Hydraulic fluid power — Cleanliness of components — Inspection document and principles related to contaminant extraction and analysis, and data reporting

ISO 18413:2015 specifies the content of an inspection document that specifies both the cleanliness requirement for the specified hydraulic fluid power component and the inspection method to be used for evaluating its cleanliness level. In addition, guidelines for relevant extraction methods and analysis methods are given. Determination of what constitutes as an appropriate cleanliness level requirement for any particular component is beyond the scope of ISO 18413:2015. ISO 12669 provides a method of determining the required cleanliness of a hydraulic system. ISO TR 10686 provides a method of relating the required cleanliness of components to the required cleanliness of the hydraulic system. For the purposes of ISO 18413:2015, approved functional liquids are considered to be components. ISO 18413:2015 is applicable to the particulate contamination on the wetted surfaces and volumes of any hydraulic fluid power system component. Appearance defects and liquid or gaseous contamination are not covered by ISO 18413:2015. ISO 18413:2015 does not address safety problems that might arise from hazardous materials, operations, and equipment associated with its use. The user of ISO 18413:2015 is responsible for establishing appropriate safety and health practices and determining the applicability of regulatory limitations prior to use.

Transmissions hydrauliques — Propreté des composants — Documents d'inspection et principes d'extraction et d'analyse des contaminants et d'expression des résultats

L'ISO 18413:2015 spécifie le contenu d'un document de contrôle précisant tant les exigences de propreté applicables au composant de transmission hydraulique spécifié que la méthode de contrôle à employer pour évaluer son niveau de propreté. Elle fournit également des lignes directrices concernant les méthodes d'extraction et d'analyse pertinentes. L'ISO 18413:2015 ne couvre pas la détermination de ce qui constitue une exigence relative au niveau de propreté approprié pour tout composant spécifique. L'ISO 12669 fournit une méthode permettant de déterminer la propreté requise d'un système hydraulique. L'ISO/TR 10686 fournit une méthode permettant de relier la propreté requise des composants à la propreté requise du système hydraulique. Pour les besoins de l'ISO 18413:2015, les liquides fonctionnels ayant fait l'objet d'un accord sont considérés comme des composants. L'ISO 18413:2015 est applicable à la pollution particulaire des surfaces et volumes mouillés de tout composant d'un système de transmission hydraulique. Elle ne couvre pas les défauts d'aspect ni la pollution liquide ou gazeuse. L'ISO 18413:2015 ne traite pas des questions de sécurité que peuvent entraîner les matières, les opérations et les matériels dangereux associés à son utilisation. L'utilisateur de l'ISO 18413:2015 est chargé d'établir des pratiques de sécurité et d'hygiène appropriées et de déterminer l'applicabilité des restrictions légales avant l'utilisation.

Fluidna tehnika - Hidravlika - Snažnost delov in komponent - Kontrolni dokument in postopki izločanja, analiza umazanije in poročanje o rezultatih

Ta mednarodni standard določa vsebino kontrolnega dokumenta, ki določa zahteve glede snažnosti in kontrolno metodo za vrednotenje ravni snažnosti za določeno hidravlično pogonsko komponento. Poleg tega podaja navodila za ustrezne metode izločanja in analiziranja.
Določitev dejavnikov, ki oblikujejo zahtevo za ustrezno raven snažnosti določene komponente, je zunaj področja uporabe tega mednarodnega standarda. ISO 12669 podaja metodo za ugotavljanje zahtevane snažnosti hidravličnega sistema. ISO TR 10686 podaja metodo za povezavo
zahtevane snažnosti komponent z zahtevano snažnostjo hidravličnega sistema.
Za namene tega mednarodnega standarda se kot komponente obravnavajo odobrene funkcionalne tekočine. Ta mednarodni standard se uporablja za onesnaženost z delci na namočenih površinah in v predelih katere koli komponente hidravličnega pogonskega sistema. Pomanjkljivosti glede videza in onesnaženost s tekočinami ali plini niso zajete v tem mednarodnem standardu.
Ta mednarodni standard ne obravnava varnostnih težav, do katerih lahko pride zaradi nevarnih materialov, postopkov in opreme, povezane z njegovo uporabo. Za vzpostavitev ustreznih varnostnih in zdravstvenih praks ter za določitev uporabnosti regulativnih omejitev pred uporabo je odgovoren uporabnik tega mednarodnega standarda.

General Information

Status
Published
Publication Date
19-Mar-2015
Current Stage
9020 - International Standard under periodical review
Start Date
15-Oct-2025
Completion Date
15-Oct-2025

Relations

Standard
ISO 18413:2016
English language
52 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day
Standard
ISO 18413:2015 - Hydraulic fluid power -- Cleanliness of components -- Inspection document and principles related to contaminant extraction and analysis, and data reporting
English language
46 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 18413:2015 - Transmissions hydrauliques -- Propreté des composants -- Documents d'inspection et principes d'extraction et d'analyse des contaminants et d'expression des résultats
French language
48 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)


SLOVENSKI STANDARD
01-maj-2016
1DGRPHãþD
SIST ISO 18413:2003
)OXLGQDWHKQLND+LGUDYOLND6QDåQRVWGHORYLQNRPSRQHQW.RQWUROQLGRNXPHQW
LQSRVWRSNLL]ORþDQMDDQDOL]DXPD]DQLMHLQSRURþDQMHRUH]XOWDWLK
Hydraulic fluid power - Cleanliness of components - Inspection document and principles
related to contaminant extraction and analysis, and data reporting
Transmissions hydrauliques - Propreté des composants - Documents d'inspection et
principes d'extraction et d'analyse des contaminants et d'expression des résultats
Ta slovenski standard je istoveten z: ISO 18413:2015
ICS:
23.100.60 )LOWULWHVQLODLQ Filters, seals and
RQHVQDåHYDQMHWHNRþLQ contamination of fluids
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

INTERNATIONAL ISO
STANDARD 18413
Second edition
2015-03-15
Hydraulic fluid power — Cleanliness
of components — Inspection
document and principles related to
contaminant extraction and analysis,
and data reporting
Transmissions hydrauliques — Propreté des composants —
Documents d’inspection et principes d’extraction et d’analyse des
contaminants et d’expression des résultats
Reference number
©
ISO 2015
© ISO 2015
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
ii © ISO 2015 – All rights reserved

Contents Page
Foreword .v
Introduction .vi
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 2
4 Inspection document principles . 4
4.1 Content . 4
4.2 Component cleanliness requirement. 4
4.3 Inspection method . 4
4.4 Effectivity . 5
4.5 Conformance . 5
4.6 Verification of conformance to specified component cleanliness requirements . 5
4.7 Additional information . 5
5 Guidelines for selecting contamination extraction and analysis procedures .6
5.1 Overview . 6
5.2 Contaminant extraction . 6
5.3 Contaminant analysis . 6
6 Contaminant extraction principles . 7
6.1 General . 7
6.2 Overview . 7
6.3 Extraction procedure setup and validation . 7
6.3.1 Setup environment. 7
6.3.2 Validation . 8
6.4 Agitation .11
6.5 Pressure rinse .11
6.6 Ultrasonic vibration .12
6.7 Functional test method .12
7 Contaminant analysis principles .13
7.1 General .13
7.2 Overview .13
7.3 Gravimetric analysis .13
7.4 Determination of the largest particle size .13
7.5 Chemical composition .13
7.6 Particle size distribution .14
8 Data reporting principles .14
8.1 General .14
8.2 Overview .14
8.3 Contaminant mass .15
8.4 Particle size .15
8.5 Particle size distribution .15
8.6 Chemical composition .15
9 Criterion for acceptance .15
10 Identification statement (reference of this International Standard) .15
Annex A (normative) Contaminant extraction principles — Agitation method .16
Annex B (normative) Contaminant extraction principles — Pressure rinse method .21
Annex C (normative) Contaminant extraction principles — Ultrasonic vibration method .26
Annex D (normative) Contaminant extraction principles — Functional test method .32
Annex E (normative) Contaminant analysis principles and data reporting principles .38
Annex F (informative) Guidelines for the design of a functional test method test stand .40
Annex G (informative) Determination of geometric characteristics of components .43
Bibliography .46
iv © ISO 2015 – All rights reserved

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any
patent rights identified during the development of the document will be in the Introduction and/or on
the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the meaning of ISO specific terms and expressions related to conformity
assessment, as well as information about ISO’s adherence to the WTO principles in the Technical Barriers
to Trade (TBT), see the following URL: Foreword — Supplementary information.
The committee responsible for this document is ISO/TC 131, Fluid power systems, Subcommittee SC 6,
Contamination control.
This second edition cancels and replaces the first edition (ISO 18413:2002), of which it constitutes a
minor revision.
Introduction
In hydraulic fluid power systems, power is transmitted and controlled through a pressurized liquid
within an enclosed circuit. Contaminants present in the circulating working liquid can degrade system
performance. The presence of particles residual from the manufacturing and assembly processes can
cause a substantial increase in the wear rates to the system during the initial run-up and early life and can
even cause catastrophic failures. In order to achieve reliable performance of components and the system,
control over the amount of particles introduced during the build phase is necessary. Accurate assessment
of the effectiveness of part and component cleaning requires documentation of both the cleanliness
requirement and the methods used for contaminant extraction and analysis and data reporting.
vi © ISO 2015 – All rights reserved

