Railway applications - Calculation of braking performance (stopping, slowing and stationary braking) - Part 1: General algorithms utilizing mean value calculation

This document specifies methodologies for calculation of braking performance for railway rolling stock and is applicable to all countries. This document describes the general algorithms/formulae using mean value inputs to perform calculations of brake equipment and braking performance in terms of stopping/slowing distances, stationary braking, power and energy for all types of rolling stock, either as single vehicles or train formations, with respect to the braking distance. The calculations can be used at any stage of the assessment process (design, manufacture, testing, verification, investigation, etc.) of railway rolling stock. This document does not set out the specific acceptance criteria (pass/fail). This document is not intended to be used as a design guide for selection of brake systems and does not specify performance requirements. This document does not provide a method to calculate the extension of stopping distances when the level of available adhesion is exceeded (wheel slide activity). This document contains examples of the calculation of brake forces for different brake equipment types and calculation of stopping distance and stationary braking relevant to a single vehicle or a train.

Applications ferroviaires — Calcul des performances de freinage (freinage d'arrêt, de ralentissement et d'immobilisation) — Partie 1: Algorithmes généraux utilisant le calcul par la valeur moyenne

Le présent document décrit les méthodologies de calcul des performances de freinage du matériel roulant ferroviaire et est applicable à tous les pays. Le présent document décrit les algorithmes/formules généraux utilisant des valeurs moyennes comme valeurs d'entrée pour effectuer des calculs de performances d'équipements de frein et de performances de freinage, en termes de distances d'arrêt/de ralentissement, de freinage d'immobilisation, de puissance et d'énergie pour tous les types de matériels roulants, qu'il s'agisse de véhicules isolés ou de compositions de train, par rapport à la distance de freinage. Les calculs peuvent être utilisés à n'importe quelle étape du processus d'évaluation (conception, fabrication, essais, vérification, investigation, etc.) du matériel roulant ferroviaire. Le présent document ne spécifie pas les critères d'acceptation spécifiques (réussite/échec). Le présent document n'est pas destiné à servir de guide de conception pour le choix des systèmes de freinage et ne spécifie pas les exigences de performances. La présente norme ne spécifie pas de méthode pour calculer l'allongement des distances d'arrêt en cas de dégradation du niveau d'adhérence disponible (phénomène d'enrayage). Le présent document donne des exemples de calcul des efforts de freinage pour les différents types d'équipements de frein, ainsi que de la distance d'arrêt et de freinage d'immobilisation propres à un véhicule isolé ou à une composition de train.

General Information

Status
Not Published
Current Stage
6000 - International Standard under publication
Start Date
22-Nov-2025
Completion Date
13-Dec-2025

Relations

Effective Date
23-Sep-2023

Overview

ISO 20138-1:2025 specifies general algorithms that use mean-value inputs to calculate braking performance for railway rolling stock. The standard covers stopping, slowing and stationary braking for single vehicles and train formations. It is applicable internationally and intended to provide common calculation methods that can be applied during design, manufacture, testing, verification and investigation of rolling stock. The document is a methodology standard - it does not prescribe acceptance criteria, select brake systems, or provide methods for wheel-slide (adhesion loss) extensions of stopping distance.

Key Topics

  • Mean value calculation methods for braking force, deceleration and energy/power estimates. These algorithms enable consistent, repeatable calculations of braking performance using averaged input values.
  • Stopping and slowing distance methodology, covering vehicle characteristics, wheel/rail adhesion-dependent and adhesion-independent brake unit models, time characteristics and initial/operating conditions. (See Clause 5 and Annex A for methodology.)
  • Stationary braking assessment including holding, immobilization and parking brake calculations, static friction considerations and retention safety metrics. (See Clause 6 and Annex B for workflow examples.)
  • Examples and informative annexes: worked examples and additional calculations for different brake equipment types, calculation of braking/retarding forces and special cases (Annexes C–F).
  • Normative references: ISO 20138-2 (step-by-step algorithms), ISO 24478 and ISO 22575 for terminology and definitions.

Applications

This Part 1 standard is designed to be used at multiple stages of rolling-stock lifecycle activities:

  • Design review - provide consistent baseline braking estimates for concept evaluation.
  • Manufacture and commissioning - verify that braking system outputs align with expected mean-value performance.
  • Testing and verification - calculate expected stopping and slowing distances and stationary brake retention values to compare with measured results.
  • Accident investigation and performance analysis - reconstruct braking performance using documented mean-value algorithms.

Benefits for practitioners include standardized, repeatable calculations that improve comparability across vehicles and projects, support regulatory submissions, and guide analytical assessment without imposing pass/fail thresholds.

Related Standards

  • ISO 20138-2:2025 - Part 2 complements Part 1 by detailing step-by-step, instantaneous-value calculation methods.
  • ISO 24478:2023 - braking vocabulary used in the clauses on stationary braking and retention safety.
  • ISO 22575 - general railway terms and definitions referenced throughout the document.

Practical note: ISO 20138-1 is a methodologies standard: use it to generate consistent braking performance outputs (stopping/slowing distances, stationary braking forces, power and energy estimates) and consult Part 2 or subject-matter experts for dynamic or adhesion-critical analyses such as wheel-slide behavior.

Draft

ISO/FDIS 20138-1 - Railway applications — Calculation of braking performance (stopping, slowing and stationary braking) — Part 1: General algorithms utilizing mean value calculation Released:12. 09. 2025

English language
73 pages
sale 15% off
sale 15% off
Draft

REDLINE ISO/FDIS 20138-1 - Railway applications — Calculation of braking performance (stopping, slowing and stationary braking) — Part 1: General algorithms utilizing mean value calculation Released:12. 09. 2025

English language
73 pages
sale 15% off
sale 15% off
Draft

ISO/FDIS 20138-1 - Applications ferroviaires — Calcul des performances de freinage (freinage d'arrêt, de ralentissement et d'immobilisation) — Partie 1: Algorithmes généraux utilisant le calcul par la valeur moyenne Released:13. 11. 2025

French language
78 pages
sale 15% off
sale 15% off

Frequently Asked Questions

ISO 20138-1 is a draft published by the International Organization for Standardization (ISO). Its full title is "Railway applications - Calculation of braking performance (stopping, slowing and stationary braking) - Part 1: General algorithms utilizing mean value calculation". This standard covers: This document specifies methodologies for calculation of braking performance for railway rolling stock and is applicable to all countries. This document describes the general algorithms/formulae using mean value inputs to perform calculations of brake equipment and braking performance in terms of stopping/slowing distances, stationary braking, power and energy for all types of rolling stock, either as single vehicles or train formations, with respect to the braking distance. The calculations can be used at any stage of the assessment process (design, manufacture, testing, verification, investigation, etc.) of railway rolling stock. This document does not set out the specific acceptance criteria (pass/fail). This document is not intended to be used as a design guide for selection of brake systems and does not specify performance requirements. This document does not provide a method to calculate the extension of stopping distances when the level of available adhesion is exceeded (wheel slide activity). This document contains examples of the calculation of brake forces for different brake equipment types and calculation of stopping distance and stationary braking relevant to a single vehicle or a train.

This document specifies methodologies for calculation of braking performance for railway rolling stock and is applicable to all countries. This document describes the general algorithms/formulae using mean value inputs to perform calculations of brake equipment and braking performance in terms of stopping/slowing distances, stationary braking, power and energy for all types of rolling stock, either as single vehicles or train formations, with respect to the braking distance. The calculations can be used at any stage of the assessment process (design, manufacture, testing, verification, investigation, etc.) of railway rolling stock. This document does not set out the specific acceptance criteria (pass/fail). This document is not intended to be used as a design guide for selection of brake systems and does not specify performance requirements. This document does not provide a method to calculate the extension of stopping distances when the level of available adhesion is exceeded (wheel slide activity). This document contains examples of the calculation of brake forces for different brake equipment types and calculation of stopping distance and stationary braking relevant to a single vehicle or a train.

ISO 20138-1 is classified under the following ICS (International Classification for Standards) categories: 45.020 - Railway engineering in general. The ICS classification helps identify the subject area and facilitates finding related standards.

ISO 20138-1 has the following relationships with other standards: It is inter standard links to ISO 20138-1:2018. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.

You can purchase ISO 20138-1 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of ISO standards.

Standards Content (Sample)


FINAL DRAFT
International
Standard
ISO/FDIS 20138-1
ISO/TC 269/SC 2
Railway applications — Calculation
Secretariat: AFNOR
of braking performance (stopping,
Voting begins on:
slowing and stationary braking) —
2025-09-26
Part 1:
Voting terminates on:
2025-11-21
General algorithms utilizing mean
value calculation
Applications ferroviaires — Calcul des performances de freinage
(freinage d'arrêt, de ralentissement et d'immobilisation) —
Partie 1: Algorithmes généraux utilisant le calcul par la valeur
moyenne
RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT,
WITH THEIR COMMENTS, NOTIFICATION OF ANY
RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE
AND TO PROVIDE SUPPOR TING DOCUMENTATION.
IN ADDITION TO THEIR EVALUATION AS
BEING ACCEPTABLE FOR INDUSTRIAL, TECHNO-
LOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT
INTERNATIONAL STANDARDS MAY ON OCCASION HAVE
TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL
TO BECOME STAN DARDS TO WHICH REFERENCE MAY BE
MADE IN NATIONAL REGULATIONS.
Reference number
ISO/FDIS 20138-1:2025(en) © ISO 2025

FINAL DRAFT
ISO/FDIS 20138-1:2025(en)
International
Standard
ISO/FDIS 20138-1
ISO/TC 269/SC 2
Railway applications — Calculation
Secretariat: AFNOR
of braking performance (stopping,
Voting begins on:
slowing and stationary braking) —
Part 1:
Voting terminates on:
General algorithms utilizing mean
value calculation
Applications ferroviaires — Calcul des performances de freinage
(freinage d'arrêt, de ralentissement et d'immobilisation) —
Partie 1: Algorithmes généraux utilisant le calcul par la valeur
moyenne
RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT,
WITH THEIR COMMENTS, NOTIFICATION OF ANY
RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE
AND TO PROVIDE SUPPOR TING DOCUMENTATION.
© ISO 2025
IN ADDITION TO THEIR EVALUATION AS
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
BEING ACCEPTABLE FOR INDUSTRIAL, TECHNO-
LOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
INTERNATIONAL STANDARDS MAY ON OCCASION HAVE
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL
or ISO’s member body in the country of the requester.
TO BECOME STAN DARDS TO WHICH REFERENCE MAY BE
MADE IN NATIONAL REGULATIONS.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland Reference number
ISO/FDIS 20138-1:2025(en) © ISO 2025

ii
ISO/FDIS 20138-1:2025(en)
Contents Page
Foreword .v
Introduction .vii
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Symbols . 2
5 Stopping and slowing distances calculation . 7
5.1 General .7
5.2 Rail vehicle characteristics .9
5.2.1 Static mass, m .9
st
5.2.2 Equivalent rotating mass, m .9
rot
5.2.3 Dynamic mass, m .10
dyn
5.2.4 Wheel diameter, D .10
5.3 Wheel/rail adhesion dependent brake unit type characteristics .10
5.3.1 Basic brake cylinder .10
5.3.2 Tread brake .11
5.3.3 Tread brake unit .14
5.3.4 Disc brake . 15
5.3.5 Electro-dynamic brake .17
5.3.6 Fluid retarder .17
5.4 Wheel/rail adhesion independent brake unit characteristics .18
5.4.1 Magnetic track brake .18
5.4.2 Linear eddy current brake .19
5.4.3 Force from train resistance . 20
5.4.4 Aerodynamic brake .21
5.4.5 Wind force on the train, F .21
wind
5.5 Time characteristics .21
5.5.1 Declaration of brake subsystem time characteristics .21
5.5.2 Equivalent response time, t .21
a,e
5.6 Initial and operating characteristics . 23
5.6.1 Forces on the slope . 23
5.6.2 Downhill force due to gravity depending on the gradient, F . 23
D
5.6.3 Blending.24
5.6.4 Value of the mean wheel/rail adhesion required for the braked wheelset, τ .
ax
5.7 Stopping and slowing distance calculation based on mean values . 25
5.7.1 Mean decelerating force with respect to the distance, F .
Dec
5.7.2 Equivalent braking deceleration, a , based on decelerating force . 25
f,e
5.7.3 Equivalent free running distance, s . 26
a,e
5.7.4 Stopping and slowing distance on level track, s . 26
5.7.5 Methods of calculating stopping and slowing distance on a gradient . 26
5.8 Additional dynamic calculations .27
5.8.1 General .27
5.8.2 Braking energy.27
5.8.3 Maximum braking power of a brake subsystem, P . 28
max,n
5.8.4 Maximum braking power of a brake unit, P . 28
max,u,n
6 Stationary braking . .28
6.1 General . 28
6.2 Holding brake . 28
6.3 Immobilization brake . 28
6.4 Parking brake . 29

