
time interval over which levels are predicted
Note 1 to entry: It is now perhaps more common to predict sound levels using computers than to measure
them for some sources such as transportation noise sources. The prediction time interval corresponds to the
measurement time interval (3.1) except, for the former, the levels are predicted, and for the latter, the levels are
measured.
3.4
long-term measurement
measurement sufficiently long to encompass all emission situations and meteorological conditions
which are needed to obtain a representative average
3.5
short-term measurement
measurement during measurement time intervals (3.1) with well-defined emission and meteorological
conditions
3.6
receiver location
location at which the noise is assessed
3.7
calculation method
set of algorithms to calculate the sound pressure level at a specified receiver location (3.6) from
measured or predicted sound power levels and sound attenuation data
3.8
prediction method
subset of a calculation method (3.7), intended for the calculation of future noise levels
3.9
meteorological window
set of weather conditions during which measurements can be performed with limited and known
variation in measurement results due to weather variation
3.10
emission window
set of emission conditions during which measurements can be performed with limited variation in
measurement results due to variations in operating conditions
3.11
sound path radius of curvature
R
cur
radius approximating the curvature of the sound paths due to atmospheric refraction
Note 1 to entry: R is given in metres.
cur
2 © ISO 2017 – All rights reserved
Note 2 to entry: Often, the parameter used is 1/R to avoid infinitely large values during straight ray
cur
propagation.
3.12
monitor
instrumentation used for a single automated continuous sound monitoring terminal which monitors
the A-weighted sound pressure levels, their spectra and all relevant meteorological quantities such as
wind speed, wind direction, rain, humidity, atmospheric stability, etc.
Note 1 to entry: Meteorological measurements need not be taken at each monitor provided such measurements
are taken within an appropriate distance from the monitors and such distance is given in the report.
3.13
automated sound monitoring system
entire automated continuous sound monitoring system including all monitors (3.12), the base or central
data collection position (host station) and all software and hardware involved in its operation
3.14
reference condition
condition to which the measurement results are to be referred (corrected)
Note 1 to entry: Examples of reference conditions are atmospheric sound absorption at yearly average
temperature and humidity and yearly average traffic flows for day, evening and night, respectively.
3.15
independent measurement
consecutive measurements carried out with a time space long enough to make both source operating
conditions and sound propagation conditions statistically independent of the same conditions of other
measurements in the series
Note 1 to entry: In order to achieve independent conditions for meteorological conditions, a time space of several
days is normally required.
3.16
low-frequency sound
sound containing frequency components of interest within the range covering the one-third octave
bands 16 Hz to 200 Hz
Note 1 to entry: This definition is specific for this document. Other definitions can apply in different national
regulations.
4 Measurement uncertainty
The uncertainty of sound pressure levels determined as described in this document depends on the
sound source and the measurement time interval, the meteorological conditions, the distance from
the source and the measurement method and instrumentation. The measurement uncertainty shall be
determined in compliance with ISO/IEC Guide 98-3 (GUM). Choose one of the following approaches that
are all GUM-compatible:
a) The modelling approach that consists in identifying and quantifying all major sources of uncertainty
(the so-called uncertainty budget). This is the preferred method.
b) The inter-laboratory approach that consists in carrying out a round-robin test in order to determine
the standard deviation of reproducibility of the measurement method.
NOTE 1 If more than one measurement method exists for a certain measurand, any systematic deviations
[1]
are taken into account, for example, by implementing ISO 21748 .
c) The hybrid approach that consists in using jointly the modelling approach and the inter-laboratory
approach. In this case, the inter-laboratory approach is used for components of the uncertainty
budget for which the contributions cannot be quantified using the mathematical model of the
modelling approach because of lack of technical knowledge.
NOTE 2 Note 1 equally applies.
According to the modelling approach, each significant source of uncertainty shall be identified.
Systematic effects shall be eliminated or reduced by the application of corrections wherever possible. If
the quantity to be measured is L, which is a function of the quantities x , the formula becomes:
j
Lf= xx,,xx,., (1)
()
12 3 j
If each quantity has the standard uncertainty u , the combined standard uncertainty is given by
j
Formula (2):
n
uL()= cu (2)
()
jj
∑
assuming that the input quantities x are independent. Under the same assumptions, the sensitivity
j
coefficient c is given by Formula (3):
j
∂f
c = (3)
j
∂x
j
The measurement uncertainty to be reported is the uncertainty associated with a chosen coverage
probability, the so-called expanded uncertainty. By convention, a coverage probability of 95 % is usually
chosen, with an associated coverage factor of 2. This means that the result becomes L ± 2 u.
NOTE 3 Cognizant authorities can set other coverage probabilities. A coverage factor of 1,3 will, for example,
provide a coverage probability of 80 %.
For environmental noise measurements f(x ), it is extremely complicated and it is hardly feasible to
j
[2]
put up exact formulae for the function f. Following the principles given in ISO 3745, some important
sources of uncertainty can be identified. For an individual measurement, Formula (4) applies:
−01,(LL′− )
res
′
LL= +−10lg 110 dB++δδ +δ (4)
)
( soumet loc
where
L is the estimated value during the specified conditions for which a measured value is wanted,
expressed in decibels (dB);
L′ is the measured value including residual sound, L , expressed in decibels (dB);
res
L is the residual sound, expressed in decibels (dB);
res
δ is an input quantity to allow for any uncertainty due to deviations from the expected
sou
operating conditions of the source, expressed in decibels (dB);
δ is an input quantity to allow for any uncertainty due to meteorological conditions deviating
met
from the assumed meteorological conditions, expressed in decibels (dB);
δ is an input quantity to allow for any uncertainty due to the selection of receiver location,
loc
expressed in decibels (dB).
Often, δ + δ is determined directly from measurements; see 10.5.
sou met
L′ and L are both dependent on δ which is an input quantity to allow for any uncertainty of the
res slm
measurement chain (sound level meter in the simplest case). In addition, L depends on δ which
res res
4 © ISO 2017 – All rights reserved
is an input quantity to allow for any uncertainty due to residual sound. Table 1 explains further the
relationship between the quantities in Formula (4) and their estimate and uncertainty.
Formula (4) is very simplified and each source of uncertainty is a function of several other sources of
uncertainty. In principle, Formula (4) could be applied on any measurement lasting from seconds to
years. In 9.1, the measurements are divided into long- and short-term measurements, respectively. A
short-term measurement may typically range between 10 min and a few hours whereas a typical long-
term measurement may range between a month and a year.
In Table 1, guidance is given on how to determine c and u for insertion into Formula (2).
j j
Table 1 — Example of an uncertainty budget for a measured value
Standard Magnitude of
Estimate Clause for
Quantity uncertainty, u sensitivity
j
dB guidance
dB coefficient, c
j
u(L′)
L′ + δ L′ Annex F
slm
′
−01, LL−
a ()
0,5 res
11− 0
7.2 to 7.5,
δ 0 u 1
sou sou
Annex D
Clause 8,
δ 0 u 1
met met
Annex A
δ 0,0 – 6,0 u 1 Annex B
loc loc
′
−01, ()LL−
res
L + δ L u Annex F
res res res res
′
−01, LL−
()
res
11− 0
a
0,5 dB refers to a class 1 sound level meter. A class 2 sound level meter would have the standard
uncertainty 1,5 dB.
The numbers given in Table 1 refer to A-weighted equivalent-continuous sound pressure levels only.
Higher uncertainties are to be expected on maximum levels, frequency band levels and levels of tonal
components in noise. In many cases, the measured values shall be corrected to other source operating
conditions not representing the measured cases but the yearly average. Similarly, other measurements
may be corrected to other meteorological conditions in order to make L calculations possible.
den
Uncertainty calculations for such cases are given in Annex F.
NOTE 4 Some examples, including a spreadsheet, of complete uncertainty calculations are given in Annex G.
5 Instrumentation for acoustical measurements
5.1 General
The instruments for measuring sound pressure levels, including microphone(s), as well as cable(s),
windscreen(s), recording devices and other accessories, if used, shall meet the requirements for a class
1 instrument according to IEC 61672-1 for free-field or random incidence application, as appropriate.
Filters shall meet the requirements for a class 1 instrument according to IEC 61260. A windscreen shall
always be used during outdoor measurements.
NOTE 1 Class 1 tolerance limits of IEC 61672–1 apply over a temperature range of −10 °C to +50 °C. If the
instrument is to be used in temperatures outside the range −10 °C to +50 °C, then there can be an increase in
measurement uncertainty.
NOTE 2 Even with windscreens, measured sound pressure levels can be affected by wind noise. As an example,
the A-weighted sound pressure level L for a 13 mm microphone with a 90 mm diameter windscreen exposed
pA
to a wind speed of v m/s is approximately −18+70 lg (v/1 m/s) dB with the wind blowing perpendicular to the
[3]
microphone membrane and −32+83 lg (v/1 m/s) dB with the wind blowing parallel to the membrane .
5.2 Calibration
At the beginning and at the end of every measurement the entire sound pressure level measuring system
shall be checked at one or more frequencies by means of a sound calibrator meeting the requirements
for a class 1 instrument according to IEC 60942. Without any further adjustment, the difference between
the readings of two consecutive checks shall be less than or equal to 0,5 dB. If this value is exceeded, the
results of measurements obtained after the previous satisfactory check shall be discarded. For long-
term monitoring of several days or more, the requirements of ISO 20906:2009/Amd 1:2013 apply.
5.3 Verification
Compliance of the sound pressure level measuring instrument, the filters and the sound calibrator
shall be verified by the existence of a valid certificate of compliance with the measurement parameters
[4]
specified in the relevant test methods in IEC 61672-3 , IEC 61260 and IEC 60942.
All compliance testing shall be conducted by a laboratory meeting the requirements of ISO/IEC 17025
to perform the relevant tests and calibrations and ensuring metrological traceability to the appropriate
measurement standards. The recommended time interval for testing of system performance is once a
year. The maximum allowable interval is 2 years.
5.4 Long-term monitoring
The maximum permissible error for instruments used for meteorological measurements shall be
— ±0,5 K for temperature measuring devices,
— ±5,0 % for relative humidity measuring devices,
— ±0,5 hPa for barometric pressure measuring devices,
— ±0,5 m/s for wind speed measuring devices, and
— ±5° for wind direction measuring devices.