INTERNATIONAL STANDARD ISO 18413:2015(E)
Hydraulic fluid power — Cleanliness of components
— Inspection document and principles related to
contaminant extraction and analysis, and data reporting
1 Scope
This International Standard specifies the content of an inspection document that specifies both the
cleanliness requirement for the specified hydraulic fluid power component and the inspection method
to be used for evaluating its cleanliness level. In addition, guidelines for relevant extraction methods
and analysis methods are given.
Determination of what constitutes as an appropriate cleanliness level requirement for any particular
component is beyond the scope of this International Standard. ISO 12669 provides a method of
determining the required cleanliness of a hydraulic system. ISO TR 10686 provides a method of relating
the required cleanliness of components to the required cleanliness of the hydraulic system.
For the purposes of this International Standard, approved functional liquids are considered to be components.
This International Standard is applicable to the particulate contamination on the wetted surfaces and
volumes of any hydraulic fluid power system component. Appearance defects and liquid or gaseous
contamination are not covered by this International Standard.
This International Standard does not address safety problems that might arise from hazardous
materials, operations, and equipment associated with its use. The user of this International Standard is
responsible for establishing appropriate safety and health practices and determining the applicability
of regulatory limitations prior to use.
2 Normative references
The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.
ISO 3722, Hydraulic fluid power — Fluid sample containers — Qualifying and controlling cleaning methods
ISO 4021, Hydraulic fluid power — Particulate contamination analysis — Extraction of fluid samples from
lines of an operating system
ISO 4405, Hydraulic fluid power — Fluid contamination — Determination of particulate contamination by
the gravimetric method
ISO 4407, Hydraulic fluid power — Fluid contamination — Determination of particulate contamination by
the counting method using an optical microscope
ISO 5598, Fluid power systems and components — Vocabulary
ISO 11500, Hydraulic fluid power — Determination of the particulate contamination level of a liquid sample
by automatic particle counting using the light-extinction principle
ISO 11171, Hydraulic fluid power — Calibration of automatic particle counters for liquids
ISO 11943, Hydraulic fluid power — On-line automatic particle-counting systems for liquids — Methods of
calibration and validation
ISO 12103-1, Road vehicles — Test dust for filter evaluation — Part 1: Arizona test dust
ISO 14644-1, Cleanrooms and associated controlled environments — Part 1: Classification of air cleanliness
ISO 21018 (all parts), Hydraulic fluid power — Monitoring the level of particulate contamination in the fluid
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 5598 and the following apply.
3.1
blank level
amount of contaminant introduced from sources other than the test component, such as reagents,
glassware, preparation of test units, and the environment
3.2
blank test
analysis carried out in the same operating conditions as on the test component but without the test component
Note 1 to entry: The blank test enables quantification of the contamination introduced from sources other than
the test component, such as reagents, glassware, preparation of test units, and the environment.
3.3
clean
state of cleanliness of a component or fluid that meets the specified cleanliness level
3.4
cleanliness
condition of a product, surface, device, liquid, etc., characterized by the absence of particulate
contamination
3.5
component
general term to cover a part, a component, a sub-assembly, or a part assembly used in a hydraulic system
Note 1 to entry: This definition differs from that given for the same term in ISO 5598.
3.6
component contamination
amount or nature of contaminants extracted from the wetted or controlled surfaces of a component, as
measured by an applicable analysis method
3.7
contaminant
undesirable solid substance that is in suspension in a fluid or in a component or on a controlled surface
of a component
Note 1 to entry: For the purposes of this International Standard, contaminants include solid material suspended
in liquids, but exclude liquids and gases. This definition differs from ISO 5598 in its exclusion of liquids and gases.
3.8
controlled surface
wetted surface of a component that is subject to a cleanliness requirement
3.9
controlled volume
wetted volume of a component that is subject to a cleanliness requirement
3.10
end-point sample
last in a series of repetitive samples, which produces a result that is ≤10 % of all the samples
2 © ISO 2015 – All rights reserved

3.11
external surface
surface of the component which is not wetted by the system fluid in normal operation
3.12
extraction
operation required to transfer as much contaminant as possible that is present within a controlled
volume or on a controlled surface into a test liquid and its collection for subsequent analysis
3.13
extraction curve
progress curve of the cleanliness level of an extraction liquid applied to the test component as a function
of the number of extractions
Note 1 to entry: This is related to the extraction time or to the volume of test liquid passed through or over the
test component.
3.14
extraction liquid
test liquid loaded with contaminants extracted from the test component
3.15
fluid contamination monitor
FCM
instrument that quantitatively evaluates the particulate contamination level of a liquid in an on-line mode
3.16
inspection document
written description of the component cleanliness requirement and the agreed inspection method
3.17
inspection method
procedure for contaminant extraction, contaminant analysis, and data reporting which is used to
evaluate component cleanliness as specified by the inspection document
3.18
representative sample
material extracted such that it is typical of the amount and nature of the contaminant contained in or
on a component
3.19
test liquid
suitable liquid of known initial cleanliness used to remove, suspend, and extract contaminant from a
component and which is compatible with the component being tested and the apparatus used
3.20
validation
process by which a test method evaluates the capability of the contaminant removal process
3.21
wetted surface area
A
c
surface area of the component that is exposed to system liquid
Figure 1 — Wetted surface area (A )
c
3.22
wetted volume
V
c
volume of the component that is exposed to system liquid
Figure 2 — Wetted volume (V )
c
4 Inspection document principles
4.1 Content
This International Standard specifies the content of the inspection document, not its format. The
inspection document may exist as a single document or as a series of related documents. Regardless of
format, the inspection document shall clearly identify the component cleanliness requirement and the
agreed inspection method.
4.2 Component cleanliness requirement
The inspection document shall define the component cleanliness requirement when this is known. The
cleanliness requirement shall be consistent with the known or anticipated function or application of the
component. ISO TR 10686 and ISO 12669 give guidance and tools to establish such requirements. The
component cleanliness requirement shall be established and agreed upon by the parties involved.
International Standards should be used in preference to other references sources (e.g. example historical
data, existing company, industry, and national standards, functional performance, reliability, and
durability requirements of the component, and data on similar components to determine the cleanliness
requirement for a particular component).
4.3 Inspection method
4.3.1 The inspection document shall specify the inspection method to be used to evaluate component
cleanliness. The inspection method shall be established and agreed upon by the parties involved. The
inspection method shall be consistent with the design and the cleanliness requirement of the component.
4.3.2 The inspection document shall specify the appropriate parameters applicable to extracting
contaminants, conducting analyses, and reporting results. Typical reference sources for consideration in
determining the agreed inspection method include: International Standards, previously used methods
of contaminant extraction, contaminant analysis, and data reporting; existing company, industry, and
4 © ISO 2015 – All rights reserved

national, standards; functional, reliability, and durability requirements of the component; and methods
used on similar parts or components.
4.4 Effectivity
The inspection document shall become effective upon mutual agreement between the parties involved,
both of which shall maintain a copy of the applicable inspection document.
4.5 Conformance
Unless otherwise stated in the inspection document,
a) all components for which a cleanliness level has been specified shall meet that requirement when
evaluated in accordance with the agreed inspection method and
b) it is not necessary to inspect those components for which no cleanliness level has been specified (it is
possible that some components are required to meet a specified cleanliness level and others are not).
4.6 Verification of conformance to specified component cleanliness requirements
4.6.1 Conformance to component cleanliness requirements can be verified either by the use of industry-
accepted statistical sampling methods or by joint purchaser-supplier monitoring of the inspection processes.
4.6.2 Verification of test results requires special care because differences in method of contaminant
extraction or analysis of the same component affect the results obtained. In addition, because the
contaminant extraction process results in cleaning of the component used as a test item, that same test
item shall not be reused for subsequent conformance verification.
4.7 Additional information
4.7.1 Unless otherwise agreed by purchaser and supplier, 4.7.2 to 4.7.5 shall apply.
4.7.2 The inspection document shall specify both the required cleanliness level for the component and
the scope of its applicability. The points in the process at which the cleanliness requirement applies shall
be stated in the inspection document. Because prolonged or improper storage of components can result
in the introduction of new contaminants, such as oxidation products, the inspection document shall, when
applicable, address these factors.
4.7.3 Temporary shipping covers are excluded from the inspection process; however, any contaminants
contributed by such covers shall be included in the evaluation of component cleanliness.
4.7.4 Contaminants contributed by such defects as nicks, blemishes, and discoloration shall be included
in the evaluation of component cleanliness.
4.7.5 Where applicable, a requirement for allowable residual magnetic density may be included as part
of the inspection document.
NOTE Residual magnetism can cause retention of contaminant on component surfaces and the formation of
agglomerates, both of which affect contaminant extraction or analysis or both.
5 Guidelines for selecting contamination extraction and analysis procedures
5.1 Overview
The following information is intended to be neither exhaustive nor restrictive. It is intended only to assist
the user of this International Standard by indicating methods of sample extraction, sample analysis, and
data reporting that are widely recognized as appropriate under selected conditions. The requirements
applicable to a specific component shall be stated in the inspection document.
5.2 Contaminant extraction
Select the extraction method most suited to the component being inspected from Table 1. The method of
contaminant extraction shall be agreed upon and stated in the inspection document.
NOTE Table 1 is a summary of guidelines for selection of contaminant extraction methods as they relate to
categories of hydraulic components.
Table 1 — Guidelines for selection of contaminant extraction methods
Contaminant extraction method
Component
Ultrasonic
Agitation Pressure rinse Functional test
vibration
Assemblies
Pumps and motors NR NR NA R
Valves and cylinders NR NR NA R
Manifold and body assemblies NR A A R
Accumulators A NR NA R
Simple shapes and housings
Gears, plates, and shafts A R R NA
Spools, rods, and pistons A R R NA
Hardware and seals A R R NA
Tanks and reservoirs A R NA NR
Hollow parts
Manifolds and bodies R A A A
Hoses and tubes R A A R
Fittings A R A A
Filtration components
Filter elements — cleanable Method shall be agreed between the supplier and purchaser
Filter elements — non-clean- Method shall be agreed between the supplier and purchaser
able
Filter housings R A A R
R = Recommended
A = Acceptable
NR = Not recommended
NA = Not applicable
5.3 Contaminant analysis
Select the contaminant analysis method from Table 2. The method of contaminant analysis shall be
agreed upon and stated in the inspection document.
6 © ISO 2015 – All rights reserved