iii
ISO/FDIS 20138-1:2025(en)
6.5 Stationary brake calculation . 29
6.5.1 General . 29
6.5.2 General characteristics . . 29
6.6 Static coefficient of friction . 29
6.7 Parking brake application force provided by the different subsystems . 29
6.7.1 Screw applied parking brake (tread brake) . 29
6.7.2 Spring applied tread brake unit .31
6.7.3 Screw applied parking brake (disc brake) .32
6.7.4 Spring applied disc brake unit arrangement . 33
6.7.5 Force of a permanent magnetic track brake, F . 34
Mg,st
6.8 Retention force of an individual wheelset, Fi,τ .
()
st,ax, a
6.9 Total retention force per train, Fi(),τ .
st a
6.10 Stationary brake safety calculation . 35
6.10.1 General . 35
6.10.2 Basic condition for holding on a slope . 35
6.11 Safety ratio for stationary brake (retention safety), Si,τ .
()
st a
6.12 Static coefficient of wheel/rail adhesion required by each disc braked wheelset, τ . 36
req,st,ax
6.13 Coefficient of wheel/rail adhesion required by each wheelset with block brake or tread
brake .37
6.14 Maximum achievable gradient, i .37
max
6.15 Additional results for stationary brake calculation for rail vehicle or unit .37
6.15.1 Safety against rolling, S .
R()α
6.15.2 Additional results for stationary brake calculation for rail vehicle or unit with a
different relationship between braking force and load per wheelset . 38
Annex A (informative) Methodology of stopping and slowing distance calculation .39
Annex B (informative) Workflow for stationary brake calculations . 41
Annex C (informative) Examples for brake calculation .42
Annex D (informative) Calculation of braking or retarding forces (non-stationary) .55
Annex E (informative) Additional results for stationary brake calculation for rail vehicle or
unit with a different relationship between braking force and load per wheelset .60
Annex F (informative) Tread brake with different lever length ratios .72
Bibliography .73

iv
ISO/FDIS 20138-1:2025(en)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out through
ISO technical committees. Each member body interested in a subject for which a technical committee
has been established has the right to be represented on that committee. International organizations,
governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely
with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are described
in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types
of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the
ISO/IEC Directives, Part 2 (see www.iso.org/directives).
ISO draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent
rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a)
patent(s) which may be required to implement this document. However, implementers are cautioned that
this may not represent the latest information, which may be obtained from the patent database available at
www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions
related to conformity assessment, as well as information about ISO's adherence to the World Trade
Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 269, Railway applications, Subcommittee SC 2,
Rolling stock.
This second edition cancels and replaces the first edition (ISO 20138-1:2018), which has been technically
revised.
The main changes are as follows:
— ISO 24478 has been added to Clause 2;
— new terms “brake subsystem” and “mean swept radius” have been added to Clause 3;
— Clause 4 “Symbols” with Table 1 have been revised;
— the symbols that are explained in Table 1 have been deleted from formulae keys;
— Clause 5 “Stopping and slowing distances calculation” has been revised;
— Clause 6 “Stationary braking” has been revised;
— Annex A “Methodology of stopping and slowing distance calculation” has been revised;
— Annex B “Workflow for stationary brake calculations” has been revised;
— Annex C “Examples for brake calculation” has been revised;
— Annex D “Calculation of braking forces (non-stationary)” has been revised;
— Annex E “Additional results for stationary brake calculation for rail vehicle or unit with a different
relationship between braking force and load per wheelset“ and Annex F “Tread brake with different
lever length ratios” have been added;
— the Bibliography has been revised.
A list of all parts in the ISO 20138 series can be found on the ISO website.

v
ISO/FDIS 20138-1:2025(en)
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.

vi
ISO/FDIS 20138-1:2025(en)
Introduction
The objective of this document is to enable the railway industry and operators to work with common
calculation methods.
This document (i.e. ISO 20138-1) and ISO 20138-2 complement each other but also can be used separately,
depending on the requirements of the user.
— In this document, the braking force equals the retarding force, as the assumed braking forces used in a
brake calculation never exceed the values which can be transferred by the assumed wheel/rail adhesion.
— ISO 20138-2 details the step by step calculation methodology utilizing instantaneous values of braking
force provided by each operational brake system throughout the stopping or slowing time.

vii
FINAL DRAFT International Standard ISO/FDIS 20138-1:2025(en)
Railway applications — Calculation of braking performance
(stopping, slowing and stationary braking) —
Part 1:
General algorithms utilizing mean value calculation
1 Scope
This document specifies the methodologies for the calculation of braking performance for railway rolling stock.
This document describes the general algorithms and formulae using mean value inputs to perform the
calculations of braking performance in terms of stopping and slowing distances, stationary braking, and
power and energy for all types of rolling stock, either as single rail vehicles or train formations, with respect
to the braking distance.
The calculations can be used at any stage of the development and assessment process (design, manufacturing,
testing, verification, investigation, etc.) of railway rolling stock.
This document does not set out specific acceptance criteria (pass or fail). This document is not intended to
be used as a design guide for the selection of brake systems. This document does not specify performance
requirements.
This document contains examples of the calculation of braking forces for different brake systems and
calculation of stopping distance and stationary braking relevant to a single rail vehicle or a train. This
document does not provide a method to calculate the extension of stopping distances when the level of
available wheel/rail adhesion is exceeded (wheel slide activity).
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.
ISO 20138-2:2025, Railway applications — Calculation of braking performance (stopping, slowing and
stationary braking) — Part 2: General algorithms utilizing step by step calculation
ISO 22575, Railway applications —General terms and definitions
ISO 24478:2023, Railway applications — Braking — General vocabulary
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 24478, ISO 22575 and the
following apply.
ISO and IEC maintain terminology databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at https:// www .electropedia .org/

ISO/FDIS 20138-1:2025(en)
3.1
train
formation consisting of one or more units capable for self-propelled operation
[SOURCE: ISO 22575:2025, 3.4]
3.2
trainset
fixed formation(s) that can operate as a train (3.1)
[SOURCE: ISO 22575:2025, 3.2.2.2]
3.3
unit
assembly of one or more railway vehicles (3.4)
[SOURCE: ISO 22575:2025, 3.2.2]
3.4
rail vehicle
railway vehicle
individual element of a means of transport mechanically or magnetically guided and supported by track
[SOURCE: ISO 22575:2025, 3.2.1]
4 Symbols
For the purposes of this document, the general symbols given in Table 1 apply.
Table 1 — Symbols
Symbol Description Unit
A Contact area per brake block m
b
A Brake cylinder area m
c
A Contact area of a single brake pad m
p
A Reference area of the train m
train
a Defined value for the minimum output signal (typically 10 % or 5 %) %
a Equivalent braking deceleration m/s
f,e
a Equivalent braking deceleration including the effect of gradient and inertia m/s
f,e,grad
a Equivalent braking deceleration neglecting inertia m/s
f,e,grad_simple
a Equivalent braking deceleration acting during speed range, z m/s
f,e,z
b Defined value for the maximum output signal (typically 95 % or 90 %) %
C Characteristic coefficient of the train independent of speed (rolling resistance) N
C Characteristic coefficient of the train proportional to the speed N/(m/s)
C Characteristic coefficient of aerodynamic resistance due to pressure drag and skin N/(m/s)
friction drag
c Air drag coefficient —
w
D Wheel diameter m
F Force N
F Attraction force of one permanent magnet assembly acting on a single rail N
AMg,st
F Braking force N
B
F Stationary braking force acting on that wheelset N
B,ax,st
F Braking force for a braked wheel N
B,BW
F Disc braking force at the wheel tread N
B,DBU
ISO/FDIS 20138-1:2025(en)
TTabablele 1 1 ((ccoonnttiinnueuedd))
Symbol Description Unit
F Braking force at the brake disc N
B,DBU,t
F Blended braking force N
Bd
F Braking force of the linear eddy current brake N
B,ECB
Mean braking force of the linear eddy current brake N
F
B,ECB
F Maximum braking force of the linear eddy current brake N
B,ECB,max
F Braking force of an electro-dynamic brake N
B,ED
Mean braking force of an electro-dynamic brake depending on the initial speed N
F
B,ED
F Maximum braking force of an electro-dynamic brake N
B,ED,max
F Braking force of a fluid retarder N
B,FR
Mean braking force of a fluid retarder depending on the initial speed N
F
B,FR
F Maximum braking force of a fluid retarder N
B,FR,max
F Braking force of a wheel/rail adhesion independent brake N
B,ind
F Braking force of a wheel/rail adhesion independent brake system type z N
B,ind,z
F Braking force of one magnet assembly acting on a single rail N
B,Mg,A
Mean braking force of one magnet assembly acting on a single rail N
F
B,Mg,A
F Total braking force of all magnetic track brake units in a rail vehicle N
B,Mg,tot
Braking force of brake subsystem n N
F
B,n
Mean braking force of brake subsystem n N
F
B,n
F Parking brake application force at the wheel tread N
B,st
F Sum of parking brake application force at the wheel tread N
B,tot,st
F Braking force of brake unit n N
Bu,n
F Brake application force (total brake block force) N
b
F Brake application force at each individual application point (single brake block force) N
b,ap
F Single parking brake application force (brake block force) at each individual applica- N
b,ap,st
tion point
F Brake application force for a brake arrangement
b,arm
F Brake block force of an individual brake unit N
b,ax
F Static brake block force of an individual brake unit N
b,ax,st
F Attraction force of one magnet assembly acting on a single rail N
b,Mg,A
F Attraction force of one permanent magnet N
b,Mg,st
F Parking brake application force (brake block force) of an individual parking brake unit N
b,st
F Total force acting on all friction faces or total brake block force at brake unit level N
b,tot
F Sum of parking brake application forces acting on all application points N
b,tot,st
F Input force at the intermediate lever N
Cbl
F Hand force exerted at crank handle or hand wheel N
Cr,H
F Internal cylinder force N
c
F Clamping force N
cl
F Downhill force due to gravity N
D
F Decelerating force N
Dec
Mean decelerating force N
F
Dec
F Proportion of downhill force to be resisted per wheelset with applied parking brakes N
d,ax
F Component of the external force acting parallel to the direction of movement N
ext
Component of the mean external force acting parallel to the direction of movement N
F
ext
ISO/FDIS 20138-1:2025(en)
TTabablele 1 1 ((ccoonnttiinnueuedd))
Symbol Description Unit
F Output force of the parking brake mechanism at the position where it meets the air N
G
brake’s rigging
F Weight N
g
F Static axle load N
g,ax
F Retention force N
H
F Output force at the intermediate lever N
il
F Internal force (e.g. due to rolling resistance) N
int
F Parking brake application force of one permanent magnet assembly acting on a single N
Mg,st
rail
F Total parking brake application force of all permanent magnet assemblies in a rail N
Mg,st,tot
vehicle
F Static axle load perpendicular to the rail per wheelset with applied parking brake N
N
F Static axle load perpendicular to the rail per wheelset with applied parking brake for a N
N,ax
specific wheelset
F Static axle load perpendicular to the rail per wheelset with applied parking brake (i is N
N,i
an index used for sorting wheelsets)
F Remaining static axle load perpendicular to the rail N
N,rem
F Total parking brake application force acting at the rail N
PB
F Total Parking brake application force per wheelset acting at the rail N
pb,ax
F Perpendicular force N
Perp
F Perpendicular force at wheelset N
Perp,ax
F Piston force N
p
F Brake application force (brake pad force) acting on a single friction face N
pad
F Brake application force acting on a single friction face on a disc with two friction faces N
pad, left
F
pad, right
F Force on application point bogie N
pull
F Static force on application point bogie N
pull,st
F Force from train resistance N
Ra
F Force from train resistance when leaving stationary condition N
Ra,st
Mean force from train resistance N
F
Ra
F Parking brake spring force N
SP
F Restoring force of brake unit or spring applied force N
S,C
F Restoring force, e.g. slack adjuster N
S,R
F (i,τ ) Retention force per train for a given slope i and a given wheel/rail adhesion τ N
st a a
F (i,τ ) Retention force of an individual wheelset for a given slope i and a given wheel/rail N
st,ax a
adhesion τ
a
F Stationary braking force acting on the wheelset of each immobilization/holding/park- N
st,n
ing brake, n
F Restoring force N
s,rig
F Tangential force N
t
F Wind force on the train N
wind
g Standard acceleration due to gravity m/s
I Current A
i Gradient of the track (positive rising/negative falling) —
i Cable mechanical ratio —
Cbl
i Internal rigging ratio of brake unit —
c
ISO/FDIS 20138-1:2025(en)
TTabablele 1 1 ((ccoonnttiinnueuedd))
Symbol Description Unit
i Calliper lever ratio —
cal
i Gear ratio (from hand force application point to connection point with air brake rig- —
G
ging)
i Internal rigging ratio of the tread brake unit; —
int
i Maximum achievable gradient —
max
i Rigging ratio after slack adjuster —
R
i Rigging ratio between the brake cylinder and slack adjuster —
rig
i Lever ratio per brake block —
rigB, w
i Rigging ratio between the point where F meets the air brake’s rigging and the slack —
rig,st G
adjuster
i Lever ratio per brake beam —
rig,Bw,ax
i Calliper lever ratio (parking brake) —
rig,C
i Calliper lever ratio —
rig,n
i Intermedia lever ratio —
rig,ZH
i Rigging ratio for restoring force —
s,rig
i Overall static rigging ratio
st
J Inertia kg·m
k Coefficient (provided by the supplier) —
ECB
k , k , k , k Coefficient (provided by the supplier) —
0 2 3 5
k Coefficient, value and unit provided by the supplier dependent on k provided by
1 3
the supplier
dependent
on k
k Coefficient (provided by the supplier) s/m
k , k Factor describing an active or passive brake cylinder —
1v 2v
l , l Main brake lever length/calliper lever length m
a b
l , l Bogie lever length m
c d
l Main brake lever length (parking brake) m
e
m Dynamic mass kg
dyn
m Equivalent rotating mass kg
rot
m Equivalent rotating mass of the braked wheelset
rot,ax
m Static mass kg
st
m Static mass per wheelset kg
st,ax
m Static mass of the train kg
st,train
N Number of brake subsystems —
n Number of application points per wheel —
ap
n Number of braked wheelsets for the considered brake application —
B,ax
n Number of brake beams —
Beam
n Number of brake beams per wheelset —
BeamWheel
n Number of braked wheels —
Bw
n Number of brake cylinder(s) —
Cyl
n Number of brake discs on which one brake unit is acting —
disc
n Number of friction faces —
face
n Number of MTB units in a rail vehicle —
Mg
n Number of wheelsets with applied parking brake —
PB,ax
ISO/FDIS 20138-1:2025(en)
TTabablele 1 1 ((ccoonnttiinnueuedd))
Symbol Description Unit
n Number of spring brake units —
SP
n , n Value of power in speed range above v normally obtained from supplier —
1 2 cha
p Pressure N/m
p Specific pressure per brake block N/m
ab
p Specific pressure of a single brake pad N/m
ap
p Brake cylinder pressure Pa
c
P Maximum power of brake subsystem n W
max,n
P Maximum power of brake unit n W
max,u,n
r Mean swept radius of the brake pad on the friction face m
m
S Retention safety —
H
S Safety against rolling —
R