Meteorological classes shall be given according to Clause 8.
NOTE Some modern sonic anemometers are suitable for direct measurement of parameters to be used to
determine meteorological classes.
6 Principles
6.1 General
There are two main strategies for environmental noise measurements:
a) make a single measurement under very well-defined meteorological conditions while monitoring
the source operating conditions carefully;
b) make a long-term measurement, or many sampled measurements, spread out over time while
monitoring the meteorological conditions.
Both types of measurements require post processing of measured data.
Each result and each type of measurement will have a certain uncertainty, which shall be determined.
It is up to the user of the results to determine which accuracy to aim for. No upper limits of the
measurement uncertainty are given.
The long-term L , L , is given by Formula (5):
eq long
6 © ISO 2017 – All rights reserved
N
w
01, L
k
Lp=10lg 10 dB (5)
long ∑ k
k=1
where
p is the frequency of occurrence of the emission and meteorological conditions of window k
k
yielding the L -level L , expressed in decibels (dB);
eq k
N is the number of windows used.
w
Normally, L is determined by several measurements; see Formula (6):
k
N
m
01, L
i
L =10lg 10 dB (6)
k
∑
N
m
i=1
where
L is an independent measurement within window k, expressed in decibels (dB);
i
N is the number of measurements within this window.
m
In order to be able to calculate L , day, evening and night periods shall be separated.
den
A window is a combination of emission (e.g. day, evening, night) and meteorological conditions (e.g.
four different classes, as shown in Table 2). Preferably, a window should include constant emission and
propagation conditions. In many cases, the emission conditions are independent of the meteorological
conditions and in other cases, such as for aircraft noise, there is a strong interrelationship.
Table 2 — Stratification of emission conditions and meteorological conditions during
measurements
Meteorological window
1 2 3 4
Emission window
N
The uncertainty shall be determined for p and L . Ideally, the uncertainty of L is determined directly
k k k
from a large number of independent measurements; see 10.5. If only one or few measurements are
carried out, the uncertainty shall be determined using other available information. If values of L are
k
missing, they shall be estimated using a prediction method. These estimates shall also include estimates
of the uncertainty.
For meaningful single measurements, the minimum requirement is that L is determined during
k
favourable propagation conditions as defined in Annex A and that the source operating conditions are
monitored during these measurements.
6.2 Independent measurements
For two measurements to be independent, disregarding seasonal, diurnal, weekly or other systematic
variations, the requirements of Table 3 can be used as a guidance (see Reference [5]).
Table 3 — Minimum time (in hours) between two measurements to be independent
<100 m 100 m to 300 m >300 m
Distance
day night day night day night
Road 24 h 24 h 48 h 48 h 72 h 72 h
24 h/
Rail 24 h 48 h 72 h 72 h 72 h
a
source
Industry source source 48 h 48 h 72 h 72 h
b
Aircraft source source source source source source
a
If freight trains are dominant.
b
Depend mostly on flight operation.
NOTE 1 “Source” in Table 3 indicates that the minimum time is influenced by the operating conditions of
the source.
NOTE 2 “Day” in Table 3 refers to the time between sunrise and sunset whereas night refers to the time
between sunset and sunrise.
7 Operation of the source
7.1 General
The source operating conditions shall be representative of the noise environment under consideration.
To obtain a reliable estimate of the equivalent-continuous sound pressure level, as well as the maximum
sound pressure level, the measurement time interval shall encompass a minimum number of noise
events. For the most common types of noise sources, guidance is given in 7.2 to 7.5. The number of
vehicle pass-bys (road vehicles, trains, aircraft) needed to average the variation in individual vehicle
noise emission depends on the required accuracy. Less common noise sources, such as shipping traffic,
helicopters and trams are not dealt with specifically.
The equivalent-continuous sound pressure level of noise from rail and air traffic can often be determined
by measuring a number of single-event sound exposure levels for vehicle/train pass-bys and calculating
the equivalent-continuous sound pressure level based on these.
If the measured values are to be corrected to other operating conditions using specified prediction
models, the operating conditions shall be monitored using all relevant parameters used as input in the
prediction method. The resulting uncertainty will depend on how accurately the different parameters
are determined.
NOTE Guidance on how to correct to other conditions are given in Annex D.
The guidance given does not consider potential additional problems with low-frequency sound sources
such as helicopters, bridge vibrations, subway trains, freight trains, mine sites, stamping plants,
pneumatic construction equipment, etc. ISO 1996-1:2016, Annex C contains a further discussion on low-
frequency sound. Procedures to measure low-frequency sound are given in 9.2.2 and 9.3.2.7.
7.2 Road traffic
7.2.1 L measurement
eq
When measuring L , the number of vehicle pass-bys during the measurement time interval shall be
eq
determined by direct counting or by other means. If the measurement result shall be converted to other
traffic conditions, distinction shall be made between at least the three categories of vehicles “passenger
cars” and “‘medium heavy (2 axles)” and “heavy (≥3 axles)”. To determine if the measurement conditions
are representative, the average traffic speed shall be determined by measurements or by other means
and the condition and type of road surface shall be noted.
8 © ISO 2017 – All rights reserved
The number of vehicle pass-bys needed to average the variation in individual vehicle noise emission
depends on the required accuracy. If no better information is available, the standard uncertainty
denoted u in Table 1 can be calculated by means of Formula (7):
sou
C
u ≅ dB (7)
sou
n
where n is the number of pass-bys.
For mixed traffic C = 10, for heavy vehicles only C = 5 and for passenger cars only C = 2,5. In each case, a
more accurate standard uncertainty can be determined from the statistics of direct L measurements
E
of individual pass-bys either category by category or for a representative traffic mix.
7.2.2 L measurement
max
The maximum sound pressure levels differ among vehicle categories. In addition, within each vehicle
category, a certain spread of maximum sound pressure levels is encountered due to individual
differences among vehicles and variation in speed or driving patterns. Depending on definition the
maximum sound pressure level can either be measured directly from a specified number of pass-bys
or calculated from the arithmetic mean value and the standard deviation using statistical theory; see
Annex H.
7.3 Rail traffic
7.3.1 L measurement
eq
When determinin
...
INTERNATIONAL ISO
STANDARD 1996-2
Third edition
2017-07
Acoustics — Description,
measurement and assessment of
environmental noise —
Part 2:
Determination of sound pressure levels
Acoustique — Description, évaluation et mesurage du bruit de
l’environnement —
Partie 2: Détermination des niveaux de pression acoustique
Reference number
©
ISO 2017
© ISO 2017, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2017 – All rights reserved
Contents Page
Foreword .v
Introduction .vi
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Measurement uncertainty . 3
5 Instrumentation for acoustical measurements . 5
5.1 General . 5
5.2 Calibration . 6
5.3 Verification . 6
5.4 Long-term monitoring . 6
6 Principles . 6
6.1 General . 6
6.2 Independent measurements . 7
7 Operation of the source . 8
7.1 General . 8
7.2 Road traffic . 8
7.2.1 L measurement . 8
eq
7.2.2 L measurement . 9
max
7.3 Rail traffic . 9
7.3.1 L measurement . 9
eq
7.3.2 L measurement . 9
max
7.4 Air traffic .10
7.4.1 L measurement .10
eq
7.4.2 L measurement .11
max
7.5 Industrial plants . .11
7.5.1 L measurement .11
eq
7.5.2 L measurement .11
max
8 Meteorological conditions .12
8.1 General .12
8.2 Favourable propagation .13
8.3 Effects of precipitation on measurements .13
9 Measurement procedures .13
9.1 Selection of measurement time interval .13
9.1.1 Long-term measurements .13
9.1.2 Short-term measurements .14
9.2 Microphone location .14
9.2.1 Outdoors .14
9.2.2 Indoors .15
9.3 Measurements .15
9.3.1 Long-term unattended measurements .15
9.3.2 Short-term attended measurements .16
9.3.3 Residual sound .17
9.3.4 Frequency range of measurements .17
9.3.5 Measurements of meteorological parameters .17
10 Evaluation of the measurement results .18
10.1 General .18
10.2 Determination of L , L and L .
E,T eq,T N,T 18
10.2.1 L and L .
E,T eq,T 18
10.2.2 L .
N,T 18
10.3 Treatment of incomplete or corrupted data .19
10.3.1 General.19
10.3.2 Wind sound .19
10.4 Level correction for residual sound .19
10.5 Determination of standard uncertainty .19
10.6 Determination of L .
den 20
10.6.1 Determination from long-term L measurements .20
eq
10.6.2 Determination from long-term L measurements of individual events.20
E
10.6.3 Determination from short-term measurements .21
10.7 Maximum level, L .
max 22
11 Extrapolation to other locations .22
11.1 General .22
11.2 Extrapolation by means of calculations.22
11.3 Extrapolation by means of measured attenuation functions .23
12 Calculation .23
12.1 General .23
12.2 Calculation methods .24
12.2.1 General.24
12.2.2 Specific procedures .24
13 Information to be recorded and reported .24
Annex A (informative) Determination of radius of curvature .26
Annex B (informative) Microphone locations relative to reflecting surfaces .29
Annex C (informative) Selection of measurement/monitoring site .34
Annex D (informative) Correction to reference condition .36
Annex E (informative) Elimination of unwanted sound .41
Annex F (informative) Measurement uncertainty .42
Annex G (informative) Examples of uncertainty calculations .44
Annex H (informative) Maximum sound pressure levels .49
Annex I (informative) Measurement of residual sound .52
Annex J (informative) Objective method for assessing the audibility of tones in noise —
Engineering method .54
Annex K (informative) Objective method for assessing the audibility of tones in noise —
Survey method .56
Annex L (informative) National and European source specific calculation models .57
Bibliography .60
iv © ISO 2017 – All rights reserved
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment,
as well as information about ISO’s adherence to the World Trade Organization (WTO) principles in the
Technical Barriers to Trade (TBT) see the following URL: www . i so .org/ iso/ foreword .html.
This document was prepared by Technical Committee ISO/TC 43, Acoustics, Subcommittee SC 1, Noise.
This third edition cancels and replaces the second edition (ISO 1996-2:2007), which has been technically
revised.
A list of all the parts in the ISO 1996 series can be found on the ISO website.