Table 2 — Guidelines for selection of contaminant analysis methods
Contaminant analysis method
Contaminant Particle size distribution
Gravimetric Chemical
extraction method
Particle size
a b
APC APC or FCM
analysis composition
Microscopy
(bottle) (on line)
Agitation R R R R R NA
Pressure rinse R R R R R A
Ultrasonic vibration R R R R R NA
Functional test A A A R A R
R = Recommended
A = Acceptable
NR = Not recommended
NA = Not applicable
a
Determined using a light extinction APC used in accordance with ISO 11500.
b
Determined using a fluid contamination monitor used in accordance with one of the parts of ISO 21018.
6 Contaminant extraction principles
6.1 General
The method of contaminant extraction shall be agreed upon and stated in the inspection document.
The measured component cleanliness level depends upon the effectiveness of the extraction procedures
chosen and upon whether those extraction methods have been validated (see 6.3). The effectiveness of
the contaminant extraction process should be validated by using the end point concept (see 3.10). Testing
personnel shall follow the contaminant extraction method(s) specified in the inspection document.
Inspection facilities and environment shall be as clean as practicable so as not to significantly affect the
measurement of component cleanliness, which is quantified by the blank test (see 6.4.).
6.2 Overview
Contaminant extraction consists of various techniques for removing contaminants from controlled
surfaces of components by the hydraulic and chemical action of a suitable liquid, suspending contaminant
in the test liquid, then collecting the extraction liquid and suspended contaminant for analysis. This
International Standard describes four basic contaminant extraction techniques: agitation, pressure rinse,
ultrasonic vibration, and functional test method. Other methods of contaminant extraction may also be
used when agreed upon between supplier and purchaser. The contaminant extraction method shall be
properly validated. The entire extraction fluid volume used shall be analysed and processed as such.
6.3 Extraction procedure setup and validation
6.3.1 Setup environment
6.3.1.1 The number of components to be analysed shall be chosen so as to measure a significant amount
of contaminant that complies with the requirement for a blank.
6.3.1.2 If the break-in of the component is part of its manufacturing process, the extraction procedure
shall be agreed between parties and included in the inspection document because break-in can alter its
initial cleanliness level.
6.3.1.3 The contaminants included in the inspection process are particles that have been detached from
controlled surfaces during transportation of the test component, particles from the packaging, and those
in the shipping liquid. They shall be extracted using an appropriate extraction method (e.g. low pressure
rinsing). The extraction processes shall be included in the inspection document.
6.3.1.4 For active components, it might be necessary to operate them in order to pass the test liquid
through during the extraction process. In this case, the initial contamination level can be altered. The
extraction conditions should be agreed upon between parties and included in the inspection document.
6.3.1.5 Apply the appropriate extraction method on the component to be tested, and analyse the whole
extraction liquid volume in accordance with Clause 7 and label the results obtained as S1.
6.3.1.6 Repeat 6.3.1.5 on the same component, using, when necessary, a different container for each
extraction liquid sample, and label the results obtained as S2. The extractions shall be made one after the other.
6.3.1.7 If six extractions have been performed without achieving the end point in the required number
of extractions, as specified in 6.3.2.2.1, this means that the extraction parameters are not suitable and
shall be changed. Repeat operations 6.3.1.5 to 6.3.1.7 with new parameters on a new component.
6.3.1.8 If the criterion is not fulfilled, set up a new extraction protocol and validate it according to 6.3,
or apply another extraction method.
6.3.2 Validation
6.3.2.1 Blank test
6.3.2.1.1 Whichever extraction method is used, a blank test is performed to verify that the operating
conditions, equipment, and products used in the extraction procedure do not contribute a significant
amount of contamination to the component analysed. A blank test should be performed, using identical
test parameters, at intervals as established in the testing laboratory’s quality control plan.
6.3.2.1.2 System blank values shall be determined under conditions identical to the ones applied during
testing of the component, but with the component omitted.
The blank value shall be determined and shall comply with the requirements for each analysis method
specified in the inspection document.
6.3.2.1.3 Proceed as specified in 6.3.1.5 to 6.3.1.7 with the same equipment and total volume of test
liquid as required for the extraction process, but without the component.
6.3.2.1.4 Analyse the entire extraction liquid volume as specified in Clause 7.
6.3.2.1.5 The blank value depends on the presumed or specified cleanliness level of the component(s)
and on the analysis method. If this is not stated in the inspection document, then the following blank
values shall be applied:
a) gravimetric analysis: less than 10 % of the presumed or specified gravimetric cleanliness level of
the component.
When using a four-digit balance in uncontrolled environmental conditions (that is, uncontrolled
humidity and temperature), the minimum measurable blank value is 0,3 mg; a five-digit balance
with an accuracy of 0,1 mg should be used. Because of this, at least 3 mg should be extracted during
the component test in order to meet the 10 % blank criterion.
b) particle counting and sizing:
1) Particle counts: less than 10 % of the presumed or specified numbers, at the relevant sizes,
each calculated number being rounded down. For example, if no more than 167 particles for
8 © ISO 2015 – All rights reserved

a particular particle size are presumed or specified, no more than 16 particles of that size are
allowed in the blank. If zero particle is stated at a given size, the blank value is zero particle at
the next smaller size range. The particle sizes for the blank test shall be those specified in the
inspection document for the component contamination analysis.
2) If the component’s presumed contamination level is not known or if the inspection document
states no requirement, the blank shall contain the following:
i) less than 4 000 particles ≥5 µm and less than 500 particles ≥15 µm per 100 mL of
extraction liquid;
ii) no particle ≥50 µm.
6.3.2.1.6 If the blank level exceeds 10 %, there are two possible reasons:
a) the equipment is not clean; in which case, clean all equipment and solvents again and repeat 6.3.2.1
and 6.3.2.1.4;
b) the components are too clean for the blank obtained; in which case, increase the number of test
components analysed in order to extract more particles and, thus, fulfil the 10 % limit.
6.3.2.2 Validation of contamination extraction
6.3.2.2.1 Validate the contamination extraction procedure to ensure its efficacy as follows:
a) For each of the two analyses described in 6.3.1.4 and 6.3.1.5, establish the total cumulated mass of
contaminants or the total cumulated number of particles larger than the particle sizes specified in
the inspection document.
b) Divide the result of the last sample by the sum of all the values obtained in 6.3.2.2.1 a).
c) If the value obtained is less than or equal to 0,10 (10 %), the end-point is reached and the extraction
is completed.
n
Sn≤ Si

i=1
d) If not, repeat 6.3.1.5 through 6.3.2.2.1 b) until the last sample Sn produces a result ≤10 % of the sum
of all samples, as calculated in 6.3.2.2.1 c), or until six extractions have been performed without
reaching the ≤10 % value (see 6.3.1.7), whichever occurs first.
NOTE 1 This procedure enables the extraction curve to be drawn and the end-point (≤10 %) to be demonstrated
(see Figure 3). Alternatively, the data and calculation can be shown in tabular form.
NOTE 2 The cleanliness level of the component is the sum of contamination collected with all extractions.
In some cases (for example, a very low or a stable contamination level, difficulties in extracting particles,
inappropriate blank level, etc.), the extraction curve might not be of the form seen in Figure 3. If this is
the case, ensure that all extraction parameters have been properly investigated.
Key
1 percentage of cumulated contamination extracted
2 number of extraction samples, i
3 extraction curve in percentage of cumulated contamination extracted
4 10 % of cumulated contamination extracted: end point = extraction 4
5 blank level
Figure 3 — Example of extraction curve
6.3.2.3 Routine test
6.3.2.3.1 If agreed between parties, a simplified extraction procedure known as a routine test could be
established for identical components. Its principle is that the total parameters of a validated extraction
procedure, whatever the technique used (i.e. agitation time, rinsing volume, sonication time, or flushing
time) are used in a single extraction without drawing the extraction curve. This is then repeated to confirm
compliance with the 10 % criterion.
6.3.2.3.2 Apply the agreed extraction procedure described in one of 6.4 to 6.7 to the component as
many times as determined by the validation procedure and analyse the whole extraction liquid volume as
specified in Clause 7.
6.3.2.3.3 If the cleanliness inspection is to include particles that are detached during transportation of
the test component or particles from the packaging, these particles shall be extracted using an appropriate
extraction method (e.g. low pressure rinsing). This agreement shall be included in the inspection document.
6.3.2.3.4 A combination of extraction methods can be used with different conditions than those
used to validate the extraction procedure, provided the conditions are shown to be sufficient to extract
contaminant and achieve the end-point criterion. In this case, the resulting cleanliness level might be
different. This simplified method shall be validated by performing at least one further extraction to see
if the end point has been achieved. If not, further extractions are necessary. It should be agreed between
parties and included in the inspection document. The following procedure can be applied to validate
routine extractions by pressure rinsing and the functional test method:
a) Condition and clean the equipment so as to achieve the required blank level.
b) If the blank value exceeds the agreed level, proceed as in 6.3.2.1.6.
c) Apply the extraction procedure to the component using the revised extraction parameters defined
in 6.3.2.3.4.
d) Analyse all of the extraction liquid as specified in Clause 7, and record the result as S1.
NOTE A combination of extraction methods may be used provided that at least one has been validated.
10 © ISO 2015 – All rights reserved

