Hydraulic fluid power filters - Multi-pass method for evaluating filtration performance of a filter element

Filtres pour transmissions hydrauliques — Évaluation des performances par la méthode de filtration en circuit fermé

Fluidna tehnika - Hidravlični filtri - Postopek "multi-pass" za ocenjevanje filtracijske sposobnosti filterskega vložka

General Information

Status
Withdrawn
Publication Date
15-Dec-1999
Withdrawal Date
15-Dec-1999
Current Stage
9599 - Withdrawal of International Standard
Start Date
03-Jun-2008
Completion Date
13-Dec-2025

Relations

Standard
ISO 16889:1999 - Hydraulic fluid power filters -- Multi-pass method for evaluating filtration performance of a filter element
English language
46 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 16889:2001
English language
46 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day
Standard
ISO 16889:1999 - Filtres pour transmissions hydrauliques -- Évaluation des performances par la méthode de filtration en circuit fermé
French language
49 pages
sale 15% off
Preview
sale 15% off
Preview

Frequently Asked Questions

ISO 16889:1999 is a standard published by the International Organization for Standardization (ISO). Its full title is "Hydraulic fluid power filters - Multi-pass method for evaluating filtration performance of a filter element". This standard covers: Hydraulic fluid power filters - Multi-pass method for evaluating filtration performance of a filter element

Hydraulic fluid power filters - Multi-pass method for evaluating filtration performance of a filter element

ISO 16889:1999 is classified under the following ICS (International Classification for Standards) categories: 23.100.60 - Filters, seals and contamination of fluids. The ICS classification helps identify the subject area and facilitates finding related standards.

ISO 16889:1999 has the following relationships with other standards: It is inter standard links to ISO 4572:1981, ISO 16889:2008. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.

You can purchase ISO 16889:1999 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of ISO standards.

Standards Content (Sample)


INTERNATIONAL ISO
STANDARD 16889
First edition
1999-12-15
Hydraulic fluid power filters — Multi-pass
method for evaluating filtration
performance of a filter element
Filtres pour transmissions hydrauliques — Évaluation des performances
par la méthode de filtration en circuit fermé
Reference number
©
ISO 1999
PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.
© ISO 1999
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.
ISO copyright office
Case postale 56 � CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 734 10 79
E-mail copyright@iso.ch
Web www.iso.ch
Printed in Switzerland
ii © ISO 1999 – All rights reserved

Contents Page
1 Scope .1
2 Normative references .1
3 Terms and definitions .2
4 Symbols .4
5 General procedure.6
6 Test equipment .6
7 Accuracy of measurements and test conditions.7
8 Filter performance test circuit validation procedures .8
9 Summary of information required prior to testing .10
10 Preliminary preparation .10
11 Filter performance test.12
12 Calculations.14
13 Data presentation.16
14 Identification statement (reference to this International Standard) .17
Annex A (normative) Properties of base test fluid .20
Annex B (informative) Test system design guide .22
Annex C (informative) Example report calculations and graphs .26
Annex D (informative) Summary of ISO round robin for the multi-pass test (ISO/CD 4572).34
© ISO 1999 – All rights reserved iii

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO
member bodies). The work of preparing International Standards is normally carried out through ISO technical
committees. Each member body interested in a subject for which a technical committee has been established has
the right to be represented on that committee. International organizations, governmental and non-governmental, in
liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical
Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.
Draft International Standards adopted by the technical committees are circulated to the member bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights.
International Standard ISO 16889 was prepared by Technical Committee ISO/TC 131, Fluid power systems,
Subcommittee SC 6, Contamination control and hydraulic fluids.
This first edition cancels and replaces ISO 4572:1981, of which it constitutes a technical revision.
Annex A forms a normative part of this International Standard. Annexes B to D are for information only.
iv © ISO 1999 – All rights reserved

Introduction
In hydraulic fluid power systems, one of the functions of the hydraulic fluid is to separate and lubricate the moving
parts of components. The presence of solid particulate contamination produces wear, resulting in loss of efficiency,
reduced component life and subsequent unreliability.
A hydraulic filter is provided to control the number of particles circulating within the system to a level that is
commensurate with the degree of sensitivity of the components to contaminant and the level of reliability required
by the users.
To enable the relative performance of filters to be compared so that the most appropriate filter can be selected, test
procedures should be available. The performance characteristics of a filter are a function of the element (its
medium and geometry) and the housing (its general configuration and seal design).
In practice, a filter is subjected to a continuous flow of contaminant entrained in the hydraulic fluid until some
specified terminal differential pressure (relief valve cracking pressure or differential pressure indicator setting) is
reached.
Both the length of operating time (prior to reaching terminal pressure) and the contaminant level at any point in the
system are functions of the rate of contaminant addition (ingression plus generation rates) and the performance
characteristics of the filter.
Therefore, a realistic laboratory test that establishes the relative performance of a filter should provide the test filter
with a continuous supply of ingressed contaminant and allow the periodic monitoring of the filtration performance
characteristics of the filter.
The test should also provide an acceptable level of repeatability and reproducibility and a standard test
contaminant [ISO medium test dust (ISO 12103-A3) in accordance with ISO 12103-1] is featured. This has been
shown to have a consistent particle size distribution and is available worldwide. The filtration performance of the
filter is determined by measurement of the upstream and downstream particle size distributions using automatic
particle counters validated according to ISO standards.
Since it is difficult to specify, achieve and verify a cyclic flow requirement that is both realistic and consistent with
the flow variations occurring in actual systems, the compromise of steady-state condition has been used for this
test to enhance the repeatability and reproducibility of results.
© ISO 1999 – All rights reserved v

INTERNATIONAL STANDARD ISO 16889:1999(E)
Hydraulic fluid power filters — Multi-pass method for evaluating
filtration performance of a filter element
1 Scope
1.1 This International Standard specifies:
� a multi-pass filtration performance test with continuous contaminant injection for hydraulic fluid power filter
elements;
� a procedure for determining the contaminant capacity, particulate removal and differential pressure
characteristics;
� a test currently applicable to hydraulic fluid power filter elements that exhibit an average filtration ratio greater
than or equal to 75 for particle sizes less than or equal to 25 μm(c), and a final reservoir gravimetric level of
less than 200 mg/l;
NOTE The range of flows and the lower particle size limit that can be used in test facilities will be determined by validation.
� a test using ISO medium test dust contaminant and a test fluid according to annex A.
1.2 This International Standard is intended to provide a test procedure that yields reproducible test data for
appraising the filtration performance of a hydraulic fluid power filter element without influence of electrostatic
charge.
2 Normative references
The following normative documents contain provisions which, through reference in this text, constitute provisions of
this International Standard. For dated references, subsequent amendments to, or revisions of, any of these
publications do not apply. However, parties to agreements based on this International Standard are encouraged to
investigate the possibility of applying the most recent editions of the normative documents indicated below. For
undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC
maintain registers of currently valid International Standards.
ISO 1219-1:1991, Fluid power systems and components — Graphic symbols and circuit diagrams — Part 1:
Graphic symbols.
ISO 2942:1994, Hydraulic fluid power — Filter elements — Verification of fabrication integrity and determination of
the first bubble point.
ISO 3722:1976, Hydraulic fluid power — Fluid sample containers — Qualifying and controlling cleaning methods.
ISO 3968:1981, Hydraulic fluid power — Filters — Evaluation of pressure drop versus flow characteristics.
ISO 4021:1992, Hydraulic fluid power — Particulate contamination analysis — Extraction of fluid samples from
lines of an operating system.
ISO 4405:1991, Hydraulic fluid power —- Fluid contamination — Determination of particulate contamination by the
gravimetric method.
© ISO 1999 – All rights reserved 1

ISO 5598:1985, Fluid power systems and components — Vocabulary.
ISO 11171:1999, Hydraulic fluid power — Calibration of liquid automatic particle counters.
ISO 11943:1999, Hydraulic fluid power — On-line automatic particle-counting systems for liquids — Methods of
calibration and validation.
ISO 12103–1:1997, Road vehicles — Test dust for filter evaluation — Part 1: Arizona test dust.
ASTM D 4308-95, Standard test method for electrical conductivity of liquid hydrocarbons by precision meter.
3 Terms and definitions
For the purposes of this International Standard, the terms and definitions given in ISO 5598 and the following
apply.
3.1
contaminant mass injected
mass of specific particulate contaminant injected into the test circuit to obtain the terminal�p
3.2
differential pressure
�p
difference between the tested component inlet and outlet pressure as measured under the specified conditions
SeeFigure1.
3.2.1
clean assembly differential pressure
difference between the tested component inlet and outlet pressure as measured with a clean filter body containing
a clean filter element
SeeFigure1.
3.2.2
clean element differential pressure
differential pressure of the clean element calculated as the difference between the clean assembly �p and the
housing
SeeFigure1.
3.2.3
final assembly differential pressure
assembly differential pressure at end of test equal to sum of housing plus terminal element differential pressures
SeeFigure1.
3.2.4
housing differential pressure
differential pressure of the filter body without an element
SeeFigure1.
2 © ISO 1999 – All rights reserved

3.2.5
terminal element differential pressure
maximum differential pressure across the filter element as designated by the manufacturer to limit useful
performance
SeeFigure1.
3.3
rest conductivity
electrical conductivity at the initial instant of current measurement after a d.c. voltage is impressed between
electrodes
NOTE It is equal to the reciprocal of the resistance of uncharged fluid in the absence of ionic depletion or polarization.
3.4
retained capacity
mass of specific particulate contaminant effectively retained by the filter element when terminal element �p is
reached
© ISO 1999 – All rights reserved 3

Key
1 Final assembly (end of test) differential pressure
2 Terminal element differential pressure
3 Clean element differential pressure
4 Housing differential pressure
5 Clean assembly differential pressure
Figure 1 — Differential pressure conventions for multi-pass test
4 Symbols
4.1 Graphic symbols
Graphic symbols used are in accordance with ISO 1219-1.
4 © ISO 1999 – All rights reserved

4.2 Quantity symbols
Reference Symbol Units Description or explanation
4.2.1 A part/ml Overall average upstream count > size x
u,x
4.2.2 A part/ml Overall average downstream count > size x
d,x
a
4.2.3 � None Filtration ratio at particle size x (ISO 11171 calibration)
x
(c)
4.2.4 � None Filtration ratio at particle size x and time interval t
x,t
a
4.2.5 None Average filtration ratio at particle size x (ISO 11171 calibration)

x(c)
4.2.6 C g Retained capacity
R
4.2.7 G mg/l Average base upstream gravimetric level
b
4.2.8 G � mg/l Desired base upstream gravimetric level
b
4.2.9 G mg/l Average injection gravimetric level
i
4.2.10 G� mg/l Desired injection gravimetric level
i
4.2.11 G mg/l Test reservoir gravimetric level at 80 % assembly �p
4.2.12 M g Mass of contaminant needed for injection
4.2.13 M g Estimated filter element capacity (mass injected)
e
4.2.14 M g Contaminant mass injected
I
4.2.15 M g Contaminant mass injected at element differential pressure �p
p
4.2.16 n none Number of counts in specific time period
4.2.17 N part/ml Number of upstream particles > size x at count i
u,x,i
4.2.18 N part/ml Number of downstream particles > size x at count i
d,x,i
4.2.19 N part/ml Average upstream count > size x at time interval t
u,xt,
4.2.20 N part/ml Average downstream count > size x at time interval t
d,xt,
4.2.21 p Pa, kPa or bar Pressure
4.2.22 �p Pa, kPa or bar Differential pressure
4.2.23 q l/min Test flow rate
4.2.24 q l/min Discarded downstream sample flow rate
d
4.2.25 q l/min Average injection flow rate
i
4.2.26 q� l/min Desired injection flow rate
i
4.2.27 q l/min Discarded upstream sample flow rate
u
4.2.28 t min Test time
4.2.29 t� min Predicted test time
4.2.30 t min Final test time
f
4.2.31 t min Test time at element differential pressure �p
p
4.2.32 V l Final measured injection system volume
if
4.2.33 V l Initial measured injection system volume
ii
4.2.34 V l Minimum required operating injection system volume
min
4.2.35 V l Final measured filter test system volume
tf
4.2.36 V l Minimum validated injection system volume
v
a
The subscript (c) signifies that the filtration ratio, � , and the average filtration ratio, � , are based on this standard
x(c) x(c)
test method (ISO 16889) using particle counters calibrated in accordance with ISO 11171.
© ISO 1999 – All rights reserved 5

5 General procedure
5.1 Set up and maintain apparatus in accordance with clause 6 and clause 7.
5.2 Validate equipment in accordance with clause 8.
5.3 Run all tests in accordance with clauses 9, 10 and 11.
5.4 Analyse test data in accordance with clause 12.
5.5 Present data from clauses 10, 11 and 12 in accordance with clause 13.
6 Test equipment
6.1 Suitable timer.
6.2 Automatic particle counter(s), calibrated in accordance with ISO 11171.
6.3 ISO medium test dust (ISO 12103-A3), in accordance with ISO 12103-1, dried at 110 �Cto 150 �Cfor not
less than 1 h for quantities less than 200 g and for use in the test system, mix in the test fluid, mechanically agitate,
2 2
then disperse ultrasonically with a power density of 3 000 W/m to 10 000 W/m .
NOTE This dust is commercially available. For availability of ISO 12103-A3 test dust, contact the ISO secretariat service or
national members of ISO.
6.4 Online counting system,and dilution system if necessary, that has been validated in accordance with
ISO 11943.
6.5 Sample bottles containing less than 20 particles per millilitre of bottle volume greater than 6 μm(c), as
qualified in accordance with ISO 3722 to collect samples for gravimetric analyses.
6.6 Petroleum base test fluid in accordance with annex A.
NOTE 1 The use of this carefully controlled hydraulic fluid assures greater reproducibility of results and is based upon current
practices, other accepted filter standards and its world-wide availability.
NOTE 2 If an anti-static agent is added to this test fluid it may affect the test results.
6.7 Filter performance test circuit comprised of a "filter test system" and a "contaminant injection system".
6.7.1 Filter test system consisting of:
a) a reservoir, pump, fluid conditioning apparatus and instrumentation that are capable of accommodating the
range of flows, pressures and volumes required by the procedure and is capable of meeting the validation
requirements of clause 8;
b) a clean-up filter capable of providing an initial system contamination level as specified in Table 2;
c) a configuration that is relatively insensitive to the intended operative contaminant level;
d) a configuration that will not alter the test contaminant distribution over the anticipated test duration;
e) pressure taps in accordance with ISO 3968;
f) fluid sampling sections upstream and downstream of the test filter in accordance with ISO 4021.
NOTE For typical configurations that have proved to be satisfactory refer to annex B.
6 © ISO 1999 – All rights reserved