Introduction
Measurements of environmental noise are complicated because there is a great number of variables to
consider when planning and performing the measurements. As each measurement occasion is subject
to current source and meteorological conditions which cannot be controlled by the operator, it is often
not possible to control the resulting uncertainty of the measurements. Instead, the uncertainty is
determined after the measurements based on an analysis of the acoustic measurements and collected
data on source operating conditions and on meteorological parameters important for the sound
propagation.
Because this document has the ambition both to comply with new and stricter requirements on
measurement uncertainty calculations and to cover all kinds of sources and meteorological conditions,
it has become more complicated than what a standard covering a single, specific source and application
could have been. The best use of the standard is to use it as a basis for developing more dedicated
standards serving specific sources and aims.
vi © ISO 2017 – All rights reserved
INTERNATIONAL STANDARD ISO 1996-2:2017(E)
Acoustics — Description, measurement and assessment of
environmental noise —
Part 2:
Determination of sound pressure levels
1 Scope
This document describes how sound pressure levels intended as a basis for assessing environmental
noise limits or comparison of scenarios in spatial studies can be determined. Determination can be
done by direct measurement and by extrapolation of measurement results by means of calculation.
This document is primarily intended to be used outdoors but some guidance is given for indoor
measurements as well. It is flexible and to a large extent, the user determines the measurement effort
and, accordingly, the measurement uncertainty, which is determined and reported in each case. Thus,
no limits for allowable maximum uncertainty are set up. Often, the measurement results are combined
with calculations to correct for reference operating or propagation conditions different from those
during the actual measurement. This document can be applied on all kinds of environmental noise
sources, such as road and rail traffic noise, aircraft noise and industrial noise.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 1996-1:2016, Acoustics — Description, measurement and assessment of environmental noise — Part 1:
Basic quantities and assessment procedures
ISO 20906:2009/Amd 1:2013, Acoustics — Unattended monitoring of aircraft sound in the vicinity of
airports — Amendment 1
ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories
ISO/IEC Guide 98-3, Uncertainty of measurement — Part 3: Guide to the expression of uncertainty in
me a s ur ement (GUM: 1995)
IEC 60942, Electroacoustics — Sound calibrators
IEC 61260, Electroacoustics — Octave-band and fractional-octave-band filters
IEC 61672-1, Electroacoustics — Sound level meters — Part 1: Specifications
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 1996-1 and the following apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— IEC Electropedia: available at http:// www .electropedia .org/
— ISO Online browsing platform: available at http:// www .iso .org/ obp
3.1
measurement time interval
time interval during which measurements are conducted
Note 1 to entry: For measurements of sound exposure level or equivalent-continuous sound pressure level, the
measurement time interval is the time period of integration.
Note 2 to entry: For measurements of maximum sound pressure level or percent exceedance level, etc., the
measurement time interval is the observation time interval (3.2).
3.2
observation time interval
time interval during which a series of measurements is conducted
3.3
prediction time interval
time interval over which levels are predicted
Note 1 to entry: It is now perhaps more common to predict sound levels using computers than to measure
them for some sources such as transportation noise sources. The prediction time interval corresponds to the
measurement time interval (3.1) except, for the former, the levels are predicted, and for the latter, the levels are
measured.
3.4
long-term measurement
measurement sufficiently long to encompass all emission situations and meteorological conditions
which are needed to obtain a representative average
3.5
short-term measurement
measurement during measurement time intervals (3.1) with well-defined emission and meteorological
conditions
3.6
receiver location
location at which the noise is assessed
3.7
calculation method
set of algorithms to calculate the sound pressure level at a specified receiver location (3.6) from
measured or predicted sound power levels and sound attenuation data
3.8
prediction method
subset of a calculation method (3.7), intended for the calculation of future noise levels
3.9
meteorological window
set of weather conditions during which measurements can be performed with limited and known
variation in measurement results due to weather variation
3.10
emission window
set of emission conditions during which measurements can be performed with limited variation in
measurement results due to variations in operating conditions
3.11
sound path radius of curvature
R
cur
radius approximating the curvature of the sound paths due to atmospheric refraction
Note 1 to entry: R is given in metres.
cur
2 © ISO 2017 – All rights reserved
Note 2 to entry: Often, the parameter used is 1/R to avoid infinitely large values during straight ray
cur
propagation.
3.12
monitor
instrumentation used for a single automated continuous sound monitoring terminal which monitors
the A-weighted sound pressure levels, their spectra and all relevant meteorological quantities such as
wind speed, wind direction, rain, humidity, atmospheric stability, etc.
Note 1 to entry: Meteorological measurements need not be taken at each monitor provided such measurements
are taken within an appropriate distance from the monitors and such distance is given in the report.
3.13
automated sound monitoring system
entire automated continuous sound monitoring system including all monitors (3.12), the base or central
data collection position (host station) and all software and hardware involved in its operation
3.14
reference condition
condition to which the measurement results are to be referred (corrected)
Note 1 to entry: Examples of reference conditions are atmospheric sound absorption at yearly average
temperature and humidity and yearly average traffic flows for day, evening and night, respectively.
3.15
independent measurement
consecutive measurements carried out with a time space long enough to make both source operating
conditions and sound propagation conditions statistically independent of the same conditions of other
measurements in the series
Note 1 to entry: In order to achieve independent conditions for meteorological conditions, a time space of several
days is normally required.
3.16
low-frequency sound
sound containing frequency components of interest within the range covering the one-third octave
bands 16 Hz to 200 Hz
Note 1 to entry: This definition is specific for this document. Other definitions can apply in different national
regulations.
4 Measurement uncertainty
The uncertainty of sound pressure levels determined as described in this document depends on the
sound source and the measurement time interval, the meteorological conditions, the distance from
the source and the measurement method and instrumentation. The measurement uncertainty shall be
determined in compliance with ISO/IEC Guide 98-3 (GUM). Choose one of the following approaches that
are all GUM-compatible:
a) The modelling approach that consists in identifying and quantifying all major sources of uncertainty
(the so-called uncertainty budget). This is the preferred method.
b) The inter-laboratory approach that consists in carrying out a round-robin test in order to determine
the standard deviation of reproducibility of the measurement method.
NOTE 1 If more than one measurement method exists for a certain measurand, any systematic deviations
[1]
are taken into account, for example, by implementing ISO 21748 .
c) The hybrid approach that consists in using jointly the modelling approach and the inter-laboratory
approach. In this case, the inter-laboratory approach is used for components of the uncertainty
budget for which the contributions cannot be quantified using the mathematical model of the
modelling approach because of lack of technical knowledge.
NOTE 2 Note 1 equally applies.
According to the modelling approach, each significant source of uncertainty shall be identified.
Systematic effects shall be eliminated or reduced by the application of corrections wherever possible. If
the quantity to be measured is L, which is a function of the quantities x , the formula becomes:
j
Lf= xx,,xx,., (1)
()
12 3 j
If each quantity has the standard uncertainty u , the combined standard uncertainty is given by
j
Formula (2):
n
uL()= cu (2)
()
jj
∑
assuming that the input quantities x are independent. Under the same assumptions, the sensitivity
j
coefficient c is given by Formula (3):
j
∂f
c = (3)
j
∂x
j
The measurement uncertainty to be reported is the uncertainty associated with a chosen coverage
probability, the so-called expanded uncertainty. By convention, a coverage probability of 95 % is usually
chosen, with an associated coverage factor of 2. This means that the result becomes L ± 2 u.
NOTE 3 Cognizant authorities can set other coverage probabilities. A coverage factor of 1,3 will, for example,
provide a coverage probability of 80 %.
For environmental noise measurements f(x ), it is extremely complicated and it is hardly feasible to
j
[2]
put up exact formulae for the function f. Following the principles given in ISO 3745, some important
sources of uncertainty can be identified. For an individual measurement, Formula (4) applies:
−01,(LL′− )
res
′
LL= +−10lg 110 dB++δδ +δ (4)
)
( soumet loc
where
L is the estimated value during the specified conditions for which a measured value is wanted,
expressed in decibels (dB);
L′ is the measured value including residual sound, L , expressed in decibels (dB);
res
L is the residual sound, expressed in decibels (dB);
res
δ is an input quantity to allow for any uncertainty due to deviations from the expected
sou
operating conditions of the source, expressed in decibels (dB);
δ is an input quantity to allow for any uncertainty due to meteorological conditions deviating
met
from the assumed meteorological conditions, expressed in decibels (dB);
δ is an input quantity to allow for any uncertainty due to the selection of receiver location,
loc
expressed in decibels (dB).
Often, δ + δ is determined directly from measurements; see 10.5.
sou met
L′ and L are both dependent on δ which is an input quantity to allow for any uncertainty of the
res slm
measurement chain (sound level meter in the simplest case). In addition, L depends on δ which
res res
4 © ISO 2017 – All rights reserved
is an input quantity to allow for any uncertainty due to residual sound. Table 1 explains further the
relationship between the quantities in Formula (4) and their estimate and uncertainty.
Formula (4) is very simplified and each source of uncertainty is a function of several other sources of
uncertainty. In principle, Formula (4) could be applied on any measurement lasting from seconds to
years. In 9.1, the measurements are divided into long- and short-term measurements, respectively. A
short-term measurement may typically range between 10 min and a few hours whereas a typical long-
term measurement may range between a month and a year.
In Table 1, guidance is given on how to determine c and u for insertion into Formula (2).
j j
Table 1 — Example of an uncertainty budget for a measured value
Standard Magnitude of
Estimate Clause for
Quantity uncertainty, u sensitivity
j
dB guidance
dB coefficient, c
j
u(L′)
L′ + δ L′ Annex F
slm
′
−01, LL−
a ()
0,5 res
11− 0
7.2 to 7.5,
δ 0 u 1
sou sou
Annex D
Clause 8,
δ 0 u 1
met met
Annex A
δ 0,0 – 6,0 u 1 Annex B
loc loc
′
−01, ()LL−
res
L + δ L u Annex F
res res res res
′
−01, LL−
()
res
11− 0
a
0,5 dB refers to a class 1 sound level meter. A class 2 sound level meter would have the standard
uncertainty 1,5 dB.
The numbers given in Table 1 refer to A-weighted equivalent-continuous sound pressure levels only.