e) Repeat step c) and record the resulting value as S2. If S2 ≤0,1 × (S1 + S2), sum S1 and S2 and report
the result. If the 10 % level is not achieved after a second extraction, repeat 6.3.2.3.4 until the 10 %
level is achieved.
NOTE The 10 % criterion should be reached in two extractions; failure to do so indicates either a change in
the contamination level of the component or a reduced effectiveness of the extraction procedure and should be
investigated.
6.3.2.3.5 When an extraction method is applied to several components due to their low level of
contamination (e.g. in relation to the value of the blank level), it is not necessary to measure the
contamination level of the extraction sample from each component. In this case, the liquids from all
extractions shall be mixed and analysed as specified in Clause 7, provided that the concentration of
contaminant does not affect the analysis method chosen.
6.4 Agitation
6.4.1 Contaminant extraction by agitation is best suited to hollow components with characteristics
(weight, size) allowing them to be hand shaken by an operator or agitated by an appropriate mechanical
device. See Table 1 for examples of its application.
6.4.2 Contaminant contained within simple enclosed surfaces shall be removed by partially filling
the component under the test with an appropriate test liquid, sealing the openings, and agitating the
component to remove the contaminant from the controlled surface and to suspend the contaminant in the
test liquid. Immediately after agitation, all extraction liquid used in the test shall be drained and collected
for analysis. Annex A provides additional information.
6.4.3 Primary process variables to be controlled include: test liquid and its relevant properties, test
liquid volume and temperature, type and duration of agitation, the number of samples extracted up to and
including the end-point sample, and the volume of test liquid extracted for analysis.
6.4.4 Consideration should be given to the size and mass of the component, the need for slings or
fixtures, and any auxiliary equipment necessary for proper contaminant extraction.
6.5 Pressure rinse
6.5.1 Contaminant extraction by pressure rinsing is best suited to components where the surface to
be controlled is easily accessible by a jet of pressurized test liquid. It may be used as a second phase of
another extraction procedure such as ultrasonic vibration. See Table 1 for examples of its application.
6.5.2 Contaminant on exposed and accessible surfaces shall be removed by directing a stream of test
liquid onto the controlled surface of the component, which is placed over an appropriate liquid collection
apparatus. Immediately after rinsing, all test liquid used in the test shall be collected for analysis. Annex B
provides additional information.
6.5.3 Primary process variables to be controlled include shape of the jet or nozzle, test liquid and its
relevant properties, test liquid pressure and flow rate, test liquid volume and temperature, the sequence
followed in rinsing the component, and the number of samples extracted up to and including the end-
point sample.
6.5.4 Consideration should be given to the overall accessibility of controlled surfaces for rinsing, the
size and mass of the component, the need for slings and fixtures, and auxiliary equipment necessary for
proper contaminant extraction.
6.6 Ultrasonic vibration
6.6.1 Contaminant extraction by ultrasonic vibration is best suited for small- and medium-sized
components where internal or external surfaces or both are exposed. It is also recommended for testing
batches of several small components. See Table 1 for examples of its application.
6.6.2 Contaminant on surfaces accessible to ultrasonic vibrations
...


INTERNATIONAL ISO
STANDARD 18413
Second edition
2015-03-15
Hydraulic fluid power — Cleanliness
of components — Inspection
document and principles related to
contaminant extraction and analysis,
and data reporting
Transmissions hydrauliques — Propreté des composants —
Documents d’inspection et principes d’extraction et d’analyse des
contaminants et d’expression des résultats
Reference number
©
ISO 2015
© ISO 2015
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
ii © ISO 2015 – All rights reserved

Contents Page
Foreword .v
Introduction .vi
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 2
4 Inspection document principles . 4
4.1 Content . 4
4.2 Component cleanliness requirement. 4
4.3 Inspection method . 4
4.4 Effectivity . 5
4.5 Conformance . 5
4.6 Verification of conformance to specified component cleanliness requirements . 5
4.7 Additional information . 5
5 Guidelines for selecting contamination extraction and analysis procedures .6
5.1 Overview . 6
5.2 Contaminant extraction . 6
5.3 Contaminant analysis . 6
6 Contaminant extraction principles . 7
6.1 General . 7
6.2 Overview . 7
6.3 Extraction procedure setup and validation . 7
6.3.1 Setup environment. 7
6.3.2 Validation . 8
6.4 Agitation .11
6.5 Pressure rinse .11
6.6 Ultrasonic vibration .12
6.7 Functional test method .12
7 Contaminant analysis principles .13
7.1 General .13
7.2 Overview .13
7.3 Gravimetric analysis .13
7.4 Determination of the largest particle size .13
7.5 Chemical composition .13
7.6 Particle size distribution .14
8 Data reporting principles .14
8.1 General .14
8.2 Overview .14
8.3 Contaminant mass .15
8.4 Particle size .15
8.5 Particle size distribution .15
8.6 Chemical composition .15
9 Criterion for acceptance .15
10 Identification statement (reference of this International Standard) .15
Annex A (normative) Contaminant extraction principles — Agitation method .16
Annex B (normative) Contaminant extraction principles — Pressure rinse method .21
Annex C (normative) Contaminant extraction principles — Ultrasonic vibration method .26
Annex D (normative) Contaminant extraction principles — Functional test method .32
Annex E (normative) Contaminant analysis principles and data reporting principles .38
Annex F (informative) Guidelines for the design of a functional test method test stand .40
Annex G (informative) Determination of geometric characteristics of components .43
Bibliography .46
iv © ISO 2015 – All rights reserved

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any
patent rights identified during the development of the document will be in the Introduction and/or on
the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the meaning of ISO specific terms and expressions related to conformity
assessment, as well as information about ISO’s adherence to the WTO principles in the Technical Barriers
to Trade (TBT), see the following URL: Foreword — Supplementary information.
The committee responsible for this document is ISO/TC 131, Fluid power systems, Subcommittee SC 6,
Contamination control.
This second edition cancels and replaces the first edition (ISO 18413:2002), of which it constitutes a
minor revision.
Introduction
In hydraulic fluid power systems, power is transmitted and controlled through a pressurized liquid
within an enclosed circuit. Contaminants present in the circulating working liquid can degrade system
performance. The presence of particles residual from the manufacturing and assembly processes can
cause a substantial increase in the wear rates to the system during the initial run-up and early life and can
even cause catastrophic failures. In order to achieve reliable performance of components and the system,
control over the amount of particles introduced during the build phase is necessary. Accurate assessment
of the effectiveness of part and component cleaning requires documentation of both the cleanliness
requirement and the methods used for contaminant extraction and analysis and data reporting.
vi © ISO 2015 – All rights reserved

INTERNATIONAL STANDARD ISO 18413:2015(E)
Hydraulic fluid power — Cleanliness of components
— Inspection document and principles related to
contaminant extraction and analysis, and data reporting
1 Scope
This International Standard specifies the content of an inspection document that specifies both the
cleanliness requirement for the specified hydraulic fluid power component and the inspection method
to be used for evaluating its cleanliness level. In addition, guidelines for relevant extraction methods
and analysis methods are given.
Determination of what constitutes as an appropriate cleanliness level requirement for any particular
component is beyond the scope of this International Standard. ISO 12669 provides a method of
determining the required cleanliness of a hydraulic system. ISO TR 10686 provides a method of relating
the required cleanliness of components to the required cleanliness of the hydraulic system.
For the purposes of this International Standard, approved functional liquids are considered to be components.
This International Standard is applicable to the particulate contamination on the wetted surfaces and
volumes of any hydraulic fluid power system component. Appearance defects and liquid or gaseous
contamination are not covered by this International Standard.
This International Standard does not address safety problems that might arise from hazardous
materials, operations, and equipment associated with its use. The user of this International Standard is
responsible for establishing appropriate safety and health practices and determining the applicability
of regulatory limitations prior to use.
2 Normative references
The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.
ISO 3722, Hydraulic fluid power — Fluid sample containers — Qualifying and controlling cleaning methods
ISO 4021, Hydraulic fluid power — Particulate contamination analysis — Extraction of fluid samples from
lines of an operating system
ISO 4405, Hydraulic fluid power — Fluid contamination — Determination of particulate contamination by
the gravimetric method
ISO 4407, Hydraulic fluid power — Fluid contamination — Determination of particulate contamination by
the counting method using an optical microscope
ISO 5598, Fluid power systems and components — Vocabulary
ISO 11500, Hydraulic fluid power — Determination of the particulate contamination level of a liquid sample
by automatic particle counting using the light-extinction principle
ISO 11171, Hydraulic fluid power — Calibration of automatic particle counters for liquids
ISO 11943, Hydraulic fluid power — On-line automatic particle-counting systems for liquids — Methods of
calibration and validation
ISO 12103-1, Road vehicles — Test dust for filter evaluation — Part 1: Arizona test dust
ISO 14644-1, Cleanrooms and associated controlled environments — Part 1: Classification of air cleanliness
ISO 21018 (all parts), Hydraulic fluid power — Monitoring the level of particulate contamination in the fluid
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 5598 and the following apply.
3.1
blank level
amount of contaminant introduced from sources other than the test component, such as reagents,
glassware, preparation of test units, and the environment
3.2
blank test
analysis carried out in the same operating conditions as on the test component but without the test component
Note 1 to entry: The blank test enables quantification of the contamination introduced from sources other than
the test component, such as reagents, glassware, preparation of test units, and the environment.
3.3
clean
state of cleanliness of a component or fluid that meets the specified cleanliness level
3.4
cleanliness
condition of a product, surface, device, liquid, etc., characterized by the absence of particulate
contamination
3.5
component
general term to cover a part, a component, a sub-assembly, or a part assembly used in a hydraulic system
Note 1 to entry: This definition differs from that given for the same term in ISO 5598.
3.6
component contamination
amount or nature of contaminants extracted from the wetted or controlled surfaces of a component, as
measured by an applicable analysis method
3.7
contaminant
undesirable solid substance that is in suspension in a fluid or in a component or on a controlled surface
of a component
Note 1 to entry: For the purposes of this International Standard, contaminants include solid material suspended
in liquids, but exclude liquids and gases. This definition differs from ISO 5598 in its exclusion of liquids and gases.
3.8
controlled surface
wetted surface of a component that is subject to a cleanliness requirement
3.9
controlled volume
wetted volume of a component that is subject to a cleanliness requirement
3.10
end-point sample
last in a series of repetitive samples, which produces a result that is ≤10 % of all the samples
2 © ISO 2015 – All rights reserved