6.7.2 Contaminant injection system consisting of:
a) a reservoir, pump, fluid conditioning apparatus and instrumentation that are capable of accommodating the
range of flows, pressures and volumes required by the procedure and is capable of meeting the validation
requirements of clause 8;
b) a configuration that is relatively insensitive to the intended operative contaminant level;
c) a configuration that will not alter the test contaminant distribution over the anticipated test duration;
d) a fluid sampling section in accordance with ISO 4021.
NOTE For typical configurations that have proven to be satisfactory, refer to annex B.
6.8 Membranes and associated laboratory equipment suitable for conducting the gravimetric method in
accordance with ISO 4405.
7 Accuracy of measurements and test conditions
7.1 Utilize and maintain instrument accuracy and test conditions within the limits given in Table 1.
7.2 Maintain specific test parameters within the limits given in Table 2 depending on the test condition being
conducted.
Table 1 — Instrument accuracy and test condition variation
Test parameter SI Unit Instrument Allowed test condition
accuracy (����) variation (����)
of reading
Conductivity pS/m 10 % —
Differential pressure PA, kPa or bar 5 % —
Base upstream gravimetric mg/l — 10 %
Flow:
Injection flow ml/min 2 % 5 %
Test flow l/min 2 % 5 %
a
APC sensor flow l/min 1,5 % 3 %
b 2 2
Kinematic viscosity mm /s 2% 1mm /s
Mass g 0,1 mg —
c
Temperature �C1 �C2 �C
Time s 1 s —
Volume:
Injection system l 2 % —
Filter test system l 2 % 5 %
a
Sensor flow variation to be included in the overall 10 % allowed between sensors.
b 2
1mm /s = 1 cSt (centistoke).
c
Or as required to guarantee the viscosity tolerance.
© ISO 1999 – All rights reserved 7

Table 2 — Test condition values
Filter test condition Condition 1 Condition 2 Condition 3
Initial contamination level for filter test systems: Less than 1 % of the minimum level specified in Table 3 measured at
the minimum particle size to be counted.
Initial contamination level for injection system: Less than 1 % of injection gravimetric level.
a
Base upstream gravimetric level, mg/l 3 � 0,3 10 � 1,0 15 � 1,5
b
Recommended particle counting sizes Minimum of five sizes selected to cover the presumed filter performance
range from � =2 to � = 1 000. Typical sizes are: (4, 5, 6, 7, 8, 10, 12,
14, 20, 25, 30) μm(c).
Sampling and counting method Online automatic particle counting
a
When comparing test results between two filters, the base upstream gravimetric level should be the same.
b
Particle sizes where betas are low (� = 2, 10.) may be unobtainable for fine filters and particle sizes where betas are high (� = ., 200,
1 000) may be unobtainable for coarser filters.
8 Filter performance test circuit validation procedures
NOTE These validation procedures reveal the effectiveness of the filter performance test circuit to maintain contaminant
entrainment and/or prevent contaminant size modification.
8.1 Validation of filter test system
8.1.1 Validate at the minimum flow at which the filter test system will be operated. Install a conduit in place of
filter housing during validation.
8.1.2 Adjust the total fluid volume of the filter test system (exclusive of the clean-up filter circuit) such that it is
numerically within the range of one-fourth (25 %) to one-half (50 %) of the minimum volume flow per minute value,
with a minimum of 5 l.
NOTE 1 It is recommended that the system be validated with a fluid volume numerically equal to one-half (50 %) of the
minimum test volume flow per minute value for flow rates less than or equal to 60 l/min, or one-fourth (25 %) of the minimum
test volume flow per value for flow rates greater than 60 l/min.
NOTE 2 This is the volume to flow ratio required by the filter test procedure (see 10.3.4).
8.1.3 Contaminate the system fluid for each test condition (1, 2, or 3) to be used to the base upstream
gravimetric level as shown in Table 2 using ISO 12103-A3 test dust.
8.1.4 Verify that the flow rate through each particle counting sensor is equal to the value used for the particle
counter calibration within the limits of Table 1.
8.1.5 Circulate the fluid in the test system for 1 h, conducting continuous online automatic particle counts from
the upstream sampling section for a period of 60 min.
Sample flow from this section shall not be interrupted for the duration of the validation.
8.1.6 Record cumulative online particle counts at equal time intervals not to exceed 1 min for the duration of the
60 min test at the particle sizes shown in Table 2.
8.1.7 Accept the validation test only if:
a) the particle count obtained for a given size at each sample interval does not deviate more than 15 % from the
average particle count from all sample intervals for that size;
8 © ISO 1999 – All rights reserved

b) the average of all cumulative particle counts per millilitre are within the range of acceptable counts shown in
Table 3.
8.1.8 Validate the online particle counting system, and dilution systems if used, in accordance with ISO 11943.
Table 3 — Acceptable cumulative particle count per millilitre
Particle size Test condition 1 Test condition 2 Test condition 3
(3 mg/l) (10 mg/l) (15 mg/l)
μm(c) min.max.min.max. min. max.
1 104 000 128 000 348 000 426 000 522 000 639 000
2 26 100 31 900 86 900 106 000 130 000 159 000
3 10 800 13 200 36 000 44 000 54 000 66 000
4 5 870 7 190 19 600 24 000 29 400 35 900
5 3 590 4 390 12 000 14 600 17 900 22 000
6 2 300 2 830 7 690 9 420 11 500 14 100
7 1 510 1 860 5 050 6 190 7 570 9 290
8 1 010 1 250 3 380 4 160 5 080 6 230
10 489 609 1 630 2 030 2 460 3 030
12 265 335 888 1 110 1 340 1 660
14 160 205 536 681 810 1 020
20 46 64 155 211 237 312
25 16 27 56 86 87 126
30 6 12 21 40 34 58
40 1,1 4,5 4,4 14,2 7,9 20
50 0,15 2,4 1,0 7,6 2,4 11
8.2 Validation of contaminant injection system
8.2.1 Validate the contaminant injection system at the maximum gravimetric level, maximum injection system
volume, minimum injection flow rate, and for a length of time required to deplete the complete usable volume.
8.2.2 Prepare the contaminant injection system to contain the required amount of test contaminant and required
fluid volume consistent with the configuration of that system.
NOTE All ancillary procedures utilized in preparation of the contaminant injection system become part of the validation
procedure. Alteration of these procedures will require revalidation of the system.
8.2.3 Add dust and circulate for a minimum of 15 min.
8.2.4 Initiate injection flow from the contaminant injection system, collecting this flow externally from the system.
Obtain initial sample at this point and measure the injection flow rate.
8.2.5 Maintain the injection flow rate within� 5 % of the desired injection flow rate.
8.2.6 Obtain samples of the injection flow and measure the injection flow rate at (30, 60, 90 and 120) min or at
least four equal intervals depending upon the depletion rate of the system.
8.2.7 Analyse each sample from 8.2.6 gravimetrically in accordance with ISO 4405.
© ISO 1999 – All rights reserved 9

8.2.8 Measure the volume of the injection system at the end of the validation test. This is the minimum validated
volume, V .
v
8.2.9 Accept the validation only if the gravimetric level of each sample is within � 10 % of the gravimetric level
determined in 8.2.1 and the variation between samples does not exceed � 5 % of the mean.
8.2.10 Accept the validation only if the injection flow rate at each sample point is within � 5 % of the selected
validation flow rate (8.2.1) and the variation between sample flow rates does not exceed � 5 % of the average.
8.2.11 Accept the validation only if the volume remaining in the injection system (8.2.8) plus the quantity [average
injection flow rate (8.2.10) times total injection time (8.2.6)] is equal within � 10 % to the initial volume (8.2.2).
9 Summary of information required prior to testing
The following information is needed prior to applying this International Standard to a particular filter element:
a) fabrication integrity test pressure (see ISO 2942);
b) filter element test flow;
c) terminal element differential pressure;
d) the presumed micrometre values for specific filtration ratios;
e) the presumed value, M , of the filter element capacity (mass injected).
e
10 Preliminary preparation
10.1 Test filter assembly
10.1.1 Insure that test fluid cannot bypass the filter element to be evaluated.
10.1.2 Subject the test filter element to a fabrication integrity test in accordance with ISO 2942.
NOTE 1 The test fluid used in 6.6 can be used for fabrication integrity testing.
NOTE 2 If the element is not readily accessible as in the case of a spin-on configuration, the fabrication integrity test can be
conducted following the multi-pass test with the element removed. However, it should be appreciated that a low and perhaps
st
unacceptable 1 bubble point value does not necessarily mean such a value at the start of the test.
NOTE 3 Disqualify the element from further testing if it fails to exhibit at least the designated test pressure.
NOTE 4 Allow the fluid to evaporate from the test filter element before installing in the test filter housing, where applicable.
10.2 Contaminant injection system
10.2.1 Select a desired base upstream gravimetric level (G �) from Table 2 such that the predicted test time (t�)
b
calculated by the following equation is preferably in the range of 1 h to 3 h:
1000� M
e
t � (1)

Gq��
b
NOTE 1 A second element may be tested for capacity analysis if the value of the estimated capacity of the test element is not
supplied by the filter manufacturer.
10 © ISO 1999 – All rights reserved

NOTE 2 Predicted test times of less than 1 h or longer than 3 h are acceptable as long as test conditions 1, 2, or 3 are
maintained.
10.2.2 Calculate the minimum required operating injection system volume that is compatible with the predicted
test time, t�, and a desired value for the injection flow using the following equation:

Vt��(,12 ��q )�V (2)
min iv
NOTE 1 The volume calculated above will assure a sufficient quantity of contaminated fluid to load the test element plus 20 %
for adequate circulation throughout the test. Larger injection system volumes may be used.
NOTE 2 A value for the injection flow of 0,25 l/min is commonly used and ensures that the downstream sample flow expelled
from the filter test system will not significantly influence the test results. Lower or higher injection flow rates may be used
provided that the base upstream gravimetric level is maintained. The injection flow rate should equal or exceed the value used
in 8.2.5.
10.2.3 Calculate the desired gravimetric level (G �) of the injection system fluid using the following equation:
i

Gq�
b

G � (3)
i

q
i
10.2.4 Adjust the total initial volume, V , of the contaminant injection system (measured at test temperature) to
ii
the value selected in 10.2.2 and record on the report sheet given in Figure 2.
10.2.5 Calculate the quantity of contaminant (M) needed for the contaminant injection system by the following
equation:

GV�
iii
M � (4)
10.2.6 Prior to the addition of ISO 12103-A3 test dust to the contaminant injection system, verify that the
background fluid contamination level is less than shown in Table 2.
10.2.7 Prepare the contaminant injection system to contain the quantity of fluid, V , and ISO 12103-A3 test dust,
ii
M, (10.2.5) using the same procedure that was utilized for the contamination injection system validation (8.2).
10.2.8 Adjust the injection flow rate at stabilized temperature to within � 5 % of the value selected in 10.2.2 and
maintain throughout the test. Record on the report sheet given in Figure 2.
10.2.8.1 Return the injection system sampling flow directly to the injection reservoir during setup.
10.3 Filter test system
10.3.1 Install the filter housing (without test element) in the filter test system and thoroughly bleed of air.
10.3.2 It is recommended that the test fluid rest conductivity should be checked and maintained in the range of
1 000 pS/m to 10 000 pS/m (see ASTM D-4308-95). This can be accomplished by the addition of an anti-static
additive.
WARNING — The addition of an anti-static agent may affect the test results.
10.3.3 Circulate the fluid in the filter test system at rated flow and at a test temperature such that the fluid viscosity
2 2
is maintained at 15 mm /s � 1,0 mm /s, record the temperature and differential pressure of the empty filter housing
per ISO 3968.
© ISO 1999 – All rights reserved 11

10.3.4 Adjust the total fluid volume of the filter test system (exclusive of the clean-up filter circuit) such that it is
numerically within the range of one-fourth (25 %) to one-half (50 %) of the designated test volume flow per minute
through the filter, with a minimum of 5 l.
NOTE 1 It is recommended that the filter test system fluid volume be numerically equal to one-half (50 %) of the test volume
flow per minute value for flow rates less than or equal to 60 l/min, or one-fourth (25 %) of the test volume flow per minute value
for flow rates greater than 60 l/min.
NOTE 2 Repeatable results require that the system volume be maintained constant. The specified range of 1:4 to 1:2 volume
to flow ratio minimizes the physical size of the system reservoir as well as the quantity of test fluid required while maximizing the
mixing conditions in the reservoir.
10.3.5 Establish a fluid background contamination level of less than that specified in Table 2.
10.3.6 Effectuate online automatic particle counting
10.3.6.1 Adjust the upstream and downstream sampling flows to an initial upstream value compatible with the
sampling procedure utilized and adjust the downstream flow to within � 5 % of the injection flow. Maintain
uninterrupted flow from both sampling points during the entire test.
10.3.6.2 Adjust the upstream and downstream dilution flow rates if required for online automatic counting, so
that at the end of testing, the flow rates and concentrations at the particle counters are compatible with the
instrument requirements.
NOTE The upstream and downstream sensor flow rates should be set and maintained at the values and within the limits
specified in 8.1.4 and Table 1.
10.3.6.3 Return the undiluted and unfiltered sampling flow upstream of the test filter directly to the test reservoir.
NOTE 1 If the upstream sample is diluted or filtered for online automatic particle counting, the diluted or filtered fluid should
be collected outside of the filter test system.
NOTE 2 If the upstream sample flow is diluted or filtered, the downstream sample flow rate to be discarded should be
reduced by a value equal to the upstream sample flow that is collected outside the system. This is to assist in maintaining a
constant system volume that should be kept within � 5 % of the initial system volume.
10.3.7 Adjust the particle counter thresholds to the values selected (Table 2).
11 Filter performance test
11.1 Install the filter element into its housing and subject the assembly to the specified test condition (test flow and
2 2
test temperature established in 10.3.3 to maintain viscosity at 15 mm /s � 1,0 mm /s) and reaffirm fluid level.
11.2 Measure and record the clean assembly differential pressure. Calculate and record the clean element
differential pressure using the clean assembly minus the housing differential pressure measured in 10.3.3.
11.3 Calculate the final assembly differential pressure corresponding to the terminal element differential pressure
plus the housing differential pressure.
11.4 Measure and record the initial system contamination level using on-line particle counting from upstream of
the test filter element.
11.5 Bypass the system clean-up filter if the upstream contamination level is less than specified in Table 2.
11.6 Obtain a sample from the contaminant injection system. Label it "initial injection gravimetric sample".
11.7 Measure and verify the injection flow rate.
12 © ISO 1999 – All rights reserved