Higher uncertainties are to be expected on maximum levels, frequency band levels and levels of tonal
components in noise. In many cases, the measured values shall be corrected to other source operating
conditions not representing the measured cases but the yearly average. Similarly, other measurements
may be corrected to other meteorological conditions in order to make L calculations possible.
den
Uncertainty calculations for such cases are given in Annex F.
NOTE 4 Some examples, including a spreadsheet, of complete uncertainty calculations are given in Annex G.
5 Instrumentation for acoustical measurements
5.1 General
The instruments for measuring sound pressure levels, including microphone(s), as well as cable(s),
windscreen(s), recording devices and other accessories, if used, shall meet the requirements for a class
1 instrument according to IEC 61672-1 for free-field or random incidence application, as appropriate.
Filters shall meet the requirements for a class 1 instrument according to IEC 61260. A windscreen shall
always be used during outdoor measurements.
NOTE 1 Class 1 tolerance limits of IEC 61672–1 apply over a temperature range of −10 °C to +50 °C. If the
instrument is to be used in temperatures outside the range −10 °C to +50 °C, then there can be an increase in
measurement uncertainty.
NOTE 2 Even with windscreens, measured sound pressure levels can be affected by wind noise. As an example,
the A-weighted sound pressure level L for a 13 mm microphone with a 90 mm diameter windscreen exposed
pA
to a wind speed of v m/s is approximately −18+70 lg (v/1 m/s) dB with the wind blowing perpendicular to the
[3]
microphone membrane and −32+83 lg (v/1 m/s) dB with the wind blowing parallel to the membrane .
5.2 Calibration
At the beginning and at the end of every measurement the entire sound pressure level measuring system
shall be checked at one or more frequencies by means of a sound calibrator meeting the requirements
for a class 1 instrument according to IEC 60942. Without any further adjustment, the difference between
the readings of two consecutive checks shall be less than or equal to 0,5 dB. If this value is exceeded, the
results of measurements obtained after the previous satisfactory check shall be discarded. For long-
term monitoring of several days or more, the requirements of ISO 20906:2009/Amd 1:2013 apply.
5.3 Verification
Compliance of the sound pressure level measuring instrument, the filters and the sound calibrator
shall be verified by the existence of a valid certificate of compliance with the measurement parameters
[4]
specified in the relevant test methods in IEC 61672-3 , IEC 61260 and IEC 60942.
All compliance testing shall be conducted by a laboratory meeting the requirements of ISO/IEC 17025
to perform the relevant tests and calibrations and ensuring metrological traceability to the appropriate
measurement standards. The recommended time interval for testing of system performance is once a
year. The maximum allowable interval is 2 years.
5.4 Long-term monitoring
The maximum permissible error for instruments used for meteorological measurements shall be
— ±0,5 K for temperature measuring devices,
— ±5,0 % for relative humidity measuring devices,
— ±0,5 hPa for barometric pressure measuring devices,
— ±0,5 m/s for wind speed measuring devices, and
— ±5° for wind direction measuring devices.
Meteorological classes shall be given according to Clause 8.
NOTE Some modern sonic anemometers are suitable for direct measurement of parameters to be used to
determine meteorological classes.
6 Principles
6.1 General
There are two main strategies for environmental noise measurements:
a) make a single measurement under very well-defined meteorological conditions while monitoring
the source operating conditions carefully;
b) make a long-term measurement, or many sampled measurements, spread out over time while
monitoring the meteorological conditions.
Both types of measurements require post processing of measured data.
Each result and each type of measurement will have a certain uncertainty, which shall be determined.
It is up to the user of the results to determine which accuracy to aim for. No upper limits of the
measurement uncertainty are given.
The long-term L , L , is given by Formula (5):
eq long
6 © ISO 2017 – All rights reserved
N
w
01, L
k
Lp=10lg 10 dB (5)
long ∑ k
k=1
where
p is the frequency of occurrence of the emission and meteorological conditions of window k
k
yielding the L -level L , expressed in decibels (dB);
eq k
N is the number of windows used.
w
Normally, L is determined by several measurements; see Formula (6):
k
N
m
01, L
i
L =10lg 10 dB (6)
k
∑
N
m
i=1
where
L is an independent measurement within window k, expressed in decibels (dB);
i
N is the number of measurements within this window.
m
In order to be able to calculate L , day, evening and night periods shall be separated.
den
A window is a combination of emission (e.g. day, evening, night) and meteorological conditions (e.g.
four different classes, as shown in Table 2). Preferably, a window should include constant emission and
propagation conditions. In many cases, the emission conditions are independent of the meteorological
conditions and in other cases, such as for aircraft noise, there is a strong interrelationship.
Table 2 — Stratification of emission conditions and meteorological conditions during
measurements
Meteorological window
1 2 3 4
Emission window
N
The uncertainty shall be determined for p and L . Ideally, the uncertainty of L is determined directly
k k k
from a large number of independent measurements; see 10.5. If only one or few measurements are
carried out, the uncertainty shall be determined using other available information. If values of L are
k
missing, they shall be estimated using a prediction method. These estimates shall also include estimates
of the uncertainty.
For meaningful single measurements, the minimum requirement is that L is determined during
k
favourable propagation conditions as defined in Annex A and that the source operating conditions are
monitored during these measurements.
6.2 Independent measurements
For two measurements to be independent, disregarding seasonal, diurnal, weekly or other systematic
variations, the requirements of Table 3 can be used as a guidance (see Reference [5]).
Table 3 — Minimum time (in hours) between two measurements to be independent
<100 m 100 m to 300 m >300 m
Distance
day night day night day night
Road 24 h 24 h 48 h 48 h 72 h 72 h
24 h/
Rail 24 h 48 h 72 h 72 h 72 h
a
source
Industry source source 48 h 48 h 72 h 72 h
b
Aircraft source source source source source source
a
If freight trains are dominant.
b
Depend mostly on flight operation.
NOTE 1 “Source” in Table 3 indicates that the minimum time is influenced by the operating conditions of
the source.
NOTE 2 “Day” in Table 3 refers to the time between sunrise and sunset whereas night refers to the time
between sunset and sunrise.
7 Operation of the source
7.1 General
The source operating conditions shall be representative of the noise environment under consideration.
To obtain a reliable estimate of the equivalent-continuous sound pressure level, as well as the maximum
sound pressure level, the measurement time interval shall encompass a minimum number of noise
events. For the most common types of noise sources, guidance is given in 7.2 to 7.5. The number of
vehicle pass-bys (road vehicles, trains, aircraft) needed to average the variation in individual vehicle
noise emission depends on the required accuracy. Less common noise sources, such as shipping traffic,
helicopters and trams are not dealt with specifically.
The equivalent-continuous sound pressure level of noise from rail and air traffic can often be determined
by measuring a number of single-event sound exposure levels for vehicle/train pass-bys and calculating
the equivalent-continuous sound pressure level based on these.
If the measured values are to be corrected to other operating conditions using specified prediction
models, the operating conditions shall be monitored using all relevant parameters used as input in the
prediction method. The resulting uncertainty will depend on how accurately the different parameters
are determined.
NOTE Guidance on how to correct to other conditions are given in Annex D.
The guidance given does not consider potential additional problems with low-frequency sound sources
such as helicopters, bridge vibrations, subway trains, freight trains, mine sites, stamping plants,
pneumatic construction equipment, etc. ISO 1996-1:2016, Annex C contains a further discussion on low-
frequency sound. Procedures to measure low-frequency sound are given in 9.2.2 and 9.3.2.7.
7.2 Road traffic
7.2.1 L measurement
eq
When measuring L , the number of vehicle pass-bys during the measurement time interval shall be
eq
determined by direct counting or by other means. If the measurement result shall be converted to other
traffic conditions, distinction shall be made between at least the three categories of vehicles “passenger
cars” and “‘medium heavy (2 axles)” and “heavy (≥3 axles)”. To determine if the measurement conditions
are representative, the average traffic speed shall be determined by measurements or by other means
and the condition and type of road surface shall be noted.
8 © ISO 2017 – All rights reserved
The number of vehicle pass-bys needed to average the variation in individual vehicle noise emission
depends on the required accuracy. If no better information is available, the standard uncertainty
denoted u in Table 1 can be calculated by means of Formula (7):
sou
C
u ≅ dB (7)
sou
n
where n is the number of pass-bys.
For mixed traffic C = 10, for heavy vehicles only C = 5 and for passenger cars only C = 2,5. In each case, a
more accurate standard uncertainty can be determined from the statistics of direct L measurements
E
of individual pass-bys either category by category or for a representative traffic mix.
7.2.2 L measurement
max
The maximum sound pressure levels differ among vehicle categories. In addition, within each vehicle
category, a certain spread of maximum sound pressure levels is encountered due to individual
differences among vehicles and variation in speed or driving patterns. Depending on definition the
maximum sound pressure level can either be measured directly from a specified number of pass-bys
or calculated from the arithmetic mean value and the standard deviation using statistical theory; see
Annex H.
7.3 Rail traffic
7.3.1 L measurement
eq
When determining L , either by direct measurement or by measurement of L of individual pass-bys,
eq E
the number of train pass-bys, the speeds and the train lengths, or, alternatively, the number of cars shall
be determined during the measurement time interval. If the measurement result shall be converted to
other traffic conditions, distinction shall be made between at least the following categories: high-speed
trains, inter-city trains, regional trains, freight trains and diesel trains. For increased accuracy for
freight trains, train length and brake type (disc-brakes, tread-brakes using cast iron or sinter) should
be recorded.
The number of vehicle pass-bys needed to average the variation in individual vehicle noise emission
depends on the required accuracy. If no better information is available, the standard uncertainty
denoted u in Table 1 can be calculated by means of Formula (8):
sou
C
u ≅ dB (8)
sou
n
where n is the number of pass-bys.
If the sampling was made regardless of the operating conditions, assume C = 10, while if the sampling
takes into account the relative occurrence of the different train classes (freight, passenger, etc.), this
value can be lowered to 5. In each case, a more accurate standard uncertainty can be determined from
the statistics of direct L measure
...