S ()i ,τ Safety ratio for stationary brake for a given slope i and for a wheel/rail adhesion τ
st a a
S Safety against sliding —
τ,slide
s Stopping distance m
s Equivalent free running distance m
a,e
s Distance travelled while the brake unit(s) of the subsystem n is applied m
B,n
s Stopping distance on a gradient m
grad
s Slowing distance m
sl
s Slowing distance on a gradient m
sl,grad
t Time s
t Delay time s
a
t Delay time for a specific brake subsystem n s
a,n
t Build-up time s
ab
t Build-up time for a specific brake subsystem n s
ab,n
t Equivalent response time s
a,e
t Equivalent response time for a specific brake subsystem n s
a,e,n
t Response time (build-up) s
b
v Speed m/s
v Characteristic speed (corresponding to maximum retarding force) m/s
cha
v Final speed m/s
fin
v Maximum design speed of the rail vehicle or unit m/s
max
Speed of the crosswind m/s
v
wind
v Initial speed m/s
v …v Particular speeds m/s
1 4
W Energy dissipated by all applied brake units J
B
W Energy dissipated by brake subsystem n J
B,n
W Energy dissipated by the train resistance J
Ra
W Total energy J
tot
Y Percentage of output signal —
Z Number of speed ranges —
z Speed range step number —
α Angle of slope °
η Overall efficiency of brake rigging
η Cable efficiency —
Cbl
ISO/FDIS 20138-1:2025(en)
TTabablele 1 1 ((ccoonnttiinnueuedd))
Symbol Description Unit
η Internal efficiency of brake unit —
c
η Calliper efficiency —
cal
η Gear efficiency (from hand force application point to connection point with air brake —
G
rigging)
Efficiency of the internal rigging of the tread brake unit —
η
int
η Efficiency of brake rigging after the slack adjuster —
R
η Efficiency of brake rigging between the brake cylinder and slack adjuster —
rig
η Static efficiency of calliper —
rig,st
η Static efficiency of intermediate lever —
rig,st,ZH
η Overall static efficiency of brake rigging —
st
μ Brake block/brake pad coefficient of friction —
μ
Mean brake block/brake pad coefficient of friction —
Mean coefficient of friction between the pole shoe of one magnet assembly and the rail —
μ
Mg
μ Static coefficient of friction of permanent magnet (pole shoe) —
Mg,st
μ (v) Speed dependent friction coefficient between the pole shoe of one magnet assembly —
Mg
and the rail
μ Brake block/brake pad static coefficient of friction —
st
ρ 3
Air density kg/m
τ Available wheel/rail adhesion —
a
Value of the mean wheel/rail adhesion required for the braked wheelsets —
τ
ax
τ Temporary value of the mean wheel/rail adhesion required for the braked wheelset —
ax,i
used during iteration step i
Coefficient of wheel/rail adhesion required to resist the downhill force by each braked —
τ
D,req,ax
wheelset
τ Assumed limit of wheel/rail adhesion for parking brake calculation in the design phase —
d
τ Given wheel/rail adhesion —
max
Coefficient of wheel/rail adhesion required by each braked wheelset —
τ
req,ax
τ Maximum required wheel/rail adhesion by each braked wheelset —
req,max,ax
Static coefficient of wheel/rail adhesion required to transmit the braking force to the —
τ
req,st,ax
rail by each braked wheelset for a given slope
5 Stopping and slowing distances calculation
5.1 General
A summary of the methodology to establish the braking forces and other forces acting on the rail vehicle,
unit or train is presented in Figure A.1.
In general, the formulae contained in this document are used in the first instance when considering constant
braking forces with respect to speed.
In the second instance, the formulae may be used as a mean value calculation when considering a non-
constant speed dependent braking force which is transformed to a mean braking force value. This mean
value of braking force is considered as a fully developed force without considering the response time and
results in the same braking distance as if calculated using the speed dependent braking force.
Symbols which are marked with a bar on top exclusively denote mean values, e.g. F . Other symbols which
B,ED
are not marked with a bar on top denote instantaneous or mean values.

ISO/FDIS 20138-1:2025(en)
The algorithms in this document are applicable when the equivalent response time, as defined in 5.5.2, is less
than 20 % of the braking time with a fully-established brake. For response times with a greater percentage
(e.g. braking from low initial speeds) or where instantaneous values and algorithms are used or the finite
time steps are preferred, ISO 20138-2 shall be used.
The mean value calculation is not intended to be used for an extreme value estimation or variation, e.g.
minimum or maximum coefficient of friction of friction couple. The input values for the calculation are used
without tolerances.
The decelerating force and its component forces expressed in this document are those acting parallel to the rail.
The brake system design parameters necessary to conduct the calculation shall be defined at the level of the
wheelset, bogie, rail vehicle, unit or train.
Calculations shall be performed for each brake subsystem (e.g. disc brakes, tread brakes, electro-dynamic
brakes). All of the various brake subsystems applied to the wheelset, bogie, rail vehicle, unit or train shall be
identified and accounted for in the calculation.
When the brake equipment fitted to the rail vehicle, unit or train is used under different circumstances, e.g.
load condition, speed range, brake demand, each condition or state of the brake shall be considered together
with the resultant effect on decelerating force.
Clause 5 identifies how to calculate the braking force generated by each brake subsystem. In general,
calculations of stopping and slowing distances are based on the assumption of nominal conditions (e.g.
straight and level track).
Annex C provides examples for brake calculations of different rail vehicles and units (freight wagon, coach,
locomotive and multiple unit).
The following subclauses consider the braking force generated by common brake subsystems. If other brake
subsystems are used, e.g. new or novel types, then alternative methods of braking force calculation should
be adopted.
Figure 1 gives a general overview of forces of brake subsystems and other internal or external forces.
All train resistance forces are assumed to be wheel/rail adhesion independent and therefore are not
considered for the calculation of wheel/rail adhesion in this document but are considered for calculation of
the decelerating force.
ISO/FDIS 20138-1:2025(en)
Figure 1 — General overview of forces of brake subsystems and other internal or external forces
5.2 Rail vehicle characteristics
5.2.1 Static mass, m
st
The static mass, m , of the rail vehicle or the static mass of a wheelset, m or both, is (are) assessed in
st st,ax
stationary condition and shall be used to establish the braking force required or the wheel/rail adhesion
requirements respectively for each applicable operating condition.
When there are different static masses per wheelset, m , the braking force shall be calculated for each
st,ax
wheelset.
5.2.2 Equivalent rotating mass, m
rot
The equivalent rotating mass, m , is the linear conversion of the moment of inertia due to
rot
— the rotation of the wheelsets, and
— the rotating parts coupled to the wheelsets during braking.
The equivalent rotating mass shall be determined using a theoretical approach or established as a result of
tests. The wheel size applicable to the rotating mass shall be identified.
When there are different rotating masses, e.g. a mix of trailer and driven wheelsets, the equivalent rotating
mass shall be determined for each type of wheelset.
For those wheelsets, if an inertia value J due to the rotating masses is known, the equivalent rotating mass
using inertia can be calculated as set out in Formula (1):
4⋅J
m = (1)
rot
D
NOTE The wheel diameter used for calculation of equivalent rotating masses is normally the maximum wheel
diameter.
A value of equivalent rotating mass can be expressed as a percentage of the static mass.

ISO/FDIS 20138-1:2025(en)
5.2.3 Dynamic mass, m
dyn
For the purpose of the calculation being conducted, the dynamic mass, m , is the sum of the static mass
dyn
and the equivalent rotating mass for the entity being considered (e.g. wheelset, bogie, rail vehicle) according
to Formula (2):
mm=+ m (2)
dynstrot
5.2.4 Wheel diameter, D
The wheel diameter, D, is the diameter at the rolling contact point between the wheel and the rail.
When the rail vehicle is equipped with different sizes of wheels (by design not due to wear), each size of
wheel shall be determined.
NOTE 1 The wheel diameter used for calculation of stopping and slowing distances is normally the maximum wheel
diameter.
NOTE 2 The wheel diameter used to determine the required wheel/rail adhesion, is normally the minimum wheel
diameter.
5.3 Wheel/rail adhesion dependent brake unit type characteristics
5.3.1 Basic brake cylinder
This subclause describes the calculation of piston force as an output force of the brake cylinder.
The basic principle of a pressure applied cylinder is shown in Figure 2.
The first step is the calculation of the internal cylinder force F [see Formula (3)].
c
Efficiency, ratios, friction resistances and moduli of resilience, etc. are not considered in the formula of
calculation of the cylinder force.
Figure 2 — Basic principle of a pressure applied cylinder
Fp=⋅A (3)
cc c
Two types of brake cylinder exist: active version and passive version. The active version uses the brake
cylinder pressure to generate the piston force. The passive version uses the spring force to generate the
piston force (see Figure 3 and Table 2).
Figure 3 — Basic principle of an active (left) and passive (right) cylinder

ISO/FDIS 20138-1:2025(en)
The second step is the calculation of piston force, F ,
...


ISO/FDIS 20138-1:2025(en)
ISO/TC 269/SC 02/WG 1 2
Secretariat: AFNOR
Date: 2025-09-10
Railway applications — Calculation of braking performance
(stopping, slowing and stationary braking) — Part 1: General
algorithms utilizing mean value calculation —
Second edition
Date: 2025-06-17
ISO #####-#:####(X)
Part 1:
General algorithms utilizing mean value calculation
Applications ferroviaires — Calcul des performances de freinage (freinage d'arrêt, de ralentissement et
d'immobilisation) —
Partie 1: Algorithmes généraux utilisant le calcul par la valeur moyenne
FDIS stage
2 © ISO #### – All rights reserved

ISO/FDIS 20138-1:2025(en)
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication
may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying,
or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO
at the address below or ISO'sISO’s member body in the country of the requester.
ISO Copyright Office copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: + 41 22 749 01 11
Email: E-mail: copyright@iso.org
Website: www.iso.org
Published in Switzerland.
iii
ISO/FDIS 20138-1:2025(en)
Contents
Foreword . v
Introduction . vii
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Symbols . 2
5 Stopping and slowing distances calculation . 8
5.1 General. 8
5.2 Rail vehicle characteristics . 10
5.3 Wheel/rail adhesion dependent brake unit type characteristics . 11
5.4 Wheel/rail adhesion independent brake unit characteristics . 22
5.5 Time characteristics . 26
5.6 Initial and operating characteristics . 28
5.7 Stopping and slowing distance calculation based on mean values. 32
5.8 Additional dynamic calculations . 34
6 Stationary braking . 35
6.1 General. 35
6.2 Holding brake . 35
6.3 Immobilization brake . 35
6.4 Parking brake . 35
6.5 Stationary brake calculation . 35
6.6 Static coefficient of friction . 36
6.7 Parking brake application force provided by the different subsystems . 36
6.8 Retention force of an individual wheelset, 𝑭st,ax,(𝒊, 𝝉a). 43
6.9 Total retention force per train, 𝑭st(𝒊, 𝝉a) . 43
6.10 Stationary brake safety calculation . 43
6.11 Safety ratio for stationary brake (retention safety), 𝑺st(𝒊, 𝝉a) . 45
6.12 Static coefficient of wheel/rail adhesion required by each disc braked wheelset, τreq,st,ax 45
6.13 Coefficient of wheel/rail adhesion required by each wheelset with block brake or tread
brake. 45
6.14 Maximum achievable gradient, imax . 46
6.15 Additional results for stationary brake calculation for rail vehicle or unit . 46
Annex A (informative) Methodology of stopping and slowing distance calculation . 48
Annex B (informative) Workflow for stationary brake calculations . 51
Annex C (informative) Examples for brake calculation . 54
Annex D (informative) Calculation of braking or retarding forces (non-stationary) . 71
Annex E (informative) Additional results for stationary brake calculation for rail vehicle or unit
with a different relationship between braking force and load per wheelset . 77
Annex F (informative) Tread brake with different lever length ratios . 90
Bibliography . 91