NOTE Continuous measurement of the injection flow rate is required throughout the test to ensure the flow is maintained
within the specified tolerances.
11.8 Initiate the filter test as follows:
11.8.1 Allow the injection flow to enter the filter test system reservoir.
11.8.2 Start the timer.
11.8.3 Divert the downstream sample flow from the test system to maintain a constant system volume (�5%).
See 10.3.6.1.
11.9 Conduct and record online particle counts on the upstream and downstream fluid at equal time intervals not
to exceed 1 min until the differential pressure across the filter assembly has increased to the terminal value
calculated in 11.3.
NOTE 1 The upstream and downstream sensor flow rates should be equal to the values chosen in 10.3.6.2 within the limits of
Table 1.
NOTE 2 Flow rates through sensors should be monitored and recorded throughout the test and maintained within the limits of
Table 1.
NOTE 3 Care should be taken to use online dilution as required to avoid exceeding the coincidence limit of the automatic
particle counter as determined according to ISO 11171.
NOTE 4 It is recommended that the flow rate and dilution ratio be controlled and recorded to calculate the exact amount of
test fluid that is passed through the sensor for each count.
NOTE 5 It is recommended that a minimum counting volume of 10 ml be used to obtain statistically significant numbers.
11.10 Record the assembly differential pressure at the beginning of each particle count throughout the test.
NOTE Continuous differential pressure measurements using a differential pressure transducer are recommended for this
purpose.
11.11 Extract a bottle sample for gravimetric analysis from upstream of the test filter when the assembly differential
pressure has reached 80 % of the terminal assembly differential pressure.
11.12 Conclude the test at the final assembly differential pressure as follows.
11.12.1 Record the final test time.
11.12.2 Divert the injection flow from the filter test system.
11.12.3 Stop the flow to the test filter.
11.13 Measure and record the final volume, V , in the filter test system.
tf
11.14 Measure and record the final injection system volume, V .
if
11.15 Obtain the final injection gravimetric level fluid sample from the contaminant injection system.
11.16 Check that no visual evidence of filter element damage has occurred as a result of performing this test.
NOTE Although the installation and test procedures are checked for qualification prior to testing, it is advisable to check
when interpreting the results that the test has been performed satisfactorily.
© ISO 1999 – All rights reserved 13

12 Calculations
12.1 Establish 10 reporting times equal to (10, 20, 30 . 100) % of the final test time (11.12.1) and record these
times on the report sheet given in Figure 2.
12.2 Calculate the assembly differential pressure corresponding to each reporting time by conducting a linear
interpolation between the nearest measured differential pressures prior to and after that time. For the 100 % time
point, use the final assembly differential pressure.
12.3 Calculate and record on the report sheet given in Figure 2 the element differential pressures corresponding
to each of the reporting times by subtracting the housing differential pressure from each respective assembly
differential pressure.
12.4 For each particle count obtained during the test (11.9) calculate the cumulative particle count per millilitre at
each size by dividing the raw counts obtained by the counted volume and adjusting for any dilution if used.
12.5 Calculate average upstream and downstream particle counts at each particle size, x, for each of the 10
reporting times, t, using the following equations and specific instructions:
n
N
� u,xi,
i�1
N � (5)
u,xt,
n
n
N
d,xi,

i�1
N � (6)
d,xt,
n
where n is the number of counts started in the specific reporting time period.
12.5.1 Delete the first three (3) particle counts corresponding to test times of 1 min, 2 min, and 3 min.
NOTE These data deletions are to eliminate potentially erroneous particle counts obtained prior to system stabilization.
12.5.2 For the first reporting time (10 %), using the above equations, average the upstream and downstream
counts obtained in clause 12.4 for all the particle counts that were started before the first reporting time (with the
exception of the first three which were deleted above). Record these average counts on the report sheet given in
Figure 2.
NOTE For a total test time less than 30 min, there may be no data for the 10 % reporting time so leave the entries blank.
12.5.3 For the second reporting time (20 %), average the upstream and downstream counts obtained in
clause 12.4 for all the particle counts that were started after the first reporting time and before the second reporting
time. Record these average counts on the report sheet given in Figure 2.
12.5.4 For the third through tenth reporting times (30 % to 100 %), repeat 12.5.3 in a similar manner using only
the counts that were started in each reporting interval. Record these average counts on the report sheet given in
Figure 2.
12.6 Calculate the filtration ratios (� ) corresponding to each of the 10 reporting times by dividing the average
x,t
upstream by the average downstream particle count at each size, x, corresponding to that respective reporting time
(see equation below). Record on the report sheet given in Figure 2 to three significant digits (i.e. 1,75; 20,1; 300).
N
u,xt,
� � (7)
xt,
N
d,xt,
Particle counts shall be averaged and average filtration ratios (� values) shall be calculated from these average
counts. Under no circumstances shall � values be averaged.
14 © ISO 1999 – All rights reserved

12.7 Calculate the overall test average upstream and downstream particle counts by numerically averaging the 10
average counts from 12.6 corresponding to each of the 10 reporting times (see equations below). Record on the
report sheet given in Figure 2.
AN� (8)
uu,,xx,t

t�10
AN� (9)
dd,,xx,t

t�10
where t is the ten reporting time intervals from 10 to 100.
12.8 Calculate the overall average filtration ratios, � , using the following equation by dividing the overall test
x(c)
average upstream by the downstream cumulative particle counts at each size, x μm(c). Record on the report sheet
given in Figure 2 to three significant digits.
A
u,x
� � (10)
x(c)
A
d,x
NOTE The subscript (c) signifies that the filtration ratio, � , is based on this standard test method, ISO 16889, using
x(c)
particle counters calibrated in accordance with ISO 11171.
Particle counts shall be averaged then average filtration ratios (� values) shall be calculated from these average
counts. Under no circumstances shall � values be averaged.
12.9 Conduct a gravimetric analysis on the two samples extracted from the contaminant injection system (from
11.6 and 11.15). Report values to nearest 0,1 mg/l. (See ISO 4405)
12.9.1 Calculate the average (G ) of these two gravimetric levels from the injection system.
i
12.9.2 Accept the test only if the gravimetic level of each injection system sample is within � 5 % of this average.
NOTE If the average injection gravimetric value, G , differs from the selected value, G �, from 10.2.3, by more than 5%,
i i
repeat the gravimetric analyses. If the recheck differs more than 5 %, it is recommended that the contaminant injection system
validation procedure be repeated (8.2).
12.10 Conduct three gravimetric analyses on the 80 % upstream sample (from 11.11) and record the average of
these analyses as the final system gravimetric level. Report values to nearest 0,1 mg/l.
NOTE The final sample is taken at the 80 % point because it often overlaps the end of the test.
12.11 Calculate and record the average injection flow rate (q ) by subtracting the final from the initial injection
i
system volume and dividing by the final test time as shown in the following equation:
VV�
ii if
q � (11)
i
t
f
Accept the test only if this value is equal to the selected value (10.2.2) �5%.
12.12 Calculate and record the average base upstream gravimetric level (G ) as shown in the following formula:
b
Gq�
ii
G � (12)
b
q
Accept the test only if this value is equal to the base upstream gravimetric level specified in Table 2.
© ISO 1999 – All rights reserved 15

13 Data presentation
13.1 Report the following minimum information for filter elements evaluated in accordance with this International
Standard.
Present all test and calculation results as included in the report sheet given in Figure 2. It is recommended that the
layout of the report sheets be adopted as shown.
13.2 Using the actual test time (t ) to reach the terminal element differential pressure, the average gravimetric
f
level (G ) of the injection stream, and the average injection flow rate, q , calculate the filter elemen
...


SLOVENSKI STANDARD
01-december-2001
)OXLGQDWHKQLND+LGUDYOLþQLILOWUL3RVWRSHNPXOWLSDVV]DRFHQMHYDQMH
ILOWUDFLMVNHVSRVREQRVWLILOWHUVNHJDYORåND
Hydraulic fluid power filters -- Multi-pass method for evaluating filtration performance of a
filter element
Filtres pour transmissions hydrauliques -- Évaluation des performances par la méthode
de filtration en circuit fermé
Ta slovenski standard je istoveten z: ISO 16889:1999
ICS:
23.100.60 )LOWULWHVQLODLQ Filters, seals and
RQHVQDåHYDQMHWHNRþLQ contamination of fluids
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

INTERNATIONAL ISO
STANDARD 16889
First edition
1999-12-15
Hydraulic fluid power filters — Multi-pass
method for evaluating filtration
performance of a filter element
Filtres pour transmissions hydrauliques — Évaluation des performances
par la méthode de filtration en circuit fermé
Reference number
©
ISO 1999
PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.
© ISO 1999
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.
ISO copyright office
Case postale 56 � CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 734 10 79
E-mail copyright@iso.ch
Web www.iso.ch
Printed in Switzerland
ii © ISO 1999 – All rights reserved

Contents Page
1 Scope .1
2 Normative references .1
3 Terms and definitions .2
4 Symbols .4
5 General procedure.6
6 Test equipment .6
7 Accuracy of measurements and test conditions.7
8 Filter performance test circuit validation procedures .8
9 Summary of information required prior to testing .10
10 Preliminary preparation .10
11 Filter performance test.12
12 Calculations.14
13 Data presentation.16
14 Identification statement (reference to this International Standard) .17
Annex A (normative) Properties of base test fluid .20
Annex B (informative) Test system design guide .22
Annex C (informative) Example report calculations and graphs .26
Annex D (informative) Summary of ISO round robin for the multi-pass test (ISO/CD 4572).34
© ISO 1999 – All rights reserved iii

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO
member bodies). The work of preparing International Standards is normally carried out through ISO technical
committees. Each member body interested in a subject for which a technical committee has been established has
the right to be represented on that committee. International organizations, governmental and non-governmental, in
liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical
Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.
Draft International Standards adopted by the technical committees are circulated to the member bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights.
International Standard ISO 16889 was prepared by Technical Committee ISO/TC 131, Fluid power systems,
Subcommittee SC 6, Contamination control and hydraulic fluids.
This first edition cancels and replaces ISO 4572:1981, of which it constitutes a technical revision.
Annex A forms a normative part of this International Standard. Annexes B to D are for information only.
iv © ISO 1999 – All rights reserved

Introduction
In hydraulic fluid power systems, one of the functions of the hydraulic fluid is to separate and lubricate the moving
parts of components. The presence of solid particulate contamination produces wear, resulting in loss of efficiency,
reduced component life and subsequent unreliability.
A hydraulic filter is provided to control the number of particles circulating within the system to a level that is
commensurate with the degree of sensitivity of the components to contaminant and the level of reliability required
by the users.
To enable the relative performance of filters to be compared so that the most appropriate filter can be selected, test
procedures should be available. The performance characteristics of a filter are a function of the element (its
medium and geometry) and the housing (its general configuration and seal design).
In practice, a filter is subjected to a continuous flow of contaminant entrained in the hydraulic fluid until some
specified terminal differential pressure (relief valve cracking pressure or differential pressure indicator setting) is
reached.
Both the length of operating time (prior to reaching terminal pressure) and the contaminant level at any point in the
system are functions of the rate of contaminant addition (ingression plus generation rates) and the performance
characteristics of the filter.
Therefore, a realistic laboratory test that establishes the relative performance of a filter should provide the test filter
with a continuous supply of ingressed contaminant and allow the periodic monitoring of the filtration performance
characteristics of the filter.
The test should also provide an acceptable level of repeatability and reproducibility and a standard test
contaminant [ISO medium test dust (ISO 12103-A3) in accordance with ISO 12103-1] is featured. This has been
shown to have a consistent particle size distribution and is available worldwide. The filtration performance of the
filter is determined by measurement of the upstream and downstream particle size distributions using automatic
particle counters validated according to ISO standards.
Since it is difficult to specify, achieve and verify a cyclic flow requirement that is both realistic and consistent with
the flow variations occurring in actual systems, the compromise of steady-state condition has been used for this
test to enhance the repeatability and reproducibility of results.
© ISO 1999 – All rights reserved v

INTERNATIONAL STANDARD ISO 16889:1999(E)
Hydraulic fluid power filters — Multi-pass method for evaluating
filtration performance of a filter element
1 Scope
1.1 This International Standard specifies:
� a multi-pass filtration performance test with continuous contaminant injection for hydraulic fluid power filter
elements;
� a procedure for determining the contaminant capacity, particulate removal and differential pressure
characteristics;
� a test currently applicable to hydraulic fluid power filter elements that exhibit an average filtration ratio greater
than or equal to 75 for particle sizes less than or equal to 25 μm(c), and a final reservoir gravimetric level of
less than 200 mg/l;
NOTE The range of flows and the lower particle size limit that can be used in test facilities will be determined by validation.
� a test using ISO medium test dust contaminant and a test fluid according to annex A.
1.2 This International Standard is intended to provide a test procedure that yields reproducible test data for
appraising the filtration performance of a hydraulic fluid power filter element without influence of electrostatic
charge.
2 Normative references
The following normative documents contain provisions which, through reference in this text, constitute provisions of
this International Standard. For dated references, subsequent amendments to, or revisions of, any of these
publications do not apply. However, parties to agreements based on this International Standard are encouraged to
investigate the possibility of applying the most recent editions of the normative documents indicated below. For
undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC
maintain registers of currently valid International Standards.
ISO 1219-1:1991, Fluid power systems and components — Graphic symbols and circuit diagrams — Part 1:
Graphic symbols.
ISO 2942:1994, Hydraulic fluid power — Filter elements — Verification of fabrication integrity and determination of
the first bubble point.
ISO 3722:1976, Hydraulic fluid power — Fluid sample containers — Qualifying and controlling cleaning methods.
ISO 3968:1981, Hydraulic fluid power — Filters — Evaluation of pressure drop versus flow characteristics.
ISO 4021:1992, Hydraulic fluid power — Particulate contamination analysis — Extraction of fluid samples from
lines of an operating system.
ISO 4405:1991, Hydraulic fluid power —- Fluid contamination — Determination of particulate contamination by the
gravimetric method.
© ISO 1999 – All rights reserved 1