S L O V E N S K I SIST ISO 1996-2
S T A N D A R D september 2017
Akustika – Opis, merjenje in ocena hrupa v okolju –
2. del: Določanje ravni zvočnega tlaka
Acoustics – Description, measurement and assessment of environmental noise –
Part 2: Determination of sound pressure levels
Acoustique – Description, évaluation et mesurage du bruit de l'environnement –
Partie 2: Détermination des niveaux de pression acoustique
Referenčna oznaka
ICS 13.140; 17.140.01 SIST ISO 1996-2:2017 (sl)
Nadaljevanje na straneh 2 do 64
© 2025-06. Slovenski inštitut za standardizacijo. Razmnoževanje ali kopiranje celote ali delov tega standarda ni dovoljeno.
SIST ISO 1996-2 : 2017
NACIONALNI UVOD
Standard SIST ISO 1996-2 (sl), Akustika – Opis, merjenje in ocena hrupa v okolju – 2. del: Določanje
ravni zvočnega tlaka, 2017, ima status slovenskega standarda in je istoveten mednarodnemu standardu
ISO 1996-2 (en), Acoustics – Description, measurement and assessment of environmental noise – Part
2: Determination of sound pressure levels, 2017.
Ta standard nadomešča SIST ISO 1996-2:2007.
NACIONALNI PREDGOVOR
Mednarodni standard ISO 1996-2 je pripravil tehnični odbor Mednarodne organizacije za standardizacijo
ISO/TC 43 Akustika. Slovenski standard SIST ISO 1996-2:2017 je prevod mednarodnega standarda
izvirni mednarodni standard. Slovensko izdajo standarda je pripravil tehnični odbor SIST/TC AKU
Akustika.
V slovenski zakonodaji so nekateri kazalniki uporabljeni v poslovenjeni obliki in tako so upoštevani tudi
v besedilu tega slovenskega standarda, čeprav se v enačbah lahko pojavijo v angleški obliki. Tako velja:
t t , t = t , t = t , L L , L = L , L = T , L = L .
day = dan evening večer night noč day = dan evening večer night noč den dvn
Odločitev za izdajo tega standarda je 21. marec 2017 sprejel SIST/TC AKU Akustika.
ZVEZA S STANDARDI
S privzemom tega mednarodnega standarda veljajo za omejeni namen referenčnih standardov vsi
standardi, navedeni v izvirniku, razen tistih, ki so že sprejeti v nacionalno standardizacijo:
SIST ISO 1996-1:2016 Akustika – Opis, merjenje in ocena hrupa v okolju – 1. del: Osnovne
veličine in ocenjevalni postopki
ISO 20906:2009/A1:2013 Akustika – Nenadzorovano spremljanje zvoka letal v bližini letališč –
Dopolnilo 1
SIST EN ISO/IEC 17025 Splošne zahteve za usposobljenost preskuševalnih in kalibracijskih
laboratorijev
Vodilo ISO/IEC 98-3 Merilna negotovost – 3. del: Vodilo za določanje merilne negotovosti
(GUM: 1995)
SIST EN IEC 60942 Elektroakustika – Kalibratorji za zvokomere
IEC 61260 Elektroakustika – Oktavni in frakcijski oktavni filtri
SIST EN 61672-1 Elektroakustika – Merilniki zvočne jakosti – 1. del: Specifikacije
OSNOVA ZA IZDAJO STANDARDA
– privzem standarda ISO 1996-2:2017
PREDHODNA IZDAJA
– SIST ISO 1996-2:2007, Akustika – Opis, merjenje in ocena hrupa v okolju – 2. del: Določanje ravni
hrupa v okolju
OPOMBI
– Povsod, kjer se v besedilu standarda uporablja izraz “mednarodni standard”, v SIST ISO 1996-
2:2017 to pomeni “slovenski standard”.
– Nacionalni uvod in nacionalni predgovor nista sestavni del standarda.
SIST ISO 1996-2 : 2017
VSEBINA Stran
Predgovor . 6
Uvod . 7
1 Področje uporabe . 8
2 Zveze s standardi . 8
3 Izrazi in definicije . 8
4 Merilna negotovost .10
5 Instrumenti za izvajanje akustičnih meritev . 12
5.1 Splošno . 12
5.2 Kalibracija . 12
5.3 Preverjanje . 13
5.4 Dolgotrajno spremljanje . 13
6 Načela . 13
6.1 Splošno . 13
6.2 Neodvisne meritve . 13
7 Obratovanje vira . 15
7.1 Splošno . 15
7.2 Cestni promet . 15
7.2.1 Merjenje L .15
eq
7.2.2 Merjenje L . 15
max
7.3 Železniški promet . 16
7.3.1 Merjenje L .16
eq
7.3.2 Merjenje L . 16
max
7.4 Letalski promet . 16
7.4.1 Merjenje L .16
eq
7.4.2 Merjenje L . 17
max
7.5 Industrijski obrati . 17
7.5.1 Merjenje L .17
eq
7.5.2 Merjenje L . 18
max
8 Meteorološke razmere .18
8.1 Splošno . 18
8.2 Ugodne razmere širjenja . 19
8.3 Vplivi padavin na merjenje . 19
9 Postopki merjenja .20
9.1 Izbor časovnega intervala merjenja . 20
9.1.1 Dolgotrajne meritve . 20
9.1.2 Kratkotrajne meritve . 20
9.2 Lokacija mikrofona . 20
9.2.1 Na prostem . 20
9.2.2 V prostoru . 21
SIST ISO 1996-2 : 2017
9.3 Meritve . 22
9.3.1 Dolgotrajne nenadzorovane meritve . 22
9.3.2 Kratkotrajne nadzorovane meritve . 22
9.3.3 Preostali zvok .24
9.3.4 Frekvenčno območje meritev .24
9.3.5 Meritve meteoroloških parametrov .24
10 Vrednotenje merilnih rezultatov . 24
10.1 Splošno . 24
10.2 Določanje vrednosti L , L in L .25
E,T eq,T N,T
10.2.1 L in L .25
E,T eq,T
10.2.2 L . 25
N,T
10.3 Obdelava nepopolnih ali poškodovanih podatkov . 25
10.3.1 Splošno . 25
10.3.2 Zvok vetra . 25
10.4 Popravek ravni za preostali zvok . 25
10.5 Določanje standardne negotovosti . 26
10.6 Določanje vrednosti L . 26
dvn
10.6.1 Določanje iz dolgotrajnih meritev L . 26
eq
10.6.2 Določanje iz dolgotrajnih meritev L posameznih dogodkov . 27
E
10.6.3 Določanje iz kratkotrajnih meritev . 27
10.7 Maksimalna raven L . 28
max
11 Ekstrapolacija na druge lokacije . 28
11.1 Splošno . 28
11.2 Ekstrapolacija s pomočjo izračunov . 29
11.3 Ekstrapolacija s pomočjo izmerjenih funkcij slabljenja . 29
12 Izračun .29
12.1 Splošno . 29
12.2 Računske metode . 30
12.2.1 Splošno . 30
12.2.2 Posebni postopki .30
13 Podatki, ki jih je treba zabeležiti in o njih poročati . 30
Dodatek A (informativni): Določanje polmera ukrivljenosti . 32
Dodatek B (Informativni): Lokacije mikrofona glede na odbojno površino . 35
Dodatek C (informativni): Izbira območja merjenja/spremljanja zvoka . 40
Dodatek D (informativni): Popravljanje na referenčne razmere . 41
Dodatek E (informativni): Odprava neželenega zvoka . 46
Dodatek F (informativni): Merilna negotovost . 47
Dodatek G (informativni): Primeri izračunov negotovosti . 49
Dodatek H (informativni): Maksimalne ravni zvočnega tlaka . 54
Dodatek I (informativni): Merjenje preostalega zvoka . 57
SIST ISO 1996-2 : 2017
Dodatek J (informativni): Objektivne metode za ocenjevanje slišnih tonov v hrupu –
inženirska metoda . 58
Dodatek K (informativni): Objektivne metode za ocenjevanje slišnih tonov v hrupu –
informativna metoda . 60
Dodatek L (informativni): Nacionalni in evropski računski modeli za posamezne vire . 61
Literatura.64
SIST ISO 1996-2 : 2017
Predgovor
Mednarodna organizacija za standardizacijo (ISO) je svetovna zveza nacionalnih organov za standarde
(članov ISO). Mednarodne standarde po navadi pripravljajo tehnični odbori ISO. Vsak član, ki želi
delovati na določenem področju, za katero je bil ustanovljen tehnični odbor, ima pravico biti zastopan v
tem odboru. Pri delu sodelujejo tudi vladne in nevladne mednarodne organizacije, povezane z ISO. V
vseh zadevah, ki so povezane s standardizacijo na področju elektrotehnike, ISO tesno sodeluje z
Mednarodno elektrotehniško komisijo (IEC).
Postopki, uporabljeni pri pripravi tega dokumenta, in predvideni postopki za njegovo vzdrževanje so
opisani v Direktivah ISO/IEC, 1. del. Posebno pozornost je priporočljivo nameniti različnim kriterijem
odobritve, potrebnim za različne vrste dokumentov ISO. Ta dokument je bil zasnovan v skladu z
uredniškimi pravili Direktiv ISO/IEC, 2. del (glej www.iso.org/directives).
Opozoriti je treba na možnost, da so nekateri elementi tega mednarodnega standarda lahko predmet
patentnih pravic. ISO ne prevzema odgovornosti za identifikacijo katerihkoli ali vseh takih patentnih
pravic. Podrobnosti o morebitnih patentnih pravicah, opredeljenih med pripravo tega dokumenta, bodo
navedene v uvodu in/ali na seznamu ISO s prejetimi patentnimi izjavami (glej www.iso.org/patents).
Morebitna trgovska imena, uporabljena v tem dokumentu, so informacije za uporabnike in ne pomenijo
podpore blagovni znamki.
Obrazložitev pomena specifičnih terminov in izrazov ISO, povezanih z ocenjevanjem skladnosti, ter
informacije o tem, kako ISO spoštuje načela Svetovne trgovinske organizacije (WTO) v Tehničnih ovirah
pri trgovanju (TBT), so na voljo na tej povezavi: www.iso.org/iso/foreword.html.
Ta dokument je pripravil tehnični odbor ISO/TC 43 Akustika, pododbor SC 1 Hrup.
Ta tretja izdaja razveljavlja in nadomešča drugo izdajo (ISO 1996-2:2007), ki je strokovno revidirana.
Seznam vseh delov skupine standardov ISO 1996 je na voljo na spletni strani ISO.