iv
ISO/FDIS 20138-1:2025(en)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out through
ISO technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are described
in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of
ISO documents should be noted. This document was drafted in accordance with the editorial rules of the
ISO/IEC Directives, Part 2 (see www.iso.org/directives).
ISO draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights
in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s)
which may be required to implement this document. However, implementers are cautioned that this may not
represent the latest information, which may be obtained from the patent database available at
www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions
related to conformity assessment, as well as information about ISO's adherence to the World Trade
Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 269, Railway applications, Subcommittee SC 2,
Rolling stock.
This second edition cancels and replaces the first edition (ISO 20138-1:2018), which has been technically
revised.
The main changes are as follows:
— — a normative reference to ISO 24478 has been added to Clause 2;
— — new terms “brake subsystem” and “mean swept radius” have been added to 3Clause 3;;
— 4— Clause 4 “Symbols"” with Table 1Table 1 have been revised;
— — the symbols that are explained in Table 1Table 1 have been deleted infrom formulae keys;
— 5— Clause 5 “Stopping and slowing distances calculation” has been revised;
— 6— Clause 6 “Stationary braking” has been revised;
— Annex A— Annex A “Methodology of stopping and slowing distance calculation” has been revised;
— Annex B— Annex B “Workflow for stationary brake calculations” has been revised;
— Annex C— Annex C “Examples for brake calculation” has been revised;
— Annex D— Annex D “Calculation of braking forces (non-stationary)” has been revised;
v
ISO/FDIS 20138-1:2025(en)
— Annex E— Annex E “Additional results for stationary brake calculation for rail vehicle or unit with a
different relationship between braking force and load per wheelset“ and Annex FAnnex F “Tread brake
with different lever length ratios” have been added;
— — the Bibliography has been revised.
A list of all parts in the ISO 20138 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.
vi
ISO/FDIS 20138-1:2025(en)
Introduction
The objective of this document is to enable the railway industry and operators to work with common
calculation methods.
This document (i.e. ISO 20138--1) and the second part (ISO 20138--2) complement each other but also can be
used separately, depending on the requirements of the user.
— — In this document, the braking force equals the retarding force, as the assumed braking forces used in
a brake calculation never exceed the values which can be transferred by the assumed wheel/rail adhesion.
— — ISO 20138--2 details the step by step calculation methodology utilizing instantaneous values of
braking force provided by each operational brake system throughout the stopping or slowing time.
vii
ISO/FDIS 20138-1:2025(en)
Railway applications — Calculation of braking performance
(stopping, slowing and stationary braking) — —
Part 1:
General algorithms utilizing mean value calculation
1 Scope
This document specifies the methodologies for the calculation of braking performance for railway rolling
stock.
This document describes the general algorithms and formulae using mean value inputs to perform the
calculations of braking performance in terms of stopping and slowing distances, stationary braking, and power
and energy for all types of rolling stock, either as single rail vehicles or train formations, with respect to the
braking distance.
The calculations can be used at any stage of the development and assessment process (design, manufacturing,
testing, verification, investigation, etc.) of railway rolling stock.
This document does not set out specific acceptance criteria (pass or fail). This document is not intended to be
used as a design guide for the selection of brake systems. This document does not specify performance
requirements.
This document contains examples of the calculation of braking forces for different brake systems and
calculation of stopping distance and stationary braking relevant to a single rail vehicle or a train. This
document does not provide a method to calculate the extension of stopping distances when the level of
available wheel/rail adhesion is exceeded (wheel slide activity).
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.
ISO 20138-2:2025, Railway applications — Calculation of braking performance (stopping, slowing and
stationary braking) — Part 2: General algorithms utilizing step by step calculation
ISO 22575, Railway applications —General terms and definitions
ISO 24478:2023, Railway applications — Braking — General vocabulary
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 24478, ISO 22575 and the following
apply.
ISO and IEC maintain terminology databases for use in standardization at the following addresses:
— — ISO Online browsing platform: available at https://www.iso.org/obp
— — IEC Electropedia: available at https://www.electropedia.org/
ISO/FDIS 20138-1:2025(en)
3.1 3.1
train
formation consisting of one or more units capable for self-propelled operation
[SOURCE: ISO 22575:2025, 3.4]
3.2 3.2
trainset
fixed formation(s) that can operate as a train (3.1)
[SOURCE: ISO 22575:2025, 3.2.2.2]
3.3 3.3
unit
assembly of one or more railway vehicles (0)
[SOURCE: ISO 22575:2025, 3.2.2]
3.4
3.4 railway
rail vehicle
railrailway vehicle
individual element of a means of transport mechanically or magnetically guided and supported by track
[SOURCE: ISO 22575:2025, 3.2.1]
4 Symbols
For the purposes of this document, the general symbols given in Table 1Table 1 apply.
Table 1 — Symbols
Symbol Description Unit
Ab Contact area per brake block m
Ac Brake cylinder area m
Ap Contact area of a single brake pad m
𝐴 Reference area of the train m
train
a Defined value for the minimum output signal (typically 10 % or 5 %) %
af,e Equivalent braking deceleration m/s
af,e,grad Equivalent braking deceleration including the effect of gradient and inertia m/s
a Equivalent braking deceleration neglecting inertia m/s
f,e,grad_simple
af,e,z Equivalent braking deceleration acting during speed range, z m/s
b Defined value for the maximum output signal (typically 95 % or 90 %) %
C1 Characteristic coefficient of the train independent of speed (rolling resistance) N
C Characteristic coefficient of the train proportional to the speed N/(m/s)
C Characteristic coefficient of aerodynamic resistance due to pressure drag and skin N/(m/s)
friction drag
𝑐 𝑐 Air drag coefficient —
w w
ISO/FDIS 20138-1:2025(en)
Symbol Description Unit
D Wheel diameter m
F Force N
FAMg,st Attraction force of one permanent magnet assembly acting on a single rail N
FB Braking force N
FB,ax,st Stationary braking force acting on that wheelset N
F Braking force for a braked wheel N
B,BW
FB,DBU Disc braking force at the wheel tread N
FB,DBU,t Braking force at the brake disc N
FBd Blended braking force N
F Braking force of the linear eddy current brake N
B,ECB
̄ ¯
𝐹 𝐹 Mean braking force of the linear eddy current brake N
B,ECB B,ECB
FB,ECB,max Maximum braking force of the linear eddy current brake N
FB,ED Braking force of an electro-dynamic brake N
̄ ¯
𝐹 𝐹 Mean braking force of an electro-dynamic brake depending on the initial speed N
B,ED B,ED
FB,ED,max Maximum braking force of an electro-dynamic brake N
F Braking force of a fluid retarder N
B,FR
̄ ¯
𝐹 𝐹 Mean braking force of a fluid retarder depending on the initial speed N
B,FR B,FR
FB,FR,max Maximum braking force of a fluid retarder N
FB,ind Braking force of a wheel/rail adhesion independent brake N
FB,ind,z Braking force of a wheel/rail adhesion independent brake system type z N
F Braking force of one magnet assembly acting on a single rail N
B,Mg,A
̄
𝐹 Mean braking force of one magnet assembly acting on a single rail N
B,Mg,A
¯
𝐹
B,Mg,A
FB,Mg,tot Total braking force of all magnetic track brake units in a rail vehicle N
𝐹 Braking force of brake subsystem n N
B,𝑛
̄ ¯
𝐹 𝐹 Mean braking force of brake subsystem n N
B,𝑛 B,𝑛
FB,st Parking brake application force at the wheel tread N
FB,tot,st Sum of parking brake application force at the wheel tread N
𝐹 Braking force of brake unit n N
Bu,𝑛
Fb Brake application force (total brake block force) N
F Brake application force at each individual application point (single brake block force) N
b,ap
F Single parking brake application force (brake block force) at each individual N
b,ap,st
application point
F Brake application force for a brake arrangement
b,arm
F Brake block force of an individual brake unit N
b,ax
Fb,ax,st Static brake block force of an individual brake unit N
Fb,Mg,A Attraction force of one magnet assembly acting on a single rail N
ISO/FDIS 20138-1:2025(en)
Symbol Description Unit
Fb,Mg,st Attraction force of one permanent magnet N
F Parking brake application force (brake block force) of an individual parking brake unit N
b,st
Fb,tot Total force acting on all friction faces or total brake block force at brake unit level N
Fb,tot,st Sum of parking brake application forces acting on all application points N
FCbl Input force at the intermediate lever N
F Hand force exerted at crank handle or hand wheel N
Cr,H
Fc Internal cylinder force N
Fcl Clamping force N
FD Downhill force due to gravity N
F Decelerating force N
Dec
̄ ¯
𝐹 𝐹 Mean decelerating force N
Dec Dec
Fd,ax Proportion of downhill force to be resisted per wheelset with applied parking brakes N
F Component of the external force acting parallel to the direction of movement N
ext
̄ ¯
Component of the mean external force acting parallel to the direction of movement N
𝐹 𝐹
ext ext
FG Output force of the parking brake mechanism at the position where it meets the air N
brake’s rigging
Fg Weight N
Fg,ax Static axle load N
F Retention force N
H
F Output force at the intermediate lever N
il
Fint Internal force (e.g. due to rolling resistance) N
FMg,st Parking brake application force of one permanent magnet assembly acting on a single N
rail
FMg,st,tot Total parking brake application force of all permanent magnet assemblies in a rail N
vehicle
F Static axle load perpendicular to the rail per wheelset with applied parking brake N
N
FN,ax Static axle load perpendicular to the rail per wheelset with applied parking brake for a N
specific wheelset
F Static axle load perpendicular to the rail per wheelset with applied parking brake (i is N
N,i
an index used for sorting wheelsets)
F Remaining static axle load perpendicular to the rail N
N,rem
F Total parking brake application force acting at the rail N
PB
Fpb,ax Total Parking brake application force per wheelset acting at the rail N
FPerp Perpendicular force N
F Perpendicular force at wheelset N
Perp,ax
F Piston force N
p
Fpad Brake application force (brake pad force) acting on a single friction face N
Fpad, left Brake application force acting on a single friction face on a disc with two friction faces N
Fpad, right
ISO/FDIS 20138-1:2025(en)
Symbol Description Unit
Fpull Force on application point bogie N
F Static force on application point bogie N
pull,st
FRa Force from train resistance N
FRa,st Force from train resistance when leaving stationary condition N
̄ ¯
𝐹 𝐹 Mean force from train resistance N
Ra Ra
FSP Parking brake spring force N
FS,C Restoring force of brake unit or spring applied force N
FS,R Restoring force, e.g. slack adjuster N
F (i,τ ) Retention force per train for a given slope i and a given wheel/rail adhesion τ N
st a a
Retention force of an individual wheelset for a given slope i and a given wheel/rail
Fst,ax(i,τa) N
adhesion τa
F Stationary braking force acting on the wheelset of each N
st,n
immobilization/holding/parking brake, n
Fs,rig Restoring force N
F Tangential force N
t
Fwind Wind force on the train N
g Standard acceleration due to gravity m/s
I Current A
i Gradient of the track (positive rising/negative falling) —
iCbl Cable mechanical ratio —
ic Internal rigging ratio of brake unit —
ical Calliper lever ratio —
i Gear ratio (from hand force application point to connection point with air brake —
G
rigging)
iint Internal rigging ratio of the tread brake unit; —
i Maximum achievable gradient —
max
i Rigging ratio after slack adjuster —
R
irig Rigging ratio between the brake cylinder and slack adjuster —
𝑖 Lever ratio per brake block —
rig,Bw
i Rigging ratio between the point where FG meets the air brake’s rigging and the slack —
rig,st
adjuster
irig,Bw,ax Lever ratio per brake beam —
i Calliper lever ratio (parking brake) —
rig,C
i Calliper lever ratio —
rig,n
irig,ZH Intermedia lever ratio —
is,rig Rigging ratio for restoring force —
i Overall static rigging ratio
st
J Inertia kg·m
ISO/FDIS 20138-1:2025(en)
Symbol Description Unit
kECB Coefficient (provided by the supplier) —
k , k , k , k Coefficient (provided by the supplier) —
0 2 3 5
k1 Coefficient, value and unit provided by the supplier dependent on k3 provided by
the supplier
dependent
on k
k Coefficient (provided by the supplier) s/m
k1v, k2v Factor describing an active or passive brake cylinder —
la, lb Main brake lever length/calliper lever length m
lc, ld Bogie lever length m
l Main brake lever length (parking brake) m
e
mdyn Dynamic mass kg
mrot Equivalent rotating mass kg
mrot,ax Equivalent rotating mass of the braked wheelset
m Static mass kg
st
mst,ax Static mass per wheelset kg
mst,train Static mass of the train kg
N Number of brake subsystems —
n Number of application points per wheel —
ap
nB,ax Number of braked wheelsets for the considered brake application —
nBeam Number of brake beams —
nBeamWheel Number of brake beams per wheelset —
n Number of braked wheels —
Bw
nCyl Number of brake cylinder(s) —
ndisc Number of brake discs on which one brake unit is acting —
nface Number of friction faces —
n Number of MTB units in a rail vehicle —
Mg
nPB,ax Number of wheelsets with applied parking brake —
nSP Number of spring brake units —
n1, n2 Value of power in speed range above vcha normally obtained from supplier —
p Pressure N/m
pab Specific pressure per brake block N/m
pap Specific pressure of a single brake pad N/m
pc Brake cylinder pressure Pa
P Maximum power of brake subsystem n W
max,n
P Maximum power of brake unit n W
max,u,n
rm Mean swept radius of the brake pad on the friction face m
SH Retention safety —
ISO/FDIS 20138-1:2025(en)
Symbol Description Unit
SR Safety against rolling —
S (𝑖, 𝜏 ) Safety ratio for stationary brake for a given slope i and for a wheel/rail adhesion 𝜏 —
st
𝑎 𝑎
Sτ,slide Safety against sliding —
s Stopping distance m
sa,e Equivalent free running distance m
s Distance travelled while the brake unit(s) of the subsystem n is applied m
B,n
sgrad Stopping distance on a gradient m
ssl Slowing distance m
ssl,grad Slowing distance on a gradient m
t Time s
ta Delay time s
ta,n Delay time for a specific brake subsystem n s
tab Build-up time s
t Build-up time for a specific brake subsystem n s
ab,n
ta,e Equivalent response time s
ta,e,n Equivalent response time for a specific brake subsystem n s
tb Response time (build-up) s
v Speed m/s
v Characteristic speed (corresponding to maximum retarding force) m/s
cha
vfin Final speed m/s
vmax Maximum design speed of the rail vehicle or unit m/s
𝑣 Speed of the crosswind m/s
wind
v0 Initial speed m/s
v1…v4 Particular speeds m/s
WB Energy dissipated by all applied brake units J
W Energy dissipated by brake subsystem n J
B,n
W Energy dissipated by the train resistance J
Ra
Wtot Total energy J
Y Percentage of output signal —
Z Number of speed ranges —
z Speed range step number —
α Angle of slope °
η Overall efficiency of brake rigging
η Cable efficiency —
Cbl
η Internal efficiency of brake unit —
c
ηcal Calliper efficiency —
ISO/FDIS 20138-1:2025(en)
Symbol Description Unit
ηG Gear efficiency (from hand force application point to connection point with air brake —
rigging)
𝜂 Efficiency of the internal rigging of the tread brake unit —
int
ηR Efficiency of brake rigging after the slack adjuster —
η Efficiency of brake rigging between the brake cylinder and slack adjuster —
rig
ηrig,st Static efficiency of calliper —
ηrig,st,ZH Static efficiency of intermediate lever —
ηst Overall static efficiency of brake rigging —
μ Brake block/brake pad coefficient of friction —
¯
𝜇 Mean brake block/brake pad coefficient of friction —
𝜇̄ 𝜇¯ Mean coefficient of friction between the pole shoe of one magnet assembly and the rail —
Mg Mg
μMg,st Static coefficient of friction of permanent magnet (pole shoe) —
μ (v) Speed dependent friction coefficient between the pole shoe of one magnet assembly —
Mg
and the rail
μst Brake block/brake pad static coefficient of friction —
𝜌 Air density kg/m
𝜏 𝜏 Available wheel/rail adhesion —
a a
𝜏 𝜏¯ Value of the mean wheel/rail adhesion required for the braked wheelsets —
ax ax
𝜏̄ 𝜏¯ Temporary value of the mean wheel/rail adhesion required for the braked wheelset —
ax,𝑖 ax,𝑖
used during iteration step i
𝜏 Coefficient of wheel/rail adhesion required to resist the downhill force by each braked —
D,req,ax
wheelset
τd Assumed limit of wheel/rail adhesion for parking brake calculation in the design phase —
𝜏 Given wheel/rail adhesion —
max
𝜏 Coefficient of wheel/rail adhesion required by each braked wheelset —
req,ax
𝜏 Maximum required wheel/rail adhesion by each braked wheelset —
req,max,ax
𝜏 Static coefficient of wheel/rail adhesion required to transmit the braking force to the —
req,st,ax
rail by each braked wheelset for a given slope
5 Stopping and slowing distances calculation
5.1 General
A summary of the methodology to establish the braking forces and other forces acting on the rail vehicle, unit
or train is presented in Figure A.1Figure A.1.
In general, the formulae contained in this document are used in the first instance when considering constant
braking forces with respect to speed.
In the second instance, the formulae may be used as a mean value calculation when considering a non--
constant speed dependent braking force which is transformed to a mean braking force value. This mean value
of braking force is considered as a fully developed force without considering the response time and results in
the same braking distance as if calculated using the speed dependent braking force.
ISO/FDIS 20138-1:2025(en)
̄ ¯
Symbols which are marked with a bar on top exclusively denote mean values, e.g. 𝐹 𝐹 . Other symbols
B,ED B,ED
which are not marked with a bar on top denote instantaneous or mean values.
The algorithms in this document are applicable when the equivalent response time, as defined in 5.5.25.5.2,,
is less than 20 % of the braking time with a fully-established brake. For response times with a greater
percentage (e.g. braking from low initial speeds) or where instantaneous values and algorithms are used or
the finite time steps are preferred, ISO 20138-2 shall be used.
The mean value calculation is not intended to be used for an extreme value estimation or variation, e.g.
minimum/ or maximum coefficient of friction of friction couple. The input values for the calculation are used
without tolerances.
The decelerating force and its component forces expressed in this document are those acting parallel to the
rail.
The brake system design parameters necessary to conduct the calculation shall be defined at the level of the
wheelset, bogie, rail vehicle, unit or train.
Calculations shall be performed for each brake subsystem (e.g. disc brakes, tread brakes, electro-dynamic
brakes). All of the various brake subsystems applied to the wheelset, bogie, rail vehicle, unit or train shall be
identified and accounted for in the calculation.
When the brake equipment fitted to the rail vehicle, unit or train is used under different circumstances, e.g.
load condition, speed range, brake demand, each condition or state of the brake shall be considered together
with the resultant effect on decelerating force.
5Clause 5 identifies how to calculate the braking force generated by each brake subsystem. In general,
calculations of stopping and slowing distances are based on the assumption of nominal conditions (e.g.
straight and level track).
Annex CAnnex C provides examples for brake calculations of different rail vehicles and units (freight wagon,
coach, locomotive and multiple unit).
The following subclauses consider the braking force generated by common brake subsystems. If other brake
subsystems are used, e.g. new or novel types, then alternative methods of braking force calculation should be
adopted.
Figure 1Figure 1 gives a general overview of forces of brake subsystems and other internal or external forces.
All train resistance forces are assumed to be wheel/rail adhesion independent and therefore are not
considered for the calculation of wheel/rail adhesion in this standarddocument but are considered for
calculation of the decelerating force.
ISO/FDIS 20138-1:2025(en)
Figure 1 — General overview of forces of brake subsystems and other internal or external forces
5.2 Rail vehicle characteristics
5.2.1 Static mass, m
st
The static mass, m , of the rail vehicle or the static mass of a wheelset, m or both, is (are) assessed in
st st,ax
stationary condition and shall be used to establish the braking force required or the wheel/rail adhesion
requirements respectively for each applicable operating condition.
When there are different static masses per wheelset, m , the braking force shall be calculated for each
st,ax
wheelset.
ISO/FDIS 20138-1:2025(en)
5.2.2 Equivalent rotating mass, mrot
The equivalent rotating mass, mrot, is the linear conversion of the moment of inertia due to
— — the rotation of the wheelsets, and
— — the rotating parts coupled to the wheelsets during braking.
The equivalent rotating mass shall be determined using a theoretical approach or established as a result of
tests. The wheel size applicable to the rotating mass shall be identified.
When there are different rotating masses, e.g. a mix of trailer and driven wheelsets, the equivalent rotating
mass shall be determined for each type of wheelset.
For those wheelsets, if an inertia value J due to the rotating masses is known, the equivalent rotating mass
using inertia can be calculated as set out in Error! Reference source not found.Formula (1)::
4⋅𝐽
𝑚 = (1)
rot 2
𝐷
NOTE The wheel diameter used for calculation of equivalent rotating masses is normally the maximum wheel
diameter.
A value of equivalent rotating mass can be expressed as a percentage of the static mass.
5.2.3 Dynamic mass, mdyn
For the purpose of the calculation being conducted, the dynamic mass, mdyn, is the sum of the static mass and
the equivalent rotating mass for the entity being considered (e.g. wheelset, bogie, rail vehicle) according to
Error! Reference source not found.Formula (2)::
𝑚 = 𝑚 + 𝑚 (2)
dyn st rot
5.2.4 Wheel diameter, D
The wheel diameter, D, is the diameter at the rolling contact point between the wheel and the rail.
When the rail vehicle is equipped with different sizes of wheels (by design not due to wear), each size of wheel
shall be determined.
NOTE 1 The wheel diameter used for calculation of stopping and slowing distances is normally the maximum wheel
diameter.
NOTE 2 The wheel diameter used to determine the required wheel/rail adhesion, is normally the minimum wheel
diameter.
5.3 Wheel/rail adhesion dependent brake unit type characteristics
5.3.1 Basic brake cylinder
This subclause describes the calculation of piston force as an output force of the brake cylinder.
The basic principle of a pressure applied cylinder is shown in Error! Reference source not found.Figure 2.
The first step is the calculation of the internal cylinder force F [see Error! Reference source not
c
found.Formula (3)].].
ISO/FDIS 20138-1:2025(en)
Efficiency, ratios, friction resistances and moduli of resilience, etc. are not considered in the formula of
calculation of the cylinder force.