ISO 5598:1985, Fluid power systems and components — Vocabulary.
ISO 11171:1999, Hydraulic fluid power — Calibration of liquid automatic particle counters.
ISO 11943:1999, Hydraulic fluid power — On-line automatic particle-counting systems for liquids — Methods of
calibration and validation.
ISO 12103–1:1997, Road vehicles — Test dust for filter evaluation — Part 1: Arizona test dust.
ASTM D 4308-95, Standard test method for electrical conductivity of liquid hydrocarbons by precision meter.
3 Terms and definitions
For the purposes of this International Standard, the terms and definitions given in ISO 5598 and the following
apply.
3.1
contaminant mass injected
mass of specific particulate contaminant injected into the test circuit to obtain the terminal�p
3.2
differential pressure
�p
difference between the tested component inlet and outlet pressure as measured under the specified conditions
SeeFigure1.
3.2.1
clean assembly differential pressure
difference between the tested component inlet and outlet pressure as measured with a clean filter body containing
a clean filter element
SeeFigure1.
3.2.2
clean element differential pressure
differential pressure of the clean element calculated as the difference between the clean assembly �p and the
housing
SeeFigure1.
3.2.3
final assembly differential pressure
assembly differential pressure at end of test equal to sum of housing plus terminal element differential pressures
SeeFigure1.
3.2.4
housing differential pressure
differential pressure of the filter body without an element
SeeFigure1.
2 © ISO 1999 – All rights reserved

3.2.5
terminal element differential pressure
maximum differential pressure across the filter element as designated by the manufacturer to limit useful
performance
SeeFigure1.
3.3
rest conductivity
electrical conductivity at the initial instant of current measurement after a d.c. voltage is impressed between
electrodes
NOTE It is equal to the reciprocal of the resistance of uncharged fluid in the absence of ionic depletion or polarization.
3.4
retained capacity
mass of specific particulate contaminant effectively retained by the filter element when terminal element �p is
reached
© ISO 1999 – All rights reserved 3

Key
1 Final assembly (end of test) differential pressure
2 Terminal element differential pressure
3 Clean element differential pressure
4 Housing differential pressure
5 Clean assembly differential pressure
Figure 1 — Differential pressure conventions for multi-pass test
4 Symbols
4.1 Graphic symbols
Graphic symbols used are in accordance with ISO 1219-1.
4 © ISO 1999 – All rights reserved

4.2 Quantity symbols
Reference Symbol Units Description or explanation
4.2.1 A part/ml Overall average upstream count > size x
u,x
4.2.2 A part/ml Overall average downstream count > size x
d,x
a
4.2.3 � None Filtration ratio at particle size x (ISO 11171 calibration)
x
(c)
4.2.4 � None Filtration ratio at particle size x and time interval t
x,t
a
4.2.5 None Average filtration ratio at particle size x (ISO 11171 calibration)

x(c)
4.2.6 C g Retained capacity
R
4.2.7 G mg/l Average base upstream gravimetric level
b
4.2.8 G � mg/l Desired base upstream gravimetric level
b
4.2.9 G mg/l Average injection gravimetric level
i
4.2.10 G� mg/l Desired injection gravimetric level
i
4.2.11 G mg/l Test reservoir gravimetric level at 80 % assembly �p
4.2.12 M g Mass of contaminant needed for injection
4.2.13 M g Estimated filter element capacity (mass injected)
e
4.2.14 M g Contaminant mass injected
I
4.2.15 M g Contaminant mass injected at element differential pressure �p
p
4.2.16 n none Number of counts in specific time period
4.2.17 N part/ml Number of upstream particles > size x at count i
u,x,i
4.2.18 N part/ml Number of downstream particles > size x at count i
d,x,i
4.2.19 N part/ml Average upstream count > size x at time interval t
u,xt,
4.2.20 N part/ml Average downstream count > size x at time interval t
d,xt,
4.2.21 p Pa, kPa or bar Pressure
4.2.22 �p Pa, kPa or bar Differential pressure
4.2.23 q l/min Test flow rate
4.2.24 q l/min Discarded downstream sample flow rate
d
4.2.25 q l/min Average injection flow rate
i
4.2.26 q� l/min Desired injection flow rate
i
4.2.27 q l/min Discarded upstream sample flow rate
u
4.2.28 t min Test time
4.2.29 t� min Predicted test time
4.2.30 t min Final test time
f
4.2.31 t min Test time at element differential pressure �p
p
4.2.32 V l Final measured injection system volume
if
4.2.33 V l Initial measured injection system volume
ii
4.2.34 V l Minimum required operating injection system volume
min
4.2.35 V l Final measured filter test system volume
tf
4.2.36 V l Minimum validated injection system volume
v
a
The subscript (c) signifies that the filtration ratio, � , and the average filtration ratio, � , are based on this standard
x(c) x(c)
test method (ISO 16889) using particle counters calibrated in accordance with ISO 11171.
© ISO 1999 – All rights reserved 5

5 General procedure
5.1 Set up and maintain apparatus in accordance with clause 6 and clause 7.
5.2 Validate equipment in accordance with clause 8.
5.3 Run all tests in accordance with clauses 9, 10 and 11.
5.4 Analyse test data in accordance with clause 12.
5.5 Present data from clauses 10, 11 and 12 in accordance with clause 13.
6 Test equipment
6.1 Suitable timer.
6.2 Automatic particle counter(s), calibrated in accordance with ISO 11171.
6.3 ISO medium test dust (ISO 12103-A3), in accordance with ISO 12103-1, dried at 110 �Cto 150 �Cfor not
less than 1 h for quantities less than 200 g and for use in the test system, mix in the test fluid, mechanically agitate,
2 2
then disperse ultrasonically with a power density of 3 000 W/m to 10 000 W/m .
NOTE This dust is commercially available. For availability of ISO 12103-A3 test dust, contact the ISO secretariat service or
national members of ISO.
6.4 Online counting system,and dilution system if necessary, that has been validated in accordance with
ISO 11943.
6.5 Sample bottles containing less than 20 particles per millilitre of bottle volume greater than 6 μm(c), as
qualified in accordance with ISO 3722 to collect samples for gravimetric analyses.
6.6 Petroleum base test fluid in accordance with annex A.
NOTE 1 The use of this carefully controlled hydraulic fluid assures greater reproducibility of results and is based upon current
practices, other accepted filter standards and its world-wide availability.
NOTE 2 If an anti-static agent is added to this test fluid it may affect the test results.
6.7 Filter performance test circuit comprised of a "filter test system" and a "contaminant injection system".
6.7.1 Filter test system consisting of:
a) a reservoir, pump, fluid conditioning apparatus and instrumentation that are capable of accommodating the
range of flows, pressures and volumes required by the procedure and is capable of meeting the validation
requirements of clause 8;
b) a clean-up filter capable of providing an initial system contamination level as specified in Table 2;
c) a configuration that is relatively insensitive to the intended operative contaminant level;
d) a configuration that will not alter the test contaminant distribution over the anticipated test duration;
e) pressure taps in accordance with ISO 3968;
f) fluid sampling sections upstream and downstream of the test filter in accordance with ISO 4021.
NOTE For typical configurations that have proved to be satisfactory refer to annex B.
6 © ISO 1999 – All rights reserved

6.7.2 Contaminant injection system consisting of:
a) a reservoir, pump, fluid conditioning apparatus and instrumentation that are capable of accommodating the
range of flows, pressures and volumes required by the procedure and is capable of meeting the validation
requirements of clause 8;
b) a configuration that is relatively insensitive to the intended operative contaminant level;
c) a configuration that will not alter the test contaminant distribution over the anticipated test duration;
d) a fluid sampling section in accordance with ISO 4021.
NOTE For typical configurations that have proven to be satisfactory, refer to annex B.
6.8 Membranes and associated laboratory equipment suitable for conducting the gravimetric method in
accordance with ISO 4405.
7 Accuracy of measurements and test conditions
7.1 Utilize and maintain instrument accuracy and test conditions within the limits given in Table 1.
7.2 Maintain specific test parameters within the limits given in Table 2 depending on the test condition being
conducted.
Table 1 — Instrument accuracy and test condition variation
Test parameter SI Unit Instrument Allowed test condition
accuracy (����) variation (����)
of reading
Conductivity pS/m 10 % —
Differential pressure PA, kPa or bar 5 % —
Base upstream gravimetric mg/l — 10 %
Flow:
Injection flow ml/min 2 % 5 %
Test flow l/min 2 % 5 %
a
APC sensor flow l/min 1,5 % 3 %
b 2 2
Kinematic viscosity mm /s 2% 1mm /s
Mass g 0,1 mg —
c
Temperature �C1 �C2 �C
Time s 1 s —
Volume:
Injection system l 2 % —
Filter test system l 2 % 5 %
a
Sensor flow variation to be included in the overall 10 % allowed between sensors.
b 2
1mm /s = 1 cSt (centistoke).
c
Or as required to guarantee the viscosity tolerance.
© ISO 1999 – All rights reserved 7

Table 2 — Test condition values
Filter test condition Condition 1 Condition 2 Condition 3
Initial contamination level for filter test systems: Less than 1 % of the minimum level specified in Table 3 measured at
the minimum particle size to be counted.
Initial contamination level for injection system: Less than 1 % of injection gravimetric level.
a
Base upstream gravimetric level, mg/l 3 � 0,3 10 � 1,0 15 � 1,5
b
Recommended particle counting sizes Minimum of five sizes selected to cover the presumed filter performance
range from � =2 to � = 1 000. Typical sizes are: (4, 5, 6, 7, 8, 10, 12,
14, 20, 25, 30) μm(c).
Sampling and counting method Online automatic particle counting
a
When comparing test results between two filters, the base upstream gravimetric level should be the same.
b
Particle sizes where betas are low (� = 2, 10.) may be unobtainable for fine filters and particle sizes where betas are high (� = ., 200,
1 000) may be unobtainable for coarser filters.
8 Filter performance test circuit validation procedures
NOTE These validation procedures reveal the effectiveness of the filter performance test circuit to maintain contaminant
entrainment and/or prevent contaminant size modification.
8.1 Validation of filter test system
8.1.1 Validate at the minimum flow at which the filter test system will be operated. Install a conduit in place of
filter housing during validation.
8.1.2 Adjust the total fluid volume of the filter test system (exclusive of the clean-up filter circuit) such that it is
numerically within the range of one-fourth (25 %) to one-half (50 %) of the minimum volume flow per minute value,
with a minimum of 5 l.
NOTE 1 It is recommended that the system be validated with a fluid volume numerically equal to one-half (50 %) of the
minimum test volume flow per minute value for flow rates less than or equal to 60 l/min, or one-fourth (25 %) of the minimum
test volume flow per value for flow rates greater than 60 l/min.
NOTE 2 This is the volume to flow ratio required by the filter test procedure (see 10.3.4).
8.1.3 Contaminate the system fluid for each test condition (1, 2, or 3) to be used to the base upstream
gravimetric level as shown in Table 2 using ISO 12103-A3 test dust.
8.1.4 Verify that the flow rate through each particle counting sensor is equal to the value used for the particle
counter calibration within the limits of Table 1.
8.1.5 Circulate the fluid in the test system for 1 h, conducting continuous online automatic particle counts from
the upstream sampling section for a period of 60 min.
Sample flow from this section shall not be interrupted for the duration of the validation.
8.1.6 Record cumulative online particle counts at equal time intervals not to exceed 1 min for the duration of the
60 min test at the particle sizes shown in Table 2.
8.1.7 Accept the validation test only if:
a) the particle count obtained for a given size at each sample interval does not deviate more than 15 % from the
average particle count from all sample intervals for that size;
8 © ISO 1999 – All rights reserved

b) the average of all cumulative particle counts per millilitre are within the range of acceptable counts shown in
Table 3.
8.1.8 Validate the online particle counting system, and dilution systems if used, in accordance with ISO 11943.
Table 3 — Acceptable cumulative particle count per millilitre
Particle size Test condition 1 Test condition 2 Test condition 3
(3 mg/l) (10 mg/l) (15 mg/l)
μm(c) min.max.min.max. min. max.
1 104 000 128 000 348 000 426 000 522 000 639 000
2 26 100 31 900 86 900 106 000 130 000 159 000
3 10 800 13 200 36 000 44 000 54 000 66 000
4 5 870 7 190 19 600 24 000 29 400 35 900
5 3 590 4 390 12 000 14 600 17 900 22 000
6 2 300 2 830 7 690 9 420 11 500 14 100
7 1 510 1 860 5 050 6 190 7 570 9 290
8 1 010 1 250 3 380 4 160 5 080 6 230
10 489 609 1 630 2 030 2 460 3 030
12 265 335 888 1 110 1 340 1 660
14 160 205 536 681 810 1 020
20 46 64 155 211 237 312
25 16 27 56 86 87 126
30 6 12 21 40 34 58
40 1,1 4,5 4,4 14,2 7,9 20
50 0,15 2,4 1,0 7,6 2,4 11
8.2 Validation of contaminant injection system
8.2.1 Validate the contaminant injection system at the maximum gravimetric level, maximum injection system
volume, minimum injection flow rate, and for a length of time required to deplete the complete usable volume.
8.2.2 Prepare the contaminant injection system to contain the required amount of test contaminant and required
fluid volume consistent with the configuration of that system.
NOTE All ancillary procedures utilized in preparation of the contaminant injection system become part of the validation
procedure. Alteration of these procedures will require revalidation of the system.
8.2.3 Add dust and circulate for a minimum of 15 min.
8.2.4 Initiate injection flow from the contaminant injection system, collecting this flow externally from the system.
Obtain initial sample at this point and measure the injection flow rate.
8.2.5 Maintain the injection flow rate within� 5 % of the desired injection flow rate.
8.2.6 Obtain samples of the injection flow and measure the injection flow rate at (30, 60, 90 and 120) min or at
least four equal intervals depending upon the depletion rate of the system.
8.2.7 Analyse each sample from 8.2.6 gravimetrically in accordance with ISO 4405.
© ISO 1999 – All rights reserved 9