SIST ISO 1996-2 : 2017
Uvod
Meritve hrupa v okolju so zapletene, saj je pri njihovem načrtovanju in izvajanju treba upoštevati številne
spremenljivke. Ker je vsaka meritev odvisna od trenutnega vira in meteoroloških razmer, ki jih izvajalec
ne more nadzirati, posledične negotovosti meritev pogosto ni mogoče nadzorovati. Namesto tega se
negotovost določi po meritvah na podlagi analize akustičnih meritev in zbranih podatkov o obratovalnih
razmerah vira ter meteoroloških parametrov, ki so pomembni za širjenje zvoka.
Ker je namen tega dokumenta izpolnjevati nove in strožje zahteve za izračune merilne negotovosti ter
zajeti vse vrste virov in meteoroloških razmer, je ta dokument še bolj zapleten, kot bi lahko bil standard,
ki zajema en sam specifičen vir in uporabo. Standard je najbolje uporabljati kot podlago za razvoj bolj
namenskih standardov, ki se uporabljajo za specifične vire in namene.
SIST ISO 1996 : 2017
Akustika – Opis, merjenje in ocena hrupa v okolju – 2. del: Določanje ravni
zvočnega tlaka
1 Področje uporabe
Ta dokument opisuje, kako je mogoče določiti ravni zvočnega tlaka kot osnovo za ocenjevanje mejnih
vrednosti hrupa v okolju ali primerjavo scenarijev v prostorskih študijah. Določanje je mogoče izvesti z
neposrednim merjenjem in ekstrapolacijo merilnih rezultatov s pomočjo izračuna. Ta dokument je
namenjen predvsem uporabi na prostem, vendar je podanih tudi nekaj napotkov za merjenje v zaprtih
prostorih. Je v veliki meri prilagodljiv. Uporabnik sam opredeli trud, vložen v meritve, in temu primerno
merilno negotovost, ki se določi in podaja v vsakem primeru. Zato zgornje meje največje dovoljene
negotovosti niso določene. Pogosto so merilni rezultati kombinirani z izračuni z namenom popravljanja
na referenčne obratovalne razmere ali na referenčne razmere širjenja, ki se razlikujejo od razmer pri
dejanskem merjenju. Ta dokument je mogoče uporabiti za vse vire hrupa v okolju, kot so hrup cestnega
in železniškega prometa, hrup letalskega prometa in industrijski hrup.
2 Zveze s standardi
Naslednji dokumenti so v besedilu navedeni tako, da nekateri njihovi deli ali celotna vsebina
predstavljajo zahteve tega dokumenta. Pri datiranih sklicevanjih se uporablja samo navedena izdaja.
Pri nedatiranih sklicevanjih se uporablja zadnja izdaja dokumenta, na katerega se sklicuje (vključno z
morebitnimi dopolnili).
ISO 1996-1:2016 Akustika – Opis, merjenje in ocena hrupa v okolju – 1. del: Osnovne
veličine in ocenjevalni postopki
ISO 20906:2009/Amd 1:2013 Akustika – Nenadzorovano spremljanje zvoka letal v bližini letališč –
Dopolnilo 1
ISO IEC 17025 Splošne zahteve za usposobljenost preskuševalnih in kalibracijskih
laboratorijev
Vodilo ISO/IEC 98-3 Merilna negotovost – 3. del: Vodilo za določanje merilne negotovosti
(GUM: 1995)
IEC 60942 Elektroakustika – Kalibratorji za zvokomere
IEC 61260 Elektroakustika – Oktavni in frakcijski oktavni filtri
EN 61672-1 Elektroakustika – Merilniki zvočne jakosti – 1. del: Specifikacije
3 Izrazi in definicije
V tem dokumentu so uporabljeni izrazi in definicije, ki so podani v standardu ISO 1996-1, in tudi spodaj
navedeni. ISO in IEC hranita terminološke zbirke podatkov za uporabo pri standardizaciji na naslednjih
naslovih:
‒ IEC Electropedia: na voljo na spletnem mestu http://www.electropedia.org/
‒ platforma za brskanje po spletu ISO: na voljo na spletnem mestu http://www. iso.org/obp
3.1
časovni interval merjenja
časovni interval, v katerem se izvajajo meritve
Opomba 1: Pri meritvah ekspozicijske ravni zvoka ali ekvivalentne neprekinjene ravni zvočnega tlaka je časovni interval
merjenja časovno obdobje integracije.
Opomba 2: Pri meritvah maksimalne ravni zvočnega tlaka ali percentilne ravni itd. je časovni interval merjenja časovni interval
opazovanja (3.2).
SIST ISO 1996-2 : 2017
3.2
časovni interval opazovanja
časovni interval, v katerem se izvaja serija meritev
3.3
časovni interval napovedovanja
časovni interval, na katerega se nanašajo napovedane ravni
Opomba 1: Zdaj se ravni zvoka morda pogosteje napovedujejo z uporabo računalnikov kot na podlagi meritev za nekatere
vire, kot so viri hrupa zaradi prometa. Časovni interval napovedi ustreza časovnemu intervalu merjenja (3.1), le
da se ravni pri prvem napovedujejo, pri drugem pa merijo.
3.4
dolgotrajne meritve
meritve, ki so dovolj dolge, da zajamejo vse emisijske situacije in meteorološke razmere, potrebne za
pridobitev reprezentativnega povprečja
3.5
kratkotrajne meritve
meritve v časovnih intervalih merjenja (3.1) z ustrezno opredeljenimi emisijskimi in meteorološkimi
razmerami
3.6
merilno mesto
mesto ocenjevanja hrupa
3.7
računska metoda
nabor algoritmov za izračun ravni zvočnega tlaka na določenem merilnem mestu (3.6) na podlagi
izmerjenih ali napovedanih ravni zvočne moči in podatkov o slabljenju zvoka
3.8
metoda napovedi
podmnožica računske metode (3.7), namenjena za izračun bodočih ravni hrupa
3.9
meteorološko okno
nabor vremenskih razmer, v katerih je mogoče izvajati meritve z omejenimi in znanimi spremembami
merilnih rezultatov zaradi vremenskih sprememb
3.10
emisijsko okno
nabor emisijskih razmer, v katerih je mogoče izvajati meritve z omejenimi spremembami merilnih
rezultatov zaradi sprememb obratovalnih razmer
3.11
polmer ukrivljenosti zvočne poti
R
cur
polmer, ki aproksimira ukrivljenost zvočne poti zaradi loma v atmosferi
Opomba 1: Vrednost R je podana v metrih.
cur
Opomba 2: Pogosto se uporablja parameter 1/R , da se izogne neskončno velikim vrednostim pri premočrtnem širjenju.
cur
3.12
instrumentarij za spremljanje zvoka
instrumenti, ki se uporabljajo za posamezen terminal za avtomatizirano neprekinjeno spremljanje zvoka
in spremljajo A-vrednotene ravni zvočnega tlaka, njihove spektre ter vse pomembne meteorološke
veličine, kot so hitrost vetra, smer vetra, dež, vlažnost, stabilnost razmer v atmosferi itd.
SIST ISO 1996-2 : 2017
Opomba 1: Meteoroloških meritev ni treba izvajati pri vsakem instrumentariju za spremljanje zvoka, če so te meritve izvedene
na ustrezni razdalji od instrumentarija za spremljanje zvoka in je ta razdalja navedena v poročilu.
3.13
avtomatiziran sistem za spremljanje zvoka
celoten avtomatiziran sistem za spremljanje zvoka, vključno z vsemi instrumentariji za spremljanje zvoka
(3.12), osnovnim ali osrednjim mestom za zbiranje podatkov (gostiteljska postaja) in vso programsko
oziroma strojno opremo, potrebno za njegovo delovanje
3.14
referenčne razmere
razmere, na katere se morajo nanašati (popraviti) merilni rezultati
Opomba 1: Primera referenčnih razmer sta absorpcija zvoka v atmosferi pri letni povprečni temperaturi in vlažnosti ter letni
povprečni prometni tokovi za dan, večer in noč.
3.15
neodvisne meritve
zaporedne meritve, izvedene v dovolj dolgih časovnih presledkih med njimi, tako da so obratovalne
razmere vira in tudi razmere širjenja zvoka statistično neodvisne od enakih razmer drugih meritev v seriji
Opomba 1: Za doseganje neodvisnih pogojev za meteorološke razmere je navadno potreben večdnevni presledek.
3.16
nizkofrekvenčni zvok
zvok v frekvenčnem območju terčnih pasov od 16 do 200 Hz
Opomba 1: Ta opredelitev je specifična za ta dokument. V različnih nacionalnih predpisih se lahko uporabljajo druge
opredelitve.
4 Merilna negotovost
Merilna negotovost ravni zvočnega tlaka, kot je opisana v tem dokumentu, je odvisna od vira zvoka in
časovnega intervala merjenja, meteoroloških razmer, razdalje od vira in merilne metode ter merilnih
instrumentov. Merilno negotovost je treba določiti v skladu z Vodilom ISO/IEC 98-3 (GUM). Izbrati je
treba enega od naslednjih pristopov, ki so vsi združljivi z GUM:
a) pristop z modeliranjem, ki je sestavljen iz določitve in količinske opredelitve vseh glavnih virov
negotovosti (t. i. izračun negotovosti). To je priporočena metoda;
b) medlaboratorijski pristop, ki je sestavljen iz izvajanja medlaboratorijskih primerjalnih meritev za
določitev standardnega odklona ponovljivosti merilne metode;
OPOMBA 1: Če za neko merjeno veličino obstaja več kot ena merilna metoda, se upoštevajo vsi sistematični odkloni,
[1]
na primer z uporabo standarda ISO 21748.
c) hibridni pristop, ki je sestavljen iz skupne uporabe pristopa z modeliranjem in medlaboratorijskega
pristopa. V tem primeru se medlaboratorijski pristop uporablja za dele izračuna negotovosti, za
katere prispevkov zaradi pomanjkanja podatkov in robnih pogojev ni mogoče količinsko opredeliti
z uporabo matematičnega modela pristopa z modeliranjem.
OPOMBA 2: Tudi tu se uporablja opomba 1.