Figure 2 — Basic principle of a pressure applied cylinder
𝐹 = 𝑝 ⋅ 𝐴 𝐹 = 𝑝 ⋅ 𝐴 (3)
c c c c c c
Two types of brake cylinder exist: active version and passive version. The active version uses the brake
cylinder pressure to generate the piston force. The passive version uses the spring force to generate the piston
force (see Error! Reference source not found. and Error! Reference source not found.Figure 3).).

Figure 3 — Basic principle of an active (left) and passive (right) cylinder
The second step is the calculation of piston force, F , based on the internal brake cylinder force considering
p
the mechanical efficiency and internal rigging ratio of brake unit. Error! Reference source not
found.Formula (4) enables the calculation of the piston force for active and passive cylinders:
𝐹 = 𝑘1 ⋅ |𝑝 ⋅ 𝐴 ⋅ 𝜂 ⋅ 𝑖 | + 𝑘2 ⋅ 𝐹 (4)
P v c c c c v | S,C|
𝐹 = 𝑘 ⋅ |𝑝 ⋅ 𝐴 ⋅ 𝜂 ⋅ 𝑖 | + 𝑘 ⋅ |𝐹 | (4)
P 1v c c c c 2v S,C
Table 1 2 — Factors k and k for active and passive brake cylinder
1v 2v
Active cylinder Passive cylinder
Split Cells
Active cylinder Passive cylinder

(pressure-applied brake) (spring-applied brake)
k 1 −1
1v
k2v −1 1
For simplification, a general brake cylinder, shown in Figure 4Figure 4,, is used throughout this document
instead of an active and passive cylinder.
ISO/FDIS 20138-1:2025(en)
Figure 4 — Illustration of general brake cylinder
5.3.2 Tread brake
The brake cylinder piston force is transferred to the brake blocks, taking into account the specific mechanical
rigging ratios, efficiencies of brake rigging and counter forces.
There are existing different principles of brake mechanical arrangements using, for example:
— — central brake rigging;
— — brake beams;
— — applications to a single bogie;
— — applications to a single wheel;
— — push (single side) or clasp (double side).
It is not possible to describe all variants of arrangements in this document; therefore, this document shows
how to calculate the output force generated by a single brake cylinder and to distribute this to the brake
application forces at the individual brake application points/ and brake blocks which are controlled by that
single brake cylinder.
A rail vehicle or unit can have more than one brake cylinder. The brake application forces can be combined to
obtain the total braking force of the rail vehicle.
A generic arrangement is shown in Error! Reference source not found.Figure 5 and Error! Reference
source not found.Figure 6. The actual number of brake blocks and wheels and the rigging arrangements will
depend on the application. It is beyond the scope of this document to set out the means to calculate the rigging
ratio.
An example calculation of rigging ratio is given in Error! Reference source not found.Clause C.1.
ISO/FDIS 20138-1:2025(en)
Key
1 brake beam
Figure 5 — Generic tread brake unit arrangement
The applied brake application force (total brake block force at brake unit level), F , by the brake cylinder
b,tot
across all application points can be calculated as set out in Error! Reference source not found.Formula (5)::
𝐹 =   𝐹   ·   𝑖 · 𝜂 − 𝐹 · 𝑖 𝐹 =  (𝐹   ·  𝑖 · 𝜂 − 𝐹 ) · 𝑖 · 𝜂 𝜂 (5)
( )
b,tot P rig rig S,R R b,tot P rig rig S,R R R R
with
𝑙 𝑙
a a
𝑖 𝑖 = (6)
rig rig
𝑙 𝑙
b b
and
ISO/FDIS 20138-1:2025(en)
𝑖 𝑖 = 𝑛 ·   𝑖 ·  𝑖 (7)
R R Beam rig,Bw,ax rig,Bw,ax
The applied brake application force at each individual application point (single brake block force), F , is
b,ap
calculated as set out in Error! Reference source not found.Formula (8)::
𝐹 𝐹
b b
𝐹 𝐹 = (8)
b,ap b,ap
𝑛  · 𝑛 𝑛  · 𝑛
ap Bw ap Bw
NOTE 1 The number of application points per wheel, n , is 1 for a single sided arrangement and is 2 for a double sided
ap
(clasp) arrangement.
If only an overall efficiency, η, is given, then Error! Reference source not found.Formula (5) can be simplified
as set out in Error! Reference source not found.Formula (9)::
𝐹 =   𝐹   ·   𝑖 − 𝐹   ·  𝑖  ·  𝜂 (9)
( )
b P rig S,R R
𝐹 =  (𝐹   ·  𝑖 − 𝐹 )  ·  𝑖   ·  𝜂 (9)
b P rig S,R R
The arrangement as shown in Error! Reference source not found.Figure 6 is used in Asia for one bogie.