8.2.8 Measure the volume of the injection system at the end of the validation test. This is the minimum validated
volume, V .
v
8.2.9 Accept the validation only if the gravimetric level of each sample is within � 10 % of the gravimetric level
determined in 8.2.1 and the variation between samples does not exceed � 5 % of the mean.
8.2.10 Accept the validation only if the injection flow rate at each sample point is within � 5 % of the selected
validation flow rate (8.2.1) and the variation between sample flow rates does not exceed � 5 % of the average.
8.2.11 Accept the validation only if the volume remaining in the injection system (8.2.8) plus the quantity [average
injection flow rate (8.2.10) times total injection time (8.2.6)] is equal within � 10 % to the initial volume (8.2.2).
9 Summary of information required prior to testing
The following information is needed prior to applying this International Standard to a particular filter element:
a) fabrication integrity test pressure (see ISO 2942);
b) filter element test flow;
c) terminal element differential pressure;
d) the presumed micrometre values for specific filtration ratios;
e) the presumed value, M , of the filter element capacity (mass injected).
e
10 Preliminary preparation
10.1 Test filter assembly
10.1.1 Insure that test fluid cannot bypass the filter element to be evaluated.
10.1.2 Subject the test filter element to a fabrication integrity test in accordance with ISO 2942.
NOTE 1 The test fluid used in 6.6 can be used for fabrication integrity testing.
NOTE 2 If the element is not readily accessible as in the case of a spin-on configuration, the fabrication integrity test can be
conducted following the multi-pass test with the element removed. However, it should be appreciated that a low and perhaps
st
unacceptable 1 bubble point value does not necessarily mean such a value at the start of the test.
NOTE 3 Disqualify the element from further testing if it fails to exhibit at least the designated test pressure.
NOTE 4 Allow the fluid to evaporate from the test filter element before installing in the test filter housing, where applicable.
10.2 Contaminant injection system
10.2.1 Select a desired base upstream gravimetric level (G �) from Table 2 such that the predicted test time (t�)
b
calculated by the following equation is preferably in the range of 1 h to 3 h:
1000� M
e
t � (1)

Gq��
b
NOTE 1 A second element may be tested for capacity analysis if the value of the estimated capacity of the test element is not
supplied by the filter manufacturer.
10 © ISO 1999 – All rights reserved

NOTE 2 Predicted test times of less than 1 h or longer than 3 h are acceptable as long as test conditions 1, 2, or 3 are
maintained.
10.2.2 Calculate the minimum required operating injection system volume that is compatible with the predicted
test time, t�, and a desired value for the injection flow using the following equation:

Vt��(,12 ��q )�V (2)
min iv
NOTE 1 The volume calculated above will assure a sufficient quantity of contaminated fluid to load the test element plus 20 %
for adequate circulation throughout the test. Larger injection system volumes may be used.
NOTE 2 A value for the injection flow of 0,25 l/min is commonly used and ensures that the downstream sample flow expelled
from the filter test system will not significantly influence the test results. Lower or higher injection flow rates may be used
provided that the base upstream gravimetric level is maintained. The injection flow rate should equal or exceed the value used
in 8.2.5.
10.2.3 Calculate the desired gravimetric level (G �) of the injection system fluid using the following equation:
i

Gq�
b

G � (3)
i

q
i
10.2.4 Adjust the total initial volume, V , of the contaminant injection system (measured at test temperature) to
ii
the value selected in 10.2.2 and record on the report sheet given in Figure 2.
10.2.5 Calculate the quantity of contaminant (M) needed for the contaminant injection system by the following
equation:

GV�
iii
M � (4)
10.2.6 Prior to the addition of ISO 12103-A3 test dust to the contaminant injection system, verify that the
background fluid contamination level is less than shown in Table 2.
10.2.7 Prepare the contaminant injection system to contain the quantity of fluid, V , and ISO 12103-A3 test dust,
ii
M, (10.2.5) using the same procedure that was utilized for the contamination injection system validation (8.2).
10.2.8 Adjust the injection flow rate at stabilized temperature to within � 5 % of the value selected in 10.2.2 and
maintain throughout the test. Record on the report sheet given in Figure 2.
10.2.8.1 Return the injection system sampling flow directly to the injection reservoir during setup.
10.3 Filter test system
10.3.1 Install the filter housing (without test element) in the filter test system and thoroughly bleed of air.
10.3.2 It is recommended that the test fluid rest conductivity should be checked and maintained in the range of
1 000 pS/m to 10 000 pS/m (see ASTM D-4308-95). This can be accomplished by the addition of an anti-static
additive.
WARNING — The addition of an anti-static agent may affect the test results.
10.3.3 Circulate the fluid in the filter test system at rated flow and at a test temperature such that the fluid viscosity
2 2
is maintained at 15 mm /s � 1,0 mm /s, record the temperature and differential pressure of the empty filter housing
per ISO 3968.
© ISO 1999 – All rights reserved 11

10.3.4 Adjust the total fluid volume of the filter test system (exclusive of the clean-up filter circuit) such that it is
numerically within the range of one-fourth (25 %) to one-half (50 %) of the designated test volume flow per minute
through the filter, with a minimum of 5 l.
NOTE 1 It is recommended that the filter test system fluid volume be numerically equal to one-half (50 %) of the test volume
flow per minute value for flow rates less than or equal to 60 l/min, or one-fourth (25 %) of the test volume flow per minute value
for flow rates greater than 60 l/min.
NOTE 2 Repeatable results require that the system volume be maintained constant. The specified range of 1:4 to 1:2 volume
to flow ratio minimizes the physical size of the system reservoir as well as the quantity of test fluid required while maximizing the
mixing conditions in the reservoir.
10.3.5 Establish a fluid background contamination level of less than that specified in Table 2.
10.3.6 Effectuate online automatic particle counting
10.3.6.1 Adjust the upstream and downstream sampling flows to an initial upstream value compatible with the
sampling procedure utilized and adjust the downstream flow to within � 5 % of the injection flow. Maintain
uninterrupted flow from both sampling points during the entire test.
10.3.6.2 Adjust the upstream and downstream dilution flow rates if required for online automatic counting, so
that at the end of testing, the flow rates and concentrations at the particle counters are compatible with the
instrument requirements.
NOTE The upstream and downstream sensor flow rates should be set and maintained at the values and within the limits
specified in 8.1.4 and Table 1.
10.3.6.3 Return the undiluted and unfiltered sampling flow upstream of the test filter directly to the test reservoir.
NOTE 1 If the upstream sample is diluted or filtered for online automatic particle counting, the diluted or filtered fluid should
be collected outside of the filter test system.
NOTE 2 If the upstream sample flow is diluted or filtered, the downstream sample flow rate to be discarded should be
reduced by a value equal to the upstream sample flow that is collected outside the system. This is to assist in maintaining a
constant system volume that should be kept within � 5 % of the initial system volume.
10.3.7 Adjust the particle counter thresholds to the values selected (Table 2).
11 Filter performance test
11.1 Install the filter element into its housing and subject the assembly to the specified test condition (test flow and
2 2
test temperature established in 10.3.3 to maintain viscosity at 15 mm /s � 1,0 mm /s) and reaffirm fluid level.
11.2 Measure and record the clean assembly differential pressure. Calculate and record the clean element
differential pressure using the clean assembly minus the housing differential pressure measured in 10.3.3.
11.3 Calculate the final assembly differential pressure corresponding to the terminal element differential pressure
plus the housing differential pressure.
11.4 Measure and record the initial system contamination level using on-line particle counting from upstream of
the test filter element.
11.5 Bypass the system clean-up filter if the upstream contamination level is less than specified in Table 2.
11.6 Obtain a sample from the contaminant injection system. Label it "initial injection gravimetric sample".
11.7 Measure and verify the injection flow rate.
12 © ISO 1999 – All rights reserved

NOTE Continuous measurement of the injection flow rate is required throughout the test to ensure the flow is maintained
within the specified tolerances.
11.8 Initiate the filter test as follows:
11.8.1 Allow the injection flow to enter the filter test system reservoir.
11.8.2 Start the timer.
11.8.3 Divert the downstream sample flow from the test system to maintain a constant system volume (�5%).
See 10.3.6.1.
11.9 Conduct and record online particle counts on the upstream and downstream fluid at equal time intervals not
to exceed 1 min until the differential pressure across the filter assembly has increased to the terminal value
calculated in 11.3.
NOTE 1 The upstream and downstream sensor flow rates should be equal to the values chosen in 10.3.6.2 within the limits of
Table 1.
NOTE 2 Flow rates through sensors should be monitored and recorded throughout the test and maintained within the limits of
Table 1.
NOTE 3 Care should be taken to use online dilution as required to avoid exceeding the coincidence limit of the automatic
particle counter as determined according to ISO 11171.
NOTE 4 It is recommended that the flow rate and dilution ratio be controlled and recorded to calculate the exact amount of
test fluid that is passed through the sensor for each count.
NOTE 5 It is recommended that a minimum counting volume of 10 ml be used to obtain statistically significant numbers.
11.10 Record the assembly differential pressure at the beginning of each particle count throughout the test.
NOTE Continuous differential pressure measurements using a differential pressure transducer are recommended for this
purpose.
11.11 Extract a bottle sample for gravimetric analysis from upstream of the test filter when the assembly differential
pressure has reached 80 % of the terminal assembly differential pressure.
11.12 Conclude the test at the final assembly differential pressure as follows.
11.12.1 Record the final test time.
11.12.2 Divert the injection flow from the filter test system.
11.12.3 Stop the flow to the test filter.
11.13 Measure and record the final volume, V , in the filter test system.
tf
11.14 Measure and record the final injection system volume, V .
if
11.15 Obtain the final injection gravimetric level fluid sample from the contaminant injection system.
11.16 Check that no visual evidence of filter element damage has occurred as a result of performing this test.
NOTE Although the installation and test procedures are checked for qualification prior to testing, it is advisable to check
when interpreting the results that the test has been performed satisfactorily.
© ISO 1999 – All rights reserved 13

12 Calculations
12.1 Establish 10 reporting times equal to (10, 20, 30 . 100) % of the final test time (11.12.1) and record these
times on the report sheet given in Figure 2.
12.2 Calculate the assembly differential pressure corresponding to each reporting time by conducting a linear
interpolation between the nearest measured differential pressures prior to and after that time. For the 100 % time
point, use the final assembly differential pressure.
12.3 Calculate and record on the report sheet given in Figure 2 the element differential pressures corresponding
to each of the reporting times by subtracting the housing differential pressure from each respective assembly
differential pressure.
12.4 For each particle count obtained during the test (11.9) calculate the cumulative particle count per millilitre at
each size by dividing the raw counts obtained by the counted volume and adjusting for any dilution if used.
12.5 Calculate average upstream and downstream particle counts at each particle size, x, for each of the 10
reporting times, t, using the following equations and specific instructions:
n
N
� u,xi,
i�1
N � (5)
u,xt,
n
n
N
d,xi,

i�1
N � (6)
d,xt,
n
where n is the number of counts started in the specific reporting time period.
12.5.1 Delete the first three (3) particle counts corresponding to test times of 1 min, 2 min, and 3 min.
NOTE These data deletions are to eliminate potentially erroneous particle counts obtained prior to system stabilization.
12.5.2 For the first reporting time (10 %), using the above equations, average the upstream and downstream
counts obtained in clause 12.4 for all the particle counts that were started before the first reporting time (with the
exception of the first three which were deleted above). Record these average counts on the report sheet given in
Figure 2.
NOTE For a total test time less than 30 min, there may be no data for the 10 % reporting time so leave the entries blank.
12.5.3 For the second reporting time (20 %), average the upstream and downstream counts obtained in
clause 12.4 for all the particle counts that were started after the first reporting time and before the second reporting
time. Record these average counts on the report sheet given in Figure 2.
12.5.4 For the third through tenth reporting times (30 % to 100 %), repeat 12.5.3 in a similar manner using only
the counts that were started in each reporting interval. Record these average counts on the report sheet given in
Figure 2.
12.6 Calculate the filtration ratios (� ) corresponding to each of the 10 reporting times by dividing the average
x,t
upstream by the average downstream particle count at each size, x, corresponding to that respective reporting time
(see equation below). Record on the report sheet given in Figure 2 to three significant digits (i.e. 1,75; 20,1; 300).
N
u,xt,
� � (7)
xt,
N
d,xt,
Particle counts shall be averaged and average filtration ratios (� values) shall be calculated from these average
counts. Under no circumstances shall � values be averaged.
14 © ISO 1999 – All rights reserved

12.7 Calculate the overall test average upstream and downstream particle counts by numerically averaging the 10
average counts from 12.6 corresponding to each of the 10 reporting times (see equations below). Record on the
report sheet given in Figure 2.
AN� (8)
uu,,xx,t

t�10
AN� (9)
dd,,xx,t

t�10
where t is the ten reporting time intervals from 10 to 100.
12.8 Calculate the overall average filtration ratios, � , using the following equation by dividing the overall test
x(c)
average upstream by the downstream cumulative particle counts at each size, x μm(c). Record on the report sheet
given in Figure 2 to three significant digits.
A
u,x
� � (10)
x(c)
A
d,x
NOTE The subscript (c) signifies that the filtration ratio, � , is based on this standard test method, ISO 16889, using
x(c)
particle counters calibrated in accordance with ISO 11171.
Particle counts shall be averaged then average filtration ratios (� values) shall be calculated from these average
counts. Under no circumstances shall � values be averaged.
12.9 Conduct a gravimetric analysis on the two samples extracted from the contaminant injection system (from
11.6 and 11.15). Report values to nearest 0,1 mg/l. (See ISO 4405)
12.9.1 Calculate the average (G ) of these two gravimetric levels from the injection system.
i
12.9.2 Accept the test only if the gravimetic level of each injection system sample is within � 5 % of this average.
NOTE If the average injection gravimetric value, G , differs from the selected value, G �, from 10.2.3, by more than 5%,
i i
repeat the gravimetric analyses. If the recheck differs more than 5 %, it is recommended that the contaminant injection system
validation procedure be repeated (8.2).
12.10 Conduct three gravimetric analyses on the 80 % upstream sample (from 11.11) and record the average of
these analyses as the final s
...