V primeru pristopa a (z modeliranjem) je treba določiti vsak pomemben vir negotovosti. Sistematične
učinke je treba odpraviti ali zmanjšati z uporabo popravkov, kjerkoli je to mogoče. Če je merjena veličina
L, ki je funkcija veličin xj, se uporablja ta enačba:
SIST ISO 1996-2 : 2017
Če ima vsaka veličina standardno negotovost u , je kombinirana standardna negotovost podana z
j
enačbo (2):
ob predpostavki, da so vhodne veličine x neodvisne. Ob tej predpostavki je koeficient občutljivosti c
j j
podan z enačbo (3):
Merilna negotovost, ki jo je treba navesti, je povezana z izbrano verjetnostjo pokritja (t. i. razširjena
negotovost). Po dogovoru se navadno izbere 95-odstotna verjetnost pokritja s povezanim faktorjem
pokritosti 2. To pomeni, da je končni rezultat L ± 2 u.
OPOMBA 3: Pristojni organi lahko določijo drugačne verjetnosti pokritja. Faktor pokritosti 1,3 bo na primer zagotovil
80-odstotno verjetnost pokritja.
Za meritve hrupa v okolju f(x ) je izredno zapleteno in komajda izvedljivo vzpostaviti natančne enačbe
j
[2]
za funkcijo f. Po načelih iz standarda ISO 3745 je mogoče določiti nekatere pomembne vire
negotovosti. Za posamezno meritev se uporablja enačba (4):
kjer so:
L ocenjena vrednost v tistih razmerah, za katere se želi izmerjena vrednost, izražena v decibelih
(dB)
L' izmerjena vrednost, vključno s preostalim zvokom L , izražena v decibelih (dB)
res
L preostali zvok, izražen v decibelih (dB)
res
δ vhodna veličina, ki upošteva morebitno negotovost zaradi odstopanj od pričakovanih obratovalnih
sou
razmer vira, izražena v decibelih (dB)
δ vhodna veličina, ki upošteva morebitno negotovost zaradi odstopanj meteoroloških razmer od
met
predpostavljenih meteoroloških razmer, izražena v decibelih (dB)
δ vhodna veličina, ki upošteva morebitno negotovost zaradi izbire merilnega mesta, izražena v
loc
decibelih (dB)
δ + δ se pogosto določi neposredno na podlagi meritev; glej 10.5.
sou met
Vrednosti L' in L sta odvisni od δ , ki je vhodna veličina, ki upošteva morebitno negotovost verige
res slm
meritev (v najpreprostejšem primeru: merilnik ravni zvoka). Poleg tega je vrednost L odvisna od δ , ki
res res
je vhodna veličina, ki upošteva morebitno negotovost zaradi preostalega zvoka. Preglednica 1 dodatno
pojasnjuje razmerje med veličinami v enačbi (4) ter njihovo oceno in negotovost.
Enačba (4) je zelo poenostavljena in vsak vir negotovosti je funkcija več drugih virov negotovosti.
Načeloma se lahko enačba (4) uporabi za vsako meritev, ki traja od nekaj sekund do več let. V točki 9.1
so meritve razdeljene na dolgotrajne in kratkotrajne meritve. Kratkotrajna meritev lahko navadno traja
od 10 minut do nekaj ur, medtem ko lahko tipična dolgotrajna meritev traja od enega meseca do enega
leta.
V preglednici 1 so podani napotki o tem, kako določiti vrednosti c in u za vstavljanje v enačbo (2).
j j
SIST ISO 1996-2 : 2017
Preglednica 1: Primer izračuna negotovosti za izmerjeno vrednost
Stopnja koeficienta
Standardna
Ocena Točka z
negotovost u
Veličina j občutljivosti
napotki
dB
dB
c
j
u(L′)
L′ + δ L′
slm Dodatek F
a
0,5
7.2 do 7.5,
δ u
sou 0 sou
Dodatek D
Točka 8,
δ u
met 0 met 1
Dodatek A
δ u
0,0–6,0 1 Dodatek B
loc loc
L + δ L u
res res res res Dodatek F
a
0,5 dB se nanaša na merilnik ravni zvoka razreda 1. Standardna negotovost merilnika ravni zvoka razreda 2 bi
bila 1,5 dB.
Števila, podana v preglednici 1, se nanašajo samo na A-vrednoteno ekvivalentno neprekinjeno raven
zvočnega tlaka. Višje negotovosti se lahko pričakujejo pri maksimalnih ravneh, pri ravneh v frekvenčnih
pasovih in pri tonalnih komponentah v hrupu. V mnogih primerih je treba izmerjene vrednosti popraviti
glede na druge obratovalne razmere vira, ki ne predstavljajo izmerjenih primerov, temveč letno
povprečje. Podobno se lahko druge meritve popravijo glede na drugačne meteorološke razmere, da se
omogočijo izračuni vrednosti L . Izračuni negotovosti za tovrstne primere so podani v dodatku F.
dvn
OPOMBA 4: Nekateri primeri (vključno s preglednico) opravljenih izračunov negotovosti so podani v dodatku G.
5 Instrumenti za izvajanje akustičnih meritev
5.1 Splošno
Instrumenti za merjenje ravni zvočnega tlaka, vključno z mikrofoni in kabli, zaščito pred vetrom,
snemalnimi napravami in drugimi pripomočki (če se uporabljajo), morajo izpolnjevati zahteve za
instrument razreda 1 v skladu s standardom IEC 61672-1 za uporabo v prostem ali difuznem zvočnem
polju ali v naključnem zvočnem polju, kakor je primerno. Filtri morajo izpolnjevati zahteve za instrument
razreda 1 v skladu s standardom IEC 61260. Zaščita pred vetrom mora biti vedno uporabljena pri
meritvah na prostem.
OPOMBA 1: Mejne vrednosti dovoljenih odstopanj za razred 1 v skladu s standardom IEC 61672-1 veljajo v temperaturnem
območju od –10 °C do 50 °C. Če se instrument uporablja pri temperaturah zunaj območja od –10 °C do 50 °C,
lahko pride do povečanja merilne negotovosti.
OPOMBA 2: Tudi pri zaščiti pred vetrom lahko hrup vetra vpliva na izmerjene ravni zvočnega tlaka. Na primer znaša A-
vrednotena raven zvočnega tlaka L za 13-milimetrski mikrofon z zaščito pred vetrom s premerom 90 mm,
pA
izpostavljen hitrosti vetra (v) v m/s, približno –18 + 70 lg (v/1 m/s) dB, če veter piha pravokotno na membrano
[3]
mikrofona, in –32 + 83 lg (v/1 m/s) dB, če veter piha vzporedno z membrano mikrofona.
5.2 Kalibracija
Na začetku in na koncu vsake meritve je treba celoten sistem za merjenje ravni zvočnega tlaka preveriti
pri eni ali več frekvencah s pomočjo zvočnega kalibratorja, ki izpolnjuje zahteve za instrument razreda
1 v skladu s standardom IEC 60942. Brez nadaljnjega popravka mora biti razlika med odčitki dveh
zaporednih preverjanj manjša ali enaka 0,5 dB. Če je ta vrednost presežena, je treba rezultate meritev
od zadnjega zadovoljivega preverjanja naprej zavreči. Za dolgotrajno spremljanje, ki traja več dni ali
dlje, veljajo zahteve standarda ISO 20906:2009/Amd 1:2013.
SIST ISO 1996-2 : 2017
5.3 Preverjanje
Skladnost instrumenta za merjenje ravni zvočnega tlaka, filtrov in zvočnega kalibratorja mora biti
preverjena z veljavnim potrdilom o skladnosti z merilnimi parametri, določenimi v relevantnih preskusnih
[4]
metodah v standardih IEC 61672-3 , IEC 61260 in IEC 60942.
Vsa preskušanja skladnosti mora izvesti laboratorij, ki izpolnjuje zahteve standarda ISO/IEC 17025 za
izvajanje relevantnih preskusov in kalibracij ter zagotavlja meroslovno sledljivost do ustreznih etalonov.
Priporočeni časovni interval za preskušanje delovanja sistema je enkrat na leto. Najdaljši dovoljeni
interval je 2 leti.
5.4 Dolgotrajno spremljanje
Največja dopustna napaka za instrumente, uporabljene za meteorološke meritve, je lahko:
‒ ± 0,5 K za naprave za merjenje temperature,
‒ ± 5,0 % za naprave za merjenje relativne vlažnosti,
‒ ± 0,5 hPa za naprave za merjenje zračnega tlaka,
‒ ± 0,5 m/s za naprave za merjenje hitrosti vetra in
‒ ± 5° za naprave za merjenje smeri vetra.
Meteorološke razrede je treba navesti v skladu s točko 8.
OPOMBA: Nekateri sodobni zvočni anemometri so primerni za neposredno merjenje parametrov, ki se uporabljajo za
določanje meteoroloških razredov.
6 Načela
6.1 Splošno
Obstajata dve glavni strategiji za merjenje hrupa v okolju:
a) izvedba posamezne meritve v zelo dobro opredeljenih meteoroloških razmerah ob hkratnem
skrbnem beleženju obratovalnih razmer vira,
b) izvedba dolgotrajne meritve ali več kratkotrajnih meritev v različnih časovnih obdobjih ob hkratnem
beleženju meteoroloških razmer.
Obe vrsti meritev zahtevata naknadno obdelavo izmerjenih podatkov.
Vsak rezultat in vsaka vrsta meritve bosta imela določeno negotovost, ki jo je treba določiti. Ciljno
točnost opredeli uporabnik rezultatov. Zgornje meje merilne negotovosti niso podane.
Dolgotrajna vrednost L (L ) je podana z enačbo (5):
eq long
kjer sta:
p pogostost pojavljanja emisijskih in meteoroloških razmer okna k, ki dajejo ekvivalentno raven
k
L , izražena v decibelih (dB)
k
N število uporabljenih oken
w
SIST ISO 1996-2 : 2017
Vrednost L se navadno določi z več meritvami; glej enačbo (6):
k
kjer sta:
L neodvisna meritev znotraj okna k, izražena v decibelih (dB)
i
N število uporabljenih oken
m
Za namene izračuna vrednosti L je treba ločiti dnevno, večerno in nočno obdobje.
dvn
Okno je kombinacija emisijskih (npr. dan, večer, noč) in meteoroloških razmer (npr. štirje različni razredi,
kot je prikazano v preglednici 2). Okno naj po možnosti vključuje stalne emisijske razmere in razmere
širjenja. V številnih primerih so emisijske razmere neodvisne od meteoroloških razmer, v drugih primerih,
kot je hrup letalskega prometa, pa obstaja močna medsebojna povezava.