ISO/FDIS 20138-1:2025(en)
Key
1 guide bar
2 pull rod
Figure 6 — Generic tread brake arrangement used in Asia
The applied brake application force at each individual application point (single brake block force), F , can be
b
calculated as set out in Error! Reference source not found.Formula (10) if all levers have the same length:
𝑙 𝑙 +𝑙 𝑙 𝑙 +𝑙
a c d a c d
𝐹 𝐹 = 𝐹 ∙ ∙ ∙ 𝐹 ⋅ ⋅ ⋅ 𝜂 (10)
b b p p
𝑙   𝑙 𝑙   𝑙
b d b d
NOTE 2 For design with different lever length ratios, see Error! Reference source not found.Annex F.
The total brake block force at brake unit level, Fb,tot, can be calculated as set out in Error! Reference source
not found.Formula (11)::
𝑙 𝑙 𝑙 +𝑙
a c c d
𝐹 = 𝑛 ∙ 𝐹 ∙ ∙ ∙ ∙ 𝜂 = 𝑛 ∙ 𝐹 (11)
b,tot ap p ap b
𝑙   𝑙 𝑙
b d c
𝑙 𝑙 𝑙 +𝑙
a c c d
𝐹 = 𝑛 ⋅ 𝐹 ⋅ ⋅ ⋅ ⋅ 𝜂 = 𝑛 ⋅ 𝐹 (11)
b,tot ap p ap b
𝑙   𝑙 𝑙
b d c
The applied brake application force for a brake arrangement, F , can be calculated as set out in Error!
b,arm
Reference source not found.Formula (12)::
𝑛 𝑙 𝑙 𝑙 +𝑙
cyl a,𝑖 c,𝑖 c,𝑖 d,𝑖
𝐹 = ∑ 𝑛 ∙ 𝐹 ∙ ∙ ∙ ∙ 𝜂 (12)
b,arm ap p,𝑖 𝑖
𝑖=1
𝑙   𝑙 𝑙
b,i d,i c,𝑖
𝑛
cyl
𝑙 𝑙 𝑙 +𝑙
a,𝑖 c,𝑖 c,𝑖 d,𝑖
Formula (12)𝐹 = 𝑛 ⋅ 𝐹 ⋅ ⋅ ⋅ ⋅ 𝜂 (12)

b,arm ap p,𝑖 𝑖
𝑙   𝑙 𝑙
b,i d,i c,𝑖
𝑖=1
Error! Reference source not found. can be simplified when the brake cylinder pressure and the efficiency is
the same for each brake cylinder as set out in Error! Reference source not found.Formula (13)::
𝑙 𝑙 𝑙 +𝑙 𝑙 𝑙 𝑙 +𝑙
a c c d a c c d
𝐹 𝐹 = 𝑛 ∙ 𝑛 ∙ 𝐹 ∙ ∙ ∙ ∙⋅ 𝑛 ⋅ 𝐹 ⋅ ⋅ ⋅ ⋅ 𝜂 (13)
b,arm b,arm cyl ap p ap p
𝑙   𝑙 𝑙   𝑙   𝑙 𝑙
b d c b d c
ISO/FDIS 20138-1:2025(en)
The theoretical maximum of the specific pressure per brake block, p is calculated as set out in Error!
ab,
Reference source not found.Formula (14)::
𝐹 𝐹
b b
𝑝 = (14)
ab
𝐴 𝐴
b b
The braking force for a braked wheel, FB,Bw, is calculated a set out in Error! Reference source not
found.Formula (15)::
𝐹 =   𝐹   ·   𝑛   ·  𝐹 =  𝐹   ·  𝑛   ·  𝜇 (15)
B,Bw b ap B,Bw b ap
The total braking force from the tread brake arrangement for a rail vehicle or unit is calculated as the sum of
the braking forces for the braked wheels of the rail vehicle or unit.
NOTE 3 The methodology to determine the brake block coefficient of friction is outside the scope of this document.
5.3.3 Tread brake unit
The brake cylinder piston force is transferred to the brake blocks taking into account the specific mechanical
rigging ratios, efficiencies of brake rigging and counter forces. The brake application force (brake block force),
F , for an arrangement with one application point as shown in Error! Reference source not found.Figure 7
b
is calculated as set out in Error! Reference source not found.Formula (16).
The principle is the same for a spring applied design.

Figure 7 — Representative tread brake unit
ISO/FDIS 20138-1:2025(en)
𝐹 𝐹 = 𝐹 𝐹 ⋅ 𝑖 ⋅ 𝜂 − 𝐹 ⋅ 𝑖 (16)
b b P P int int s,rig s,rig
In general i = 1, so Error! Reference source not found.Formula (16) can be simplified to Error!
s,rig
Reference source not found.Formula (17)::
𝐹 𝐹 = 𝐹 𝐹 ⋅ 𝑖 ⋅ 𝜂 − 𝐹 (17)
b b P P int int s,rig
The braking force for a braked wheel, F , is calculated aas set out in Error! Reference source not
B,Bw
found.Formula (18)::
𝐹 =   𝐹   ·   𝐹 =  𝐹   ·  𝜇 (18)
B,Bw b B,Bw b
The theoretical maximum of the specific pressure per brake block, p , can be calculated as set out in
ab
0Formula (14):.
NOTE The methodology to determine the mean coefficient of friction of the brake blocks is outside the scope of this
document.
5.3.4 Disc brake
The brake cylinder piston force is transferred to the brake pads taking into account the counter forces and any
specific mechanical calliper ratios and efficiencies. The individual brake application force (brake pad force)
on a single friction face of the disc for an arrangement as shown in Error! Reference source not
found.Figure 8 is calculated as set out in Error! Reference source not found.Formula (19).
The principle is the same for a spring applied design (see Error! Reference source not found.6.7.4).).
Inserted Cells
a) Two friction faces b) Four friction faces
Figure 8 — Typical arrangement of brake disc calliper
ISO/FDIS 20138-1:2025(en)
The first step is the calculation of the piston force, F , according to Error! Reference source not
p
found.Formula (4). The force, F , considers the counter forces including, e.g. counter forces in the slack
S,C
adjuster.
The second step is the calculation of the brake application force (brake pad force), F , acting on a single
b,pad
friction face, as shown in Error! Reference source not found.Formula (19)::
𝐹 = 𝐹 𝐹 ⋅ 𝑖 ⋅ 𝜂 (19)
b,pad P P cal cal
With calliper lever ratio, i , as shown in Error! Reference source not found.Formula (20)::
cal
𝑙
a
𝑖 = (20)
cal
𝑙
b
The calliper ratio can be calculated in a simplified way as set out in Error! Reference source not
found.Formula (21)::
𝑖
rig
𝑖 = (21)
cal
NOTE 1 In case of direct operating brake cylinder, see Figure 9Figure 9,, the brake application force (brake pad force),
Fb,pad, is equal to the piston force, Fp.
The specific brake pad contact pressure, p , is calculated as set out in Error! Reference source not
ap
found.Formula (22)::
𝐹 𝐹
b,pad b,pad
...


PROJET FINAL
Norme
internationale
ISO/FDIS 20138-1
ISO/TC 269/SC 2
Applications ferroviaires — Calcul
Secrétariat: AFNOR
des performances de freinage
Début de vote:
(freinage d'arrêt, de ralentissement
2025-09-26
et d'immobilisation) —
Vote clos le:
2025-11-21
Partie 1:
Algorithmes généraux utilisant le
calcul par la valeur moyenne
Railway applications — Calculation of braking performance
(stopping, slowing and stationary braking) —
Part 1: General algorithms utilizing mean value calculation
LES DESTINATAIRES DU PRÉSENT PROJET SONT
INVITÉS À PRÉSENTER, AVEC LEURS OBSERVATIONS,
NOTIFICATION DES DROITS DE PROPRIÉTÉ DONT ILS
AURAIENT ÉVENTUELLEMENT CONNAISSANCE ET À
FOURNIR UNE DOCUMENTATION EXPLICATIVE.
OUTRE LE FAIT D’ÊTRE EXAMINÉS POUR
ÉTABLIR S’ILS SONT ACCEPTABLES À DES FINS
INDUSTRIELLES, TECHNOLOGIQUES ET COM-MERCIALES,
AINSI QUE DU POINT DE VUE DES UTILISATEURS, LES
PROJETS DE NORMES
INTERNATIONALES DOIVENT PARFOIS ÊTRE CONSIDÉRÉS
DU POINT DE VUE DE LEUR POSSI BILITÉ DE DEVENIR DES
NORMES POUVANT
SERVIR DE RÉFÉRENCE DANS LA RÉGLEMENTATION
NATIONALE.
Numéro de référence
ISO/FDIS 20138-1:2025(fr) © ISO 2025

PROJET FINAL
ISO/FDIS 20138-1:2025(fr)
Norme
internationale
ISO/FDIS 20138-1
ISO/TC 269/SC 2
Applications ferroviaires — Calcul
Secrétariat: AFNOR
des performances de freinage
Début de vote:
(freinage d'arrêt, de ralentissement
2025-09-26
et d'immobilisation) —
Vote clos le:
2025-11-21
Partie 1:
Algorithmes généraux utilisant le
calcul par la valeur moyenne
Railway applications — Calculation of braking performance
(stopping, slowing and stationary braking) —
Part 1: General algorithms utilizing mean value calculation
LES DESTINATAIRES DU PRÉSENT PROJET SONT
INVITÉS À PRÉSENTER, AVEC LEURS OBSERVATIONS,
NOTIFICATION DES DROITS DE PROPRIÉTÉ DONT ILS
AURAIENT ÉVENTUELLEMENT CONNAISSANCE ET À
FOURNIR UNE DOCUMENTATION EXPLICATIVE.
DOCUMENT PROTÉGÉ PAR COPYRIGHT
OUTRE LE FAIT D’ÊTRE EXAMINÉS POUR
ÉTABLIR S’ILS SONT ACCEPTABLES À DES FINS
© ISO 2025 INDUSTRIELLES, TECHNOLOGIQUES ET COM-MERCIALES,
AINSI QUE DU POINT DE VUE DES UTILISATEURS, LES
Tous droits réservés. Sauf prescription différente ou nécessité dans le contexte de sa mise en œuvre, aucune partie de cette
PROJETS DE NORMES
INTERNATIONALES DOIVENT PARFOIS ÊTRE CONSIDÉRÉS
publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique,
DU POINT DE VUE DE LEUR POSSI BILITÉ DE DEVENIR DES
y compris la photocopie, ou la diffusion sur l’internet ou sur un intranet, sans autorisation écrite préalable. Une autorisation peut
NORMES POUVANT
être demandée à l’ISO à l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
SERVIR DE RÉFÉRENCE DANS LA RÉGLEMENTATION
NATIONALE.
ISO copyright office
Case postale 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Genève
Tél.: +41 22 749 01 11
E-mail: copyright@iso.org
Web: www.iso.org
Publié en Suisse Numéro de référence
ISO/FDIS 20138-1:2025(fr) © ISO 2025

ii
ISO/FDIS 20138-1:2025(fr)
Sommaire Page
Avant-propos .v
Introduction .vii
1 Domaine d’application . 1
2 Références normatives . 1
3 Termes et définitions . 1
4 Symboles . 2
5 Calcul des distances d'arrêt et de ralentissement . 8
5.1 Généralités .8
5.2 Caractéristiques du véhicule ferroviaire .9
5.2.1 Masse statique m .9
st
5.2.2 Masse tournante équivalente m .9
rot
5.2.3 Masse dynamique m .10
dyn
5.2.4 Diamètre de roue D .10
5.3 Caractéristiques des types d'unités de frein dépendantes de l'adhérence roue-rail .10
5.3.1 Cylindre de frein de base .10
5.3.2 Frein à semelle . .11
5.3.3 Unité de frein à semelle .14
5.3.4 Frein à disque .14
5.3.5 Frein électrodynamique .16
5.3.6 Frein hydrodynamique .17
5.4 Caractéristiques des unités de frein indépendantes de l'adhérence roue-rail .18
5.4.1 Frein électromagnétique sur rail .18
5.4.2 Frein linéaire à courants de Foucault .19
5.4.3 Effort engendré par la résistance du train à l'avancement . . 20
5.4.4 Frein aérodynamique . 20
5.4.5 Effort du vent sur le train F . 20
wind
5.5 Caractéristiques de temps . .21
5.5.1 Déclaration des caractéristiques de temps d'un sous-système de freinage .21
5.5.2 Temps de réponse équivalent t .21
a,e
5.6 Caractéristiques initiales et d'exploitation . 22
5.6.1 Efforts sur une déclivité . 22
5.6.2 Effort induit par la déclivité sous l'effet de la gravité en fonction de la pente F . 23
D
5.6.3 Conjugaison .24
5.6.4 Valeur de l'adhérence roue-rail moyenne exigée pour l'essieu freiné ττ .
ax
5.7 Calcul de la distance d'arrêt et de ralentissement sur la base de valeurs moyennes . 25
5.7.1 Effort de décélération moyen par rapport à la distance F .
Dec
5.7.2 Décélération équivalente de freinage a basée sur l'effort de décélération . 26
f,e,
5.7.3 Distance équivalente de marche sur l'erre s . 26
a,e
5.7.4 Distance d'arrêt et de ralentissement sur une voie en palier s . 26
5.7.5 Méthodes de calcul de la distance d'arrêt et de ralentissement sur une déclivité .27
5.8 Calculs dynamiques supplémentaires . 28
5.8.1 Généralités . 28
5.8.2 Énergie de freinage . 28
5.8.3 Puissance de freinage maximale d'un sous-système de freinage P . 28
max,n
5.8.4 Puissance de freinage maximale d'une unité de frein P . 29
max,u,n
6 Freinage d'immobilisation .29
6.1 Généralités . 29
6.2 Frein d'immobilisation en ligne (niveau 1) . 29
6.3 Frein d'immobilisation en ligne (niveau 2) . 29
6.4 Frein de stationnement . 29

iii
ISO/FDIS 20138-1:2025(fr)
6.5 Calcul de freinage d'immobilisation . 29
6.5.1 Généralités . 29
6.5.2 Caractéristiques générales . 30
6.6 Coefficient de friction statique . . 30
6.7 Effort de freinage de stationnement fourni par les différents sous-systèmes . 30
6.7.1 Frein de stationnement à vis (frein à semelle). 30
6.7.2 Unité de frein à semelle actionnée par ressort .32
6.7.3 Frein de stationnement à vis (frein à disque) . 33
6.7.4 Unité de frein à disque actionnée par ressort . 34
6.7.5 Effort d'un frein électromagnétique sur rail à aimants permanents F . 35
Mg,st
6.8 Effort de retenue d'un essieu individuel Fi ,ττ .
()
st,ax, a
6.9 Effort total de retenue du train Fi(),ττ .
st a
6.10 Calcul de sécurité du freinage d'immobilisation . 36
6.10.1 Généralités . 36
6.10.2 Condition de base pour le maintien sur une pente .37
6.11 Coefficient de sécurité du frein d'immobilisation (sécurité de retenue) Si ,ττ .
()
st a
6.12 Coefficient d'adhérence roue-rail statique exigé pour chaque essieu freiné (frein à
disque) τ . 38
req,st,ax
6.13 Coefficient d'adhérence roue-rail exigé pour chaque essieu avec frein à semelle . 38
6.14 Déclivité maximale atteignable i . . 38
max
6.15 Résultats complémentaires du calcul de freinage d'immobilisation pour le véhicule
ferroviaire ou l'unité . 39
6.15.1 Sécurité au roulement S .
R()αα
6.15.2 Résultats complémentaires du calcul de freinage d'immobilisation pour les
véhicules ferroviaires ou les unités présentant une relation effort de freinage-
charge par essieu différente. 40
Annexe A (informative) Méthodologie de calcul de la distance d'arrêt et de ralentissement . 41
Annexe B (informative) Diagramme des calculs de freinage d'immobilisation .43
Annexe C (informative) Exemples de calcul de freinage .44
Annexe D (informative) Calcul des efforts de freinage ou retardateurs (non statiques) .58
Annexe E (informative) Résultats complémentaires du calcul de freinage d'immobilisation
pour les véhicules ferroviaires ou les unités présentant une relation effort de freinage-
charge par essieu différente . .63
Annexe F (informative) Frein à semelle avec différents rapports de longueur de levier .75
Bibliographie . 76