NORME ISO
INTERNATIONALE 16889
Première édition
1999-12-15
Filtres pour transmissions hydrauliques —
Évaluation des performances par la
méthode de filtration en circuit fermé
Hydraulic fluid power filters — Multi-pass method for evaluating filtration
performance of a filter element
Numéro de référence
©
ISO 1999
PDF – Exonération de responsabilité
Le présent fichier PDF peut contenir des polices de caractères intégrées. Conformément aux conditions de licence d'Adobe, ce fichier peut
être imprimé ou visualisé, mais ne doit pas être modifié à moins que l'ordinateur employé à cet effet ne bénéficie d'une licence autorisant
l'utilisation de ces polices et que celles-ci y soient installées. Lors du téléchargement de ce fichier, les parties concernées acceptent de fait la
responsabilité de ne pas enfreindre les conditions de licence d'Adobe. Le Secrétariat central de l'ISO décline toute responsabilité en la
matière.
Adobe est une marque déposée d'Adobe Systems Incorporated.
Les détails relatifs aux produits logiciels utilisés pour la création du présent fichier PDF sont disponibles dans la rubrique General Info du
fichier; les paramètres de création PDF ont été optimisés pour l'impression. Toutes les mesures ont été prises pour garantir l'exploitation de
ce fichier par les comités membres de l'ISO. Dans le cas peu probable où surviendrait un problème d'utilisation, veuillez en informer le
Secrétariat central à l'adresse donnée ci-dessous.
© ISO 1999
Droits de reproduction réservés. Sauf prescription différente, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque
forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l’ISO à
l’adresse ci-après ou du comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Case postale 56 � CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax. + 41 22 734 10 79
E-mail copyright@iso.ch
Web www.iso.ch
ImpriméenSuisse
ii © ISO 1999 – Tous droits réservés

Sommaire Page
1 Domaine d'application.1
2 Références normatives .1
3 Termes et définitions.2
4 Symboles.4
5 Procédure générale .6
6 Appareillage d'essai .6
7 Exactitude des instruments de mesure et conditions d'essai.7
8 Procédures de validation du banc d'essai des filtres.8
9 Résumé des informations nécessaires préalables à l'essai .10
10 Préparatifs de l'essai.10
11 Essai d'efficacité du filtre.12
12 Calculs .14
13 Présentation des résultats.16
14 Phrase d'identification (Référence à la présente Norme internationale) .17
Annexe A (normative) Propriétés du fluide d'essai de base .20
Annexe B (informative) Guide de conception du circuit d'essai.22
Annexe C (informative) Exemple de rapport de calculs et graphiques .27
Annexe D (informative) Résumé de l'essai interlaboratoire ISO relatif à l'essai en circuit fermé
(ISO/CD 4572) .35
© ISO 1999 – Tous droits réservés iii

Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux de
normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général confiée aux
comités techniques de l'ISO. Chaque comité membre intéressé par une étude a le droit de faire partie du comité
technique créé à cet effet. Les organisations internationales, gouvernementales et non gouvernementales, en
liaison avec l'ISO participent également aux travaux. L'ISO collabore étroitement avec la Commission
électrotechnique internationale (CEI) en ce qui concerne la normalisation électrotechnique.
Les Normes internationales sont rédigées conformément aux règles données dans les Directives ISO/CEI, Partie 3.
Les projets de Normes internationales adoptés par les comités techniques sont soumis aux comités membres pour
vote. Leur publication comme Normes internationales requiert l'approbation de 75 % au moins des comités
membres votants.
L’attention est appelée sur le fait que certains des éléments de la présente Norme internationale peuvent faire
l’objet de droits de propriété intellectuelle ou de droits analogues. L’ISO ne saurait être tenue pour responsable de
ne pas avoir identifié de tels droits de propriété et averti de leur existence.
La Norme internationale ISO 16889 a été élaborée par le comité technique ISO/TC 131, Transmissions
hydrauliques et pneumatiques, sous-comité SC 6, Contrôle de la contamination et fluides hydrauliques.
Cette première édition annule et remplace l’ISO 4572:1981, dont elle constitue une révision technique.
L’annexe A constitue un élément normatif de la présente Norme internationale. Les annexes B à D sont données
uniquement à titre d’information.
iv © ISO 1999 – Tous droits réservés

Introduction
Dans les systèmes à transmission hydraulique, l'une des fonctions du fluide hydraulique est de séparer et de
lubrifier les pièces mobiles des composants. La présence d'une pollution particulaire solide entraîne une usure qui
aboutit à une perte de rendement, à une réduction de la durée de vie des composants et par conséquent, à un
manque de fiabilité.
Un filtre hydraulique sert à maintenir le nombre de particules circulant à l'intérieur du circuit, à un niveau qui soit
proportionné au degré de sensibilité des composants vis-à-vis des polluants et au niveau de fiabilité exigé par les
utilisateurs.
Il convient de disposer de procédures d'essai pour permettre la comparaison des performances relatives des filtres,
de façon à pouvoir sélectionner le filtre le plus approprié. Les caractéristiques de rendement d'un filtre sont fonction
de l'élément filtrant (forme et milieu filtrant) et du corps du filtre (forme générale et mode d'étanchéité).
Dans la pratique, le filtre est soumis à un écoulement continu de polluants dans le fluide hydraulique, jusqu'à ce
que la pression différentielle finale déterminée (pression d'ouverture du limiteur de pression ou réglage de
l'indicateur de pression différentielle) soit atteinte.
Le temps de fonctionnement (avant d'atteindre la pression finale) et le niveau de pollution en un point donné du
système sont tous deux fonction du flux de pollution (flux d'entrée et de génération) et des caractéristiques de
rendement du filtre.
Aussi, un essai réaliste de laboratoire qui détermine les performances relatives d'un filtre assure-t-il normalement
une alimentation continue du filtre essayé en polluant et permet la vérification périodique des caractéristiques de
rendement de ce filtre.
Il y a lieu que l’essai assure également un niveau acceptable de répétabilité et de reproductibilité et mette en
œuvre un polluant d'essai normalisé [poudre d'essai moyenne ISO (ISO 12103-A3) conformément à l'ISO 12103-
1]. Il a été montré que ce polluant avait une distribution granulométrique constante des particules. De plus, il est
disponible dans le monde entier. L'efficacité du filtre est déterminée par le comptage en ligne de particules en aval
et en amont, à l'aide de compteurs automatiques validés selon les normes ISO.
Parce qu’il est difficile de spécifier, d’obtenir et de vérifier une exigence de débit variable qui soit à la fois réaliste et
cohérente avec les variations de débit qui se produisent dans les systèmes réels, le compromis de conditions
stationnaires a été choisi dans cet essai pour améliorer la répétabilité et la reproductibilité des résultats.
© ISO 1999 – Tous droits réservés v

NORME INTERNATIONALE ISO 16889:1999(F)
Filtres pour transmissions hydrauliques — Évaluation
des performances par la méthode de filtration en circuit fermé
1 Domaine d'application
1.1 La présente Norme internationale spécifie:
a) une méthode pour vérifier, en circuit fermé, les caractéristiques séparatives des éléments filtrants pour
transmissions hydrauliques, avec injection continue de polluants;
b) une procédure pour déterminer l'efficacité de filtration, la capacité de rétention et la pression différentielle;
c) un essai couramment applicable aux éléments filtrants pour transmissions hydrauliques possédant un rapport
de filtration moyen supérieur ou égal à 75 pour les tailles de particules inférieures ou égales à 25 μm(c) et une
concentration finale dans le réservoir inférieur à 200 mg/l;
NOTE L'étendue des débits et la plus petite dimension des particules qui peuvent être utilisées dans les installations
d'essai seront déterminées par validation.
d) un essai utilisant la poudre d'essai moyenne ISO (ISO MTD) et un fluide d'essai conforme à l’annexe A.
1.2 La présente Norme internationale est destinée à proposer une méthode d'essai donnant des résultats
reproductibles permettant l'évaluation du rendement de filtration d'un élément filtrant pour transmissions
hydrauliques, sans influence de la charge électrostatique.
2 Références normatives
Les documents normatifs suivants contiennent des dispositions qui, par suite de la référence qui y est faite,
constituent des dispositions valables pour la présente Norme internationale. Pour les références datées, les
amendements ultérieurs ou les révisions de ces publications ne s’appliquent pas. Toutefois, les parties prenantes
aux accords fondés sur la présente Norme internationale sont invitées à rechercher la possibilité d'appliquer les
éditions les plus récentes des documents normatifs indiqués ci-après. Pour les références non datées, la dernière
édition du document normatif en référence s’applique. Les membres de l'ISO et de la CEI possèdent le registre des
Normes internationales en vigueur.
ISO 1219-1:1991, Transmissions hydrauliques et pneumatiques — Symboles graphiques et schémas de circuit —
Partie 1: Symboles graphiques.
ISO 2942:1994, Transmissions hydrauliques — Éléments filtrants — Vérification de la conformité de fabrication et
détermination du point de première bulle.
ISO 3722:1976, Transmissions hydrauliques — Flacons de prélèvement — Homologation et contrôle des
méthodes de nettoyage.
ISO 3968:1981, Transmissions hydrauliques — Filtres — Évaluation de la perte de charge en fonction du débit.
ISO 4021:1992, Transmissions hydrauliques — Analyse de la pollution par particules — Prélèvement des
échantillons de fluide dans les circuits en fonctionnement.
© ISO 1999 – Tous droits réservés 1

ISO 4405:1991, Transmissions hydrauliques — Pollution des fluides — Détermination de la pollution particulaire
par la méthode gravimétrique.
ISO 5598:1985, Transmissions hydrauliques et pneumatiques — Vocabulaire.
ISO 11171:1999, Transmissions hydrauliques — Étalonnage des compteurs automatiques de particules en
suspension dans les liquides.
ISO 11943:1999, Transmissions hydrauliques — Systèmes de comptage automatique en ligne de particules en
suspension dans les liquides — Méthodes d'étalonnage et de validation.
ISO 12103-1:1997, Véhicules routiers — Poussière pour l'essai des filtres — Partie 1: Poussière d'essai d'Arizona.
ASTM D 4308:1995, Test method for electrical conductivity of liquid hydrocarbons by precision meter.
3 Termes et définitions
Pour les besoins de la présente Norme internationale, les termes et définitions donnés dans l’ISO 5598 et les
suivants s'appliquent.
3.1
masse de polluant injectée
masse de polluant particulaire spécifique injectée dans le circuit d'essai pour obtenir la pression différentielle
finale �p
3.2
pression différentielle
�p
différence entre les pressions d'entrée et de sortie de l'élément en essai, mesurée dans des conditions
déterminées
Voir Figure 1.
3.2.1
pression différentielle de l'ensemble propre
différence entre les pressions d'entrée et de sortie de l'élément en essai, mesurée avec un corps de filtre propre
contenant un élément filtrant propre
Voir Figure 1.
3.2.2
pression différentielle de l'élément filtrant propre
pression différentielle de l'élément propre calculée comme la différence entre la pression différentielle de
l'ensemble propre et la pression différentielle du corps de filtre
Voir Figure 1.
3.2.3
pression différentielle finale de l'ensemble
pression différentielle de l'ensemble à la fin de l'essai égale à la somme des pressions différentielles du corps de
filtre et de l'élément final
Voir Figure 1.
3.2.4
pression différentielle du corps de filtre
pression différentielle du corps de filtre sans élément
Voir Figure 1.
2 © ISO 1999 – Tous droits réservés

3.2.5
pression différentielle finale de l'élément
pression différentielle maximale à travers l'élément filtrant, comme indiqué par le fabricant pour limiter le rendement
utile
Voir Figure 1.
3.3
conductivité résiduelle
conductivité électrique à l'instant initial de la mesure de courant, après impression d'une tension continue entre les
électrodes
NOTE Elle est égale à la réciproque de la résistance de fluide non chargé en l'absence de déplétion ou de dépolarisation
ionique
3.4
capacité de rétention
masse de polluant particulaire spécifique effectivement retenue par l'élément filtrant lorsque la pression
différentielle finale �p est atteinte
© ISO 1999 – Tous droits réservés 3

Légende
1 Pression différentielle finale de l'ensemble (fin de l'essai) 4 Pression différentielle du corps du filtre
2 Pression différentielle finale de l'élément 5 Pression différentielle de l'ensemble propre
3 Pression différentielle de l'élément filtrant propre
Figure 1 — Conventions en matière de pression différentielle pour l'essai de filtration en circuit fermé
4 Symboles
4.1 Symboles graphiques
Les symboles graphiques utilisés sont conformes à l'ISO 1219-1.
4 © ISO 1999 – Tous droits réservés

4.2 Lettres symboles
Référence Symbole Unités Description ou explication
4.2.1 A part./ml Comptage global moyen à l'amont > taille, x
u,x
4.2.2 A part./ml Comptage global moyen à l'aval > taille, x
d,x
a
4.2.3 � aucun Rapport de filtration à la taille de particule, x (étalonnage ISO 11171)
x(c
)
4.2.4 � aucun Rapport de filtration à la taille de particule, x, et intervalle de temps, t
x,t
a
4.2.5 � aucun Rapport de filtration moyen à la taille de particule, x (étalonnage ISO 11171)
x(c)
4.2.6 C g Capacité de rétention
R
4.2.7 G mg/l Concentration théorique moyenne à l'amont
b
4.2.8 G � mg/l Concentration théorique voulue à l'amont
b
4.2.9 G mg/l Concentration moyenne d'injection
i
4.2.10 G � mg/l Concentration voulue d'injection
i
4.2.11 G mg/l Concentration du réservoir d'essai à 80 % de la �p de l'ensemble
4.2.12 M g Masse de polluant nécessaire à l'injection
4.2.13 M g Capacité estimée de l'élément filtrant (masse injectée)
e
4.2.14 M g Masse de polluant injectée
l
4.2.15 M g Masse de polluant injectée à la pression différentielle de l'élément filtrant, �p
p
4.2.16 n sans Nombre de particules comptées sur un intervalle de temps donné
4.2.17 N part./ml Nombre de particules à l'amont > taille, x, au comptage, i
u,x,i
4.2.18 N part./ml Nombre de particules à l'aval > taille, x, au comptage, i
d,x, i
4.2.19 N part./ml Comptage moyen à l'amont > taille, x, à l'intervalle de temps, t
u,xt,
4.2.20 N part./ml Comptage moyen à l'aval > taille, x, à l'intervalle de temps, t
d,xt,
4.2.21 p Pa, kPa ou bar Pression
4.2.22 �p Pa, kPa ou bar Pression différentielle
4.2.23 q l/min Débit d'essai
4.2.24 q l/min Débit d'échantillonnage recueilli à l'aval
d
4.2.25 q l/min Débit d'injection moyen
i
4.2.26 q� l/min Débit d'injection voulu
i
4.2.27 q l/min Débit d'échantillonnage recueilli à l'amont
u
4.2.28 t min Temps d'essai
4.2.29 t� min Temps d'essai prévu
4.2.30 t min Temps de fin d'essai
f
4.2.31 t min Temps d'essai à la pression différentielle de l'élément filtrant, �p
p
4.2.32 V l Volume d'injection final mesuré du circuit
if
4.2.33 V l Volume d'injection initial mesuré du circuit
ii
4.2.34 V l Volume d'injection minimal requis en fonctionnement
min
4.2.35 V l Volume du circuit d'essai de filtre mesuré en fin d'essai
tf
4.2.36 V l Volume minimal validé du circuit d'injection
v
a
L’indice (c) signifie que le rapport de filtration, � , et le rapport de filtration moyen, � , ont été établis par une méthode
x(c) x(c)
d’essai normalisée (ISO 16889) à l’aide de compteurs de particules étalonnés conformément à l’ISO 11171.
© ISO 1999 – Tous droits réservés 5