3.11
external surface
surface of the component which is not wetted by the system fluid in normal operation
3.12
extraction
operation required to transfer as much contaminant as possible that is present within a controlled
volume or on a controlled surface into a test liquid and its collection for subsequent analysis
3.13
extraction curve
progress curve of the cleanliness level of an extraction liquid applied to the test component as a function
of the number of extractions
Note 1 to entry: This is related to the extraction time or to the volume of test liquid passed through or over the
test component.
3.14
extraction liquid
test liquid loaded with contaminants extracted from the test component
3.15
fluid contamination monitor
FCM
instrument that quantitatively evaluates the particulate contamination level of a liquid in an on-line mode
3.16
inspection document
written description of the component cleanliness requirement and the agreed inspection method
3.17
inspection method
procedure for contaminant extraction, contaminant analysis, and data reporting which is used to
evaluate component cleanliness as specified by the inspection document
3.18
representative sample
material extracted such that it is typical of the amount and nature of the contaminant contained in or
on a component
3.19
test liquid
suitable liquid of known initial cleanliness used to remove, suspend, and extract contaminant from a
component and which is compatible with the component being tested and the apparatus used
3.20
validation
process by which a test method evaluates the capability of the contaminant removal process
3.21
wetted surface area
A
c
surface area of the component that is exposed to system liquid
Figure 1 — Wetted surface area (A )
c
3.22
wetted volume
V
c
volume of the component that is exposed to system liquid
Figure 2 — Wetted volume (V )
c
4 Inspection document principles
4.1 Content
This International Standard specifies the content of the inspection document, not its format. The
inspection document may exist as a single document or as a series of related documents. Regardless of
format, the inspection document shall clearly identify the component cleanliness requirement and the
agreed inspection method.
4.2 Component cleanliness requirement
The inspection document shall define the component cleanliness requirement when this is known. The
cleanliness requirement shall be consistent with the known or anticipated function or application of the
component. ISO TR 10686 and ISO 12669 give guidance and tools to establish such requirements. The
component cleanliness requirement shall be established and agreed upon by the parties involved.
International Standards should be used in preference to other references sources (e.g. example historical
data, existing company, industry, and national standards, functional performance, reliability, and
durability requirements of the component, and data on similar components to determine the cleanliness
requirement for a particular component).
4.3 Inspection method
4.3.1 The inspection document shall specify the inspection method to be used to evaluate component
cleanliness. The inspection method shall be established and agreed upon by the parties involved. The
inspection method shall be consistent with the design and the cleanliness requirement of the component.
4.3.2 The inspection document shall specify the appropriate parameters applicable to extracting
contaminants, conducting analyses, and reporting results. Typical reference sources for consideration in
determining the agreed inspection method include: International Standards, previously used methods
of contaminant extraction, contaminant analysis, and data reporting; existing company, industry, and
4 © ISO 2015 – All rights reserved

national, standards; functional, reliability, and durability requirements of the component; and methods
used on similar parts or components.
4.4 Effectivity
The inspection document shall become effective upon mutual agreement between the parties involved,
both of which shall maintain a copy of the applicable inspection document.
4.5 Conformance
Unless otherwise stated in the inspection document,
a) all components for which a cleanliness level has been specified shall meet that requirement when
evaluated in accordance with the agreed inspection method and
b) it is not necessary to inspect those components for which no cleanliness level has been specified (it is
possible that some components are required to meet a specified cleanliness level and others are not).
4.6 Verification of conformance to specified component cleanliness requirements
4.6.1 Conformance to component cleanliness requirements can be verified either by the use of industry-
accepted statistical sampling methods or by joint purchaser-supplier monitoring of the inspection processes.
4.6.2 Verification of test results requires special care because differences in method of contaminant
extraction or analysis of the same component affect the results obtained. In addition, because the
contaminant extraction process results in cleaning of the component used as a test item, that same test
item shall not be reused for subsequent conformance verification.
4.7 Additional information
4.7.1 Unless otherwise agreed by purchaser and supplier, 4.7.2 to 4.7.5 shall apply.
4.7.2 The inspection document shall specify both the required cleanliness level for the component and
the scope of its applicability. The points in the process at which the cleanliness requirement applies shall
be stated in the inspection document. Because prolonged or improper storage of components can result
in the introduction of new contaminants, such as oxidation products, the inspection document shall, when
applicable, address these factors.
4.7.3 Temporary shipping covers are excluded from the inspection process; however, any contaminants
contributed by such covers shall be included in the evaluation of component cleanliness.
4.7.4 Contaminants contributed by such defects as nicks, blemishes, and discoloration shall be included
in the evaluation of component cleanliness.
4.7.5 Where applicable, a requirement for allowable residual magnetic density may be included as part
of the inspection document.
NOTE Residual magnetism can cause retention of contaminant on component surfaces and the formation of
agglomerates, both of which affect contaminant extraction or analysis or both.
5 Guidelines for selecting contamination extraction and analysis procedures
5.1 Overview
The following information is intended to be neither exhaustive nor restrictive. It is intended only to assist
the user of this International Standard by indicating methods of sample extraction, sample analysis, and
data reporting that are widely recognized as appropriate under selected conditions. The requirements
applicable to a specific component shall be stated in the inspection document.
5.2 Contaminant extraction
Select the extraction method most suited to the component being inspected from Table 1. The method of
contaminant extraction shall be agreed upon and stated in the inspection document.
NOTE Table 1 is a summary of guidelines for selection of contaminant extraction methods as they relate to
categories of hydraulic components.
Table 1 — Guidelines for selection of contaminant extraction methods
Contaminant extraction method
Component
Ultrasonic
Agitation Pressure rinse Functional test
vibration
Assemblies
Pumps and motors NR NR NA R
Valves and cylinders NR NR NA R
Manifold and body assemblies NR A A R
Accumulators A NR NA R
Simple shapes and housings
Gears, plates, and shafts A R R NA
Spools, rods, and pistons A R R NA
Hardware and seals A R R NA
Tanks and reservoirs A R NA NR
Hollow parts
Manifolds and bodies R A A A
Hoses and tubes R A A R
Fittings A R A A
Filtration components
Filter elements — cleanable Method shall be agreed between the supplier and purchaser
Filter elements — non-clean- Method shall be agreed between the supplier and purchaser
able
Filter housings R A A R
R = Recommended
A = Acceptable
NR = Not recommended
NA = Not applicable
5.3 Contaminant analysis
Select the contaminant analysis method from Table 2. The method of contaminant analysis shall be
agreed upon and stated in the inspection document.
6 © ISO 2015 – All rights reserved