iv
ISO/FDIS 20138-1:2025(fr)
Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux
de normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général
confiée aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude a le droit de faire
partie du comité technique créé à cet effet. Les organisations internationales, gouvernementales et non
gouvernementales, en liaison avec l'ISO participent également aux travaux. L'ISO collabore étroitement avec
la Commission électrotechnique internationale (IEC) en ce qui concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient en particulier de prendre note des différents
critères d'approbation requis pour les différents types de documents ISO. Le présent document
a été rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2
(voir www.iso.org/directives).
L’ISO attire l’attention sur le fait que la mise en application du présent document peut entraîner l’utilisation
d’un ou de plusieurs brevets. L’ISO ne prend pas position quant à la preuve, à la validité et à l’applicabilité de
tout droit de brevet revendiqué à cet égard. À la date de publication du présent document, l’ISO n'avait pas
reçu notification qu’un ou plusieurs brevets pouvaient être nécessaires à sa mise en application. Toutefois,
il y a lieu d’avertir les responsables de la mise en application du présent document que des informations
plus récentes sont susceptibles de figurer dans la base de données de brevets, disponible à l'adresse
www.iso.org/patents. L'ISO ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de
brevets et de ne pas avoir signalé leur existence.
Les appellations commerciales éventuellement mentionnées dans le présent document sont données pour
information, par souci de commodité, à l'intention des utilisateurs et ne sauraient constituer un engagement.
Pour une explication de la nature volontaire des normes, de la signification des termes et expressions
spécifiques de l'ISO liés à l'évaluation de la conformité, ou pour toute information au sujet de l'adhésion de
l'ISO aux principes de l'Organisation mondiale du commerce (OMC) concernant les obstacles techniques au
commerce (OTC), voir le lien suivant: www.iso.org/iso/foreword.html.
Le comité chargé de l'élaboration du présent document est l'ISO/TC 269, Applications ferroviaires, Sous-
comité SC 2, Matériel roulant.
Cette deuxième édition annule et remplace la première édition (ISO 20138-1:2018), qui a fait l'objet d'une
révision technique.
Les principales modifications sont les suivantes:
— ajout de l'ISO 24478 à l’Article 2;
— ajout des nouveaux termes «sous-système de freinage» et «rayon de freinage moyen» à l’Article 3;
— révision de l'Article 4 «Symboles» et de son Tableau 1;
— suppression des symboles expliqués dans le Tableau 1 des légendes des formules;
— révision de l'Article 5 «Calcul des distances d'arrêt et de ralentissement»;
— révision de l'Article 6 «Freinage d'immobilisation»;
— révision de l'Annexe A «Méthodologie de calcul de la distance d'arrêt et de ralentissement»;
— révision de l'Annexe B «Diagramme des calculs de freinage d'immobilisation»;
— révision de l'Annexe C «Exemples de calcul de freinage»;
— révision de l'Annexe D «Calcul des efforts de freinage (non statiques)»;

v
ISO/FDIS 20138-1:2025(fr)
— ajout de l’Annexe E «Résultats complémentaires du calcul de freinage d'immobilisation pour les véhicules
ferroviaires ou les unités présentant une relation effort de freinage-charge par essieu différente » et de
l’Annexe F «Frein à semelle avec différents rapports de longueur de levier»;
— révision de la Bibliographie.
Une liste de toutes les parties de la série ISO 20138 se trouve sur le site web de l’ISO.
Il convient que l'utilisateur adresse tout retour d'information ou toute question concernant le présent
document à l'organisme national de normalisation de son pays. Une liste exhaustive desdits organismes se
trouve à l'adresse www.iso.org/members.html.

vi
ISO/FDIS 20138-1:2025(fr)
Introduction
Le présent document vise à permettre à l'industrie et aux exploitants ferroviaires d'utiliser des méthodes de
calcul communes.
Le présent document (c'est-à-dire l’ISO 20138-1) et l’ISO 20138-2 se complètent, mais peuvent également
être utilisés séparément, en fonction des exigences de l'utilisateur.
— Dans le présent document, l'effort de freinage équivaut à l'effort retardateur, car la valeur des efforts de
freinage présupposés qui sont utilisés dans un calcul de freinage ne dépasse jamais celle des efforts que
l'adhérence roue-rail présupposée est en mesure de transférer.
— L’ISO 20138-2 décrit la méthodologie de calcul pas à pas utilisant des valeurs instantanées d'effort
de freinage fournies par les différents systèmes de freinage actifs pendant le temps d'arrêt ou de
ralentissement.
vii
PROJET FINAL Norme internationale ISO/FDIS 20138-1:2025(fr)
Applications ferroviaires — Calcul des performances
de freinage (freinage d'arrêt, de ralentissement et
d'immobilisation) —
Partie 1:
Algorithmes généraux utilisant le calcul par la valeur moyenne
1 Domaine d’application
Le présent document décrit les méthodologies de calcul des performances de freinage du matériel roulant
ferroviaire.
Le présent document décrit les algorithmes et les formules généraux utilisant des valeurs moyennes comme
valeurs d'entrée pour effectuer les calculs de performances de freinage en ce qui concerne les distances
d'arrêt et de ralentissement, le freinage d'immobilisation, la puissance et l'énergie pour tous les types de
matériels roulants, qu'il s'agisse de véhicules ferroviaires isolés ou de compositions de train, par rapport à la
distance de freinage.
Les calculs peuvent être utilisés à n'importe quelle étape du processus de développement et d'évaluation
(conception, fabrication, essais, vérification, investigation, etc.) du matériel roulant ferroviaire.
Le présent document ne spécifie pas de critères d'acceptation spécifiques (réussite ou échec). Le présent
document n'est pas destiné à servir de guide de conception pour le choix des systèmes de freinage. Le présent
document ne spécifie pas d'exigences de performance.
Le présent document donne des exemples de calcul des efforts de freinage pour les différents systèmes de
freinage, ainsi que des exemples de calcul de la distance d'arrêt et du freinage d'immobilisation propres à
un véhicule ferroviaire isolé ou à un train. Le présent document ne spécifie pas de méthode pour calculer
l'allongement des distances d'arrêt en cas de dégradation du niveau d'adhérence roue-rail disponible
(phénomène d'enrayage).
2 Références normatives
Les documents suivants cités dans le texte constituent, pour tout ou partie de leur contenu, des exigences du
présent document. Pour les références datées, seule l’édition citée s’applique. Pour les références non datées,
la dernière édition du document de référence s'applique (y compris les éventuels amendements).
ISO 20138-2:2025, Applications ferroviaires — Calcul des performances de freinage (freinage d’arrêt, de
ralentissement et d’immobilisation) — Partie 2: Algorithmes généraux utilisant le calcul pas à pas
ISO 22575, Applications ferroviaires — Termes généraux et définitions
ISO 24478:2023, Applications ferroviaires — Freinage — Vocabulaire général
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions fournis dans l’ISO 24478, l’ISO 22575 et les
suivants s'appliquent.
ISO/FDIS 20138-1:2025(fr)
L'ISO et l'IEC tiennent à jour des bases de données terminologiques destinées à être utilisées en normalisation,
consultables aux adresses suivantes:
— ISO Online browsing platform: disponible à l'adresse https:// www .iso .org/ obp
— IEC Electropedia: disponible à l'adresse https:// www .electropedia .org/
3.1
train
composition comprenant une ou plusieurs unités capables de fonctionner de manière autonome
[SOURCE: ISO 22575:2025, 3.4]
3.2
rame
unité dont la composition est fixe et qui peut être utilisée comme un train (3.1)
[SOURCE: ISO 22575:2025, 3.2.2.2]
3.3
unité
assemblage d'un ou de plusieurs véhicules ferroviaires (3.4)
[SOURCE: ISO 22575:2025, 3.2.2]
3.4
véhicule ferroviaire
élément individuel d'un moyen de transport guidé mécaniquement ou magnétiquement et supporté par une voie
[SOURCE: ISO 22575:2025, 3.2.1]
4 Symboles
Pour les besoins du présent document, les symboles généraux donnés dans le Tableau 1 s'appliquent.
Tableau 1 — Symboles
Symbole Description Unité
A Surface de contact par semelle de frein m
b
A Surface du cylindre de frein m
c
A Surface de contact d'une garniture de frein isolée m
p
A Zone de référence du train m
train
a Valeur définie pour le signal de sortie minimal (généralement 10 % ou 5 %) %
a Décélération équivalente de freinage m/s
f,e
a Décélération équivalente de freinage incluant l'effet de la déclivité et de l'inertie m/s
f,e,grad
a Décélération équivalente de freinage négligeant l'inertie m/s
f,e,grad_simple
a Décélération équivalente de freinage dans la plage de vitesses z m/s
f,e,z
b Valeur définie pour le signal de sortie maximal (généralement 95 % ou 90 %) %
C Coefficient propre du train, indépendant de la vitesse (résistance au roulement) N
C Coefficient propre du train, proportionnel à la vitesse N/(m/s)
C Coefficient propre de la résistance aérodynamique, dû à la traînée de pression et à la N/(m/s)
traînée induite par la friction superficielle
c Coefficient de traînée aérodynamique -
w
D Diamètre des essieux m
F Effort N
ISO/FDIS 20138-1:2025(fr)
TTabableleaauu 1 1 ((ssuuiitte)e)
Symbole Description Unité
F Force d'attraction d'un assemblage permanent de patin magnétique agissant sur un N
AMg,st
seul rail
F Effort de freinage N
B
F Effort de freinage d'immobilisation agissant sur l'essieu considéré N
B,ax,st
F Effort de freinage pour une roue freinée N
B,BW
F Effort du frein à disque ramené à la table de roulement de la roue N
B,DBU
F Effort de freinage au disque de frein N
B,DBU,t
F Effort de freinage conjugué N
Bd
F Effort de freinage du frein linéaire à courants de Foucault N
B,ECB
Effort de freinage moyen du frein linéaire à courants de Foucault N
F
B,ECB
F Effort de freinage maximal du frein linéaire à courants de Foucault N
B,ECB,max
F Effort de freinage d'un frein électrodynamique N
B,ED
Effort de freinage moyen d'un frein électrodynamique en fonction de la vitesse initiale N
F
B,ED
F Effort de freinage maximal d'un frein électrodynamique N
B,ED,max
F Effort de freinage d'un frein hydrodynamique N
B,FR
Effort de freinage moyen d'un frein hydrodynamique en fonction de la vitesse initiale N
F
B,FR
F Effort de freinage maximal d'un frein hydrodynamique N
B,FR,max
F Effort de freinage d'un frein indépendant de l'adhérence roue-rail N
B,ind
F Effort de freinage d'un type de système de freinage z indépendant de l'adhérence roue- N
B,ind,z
rail
F Effort de freinage d'un assemblage de patin magnétique agissant sur un seul rail N
B,Mg,A
Effort de freinage moyen d'un assemblage de patin magnétique agissant sur un seul N
F
B,Mg,A
rail
F Effort total de freinage de toutes les unités de frein électromagnétique sur rail d'un N
B,Mg,tot
véhicule ferroviaire
F Effort de freinage du sous-système de freinage n N
B,n
Effort de freinage moyen du sous-système de freinage n N
F
B,n
F Effort de freinage de stationnement ramené à la table de roulement de la roue N
B,st
F Sommes des efforts de freinage de stationnement ramenés à la table de roulement de la N
B,tot,st
roue
Effort de freinage de l'unité de frein n N
F
Bu,n
F Effort d'application du frein (effort total d'application à la semelle) N
b
F Effort d'application du frein à chaque point d'application (effort d'application à la N
b,ap
semelle)
F Effort d’un frein de stationnement (effort d'application à la semelle) à chaque point N
b,ap,st
d'application
F Effort d'application du frein pour une configuration de frein
b,arm
F Effort d'application à la semelle d'une unité de frein individuelle N
b,ax
F Effort statique d'application à la semelle d'une unité de frein individuelle N
b,ax,st
F Force d'attraction d'un assemblage de patin magnétique agissant sur un seul rail N
b,Mg,A
F Force d'attraction d'un patin magnétique à aimants permanents N
b,Mg,st
F Effort de freinage de stationnement (effort d'application à la semelle) d'une unité de N
b,st
frein de stationnement individuelle
F Effort total agissant sur toutes les surfaces de friction ou effort total appliqué sur les N
b,tot
semelles de frein au niveau de l’unité de frein