5 Procédure générale
5.1 Régler et entretenir l'appareillage conformément aux articles 6 et 7.
5.2 Valider l'équipement conformément à l'article 8.
5.3 Procéder à tous les essais de la manière indiquée aux articles 9, 10 et 11.
5.4 Analyser les résultats des essais de la manière indiquée à l'article 12.
5.5 Présenter les résultats des articles 10, 11 et 12 de la manière indiquée à l'article 13.
6 Appareillage d'essai
6.1 Chronomètre convenable.
6.2 Compteur(s) automatique(s) de particules, étalonné(s) conformément à l'ISO 11171.
6.3 Poudre d'essai moyenne ISO (ISO MTD) (ISO 12103-A3), conformément à l'ISO 12103-1, étuvée de
110 °C à 150 °C pendant au moins 1 h par lot de masse inférieure à 200 g, et mélangée au fluide d'essai, agitée
2 2
mécaniquement puis dispersée par des ultrasons d'une puissance de 3 000 W/m à10000W/m avant utilisation.
NOTE Cette poudre est disponible dans le commerce. Pour obtenir des informations sur l'ISO 12103-A3, contacter le
secrétariat de l'ISO ou les comités membres de l'ISO.
6.4 Système de comptage et, si nécessaire, système de dilution en ligne, validé conformément à
l'ISO 11943.
6.5 Flacons de prélèvement, vérifiés selon l'ISO 3722, contenant moins de 20 particules de plus de 6 μm(c)
par millilitre de volume du flacon, pour recueillir des échantillons à des fins d'analyses gravimétriques.
6.6 Fluide d’essai à base d’huile minérale, dont les propriétés sont détaillées dans l'annexe A.
NOTE 1 L'utilisation de ce fluide hydraulique soigneusement contrôlé assure une plus grande reproductibilité des résultats et
s’appuie sur des pratiques courantes, sur d'autres normes d'essais de filtres acceptées et sur sa disponibilité dans le monde
entier.
NOTE 2 Si un agent antistatique est ajouté à ce fluide d'essai, les résultats des essais peuvent en être affectés.
6.7 Circuit d'essai d'efficacité de filtre, composé d'un «circuit d'essai du filtre» et d'un «système d'injection du
polluant».
6.7.1 Circuit d'essai du filtre, comportant:
a) un réservoir, une pompe, un dispositif de conditionnement du fluide et des instruments capables de s'adapter
à l'étendue des débits, pressions et volumes exigés par la procédure et qui puissent satisfaire aux exigences
de validation de l'article 8;
b) un filtre de dépollution capable d'assurer un niveau de pollution initial du système comme spécifié dans le
Tableau 2;
c) un dispositif qui soit relativement insensible à la concentration du polluant prévu pour l'essai;
d) un dispositif qui ne modifie pas la distribution granulométrique du polluant d'essai pendant toute la durée
prévue de l'essai;
e) des prises de pression conformes à l'ISO 3968;
f) des prises d'échantillon de fluide en amont et en aval du filtre d'essai, conformes à l'ISO 4021.
6 © ISO 1999 – Tous droits réservés

NOTE Pour des configurations classiques qui se sont avérées satisfaisantes, se reporter à l'annexe B.
6.7.2 Système d'injection de polluant, comportant:
a) un réservoir, une pompe, un dispositif de conditionnement du fluide et des instruments capables de s'adapter
à l'étendue des débits, pressions et volumes exigés par la procédure et qui puisse satisfaire aux exigences de
validation de l'article 8;
b) un dispositif qui soit relativement insensible à la concentration du polluant prévu pour l’essai;
c) un dispositif qui ne modifie pas la distribution de la pollution pendant toute la durée prévue de l'essai;
d) une prise d'échantillon du fluide conforme à l'ISO 4021.
NOTE Se reporter à l'annexe B pour connaître les configurations types de circuits d'injection qui se sont révélées
satisfaisantes.
6.8 Membranes et des matériels de laboratoire, permettant de réaliser l'essai gravimétrique conformément à
l'ISO 4405.
7 Exactitude des instruments de mesure et conditions d'essai
7.1 Utiliser et maintenir l'exactitude des instruments de mesure et des conditions d'essai dans les limites
indiquées dans le Tableau 1.
7.2 Maintenir les paramètres d'essai spécifiques dans les limites du Tableau 2 selon la condition retenue pour
l'essai.
Tableau 1 — Exactitude des instruments de mesure et variation des conditions d'essai
Exactitude Variations autorisées
Paramètre d'essai Unité SI
de l'instrument des conditions d'essai
(en � de la valeur lue) (�)
Conductivité pS/m 10 % —
Pression différentielle Pa, kPa ou bar 5 % —
Concentration théorique amont mg/l — 10 %
Débit:
Débit d'injection ml/min 2 % 5 %
Débit d'essai l/min 2 % 5 %
a
Débit du capteur optique l/min 1,5 % 3 %
b
2 2
Viscosité cinématique mm /s 2% 1mm /s
Masse mg 0,1 mg —
c
Température �C1 �C2 �C
Temps s 1 s —
Volume:
Circuit d'injection l 2 % —
Circuit d'essai l 2 % 5 %
a
La variation du débit du capteur doit être inclue dans les 10 % autorisés entre les capteurs.
b 2
1mm /s = 1 cSt (centistoke).
c
Ou comme exigé pour garantir la tolérance de viscosité.
© ISO 1999 – Tous droits réservés 7

Tableau 2 — Valeurs des conditions d'essai
Condition de l'essai de filtre Condition 1 Condition 2 Condition 3
Niveau de pollution initial du circuit d'essai: Moins de 1 % du niveau minimum déterminé dans le Tableau 3
mesuré au seuil de comptage minimum.
Niveau de pollution initial du circuit d'injection: Moins de 1 % de la concentration d'injection.
a
Concentration théorique amont, mg/l 3 � 0,3 10 � 1,0 15 � 1,5
b
Seuils de comptage des particules recommandés Minimum de cinq tailles choisies pour couvrir la gamme présumée
du rendement du filtre depuis �� =2 jusqu’à � = 1 000. Les seuils
recommandés sont: (4, 5, 6, 7, 8, 10, 12, 14, 20, 25 et 30) μm(c).
Méthode de comptage et d'échantillonnage Comptage automatique en ligne de particules.
a
Pour comparer les résultats d'essais de deux filtres, les concentrations théoriques amonts doivent être identiques.
b
Les tailles de particules pour lesquelles les valeurs bêta sont faibles (� = 2, 10, .) peuvent être impossibles à obtenir
avec des filtres fins et celles pour lesquelles les valeurs bêta sont élevées (� = ., 200, 1 000) peuvent être impossibles à
obtenir avec des filtres plus grossiers.
8 Procédures de validation du banc d'essai des filtres
NOTE Ces procédures démontrent l'efficacité du circuit d'essai d'efficacité des filtres à maintenir le polluant d'essai en
suspension et/ou à empêcher une modification de sa granulométrie.
8.1 Validation du circuit d'essai du filtre
8.1.1 Effectuer la validation au débit minimal avec lequel le circuit d'essai doit fonctionner. Installer un tube à la
place du corps du filtre pendant la validation.
8.1.2 Régler le volume total du fluide du circuit d'essai du filtre (à l'exception du circuit du filtre de dépollution) à
une valeur numérique comprise entre ¼ (25 %) et ½ (50 %) du débit-volume minimal par minute, avec un minimum
de5l.
NOTE 1 Il est recommandé de valider le système avec un volume de fluide numériquement égal à ½ (50 %) du débit-volume
minimal par minute pour les débits inférieurs ou égaux à 60 l/min ou à ¼ (25 %) du débit-volume minimal par minute pour les
débits supérieurs à 60 l/min.
NOTE 2 Cette valeur correspond au rapport volume/débit exigé pour la procédure d'essai de filtre (voir 10.3.4).
8.1.3 Pour chaque condition d'essai (1, 2 ou 3) à utiliser, polluer le fluide à la concentration théorique amont
comme précisé dans le Tableau 2, avec la poudre d'essai ISO 12103-A3.
8.1.4 Vérifier que le débit à travers chaque capteur est égal à la valeur utilisée pour son étalonnage dans les
limites du Tableau 1.
8.1.5 Faire circuler le fluide dans le circuit d'essai pendant 1 h, en réalisant des comptages en ligne continus par
la prise d'échantillon en amont, pendant 60 min.
Le débit d'échantillonnage de cette section ne doit pas être interrompu pendant la durée de la validation.
8.1.6 Enregistrer les comptages cumulés à des intervalles égaux ne dépassant pas 1 min pendant les 60 min de
l’essai aux seuils de comptage indiqués dans le Tableau 2.
8.1.7 La validation de l'essai n'est acceptée que si:
a) le comptage des particules d'une taille donnée à chaque intervalle d'échantillonnage ne s'écarte pas de plus
de 15 % du comptage moyen sur tous les intervalles d'échantillonnage pour cette taille;
b) la moyenne de tous les comptages de particules cumulés par millilitre se situe à l'intérieur de l'intervalle des
comptages acceptables indiqué dans le Tableau 3.
8 © ISO 1999 – Tous droits réservés

8.1.8 Valider le système de comptage en ligne, et les systèmes de dilution le cas échéant, conformément à
l'ISO 11943.
Tableau 3 — Comptage cumulé de particules par millilitre acceptable
Granulométrie Condition d'essai 1 Condition d'essai 2 Condition d'essai 3
μm(c) (3 mg/l) (10 mg/l) (15 mg/l)
min. max. min. max. min. max.
1 104 000 128 000 348 000 426 000 522 000 639 000
2 26 100 31 900 86 900 106 000 130 000 159 000
3 10 800 13 200 36 000 44 000 54 000 66 000
4 5 870 7 190 19 600 24 000 29 400 35 900
5 3 590 4 390 12 000 14 600 17 900 22 000
6 2 300 2 830 7 690 9 420 11 500 14 100
7 1 510 1 860 5 050 6 190 7 570 9 290
8 1 010 1 250 3 380 4 160 5 080 6 230
10 489 609 1 630 2 030 2 460 3 030
12 265 335 888 1 110 1 340 1 660
14 160 205 536 681 810 1 020
20 46 64 155 211 237 312
25 16 27 56 86 87 126
30 61221 403458
40 1,1 4,5 4,4 14,2 7,9 20
50 0,15 2,4 1,0 7,6 2,4 11
8.2 Validation du circuit d'injection du polluant
8.2.1 Valider le circuit d'injection du polluant à la concentration maximale, au volume maximal du circuit
d'injection, au débit d'injection minimal, et pour la durée nécessaire à la vidange du volume total.
8.2.2 Préparer le circuit d'injection du polluant de façon qu'il contienne la masse de polluant et le volume de
fluide adaptés au circuit.
NOTE Toutes les procédures auxiliaires utilisées dans la préparation du circuit d'injection de polluant font partie de la
procédure de validation. Toute modification de ces procédures implique de revalider le circuit.
8.2.3 Ajouter la poudre et faire circuler pendant au moins 15 min.
8.2.4 Commencer l’injection à partir du circuit d'injection du polluant, en recueillant le flux à l'extérieur du circuit.
Prélever un échantillon initial à ce point et mesurer le débit d'injection.
8.2.5 Maintenir le débit d'injection à � 5 % du débit d'injection souhaité.
8.2.6 Prélever des échantillons du flux d'injection et mesurer le débit à (30, 60, 90 et 120) min ou à au moins
quatre intervalles égaux, selon la vitesse de vidange du circuit.
8.2.7 Analyser chaque échantillon prélevé selon le point 8.2.6. par gravimétrie conformément à l'ISO 4405.
8.2.8 Mesurer le volume du circuit d'injection à la fin de l'essai de validation. Cette valeur est le volume minimum
validé, V .
v
© ISO 1999 – Tous droits réservés 9

8.2.9 La validation n’est acceptée que si la concentration de chaque échantillon correspond à � 10 % de la
concentration déterminée au 8.2.1 et si l'écart entre les échantillons ne s’écarte pas de plus de �5% de la
moyenne.
8.2.10 La validation n’est acceptée que si le débit d'injection à chaque point d'échantillonnage correspond à �5%
du débit de validation choisi (8.2.1) et que l'écart entre les débits d’échantillonnage ne s’écartent pas de plus de
� 5 % de la moyenne.
8.2.11 La validation n’est acceptée que si le volume restant dans le système d'injection (8.2.8) plus le produit
[débit d'injection moyen (8.2.10) multiplié par la durée totale d'injection (8.2.6)] est égal à � 10 % du volume initial
(8.2.2).
9 Résumé des informations nécessaires préalables à l'essai
Les informations suivantes sont nécessaires au préalable de l'application de la présente Norme internationale à un
élément filtrant.
a) Pression d'essai d'intégrité de fabrication (voir ISO 2942).
b) Débit d'essai de l'élément filtrant.
c) Pression différentielle finale de l'élément.
d) Seuils dimensionnels présumés pour des rapports de filtration spécifiques.
e) Valeur estimée, M , de la capacité de l'élément filtrant (masse injectée).
e
10 Préparatifs de l'essai
10.1 Montage du filtre d'essai
10.1.1 Vérifier que le fluide d'essai ne peut contourner l'élément filtrant à essayer.
10.1.2 Soumettre l'élément filtrant à un essai d'intégrité de fabrication conformément à l'ISO 2942.
NOTE 1 Le fluide d'essai utilisé en 6.6 peut servir à l'essai d'intégrité de fabrication.
NOTE 2 Si l'élément n'est pas facilement accessible, comme dans le cas d'un élément vissable, l'essai d'intégrité de
fabrication peut être réalisé après l'essai en circuit fermé, après avoir extrait l'élément filtrant. Il convient toutefois d’être
conscient du fait qu’un point de première bulle faible ou inacceptable ne correspond pas nécessairement à une valeur du même
ordre en début d’essai.
NOTE 3 Rebuter l'élément filtrant s'il ne possède pas au moins la pression d'essai spécifiée.
NOTE 4 Laisser, le cas échéant, le fluide s'évaporer de l'élément filtrant avant de l'installer dans le corps du filtre.
10.2 Circuit d'injection du polluant
10.2.1 Choisir la concentration à l'amont souhaitée (G �) à partir du Tableau 2 de façon que le temps d'essai
b
prévu (t�) calculé à l'aide de l'équation suivante se situe de préférence entre 1 h et 3 h:
1000 � M
e
t � (1)