Table 2 — Guidelines for selection of contaminant analysis methods
Contaminant analysis method
Contaminant Particle size distribution
Gravimetric Chemical
extraction method
Particle size
a b
APC APC or FCM
analysis composition
Microscopy
(bottle) (on line)
Agitation R R R R R NA
Pressure rinse R R R R R A
Ultrasonic vibration R R R R R NA
Functional test A A A R A R
R = Recommended
A = Acceptable
NR = Not recommended
NA = Not applicable
a
Determined using a light extinction APC used in accordance with ISO 11500.
b
Determined using a fluid contamination monitor used in accordance with one of the parts of ISO 21018.
6 Contaminant extraction principles
6.1 General
The method of contaminant extraction shall be agreed upon and stated in the inspection document.
The measured component cleanliness level depends upon the effectiveness of the extraction procedures
chosen and upon whether those extraction methods have been validated (see 6.3). The effectiveness of
the contaminant extraction process should be validated by using the end point concept (see 3.10). Testing
personnel shall follow the contaminant extraction method(s) specified in the inspection document.
Inspection facilities and environment shall be as clean as practicable so as not to significantly affect the
measurement of component cleanliness, which is quantified by the blank test (see 6.4.).
6.2 Overview
Contaminant extraction consists of various techniques for removing contaminants from controlled
surfaces of components by the hydraulic and chemical action of a suitable liquid, suspending contaminant
in the test liquid, then collecting the extraction liquid and suspended contaminant for analysis. This
International Standard describes four basic contaminant extraction techniques: agitation, pressure rinse,
ultrasonic vibration, and functional test method. Other methods of contaminant extraction may also be
used when agreed upon between supplier and purchaser. The contaminant extraction method shall be
properly validated. The entire extraction fluid volume used shall be analysed and processed as such.
6.3 Extraction procedure setup and validation
6.3.1 Setup environment
6.3.1.1 The number of components to be analysed shall be chosen so as to measure a significant amount
of contaminant that complies with the requirement for a blank.
6.3.1.2 If the break-in of the component is part of its manufacturing process, the extraction procedure
shall be agreed between parties and included in the inspection document because break-in can alter its
initial cleanliness level.
6.3.1.3 The contaminants included in the inspection process are particles that have been detached from
controlled surfaces during transportation of the test component, particles from the packaging, and those
in the shipping liquid. They shall be extracted using an appropriate extraction method (e.g. low pressure
rinsing). The extraction processes shall be included in the inspection document.
6.3.1.4 For active components, it might be necessary to operate them in order to pass the test liquid
through during the extraction process. In this case, the initial contamination level can be altered. The
extraction conditions should be agreed upon between parties and included in the inspection document.
6.3.1.5 Apply the appropriate extraction method on the component to be tested, and analyse the whole
extraction liquid volume in accordance with Clause 7 and label the results obtained as S1.
6.3.1.6 Repeat 6.3.1.5 on the same component, using, when necessary, a different container for each
extraction liquid sample, and label the results obtained as S2. The extractions shall be made one after the other.
6.3.1.7 If six extractions have been performed without achieving the end point in the required number
of extractions, as specified in 6.3.2.2.1, this means that the extraction parameters are not suitable and
shall be changed. Repeat operations 6.3.1.5 to 6.3.1.7 with new parameters on a new component.
6.3.1.8 If the criterion is not fulfilled, set up a new extraction protocol and validate it according to 6.3,
or apply another extraction method.
6.3.2 Validation
6.3.2.1 Blank test
6.3.2.1.1 Whichever extraction method is used, a blank test is performed to verify that the operating
conditions, equipment, and products used in the extraction procedure do not contribute a significant
amount of contamination to the component analysed. A blank test should be performed, using identical
test parameters, at intervals as established in the testing laboratory’s quality control plan.
6.3.2.1.2 System blank values shall be determined under conditions identical to the ones applied during
testing of the component, but with the component omitted.
The blank value shall be determined and shall comply with the requirements for each analysis method
specified in the inspection document.
6.3.2.1.3 Proceed as specified in 6.3.1.5 to 6.3.1.7 with the same equipment and total volume of test
liquid as required for the extraction process, but without the component.
6.3.2.1.4 Analyse the entire extraction liquid volume as specified in Clause 7.
6.3.2.1.5 The blank value depends on the presumed or specified cleanliness level of the component(s)
and on the analysis method. If this is not stated in the inspection document, then the following blank
values shall be applied:
a) gravimetric analysis: less than 10 % of the presumed or specified gravimetric cleanliness level of
the component.
When using a four-digit balance in uncontrolled environmental conditions (that is, uncontrolled
humidity and temperature), the minimum measurable blank value is 0,3 mg; a five-digit balance
with an accuracy of 0,1 mg should be used. Because of this, at least 3 mg should be extracted during
the component test in order to meet the 10 % blank criterion.
b) particle counting and sizing:
1) Particle counts: less than 10 % of the presumed or specified numbers, at the relevant sizes,
each calculated number being rounded down. For example, if no more than 167 particles for
8 © ISO 2015 – All rights reserved

a particular particle size are presumed or specified, no more than 16 particles of that size are
allowed in the blank. If zero particle is stated at a given size, the blank value is zero particle at
the next smaller size range. The particle sizes for the blank test shall be those specified in the
inspection document for the component contamination analysis.
2) If the component’s presumed contamination level is not known or if the inspection document
states no requirement, the blank shall contain the following:
i) less than 4 000 particles ≥5 µm and less than 500 particles ≥15 µm per 100 mL of
extraction liquid;
ii) no particle ≥50 µm.
6.3.2.1.6 If the blank level exceeds 10 %, there are two possible reasons:
a) the equipment is not clean; in which case, clean all equipment and solvents again and repeat 6.3.2.1
and 6.3.2.1.4;
b) the components are too clean for the blank obtained; in which case, increase the number of test
components analysed in order to extract more particles and, thus, fulfil the 10 % limit.
6.3.2.2 Validation of contamination extraction
6.3.2.2.1 Validate the contamination extraction procedure to ensure its efficacy as follows:
a) For each of the two analyses described in 6.3.1.4 and 6.3.1.5, establish the total cumulated mass of
contaminants or the total cumulated number of particles larger than the particle sizes specified in
the inspection document.
b) Divide the result of the last sample by the sum of all the values obtained in 6.3.2.2.1 a).
c) If the value obtained is less than or equal to 0,10 (10 %), the end-point is reached and the extraction
is completed.
n
Sn≤ Si

i=1
d) If not, repeat 6.3.1.5 through 6.3.2.2.1 b) until the last sample Sn produces a result ≤10 % of the sum
of all samples, as calculated in 6.3.2.2.1 c), or until six extractions have been performed without
reaching the ≤10 % value (see 6.3.1.7), whichever occurs first.
NOTE 1 This procedure enables the extraction curve to be drawn and the end-point (≤10 %) to be demonstrated
(see Figure 3). Alternatively, the data and calculation can be shown in tabular form.
NOTE 2 The cleanliness level of the component is the sum of contamination collected with all extractions.
In some cases (for example, a very low or a stable contamination level, difficulties in extracting particles,
inappropriate blank level, etc.), the extraction curve might not be of the form seen in Figure 3. If this is
the case, ensure that all extraction parameters have been properly investigated.
Key
1 percentage of cumulated contamination extracted
2 number of extraction samples, i
3 extraction curve in percentage of cumulated contamination extracted
4 10 % of cumulated contamination extracted: end point = extraction 4
5 blank level
Figure 3 — Example of extraction curve
6.3.2.3 Routine test
6.3.2.3.1 If agreed between parties, a simplified extraction procedure known as a routine test could be
established for identical components. Its principle is that the total parameters of a validated extraction
procedure, whatever the technique used (i.e. agitation time, rinsing volume, sonication time, or flushing
time) are used in a single extraction without drawing the extraction curve. This is then repeated to confirm
compliance with the 10 % criterion.
6.3.2.3.2 Apply the agreed extraction procedure described in one of 6.4 to 6.7 to the component as
many times as determined by the validation procedure and analyse the whole extraction liquid volume as
specified in Clause 7.
6.3.2.3.3 If the cleanliness inspection is to include particles that are detached during transportation of
the test component or particles from the packaging, these particles shall be extracted using an appropriate
extraction method (e.g. low pressure rinsing). This agreement shall be included in the inspection document.
6.3.2.3.4 A combination of extraction methods can be used with different conditions than those
used to validate the extraction procedure, provided the conditions are shown to be sufficient to extract
contaminant and achieve the end-point criterion. In this case, the resulting cleanliness level might be
different. This simplified method shall be validated by performing at least one further extraction to see
if the end point has been achieved. If not, further extractions are necessary. It should be agreed between
parties and included in the inspection document. The following procedure can be applied to validate
routine extractions by pressure rinsing and the functional test method:
a) Condition and clean the equipment so as to achieve the required blank level.
b) If the blank value exceeds the agreed level, proceed as in 6.3.2.1.6.
c) Apply the extraction procedure to the component using the revised extraction parameters defined
in 6.3.2.3.4.
d) Analyse all of the extraction liquid as specified in Clause 7, and record the result as S1.
NOTE A combination of extraction methods may be used provided that at least one has been validated.
10 © ISO 2015 – All rights reserved