ISO/FDIS 20138-1:2025(fr)
TTabableleaauu 1 1 ((ssuuiitte)e)
Symbole Description Unité
F Somme des efforts de freinage de stationnement agissant sur tous les points d'applica- N
b,tot,st
tion
F Effort d'entrée au levier intermédiaire N
Cbl
F Effort manuel à la manivelle ou au volant de frein à main N
Cr,H
F Effort interne du cylindre N
c
F Effort de serrage N
cl
F Effort induit par la déclivité sous l'effet de la gravité N
D
F Effort de décélération N
Dec
Effort de décélération moyen N
F
Dec
F Proportion de l'effort induit par la déclivité à retenir par les essieux avec freins de N
d,ax
stationnement appliqués
F Composante de l'effort externe agissant dans une direction parallèle au déplacement N
ext
Composante de l'effort externe moyen agissant dans une direction parallèle au dépla- N
F
ext
cement
F Effort en sortie du mécanisme de frein de stationnement au point de raccordement N
G
avec la timonerie de frein aérodynamique
F Poids N
g
F Charge statique par essieu N
g,ax
F Effort de retenue N
H
F Effort de sortie au levier intermédiaire N
il
F Effort interne (par exemple, induit par la résistance au roulement) N
int
F Effort de freinage de stationnement d'un assemblage de patin magnétique agissant sur N
Mg,st
un seul rail
F Effort total de freinage de stationnement de tous les assemblages de patins magné- N
Mg,st,tot
tiques à aimants permanents d'un véhicule ferroviaire
F Charge statique perpendiculaire au rail par essieu avec frein de stationnement appli- N
N
qué
F Charge statique perpendiculaire au rail par essieu avec frein de stationnement appli- N
N,ax
qué, pour un essieu donné
F Charge statique perpendiculaire au rail par essieu avec frein de stationnement appli- N
N,i
qué (i est un indice utilisé pour classer les essieux)
F Reliquat de charge statique perpendiculaire au rail, par essieu N
N,rem
F Effort total de freinage de stationnement, ramené au niveau du rail N
PB
F Effort total de freinage de stationnement par essieu, ramené au niveau du rail N
pb,ax
F Effort perpendiculaire N
Perp
F Effort perpendiculaire ramené à l'essieu N
Perp,ax
F Effort du piston N
p
F Effort d'application du frein (effort à la garniture de frein) agissant sur une seule sur- N
pad
face de friction
F Effort d'application du frein agissant sur une seule surface de friction d'un disque à N
pad, left
deux surfaces de friction
F
pad, right
F Effort sur le point d'application bogie N
pull
F Effort statique sur le point d'application bogie N
pull,st
F Effort engendré par la résistance du train à l'avancement N
Ra
F Effort engendré par la résistance du train à l'avancement lors de la reprise après un N
Ra,st
arrêt
Effort moyen engendré par la résistance du train à l'avancement N
F
Ra
ISO/FDIS 20138-1:2025(fr)
TTabableleaauu 1 1 ((ssuuiitte)e)
Symbole Description Unité
F Effort du ressort du frein de stationnement N
SP
F Effort de rappel de l'unité de frein ou effort appliqué par le ressort N
S,C
F Effort de rappel (par exemple, régleur de timonerie) N
S,R
F (i,τ ) Effort de retenue par train pour une pente i donnée et une adhérence roue-rail τ don- N
st a a
née
F (i,τ ) Effort de retenue d'un essieu individuel pour une pente i donnée et une adhérence N
st,ax a
roue-rail τ donnée
a
F Effort de freinage d'immobilisation agissant sur l'essieu pour chaque frein de N
st,n
stationnement/d'immobilisation en ligne (niveau 1)/d'immobilisation en ligne
(niveau 2) n
F Effort de rappel N
s,rig
F Effort tangentiel N
t
F Effort du vent sur le train N
wind
g Accélération normale due à la gravité m/s
I Courant A
i Déclivité de la voie (pente/rampe) -
i Rapport mécanique du câble -
Cbl
i Rapport d'amplification interne de l'unité de frein -
c
i Rapport d'amplification du levier de la timonerie -
cal
i Rapport d'amplification de la transmission (entre le point d'application de l'effort -
G
manuel et le point de raccordement avec la timonerie de frein aérodynamique)
i Rapport d'amplification interne de l'unité de frein à semelle -
int
i Déclivité maximale atteignable -
max
i Rapport d'amplification après le régleur de timonerie -
R
i Rapport d'amplification entre le cylindre de frein et le régleur de timonerie -
rig
Rapport d'amplification du levier par semelle de frein -
i
rigB, w
i Rapport d'amplification entre le point où F est raccordé avec la timonerie de frein -
rig,st G
aérodynamique et le régleur de timonerie
i Rapport d'amplification du levier par triangle de frein -
rig,Bw,ax
i Rapport d'amplification du levier de la timonerie (frein de stationnement) -
rig,C
i Rapport d'amplification du levier de la timonerie -
rig,n
i Rapport d'amplification du levier intermédiaire -
rig,ZH
i Rapport d'amplification pour l'effort de rappel -
s,rig
i Rapport d'amplification statique global
st
J Inertie kg·m
k Coefficient (communiqué par le fournisseur) -
ECB
k , k , k , k Coefficient (communiqué par le fournisseur) -
0 2 3 5
k Coefficient, valeur et unité fournis par le fournisseur en fonction de k communi-
1 3
qué par le
fournisseur
en fonction
de k
k Coefficient (communiqué par le fournisseur) s/m
k , k Facteur désignant un cylindre de frein actif ou passif -
1v 2v
l , l Longueur du levier de frein principal/Longueur du levier de la timonerie m
a b
l , l Longueur du levier de bogie m
c d
l Longueur du levier de frein principal (frein de stationnement) m
e
ISO/FDIS 20138-1:2025(fr)
TTabableleaauu 1 1 ((ssuuiitte)e)
Symbole Description Unité
m Masse dynamique kg
dyn
m Masse tournante équivalente kg
rot
m Masse tournante équivalente de l'essieu freiné
rot,ax
m Masse statique kg
st
m Masse statique par essieu kg
st,ax
m Masse statique du train kg
st,train
N Nombre de sous-systèmes de freinage -
n Nombre de points d'application par roue -
ap
n Nombre d'essieux freinés pour le freinage à l’étude -
B,ax
n Nombre de triangles de frein -
Beam
n Nombre de triangles de frein par essieu -
BeamWheel
n Nombre de roues freinées -
Bw
n Nombre de cylindres de frein -
Cyl
n Nombre de disques de frein sur lesquels agit une unité de frein -
disc
n Nombre de surfaces de friction -
face
n Nombre d'unités de frein électromagnétique sur rail d'un véhicule ferroviaire -
Mg
n Nombre d'essieux avec freins de stationnement appliqués -
PB,ax
n Nombre d'unités de frein à ressort -
SP
n , n Valeur de la puissance dans la plage de vitesses au-dessus de v , normalement obte- -
1 2 cha
nue auprès du fournisseur
p Pression N/m
p Pression spécifique par semelle de frein N/m
ab
p Pression spécifique d'une garniture de frein isolée N/m
ap
p Pression du cylindre de frein Pa
c
P Puissance maximale du sous-système de freinage n W
max,n
P Puissance maximale de l'unité de frein n W
max,u,n
r Rayon de freinage moyen de la garniture de frein sur la surface de friction m
m
S Sécurité de retenue -
H
S Sécurité au roulement -
R
Coefficient de sécurité du frein d'immobilisation pour une pente i donnée et une -
S ()i ,τ
st a
adhérence roue-rail τ
a
S Sécurité au glissement -
τ,slide
s Distance d'arrêt m
s Distance équivalente de marche sur l'erre m
a,e
s Distance parcourue avec l'unité ou les unités de frein du sous-système n appliquées m
B,n
s Distance d'arrêt sur une déclivité m
grad
s Distance de ralentissement m
sl
s Distance de ralentissement sur une déclivité m
sl,grad
t Temps s
t Temps mort s
a
t Temps mort pour un sous-système de freinage n donné s
a,n
t Temps de serrage s
ab
t Temps de serrage pour un sous-système de freinage n donné s
ab,n
t Temps de réponse équivalent s
a,e
t Temps de réponse équivalent pour un sous-système de freinage n donné s
a,e,n
ISO/FDIS 20138-1:2025(fr)
TTabableleaauu 1 1 ((ssuuiitte)e)
Symbole Description Unité
t Temps de réponse au serrage s
b
v Vitesse m/s
v Vitesse caractéristique (correspondant à l'effort retardateur maximal) m/s
cha
v Vitesse finale m/s
fin
v Vitesse maximale de conception du véhicule ferroviaire ou de l'unité m/s
max
Vitesse du vent traversier m/s
v
wind
v Vitesse initiale m/s
v …v Vitesses particulières m/s
1 4
W Énergie dissipée par toutes les unités de frein appliquées J
B
W Énergie dissipée par le sous-système de freinage n J
B,n
W Énergie dissipée par la résistance du train à l'avancement J
Ra
W Énergie totale J
tot
Y Pourcentage du signal de sortie -
Z Nombre de plages de vitesses -
z Numéro du palier de la plage de vitesses -
α Angle de la pente °
η Rendement global de la timonerie de frein
η Rendement du câble -
Cbl
η Rendement interne de l'unité de frein -
c
η Rendement de la timonerie de frein -
cal
η Rendement de la transmission (entre le point d'application de l'effort manuel et le point -
G
de raccordement avec la timonerie de frein aérodynamique)
η Rendement de la timonerie interne de l'unité de frein à semelle -
int
η Rendement de la timonerie de frein après le régleur de timonerie -
R
η Rendement de la timonerie de frein entre le cylindre de frein et le régleur de timonerie -
rig
η Rendement statique de la timonerie de frein -
rig,st
η Rendement statique du levier intermédiaire -
rig,st,ZH
η Rendement statique global de la timonerie de frein -
st
μ Coefficient de friction de la semelle de frein/de la garniture de frein -
μ Coefficient de friction moyen de la semelle de frein/de la garniture de frein -
μ Coefficient de friction moyen entre le plot magnétique d'un assemblage de patin -
Mg
magnétique et le rail
μ Coefficient de friction statique du plot magnétique d'un patin magnétique à aimants -
Mg,st
permanents
μ (v) Coefficient de friction, dépendant de la vitesse, entre le plot magnétique d'un assem- -
Mg
blage de patin magnétique et le rail
μ Coefficient de friction statique de la semelle de frein/de la garniture de frein -
st
ρ 3
Masse volumique de l'air kg/m
τ Adhérence roue-rail disponible -
a
Valeur de l'adhérence roue-rail moyenne exigée pour les essieux freinés -
τ
ax
Valeur temporaire de l'adhérence roue-rail moyenne exigée pour l'essieu freiné utilisée -
τ
ax,i
lors de l'étape d'itération i
Coefficient d'adhérence roue-rail exigé pour résister à l'effort induit par la déclivité -
τ
D,req,ax
pour chaque essieu freiné
ISO/FDIS 20138-1:2025(fr)
TTabableleaauu 1 1 ((ssuuiitte)e)
Symbole Description Unité
τ Limite présupposée de l'adhérence roue-rail pour le calcul de freinage de stationne- -
d
ment dans la phase de conception
τ Adhérence roue-rail donnée -
max
Coefficient d'adhérence roue-rail exigé pour chaque essieu freiné -
τ
req,ax
Adhérence roue-rail maximale exigée pour chaque essieu freiné -
τ
req,max,ax
τ Coefficient d'adhérence roue-rail statique exigé pour transmettre l'effort de freinage -
req,st,ax
au rail pour chaque essieu freiné, pour une pente donnée
5 Calcul des distances d'arrêt et de ralentissement
5.1 Généralités
La méthodologie permettant de déterminer les efforts de freinage et autres efforts agissant sur le véhicule
ferroviaire, l'unité ou le train est schématisée à la Figure A.1.
En général, les formules contenues dans le présent document sont utilisées en premier lieu pour l'étude
d'efforts de freinage constants par rapport à la vitesse.
Les formules peuvent être utilisées en second lieu pour un calcul par la valeur moyenne en présence d'un
effort de freinage non constant dépendant de la vitesse, qui est transformé en valeur moyenne de l'effort de
freinage. Cette valeur moyenne de l'effort de freinage est assimilée à un effort pleinement appliqué si l'on
exclut le temps de réponse. Elle donne lieu à la même distance de freinage qu'en cas de calcul avec l'effort de
freinage dépendant de la vitesse.
Les symboles qui sont surmontés d'une barre, par exemple F , désignent exclusivement des valeurs
B,ED
moyennes. Les symboles qui ne sont pas surmontés d'une barre désignent des valeurs instantanées ou
moyennes.
Les algorithmes donnés dans le présent document s'appliquent lorsque le temps de réponse équivalent
défini en 5.5.2 est inférieur à 20 % de la durée en freinage établi. Pour les temps de réponse présentant
un pourcentage supérieur (par exemple, freinage à partir de vitesses initiales faibles) ou lorsque des
valeurs instantanées et des algorithmes sont utilisés ou que des intervalles de temps finis sont privilégiés,
l'ISO 20138-2 doit être utilisée.
Le calcul par la valeur moyenne n'est pas destiné à être utilisé pour estimer une valeur extrême ou une
variation, par exemple un coefficient de friction minimal ou maximal. Les valeurs d'entrée du calcul sont
utilisées sans tolérances.
L'effort de décélération et ses composantes qui sont mentionnés dans le présent document sont ceux agissant
parallèlement au rail.
Les paramètres de conception du système de freinage qui sont nécessaires pour effectuer le calcul doivent
être définis au niveau de l'essieu, du bogie, du véhicule ferroviaire, de l'unité ou du train.
Les calculs doivent être effectués pour chaque sous-système de freinage (par exemple, freins à disque, freins
à semelle, freins électrodynamiques). Tous les sous-systèmes de freinage associés à l'essieu, au bogie, au
véhicule ferroviaire, à l'unité ou au train doivent être identifiés et intégrés au calcul.
Lorsque l'équipement de frein installé sur le véhicule ferroviaire, l'unité ou le train est utilisé dans différentes
situations (condition de charge, plage de vitesses, consigne de freinage, par exemple), chaque condition ou
état du frein doit être pris(e) en compte conjointement avec l'effet en résultant sur l'effort de décélération.
L'Article 5 explique comment calculer l'effort de freinage produit par chaque sous-système de freinage.
En général, les calculs des distances d'arrêt et de ralentissement reposent sur l'hypothèse de conditions
nominales (par exemple, sur une voie droite et en palier).

ISO
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...