Gq��
b
NOTE 1 Un second élément peut être utilisé pour estimer la capacité de l'élément filtrant si celle-ci n'est pas fournie par le
fabricant du filtre.
10 © ISO 1999 – Tous droits réservés

NOTE 2 Les temps d'essai prévus inférieurs à 1 h ou supérieurs à 3 h sont acceptables dans la mesure où les conditions
d'essai 1, 2 ou 3 sont maintenues.
10.2.2 Calculer le volume minimal du circuit d'injection requis compatible avec le temps d'essai prévu, t',ainsi que
la valeur souhaitée du débit d'injection à l'aide de l'équation suivante:
V =(1,2 � t� � q �) � V (2)
min i v
NOTE 1 Le volume calculé ci-dessus représente une quantité de fluide pollué suffisante pour colmater l'élément filtrant avec
une sécurité de 20 % en assurant une circulation satisfaisante pendant l'essai. On peut utiliser des volumes d'injection
supérieurs.
NOTE 2 La valeur de 0,25 l/min du débit d'injection est couramment utilisée et assure que le débit d'échantillonnage en aval
expulsé du circuit d'essai n'affectera pas de manière significative les résultats de l'essai. Des débits d'injection inférieurs ou
supérieurs sont possibles dans la mesure où l'on conserve la concentration théorique amont. Le débit d'injection est en règle
générale égal ou supérieur à la valeur utilisée en 8.2.5.
10.2.3 Calculer la concentration (G�) du fluide injecté à l'aide de l'équation suivante:
i
Gq� �
b
G � (3)

i
q�
i
10.2.4 Régler le volume initial total, V , du circuit d'injection (mesuré à la température d'essai) à la valeur choisie
ii
en 10.2.2 et le noter dans le rapport d'essai donné à la Figure 2.
10.2.5 Calculer la quantité de polluant (M) nécessaire au circuit d'injection à l'aide de l'équation suivante:
GV��
iii
M � (4)
10.2.6 Préalablement à l'ajout de la poudre d'essai ISO 12103-A3 dans le circuit d'injection de polluant, vérifier
que le niveau de pollution initial du fluide est inférieur à celui indiqué dans le Tableau 2.
10.2.7 Préparer le circuit d'injection de façon à ce qu'il contienne la quantité de fluide, V,etlamasse de la
ii
poudre d'essai ISO 12103-A3, M, (10.2.5) en suivant la même procédure que pour la validation du circuit d'injection
(8.2).
10.2.8 Fixer le débit d'injection à la température stabilisée à � 5 % de la valeur choisie en 10.2.2 et maintenir ce
débit durant tout l'essai. Le noter dans le rapport d'essai donné à la Figure 2.
10.2.8.1 Renvoyer le flux d'échantillonnage du circuit d'injection directement dans le réservoir d’injection
pendant la phase d'ajustement du débit.
10.3 Circuit d'essai du filtre
10.3.1 Installer le corps de filtre (sans l'élément filtrant) dans le circuit d'essai du filtre et le purger soigneusement.
10.3.2 Il est recommandé de vérifier la conductivité du fluide d’essai et de la maintenir entre 1 000 pS/m et
10 000 pS/m (voir ASTM D-4308-95). Cela peut se faire par ajout d'un additif antistatique.
AVERTISSEMENT — L'ajout d'un agent antistatique peut affecter les résultats de l'essai.
10.3.3 Faire circuler le fluide dans le circuit d'essai au débit choisi et à une température d'essai tels que la
2 2
viscosité du fluide est maintenue à 15 mm /s � 1mm /s. Enregistrer la température et la pression différentielle du
corps de filtre seul selon l'ISO 3968.
© ISO 1999 – Tous droits réservés 11

10.3.4 Régler le volume total du fluide du circuit d'essai (à l'exclusion du circuit du filtre de dépollution) de sorte
qu'il soit numériquement dans la gamme de ¼ (25 %) à ½ (50 %) du débit-volume d'essai spécifié par minute à
travers le filtre, avec un minimum de 5 l.
NOTE 1 Il est recommandé de valider le système avec un volume de fluide numériquement égal à ½ (50 %) du débit-volume
minimal par minute pour les débits inférieurs ou égaux à 60 l/min ou à ¼ (25 %) du débit-volume minimal par minute pour les
débits supérieurs à 60 l/min.
NOTE 2 La répétabilité des résultats exige que le volume du circuit soit maintenu constant. Le rapport volume-débit de 1:4 à
1:2 spécifié minimise les dimensions physiques du réservoir ainsi que la quantité de fluide requise, tout en maximisant les
conditions de mélange dans ce réservoir.
10.3.5 Atteindre un niveau initial de pollution du fluide inférieur à celui spécifié dans le Tableau 2.
10.3.6 Comptage de particules automatique en ligne
10.3.6.1 Régler le débit d'échantillonnage à l'amont à une valeur initiale compatible avec la procédure
d'échantillonnage utilisée et régler le débit aval à � 5 % du débit injecté. Maintenir les deux flux d'échantillonnage
ininterrompus pendant toute la durée de l'essai.
10.3.6.2 Régler les débits de dilution à l’amont et à l'aval si cela est exigé pour un comptage automatique en
ligne, de façon que, à la fin de l'essai, les débits et les concentrations soient compatibles avec les exigences des
compteurs de particules.
NOTE Il convient que les débits aux capteurs à l'amont et à l'aval soient réglés et maintenus aux valeurs et dans les limites
spécifiées en 8.1.4 et dans le Tableau 1.
10.3.6.3 Recycler le débit d'échantillonnage non dilué à l'amont du filtre d'essai directement dans le réservoir
d'essai.
NOTE 1 Si l'échantillon à l'amont est dilué pour le comptage de particules automatique en ligne, il convient que cet
échantillon dilué soit recueilli à l'extérieur du circuit d'essai du filtre.
NOTE 2 Si le débit d'échantillonnage à l'amont est dilué, il convient que le débit d'échantillonnage à l'aval soit réduit d'une
valeur égale au débit d'échantillonnage à l'amont qui est dilué et recueilli à l'extérieur du système. Cela contribue à maintenir un
volume constant dans le système, qui devrait rester à � 5 % du volume initial du système.
10.3.7 Régler les seuils des compteurs de particules aux valeurs choisies (Tableau 2).
11 Essai d'efficacité du filtre
11.1 Installer l'élément filtrant dans le corps de filtre et soumettre l'ensemble à essai dans les conditions
2 2
spécifiées (débit et température d'essai établis en 10.3.3 pour maintenir la viscosité à 15 mm /s�1mm /s) et
réajuster le niveau de fluide.
11.2 Mesurer et noter la pression différentielle de l'ensemble propre. Calculer et noter la pression différentielle de
l'élément propre en utilisant la différence entre la pression différentielle de l'ensemble propre et celle du corps de
filtre mesurée en 10.3.3.
11.3 Calculer la pression différentielle finale de l'ensemble correspondant à la somme de la pression différentielle
finale de l'élément filtrant et de celle du corps de filtre.
11.4 Mesurer et noter le niveau de pollution initial du circuit par comptage des particules en ligne en amont de
l'élément filtrant.
11.5 Court-circuiter le filtre de dépollution du circuit si le niveau de pollution à l'amont est inférieur à celui spécifié
dans le Tableau 2.
11.6 Prélever un échantillon dans le système d'injection du polluant. L'étiqueter «concentration d'injection initiale».
12 © ISO 1999 – Tous droits réservés

11.7 Mesurer et vérifier le débit d'injection.
NOTE Une mesure continue du débit d'injection est exigée pendant toute la durée de l'essai pour s'assurer que le débit est
maintenu dans les tolérances spécifiées.
11.8 Lancer l'essai du filtre comme suit:
11.8.1 Introduire le flux d'injection dans le réservoir du circuit d'essai.
11.8.2 Déclencher le chronomètre.
11.8.3 Détourner du circuit d'essai le flux d'échantillonnage aval pour maintenir un volume constant dans le circuit
(� 5 %). Voir 10.3.6.1.
11.9 Réaliser et noter les comptages de particules en ligne sur le fluide à l'amont et à l'aval à des intervalles de
temps égaux ne dépassant pas 1 min, jusqu'à ce que la pression différentielle à travers l'ensemble du filtre ait
augmentée pour atteindre la valeur finale calculée en 11.3.
NOTE 1 Il convient que les débits à travers les capteurs aval et amont soient égaux aux valeurs choisies en 10.3.6.2 dans les
limites du Tableau 1.
NOTE 2 Les débits à travers les capteurs sont normalement à contrôler et à noter pendant toute la durée de l'essai pour
demeurer dans les limites du Tableau 1.
NOTE 3 Il convient d'utiliser avec soin la dilution en ligne pour éviter de dépasser la limite de coïncidence du compteur de
particules, selon les indications de l'ISO 11171.
NOTE 4 Il est recommandé de contrôler et de noter le débit et le rapport de dilution pour calculer la quantité exacte de fluide
d'essai qui passe à travers le capteur pour chaque comptage.
NOTE 5 Il est recommandé d’utiliser un volume de comptage minimal de 10 ml pour obtenir des valeurs statistiquement
significatives.
11.10 Noter la pression différentielle de l'ensemble au début de chaque comptage, pendant toute la durée de
l'essai.
NOTE À cet effet, des mesures continues de la pression différentielle à l'aide d'un capteur de pression différentielle sont
recommandées.
11.11 Effectuer un prélèvement en flacon pour l'analyse gravimétrique à l'amont du filtre en essai lorsque la
pression différentielle de l'ensemble a atteint 80 % de la pression différentielle finale de l'ensemble.
11.12 Conclure l'essai à la pression différentielle finale de l'ensemble comme suit.
11.12.1 Noter le temps final d'essai.
11.12.2 Détourner le flux d'injection depuis le circuit d'essai.
11.12.3Arrêter ledébitvers lefiltred'essai.
11.13 Mesurer et noter le volume final, V , dans le circuit d'essai du filtre.
tf
11.14 Mesurer et noter le volume d'injection final du circuit, V .
if
11.15 Prélever dans le circuit d'injection de polluant l’échantillon qui permettra de mesurer la concentration
d’injection finale.
11.16 Vérifier visuellement qu'aucun dommage ne s'est produit sur l'élément filtrant pendant l'essai.
© ISO 1999 – Tous droits réservés 13

NOTE Bien que l'installation et les procédures d'essai soient validées préalablement à l'essai, il est conseillé de vérifier, lors
de l'interprétation des résultats, que l'essai s'est déroulé de façon satisfaisante.
12 Calculs
12.1 Établir 10 temps de consignation correspondant à (10, 20, 30, ., 100) % de la durée totale de l'essai
(11.12.1) et les noter dans le rapport d'essai donné à la Figure 2.
12.2 Calculer la pression différentielle de l'ensemble correspondant à chaque temps de consignation en réalisant
une interpolation linéaire entre les pressions différentielles mesurées les plus proches avant et après ce temps.
Pour le point 100 %, utiliser la pression différentielle finale de l'ensemble.
12.3 Calculer et noter dans le rapport d'essai donné à la Figure 2 les pressions différentielles de l'élément
correspondant à chacun des temps de consignation en soustrayant la pression différentielle du corps du filtre de
chaque pression différentielle de l'ensemble.
12.4 Pour chaque comptage de particules obtenu pendant l'essai (11.9), calculer le comptage cumulé de
particules par millilitre à chaque seuil, en divisant les comptages bruts obtenus par le volume compté et en
corrigeant, le cas échéant, par le taux de dilution.
12.5 Calculer les comptages de particules moyens à l'aval et à l'amont pour chaque seuil, x, pour chacun des 10
temps de consignation, t, à l'aide des équations suivantes et des instructions spécifiques:
n
N
u,,xi

i�1
N � (5)
u,,xt
n
n
N
� d,,xi
i�1
N � (6)
d,,xt
n
où n est le nombre de comptages démarrés pendant l'intervalle du temps de consignation spécifié.
12.5.1 Supprimer les trois (3) premiers comptages correspondant aux temps d'essai de 1 min, 2 min et 3 min.
NOTE Ces suppressions de données visent à éliminer des comptages potentiellement erronés obtenus préalablement à la
stabilisation du système.
12.5.2 Pour le premier temps de consignation (10 %), à l'aide des équations ci-dessus, faire la moyenne des
comptages à l'amont et à l'aval obtenus en 12.4 pour tous les comptages qui ont commencé avant le premier
temps de consignation (à l'exclusion des trois premiers qui ont été supprimés ci-dessus). Noter ces comptages
moyens dans le rapport d'essai donné à la Figure 2.
NOTE Pour un temps d'essai total inférieur à 30 min, il peut ne pas y avoir de données pour le temps de consignation
10 %. Dans ce cas, ne rien noter.
12.5.3 Pour le second temps de consignation (20 %), faire la moyenne des comptages à l'aval et à l'amont
obtenus en 12.4 pour tous les comptages de particules qui ont eu lieu entre le premier temps de consignation et le
second. Noter ces comptages moyens dans le rapport d'essai donné à la Figure 2.
12.5.4 Pour les temps de consignation allant du troisième au dixième (30 % à 100 %), répéter les indications de
12.5.3 de façon identique en utilisant seulement les comptages qui ont commencé dans chaque intervalle de
consignation. Noter ces comptages moyens dans le rapport d'essai donné à la Figure 2.
12.6 Calculer les rapports de filtration (� ) correspondant à chacun des 10 temps de consignation en divisant le
x,t
comptage moyen à l'
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...