Preglednica 2: Stratifikacija emisijskih in meteoroloških razmer pri merjenju
Meteorološko okno
1 2 3 4
Emisijsko okno
N
Negotovost je treba določiti za vrednosti p in L . V najboljšem primeru se negotovost L določi
k k k
neposredno iz velikega števila neodvisnih meritev; glej 10.5. Če se izvede samo ena meritev ali nekaj
meritev, je treba negotovost določiti z uporabo drugih razpoložljivih podatkov. Če vrednosti L manjkajo,
k
jih je treba oceniti z metodo napovedi. Te ocene morajo vključevati tudi oceno negotovosti.
Minimalna zahteva za smiselnost meritve je, da se L določi pri ugodnih razmerah širjenja, kot so
k
opredeljene v dodatku A, in da se pri teh meritvah spremljajo obratovalne razmere vira.
6.2 Neodvisne meritve
Za zagotavljanje neodvisnih meritev ne glede na sezonske, dnevne, tedenske ali druge sistematične
[5]
spremembe se lahko uporabijo priporočila iz preglednice 3 (glej referenco ).
Preglednica 3: Najkrajši čas (v urah) med meritvama za zagotavljanje njune neodvisnosti
< 100 m 100–300 m > 300 m
Razdalja
Dan Noč Dan Noč Dan Noč
Cestni 24 h 24 h 48 h 48 h 72 h 72 h
a
24 h/vir
Železniški 24 h 48 h 72 h 72 h 72 h
Industrijski Vir Vir 48 h 48 h 72 h 72 h
b
Letalski Vir Vir Vir Vir Vir Vir
a
Če prevladujejo tovorni vlaki.
b
Faza letenja.
OPOMBA 1: "Vir" v preglednici 3 označuje, da je najkrajši čas odvisen od obratovalnih razmer vira.
OPOMBA 2: "Dan" v preglednici 3 se nanaša na čas med sončnim vzhodom in zahodom, noč pa se nanaša na čas med
sončnim zahodom in vzhodom.
SIST ISO 1996-2 : 2017
7 Obratovanje vira
7.1 Splošno
Obratovalne razmere vira morajo biti ustrezne obravnavanemu hrupu okolja. Za pridobitev zanesljive
ocene ekvivalentne neprekinjene ravni zvočnega tlaka in tudi maksimalnih ravni zvočnega tlaka mora
časovni interval merjenja zajemati neko najmanjše število hrupnih dogodkov. Za najobičajnejše tipe
virov hrupa so podani napotki v točkah od 7.2 do 7.5. Število mimovozečih vozil (cestna vozila,
železniška vozila, letalska plovila), potrebno za izračun povprečja sprememb posameznih emisij hrupa
vozil, je odvisno od zahtevane točnosti. Manj pogosti viri hrupa, kot so ladijski promet, helikopterji in
tramvaji, niso posebej obravnavani.
Ekvivalentna neprekinjena raven zvočnega tlaka pri hrupu železniškega in zračnega prometa se po
navadi lahko določi z merjenjem ekspozicijskih ravni zvoka posameznih dogodkov za mimovozeča
cestna/železniška vozila in izračunom ekvivalentne neprekinjene ravni zvočnega tlaka na podlagi teh
dogodkov.
Če morajo biti izmerjene vrednosti popravljene glede na druge obratovalne razmere na podlagi
določenih modelov za napovedovanje, je treba obratovalne pogoje spremljati po vseh relevantnih
parametrih, ki se v metodi napovedovanja uporabijo kot vhodne vrednosti. Posledična negotovost bo
odvisna od tega, kako točno so določeni različni parametri.
OPOMBA: Napotki o izvajanju popravkov glede na druge razmere so podani v dodatku D.
Podani napotki ne upoštevajo morebitnih dodatnih težav z viri nizkofrekvenčnega zvoka, kot so
helikopterji, vibracije mostov, podzemna železnica, tovorni vlaki, rudniki, proizvodnja za preoblikovanje
pločevine, pnevmatska gradbena oprema itd. Dodatek C standarda ISO 1996-1:2016 vsebuje nadaljnjo
razlago nizkofrekvenčnega zvoka. Postopki merjenja nizkofrekvenčnega zvoka so podani v točkah 9.2.2
in 9.3.2.7.
7.2 Cestni promet
7.2.1 Merjenje L
eq
Pri merjenju L je treba število mimovozečih vozil v časovnem intervalu merjenja določiti z neposrednim
eq
štetjem ali kako drugače. Če se merilni rezultat pretvori v drugačne prometne razmere, je treba
razlikovati med vsaj tremi kategorijami vozil: "osebna vozila", "srednje težka vozila" (dve osi) in "težka
vozila" (tri ali več osi). Za ugotavljanje reprezentativnosti prometnih razmer je treba (z merjenjem ali
kako drugače) določiti povprečno hitrost prometa in zabeležiti vrsto vozne podlage.
Število mimovozečih vozil, potrebno za izračun povprečja sprememb posameznih emisij hrupa vozil, je
odvisno od zahtevane točnosti. Če ni na voljo boljšega podatka, je mogoče standardno negotovost z
oznako u v preglednici 1 izračunati s pomočjo enačbe (7):
sou
kjer je n število mimovozečih vozil.
Za mešana prometna vozila velja C = 10, samo za težka vozila velja C = 5 in za osebna vozila velja
C = 2,5. V vsakem primeru je natančnejšo standardno negotovost mogoče določiti na podlagi statistike
neposrednih meritev L posameznih mimovozečih vozil po kategoriji ali za reprezentativna mešana
E
prometna vozila.
7.2.2 Merjenje L
max
Maksimalne ravni zvočnega tlaka se med posameznimi kategorijami vozil razlikujejo. Poleg tega je
znotraj vsake kategorije vozil mogoče določeno širjenje maksimalnih ravni zvočnega tlaka zaradi razlik
SIST ISO 1996-2 : 2017
med posameznimi vozili in spremembami v hitrosti ali vzorcu vožnje. Glede na definicijo je mogoče
maksimalno raven zvočnega tlaka izmeriti neposredno iz določenega števila mimovozečih vozil ali
izračunati na podlagi aritmetičnega povprečja in standardnega odklona z uporabo statistične teorije; glej
dodatek H.
7.3 Železniški promet
7.3.1 Merjenje L
eq
Pri določanju vrednosti L z neposrednim merjenjem ali merjenjem L posameznih mimovozečih vozil
eq E
je treba v časovnem intervalu merjenja določiti število mimovozečih vlakov, hitrosti in dolžine vlakov ali
(alternativno) število enot cestnih vozil. Če se merilni rezultat pretvori v drugačne prometne razmere, je
treba razlikovati med vsaj temi kategorijami: vlaki z veliko hitrostjo, medmestni vlaki, regionalni vlaki,
tovorni vlaki in dizelski vlaki. Za večjo točnost pri tovornih vlakih je priporočljivo zabeležiti dolžino vlaka
in vrsto zavor (kolutne zavore, zavornjak iz litega železa, zavornjak iz kompozitnega materiala ali
sintrane kovine).
Število mimovozečih vozil, potrebno za izračun povprečja sprememb posameznih emisij hrupa vozil, je
odvisno od zahtevane točnosti. Če ni na voljo boljšega podatka, je mogoče standardno negotovost z
oznako u v preglednici 1 izračunati s pomočjo enačbe (8):
sou
kjer je n število mimovozečih vozil.
Če je bilo vzorčenje izvedeno ne glede na obratovalne razmere, se predpostavi C = 10, če pa vzorčenje
upošteva relativno pojavnost različnih razredov vlakov (tovorni, potniški itd.), se lahko ta vrednost
zmanjša na 5. V vsakem primeru je točnejšo standardno negotovost mogoče določiti na podlagi
statistike neposrednih meritev L posameznih mimovozečih vozil po kategoriji ali za reprezentativna
E
mešana prometna vozila.
7.3.2 Merjenje L
max
Maksimalne ravni zvočnega tlaka se med posameznimi kategorijami vlakov razlikujejo. Poleg tega je
znotraj vsake kategorije vlakov mogoče določeno širjenje maksimalnih ravni zvočnega tlaka zaradi razlik
med posameznimi vozili in spremembami v hitrosti/obratovalnih razmerah. Glede na definicijo je mogoče
maksimalno raven zvočnega tlaka izmeriti neposredno iz določenega števila mimovozečih vozil ali
izračunati na podlagi aritmetičnega povprečja in standardnega odklona z uporabo statistične teorije; glej
dodatek H.
7.4 Letalski promet
7.4.1 Merjenje L
eq
Vrednost L je treba določiti na podlagi meritev vrednosti L reprezentativnega obratovanja letališča.
eq E
To vključuje prometni vzorec (uporaba vzletno-pristajalne steze, postopki vzletanja in pristajanja, nabor
letal, porazdelitev prometa preko dneva) in razmere širjenja hrupa. Glavna veličina za merjenje je A-
vrednotena ekspozicijska raven zvoka LAE, za ugotavljanje, ali dogodek pripada letalskemu prometu, pa
so lahko pomembna druga merila. Ta merila lahko vključujejo naslednje:
‒ neprekinjena A-vrednotena raven zvočnega tlaka s frekvenco vzorčenja vsaj 10 Hz,
‒ maksimalna raven zvočnega tlaka L ,
ASmax
‒ časovni žig za L ,
ASmax
‒ čas trajanja dogodka.
OPOMBA 1: Dodatne uporabne informacije o merjenju so navedene v standardu ISO 20906.
SIST ISO 1996-2 : 2017
Vsak izmerjeni dogodek letalskega prometa mora biti prepoznan, in če je to pomembno, razvrščen glede
na velikost (maso) in tehnologijo. Število razredov in dodelitev letal v razrede je predmet razprav z
letališkimi organi in/ali nacionalnimi organi.
[6]
OPOMBA 2: Oznake za identifikacijo različnih tipov letal so podane v dokumentu ICAO, dodatek 16 .
Zahtevana podatka letaliških organov sta:
a) število obratovanj za vsako skupino let
...












Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...