e) Repeat step c) and record the resulting value as S2. If S2 ≤0,1 × (S1 + S2), sum S1 and S2 and report
the result. If the 10 % level is not achieved after a second extraction, repeat 6.3.2.3.4 until the 10 %
level is achieved.
NOTE The 10 % criterion should be reached in two extractions; failure to do so indicates either a change in
the contamination level of the component or a reduced effectiveness of the extraction procedure and should be
investigated.
6.3.2.3.5 When an extraction method is applied to several components due to their low level of
contamination (e.g. in relation to the value of the blank level), it is not necessary to measure the
contamination level of the extraction sample from each component. In this case, the liquids from all
extractions shall be mixed and analysed as specified in Clause 7, provided that the concentration of
contaminant does not affect the analysis method chosen.
6.4 Agitation
6.4.1 Contaminant extraction by agitation is best suited to hollow components with characteristics
(weight, size) allowing them to be hand shaken by an operator or agitated by an appropriate mechanical
device. See Table 1 for examples of its application.
6.4.2 Contaminant contained within simple enclosed surfaces shall be removed by partially filling
the component under the test with an appropriate test liquid, sealing the openings, and agitating the
component to remove the contaminant from the controlled surface and to suspend the contaminant in the
test liquid. Immediately after agitation, all extraction liquid used in the test shall be drained and collected
for analysis. Annex A provides additional information.
6.4.3 Primary process variables to be controlled include: test liquid and its relevant properties, test
liquid volume and temperature, type and duration of agitation, the number of samples extracted up to and
including the end-point sample, and the volume of test liquid extracted for analysis.
6.4.4 Consideration should be given to the size and mass of the component, the need for slings or
fixtures, and any auxiliary equipment necessary for proper contaminant extraction.
6.5 Pressure rinse
6.5.1 Contaminant extraction by pressure rinsing is best suited to components where the surface to
be controlled is easily accessible by a jet of pressurized test liquid. It may be used as a second phase of
another extraction procedure such as ultrasonic vibration. See Table 1 for examples of its application.
6.5.2 Contaminant on exposed and accessible surfaces shall be removed by directing a stream of test
liquid onto the controlled surface of the component, which is placed over an appropriate liquid collection
apparatus. Immediately after rinsing, all test liquid used in the test shall be collected for analysis. Annex B
provides additional information.
6.5.3 Primary process variables to be controlled include shape of the jet or nozzle, test liquid and its
relevant properties, test liquid pressure and flow rate, test liquid volume and temperature, the sequence
followed in rinsing the component, and the number of samples extracted up to and including the end-
point sample.
6.5.4 Consideration should be given to the overall accessibility of controlled surfaces for rinsing, the
size and mass of the component, the need for slings and fixtures, and auxiliary equipment necessary for
proper contaminant extraction.
6.6 Ultrasonic vibration
6.6.1 Contaminant extraction by ultrasonic vibration is best suited for small- and medium-sized
components where internal or external surfaces or both are exposed. It is also recommended for testing
batches of several small components. See Table 1 for examples of its application.
6.6.2 Contaminant on surfaces accessible to ultrasonic vibrations shall be detached from the surface
by immersing the component in test liquid and applying ultrasonic vibration, either directly or via a
sonotrode. Upon removal of the component from the ultrasonic bath, all extraction liquid used in the test
shall be collected for analysis. Annex C provides additional information. The test liquid can be contained
either directly in the ultrasonic bath or in a container immersed in the bath.
6.6.3 Because ultrasonic vibrations only detach particles from the surface, a subsequent rinsing of the
component, e.g. by pressure rinsing, is required to ensure correct extraction.
6.6.4 Primary process variables to be controlled include test liquid and its relevant properties, test
liquid volume and temperature, equipment power settings, duration of exposure, the number of samples
extracted up to and including the end-point sample, the volume of test liquid extracted for analysis, and
the effectiveness of removing detached contaminant from the component surface and extracting the
sample from the ultrasonic bath for analysis.
6.6.5 Consideration should be given to the size and mass of the component relative to the capacity of
the ultrasonic bath and to the shape of the component because both factors affect the effectiveness of the
extraction process.
6.7 Functional test method
6.7.1 Contaminant extraction by function
...


NORME ISO
INTERNATIONALE 18413
Deuxième édition
2015-03-15
Transmissions hydrauliques —
Propreté des composants — Documents
d’inspection et principes d’extraction
et d’analyse des contaminants et
d’expression des résultats
Hydraulic fluid power — Cleanliness of components — Inspection
document and principles related to contaminant extraction and
analysis, and data reporting
Numéro de référence
©
ISO 2015
DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2015
Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée
sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie, l’affichage sur
l’internet ou sur un Intranet, sans autorisation écrite préalable. Les demandes d’autorisation peuvent être adressées à l’ISO à
l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Publié en Suisse
ii © ISO 2015 – Tous droits réservés

Sommaire Page
Avant-propos .v
Introduction .vi
1 Domaine d’application . 1
2 Références normatives . 1
3 Termes et définitions . 2
4 Principes du document de contrôle. 4
4.1 Contenu . 4
4.2 Exigence de propreté du composant . 4
4.3 Méthode de contrôle . 5
4.4 Entrée en vigueur . 5
4.5 Conformité . 5
4.6 Vérification de la conformité aux exigences de propreté spécifiées pour un composant . 5
4.7 Informations supplémentaires. 5
5 Éléments de choix des méthodes d’extraction et d’analyse des polluants .6
5.1 Introduction . 6
5.2 Extraction des polluants . 6
5.3 Analyse des polluants . 7
6 Principes d’extraction des polluants . 8
6.1 Généralités . 8
6.2 Introduction . 8
6.3 Installation et validation de la méthode d’extraction . 8
6.3.1 Environnement de l’installation . 8
6.3.2 Validation . 9
6.4 Agitation .12
6.5 Rinçage sous pression.12
6.6 Vibrations ultrasonores .13
6.7 Méthode d’essai fonctionnel.13
7 Principes d’analyse des polluants .14
7.1 Généralités .14
7.2 Introduction .14
7.3 Analyse gravimétrique .14
7.4 Détermination de la plus grande taille de particules .14
7.5 Composition chimique .15
7.6 Distribution granulométrique .15
8 Principes d’expression des résultats .15
8.1 Généralités .15
8.2 Introduction .16
8.3 Masse de polluants .16
8.4 Taille des particules .16
8.5 Distribution granulométrique .16
8.6 Composition chimique .16
9 Critère d’acceptation .17
10 Phrase d’identification (référence à la présente Norme internationale) .17
Annexe A (normative) Principes d’extraction des polluants — Méthode par agitation .18
Annexe B (normative) Principes d’extraction des polluants — Méthode par rinçage
sous pression .23
Annexe C (normative) Principes d’extraction des polluants — Méthode par
vibrations ultrasonores.28
Annexe D (normative) Principes d’extraction des polluants — Méthode d’essai fonctionnel .34
Annexe E (normative) Principes d’analyse des polluants et d’expression des résultats .40
Annexe F (informative) Lignes directrices pour la conception d’un banc d’essai pour la
méthode d’essai fonctionnel .42
Annexe G (informative) Détermination des caractéristiques géométriques des composants.45
Bibliographie .48
iv © ISO 2015 – Tous droits réservés

Avant-propos
L’ISO (Organisation internationale de normalisation) est une fédération mondiale d’organismes
nationaux de normalisation (comités membres de l’ISO). L’élaboration des Normes internationales est
en général confiée aux comités techniques de l’ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l’ISO participent également aux travaux.
L’ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui concerne
la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient en particulier de prendre note des différents
critères d’approbation requis pour les différents types de documents ISO. Le présent document a été
rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2 (voir www.
iso.org/directives).
L’attention est appelée sur le fait que certains des éléments du présent document peuvent faire l’objet de
droits de propriété intellectuelle ou de droits analogues. L’ISO ne saurait être tenue pour responsable
de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant les
références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de l’élaboration
du document sont indiqués dans l’Introduction et/ou dans la liste des déclarations de brevets reçues par
l’ISO (voir www.iso.org/brevets).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données pour
information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un engagement.
Pour une explication de la signification des termes et expressions spécifiques de l’ISO liés à l’évaluation
de la conformité, ou pour toute information au sujet de l’adhésion de l’ISO aux principes de l’OMC
concernant les obstacles techniques au commerce (OTC), voir le lien suivant: Avant-propos – Informations
supplémentaires.
Le comité chargé de l’élaboration du présent document est l’ISO/TC 131, Transmissions hydrauliques et
pneumatiques, sous-comité SC 6, Contrôle de la contamination.
Cette deuxième édition annule et remplace la première édition (ISO 18413:2002), qui a fait l’objet d’une
révision mineure.
Introduction
Dans les systèmes de transmissions hydrauliques, l’énergie est transmise et commandée par
l’intermédiaire d’un fluide sous pression circulant en circuit fermé. La présence de polluants dans le
liquide de service en mouvement peut dégrader les performances du système. La présence de particules
résiduelles issues des processus de fabrication et d’assemblage peut entraîner une augmentation notable
des taux d’usure du système pendant le rodage et le début du cycle de vie et peut même provoquer des
défaillances catastrophiques. Pour atteindre des performances fiables des composants et du système, il
est nécessaire de maîtriser la quantité de particules introduites pendant la phase de construction. Pour
permettre l’estimation précise de l’efficacité du nettoyage des pièces et des composants, il est nécessaire
de documenter tant les exigences de propreté que les méthodes employées pour l’extraction et l’analyse
des polluants et l’enregistrement des résultats.
vi © ISO 2015 – Tous droits réservés

NORME INTERNATIONALE ISO 18413:2015(F)
Transmissions hydrauliques — Propreté des composants
— Documents d’inspection et principes d’extraction et
d’analyse des contaminants et d’expression des résultats
1 Domaine d’application
La présente Norme internationale spécifie le contenu d’un document de contrôle précisant tant les
exigences de propreté applicables au composant de transmission hydraulique spécifié que la méthode
de contrôle à employer pour évaluer son niveau de propreté. Elle fournit également des lignes directrices
concernant les méthodes d’extraction et d’analyse pertinentes.
La présente Norme internationale ne couvre pas la détermination de ce qui constitue une exigence
relative au niveau de propreté approprié pour tout composant spécifique. L’ISO 12669 fournit une
méthode permettant de déterminer la propreté requise d’un système hydraulique. L’ISO/TR 10686
fournit une méthode permettant de relier la propreté requise des composants à la propreté requise du
système hydraulique.
Pour les besoins de la présente Norme internationale, les liquides fonctionnels ayant fait l’objet d’un
accord sont considérés comme des composants.
La présente Norme internationale est applicable à la pollution particulaire des surfaces et volumes
mouillés de tout composant d’un système de transmission hydraulique. Elle ne couvre pas les défauts
d’aspect ni la pollution liquide ou gazeuse.
La présente Norme internationale ne traite pas des questions de sécurité que peuvent entraîner les
matières, les opérations et les matériels dangereux associés à son utilisation. L’utilisateur de la présente
Norme internationale est chargé d’établir des pratiques de sécurité et d’hygiène appropriées et de
déterminer l’applicabilité des restrictions légales avant l’utilisation.
2 Références normatives
Les documents ci-après, dans leur intégralité ou non, sont des références normatives indispensables à
l’application du présent document. Pour les références datées, seule l’édition citée s’applique. Pour les
références non datées, la dernière édition du document de référence s’applique (y compris les éventuels
amendements).
ISO 3722, Transmissions hydrauliques — Flacons de prélèvement — Homologation et contrôle des
méthodes de nettoyage
ISO 4021, Transmissions hydrauliques — Analyse de la pollution par particules — Prélèvement des
échantillons de fluide dans les circuits en fonctionnement
ISO 4405, Transmissions hydrauliques — Pollution des fluides — Détermination de la pollution particulaire
par la méthode gravimétrique
ISO 4407, Transmissions hydrauliques — Pollution des fluides — Détermination de la pollution particulaire
par comptage au microscope optique
ISO 5598, Transmissions hydrauliques et pneumatiques — Vocabulaire
ISO 11500, Transmissions hydrauliques — Détermination du niveau de pollution particulaire d’un échantillon
liquide par comptage automatique des particules par absorption de lumière
ISO 11171, Transmissions hydrauliques — Étalonnage des compteurs automatiques de particules en
suspension dans les liquides
ISO 11943, Transmissions hydrauliques — Systèmes de comptage automatique en ligne de particules en
suspension dans les liquides — Méthode d’étalonnage et de validation
ISO 12103-1, Véhicules routiers — Poussière pour l’essai des filtres — Partie 1: Poussière d’essai d’Arizona
ISO 14644-1, Salles propres et environnements maîtrisés apparentés — Partie 1: Classification de la
propreté de l’air
ISO 21018 (toutes les parties), Transmissions hydrauliques — Surveillance du niveau de pollution
particulaire des fluides
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions donnés dans l’ISO 5598 ainsi que les
suivants s’appliquent.
3.1
niveau de blanc
quantité de polluant introduite à partir de sources autres que le composant d’essai, telles que les réactifs,
la verrerie, la préparation des unités d’essai et l’environnement
3.2
essai à blanc
analyse réalisée dans les mêmes conditions de fonctionnement que pour le composant d’essai, mais
sans celui-ci
Note 1 à l’article: L’essai à blanc permet de quantifier la pollution introduite à partir de sources autres que le
composant d’essai, telles que les réactifs, la verrerie, la préparation des unités d’essai et l’environnement.
3.3
propre
état de propreté d’un composant ou d’un fluide correspondant au niveau de propreté spécifié
3.4
propreté
état d’un produit, d’une surface, d’un dispositif, d’un liquide, etc. caractérisé par l’absence de
pollution particulaire
3.5
composant
terme général désignant une pièce, un composant, un sous-ensemble ou un assemblage de pièces utilisé
dans un système hydraulique
Note 1 à l’article: Cette définition diffère de celle donnée pour le même terme dans l’ISO 5598.
3.6
contamination d’un composant
quantité ou type de polluants extraits des surfaces mouillées ou de contrôle d’un composant, tel(le) que
mesuré(e) selon une méthode d’analyse applicable
3.7
polluant
substance solide indésirable en suspension dans un fluide ou présente dans un composant ou sur une
surface de contrôle d’un composant
Note 1 à l’article: Pour les besoins de la présente Norme internationale, les polluants comprennent des matières
solides en suspension dans des liquides, mais ne comprennent pas les liquides et les gaz. Cette définition diffère
de celle donnée dans l’ISO 5598 par l’exclusion des liquides et des gaz.
2 © ISO 2015 – Tous droits réservés

3.8
surface de contrôle
surface mouillée d’un composant faisant l’objet d’une exigence de propreté
3.9
volume de contrôle
volume mouillé d’un composant faisant l’objet d’une exigence de propreté
3.10
échantillon final
dernier échantillon d’une série d’échantillons répétitifs, produisant un résultat qui est ≤ 10 % de tous
les échantillons
3.11
surface extérieure
surface du composant qui n’est pas mouillée par le fluide du système pendant le fonctionnement normal
3.12
extraction
opération requise pour transférer une quantité aussi grande que possible d’un polluant présent dans
un volume de contrôle ou sur une surface de contrôle dans un liquide d’essai et son prélèvement en vue
d’une analyse ultérieure
3.13
courbe d’extraction
courbe de progression du niveau de propreté d’un liquide d’extraction appliqué sur un composant d’essai
en fonction du nombre d’extractions
Note 1 à l’article: Cette courbe est liée au temps d’extraction ou au volume de liquide d’essai circulant dans ou sur
le composant d’essai.
3.14
liquide d’extraction
liquide d’essai chargé de polluants extrait du composant d’essai
3.15
dispositif de surveillance de la pollution des fluides
FCM
instrument qui évalue quantitativement en ligne le niveau de pollution particulaire d’un liquide
3.16
document de contrôle
description écrite de l’exigence de propreté du composant et de la méthode de contrôle convenue
3.17
méthode de contrôle
procédure d’extraction et d’analyse des polluants et d’enregistrement de données utilisée pour évaluer
la propreté du composant conformément aux spécifications du document de contrôle
3.18
échantillon représentatif
matière extraite de manière à être représentative de la quantité et du type du polluant contenu dans ou
sur un composant
3.19
liquide d’essai
liquide approprié, d’une propreté initiale connue, utilisé pour enlever, mettre en suspension et extraire tout
polluant d’un composant, et qui est compatible avec le composant soumis à l’essai et l’équipement utilisé
3.20
validation
processus permettant, dans le cadre d’une méthode d’essai, d’évaluer la capacité du processus
d’extraction du polluant
3.21
surface mouillée
A
c
superficie du composant exposée au liquide du système
Figure 1 — Surface mouillée (A )
c
3.22
volume mouillé
V
c
volume du composant exposé au liquide du système
Figure 2 — Volume mouillé (V )
c
4 Principes du document de contrôle
4.1 Contenu
La présente Norme internationale définit le contenu du document de contrôle et non pas sa présentation.
Le document de contrôle peut se présenter sous la forme d’un document unique ou sous la forme d’une
série de documents associés. Quel que soit son format, le document de contrôle doit identifier clairement
l’exigence de propreté du composant ainsi que la méthode de contrôle convenue.
4.2 Exigence de propreté du composant
Le document de contrôle doit définir l’exigence de propreté du composant lorsque celle-ci est connue.
L’exigence de propreté doit être compatible avec la fonction ou l’application connue ou prévue du
composant. L’ISO/TR 10686 et l’ISO 12669 fournissent des lignes directrices et des outils permettant
d’établir de telles exigences. L’exigence de propreté du composant doit être établie et convenue entre les
parties intéressées.
Il convient d’utiliser des Normes internationales plutôt que d’autres sources de référence (par exemple
des données historiques, des normes internes, industrielles et nationales existantes, les exigences de
performances de fonctionnement, de fiabilité et de durabilité du composant et des données relatives à
des composants semblables) pour déterminer l’exigence de propreté d’un composant spécifique.
4 © ISO 2015 – Tous droits réservés

4.3 Méthode de contrôle
4.3.1 Le document de contrôle doit spécifier la méthode de contrôle à utiliser pour évaluer la propreté
d’un composant. La méthode de contrôle doit être établie et convenue entre les parties intéressées. Elle
doit être compatible avec la conception et l’exigence de propreté du composant.
4.3.2 Le document de contrôle doit spécifier les paramètres appropriés applicables à l’extraction des
polluants, à la réalisation des analyses et à l’expression des résultats. Les sources d’informations types à consulter
pour déterminer la méthode de contrôle convenue comprennent, par exemple, des Normes internationales,
des méthodes d’extraction et d’analyse des polluants et d’expression des résultats déjà utilisées, des normes
internes, industrielles et nationales existantes, les exigences de fonctionnement, de fiabilité et de durabilité du
composant et des méthodes utilisées pour des pièces ou des composants semblables.
4.4 Entrée en vigueur
Les parties intéressées doivent convenir ensemble de l’entrée en vigueur du document de contrôle et
doivent chacune conserver un exemplaire du document de contrôle applicable.
4.5 Conformité
Sauf spécification contraire dans le document de contrôle,
a) tous les composants pour lesquels un niveau de propreté a été spécifié doivent satisfaire à cette
exigence lorsqu’ils sont évalués selon la méthode de contrôle convenue et
b) il n’est pas nécessaire de contrôler les composants pour lesquels aucun niveau de propreté n’a
été spécifié (il est possible d’exiger que certains composants satisfassent à un niveau de propreté
spécifié et d’autres non).
4.6 Vérification de la conformité aux exigences de propreté spécifiées pour un composant
4.6.1 Il est possible de vérifier la conformité aux exigences de propreté du composant en employant
des méthodes d’échantillonnage statistique courantes dans l’industrie ou au moyen d’une surveillance
conjointe des processus de contrôle par l’acheteur et le fournisseur.
4.6.2 Un soin particulier est nécessaire lors de la vérification des résultats d’essai étant donné que
des différences dans la méthode d’extraction ou d’analyse des polluants d’un même composant ont une
incidence sur les résultats obtenus. De plus, étant donné que le processus d’extraction des polluants a
pour résultat de nettoyer le composant utilisé comme éprouvette, cette même éprouvette ne doit pas être
réutilisée pour une vérification ultérieure de conformité.
4.7 Informations supplémentaires
4.7.1 Sauf accord contraire entre l’acheteur et le fournisseur, 4.7.2 à 4.7.5 doivent s’appliquer.
4.7.2 Le document de contrôle doit spécifier le niveau de propreté requis pour le composant ainsi que
le domaine d’application. Les points du processus auxquels l’exigence de propreté s’applique doivent
être précisés dans le document de contrôle. Étant donné qu’un stockage prolongé ou inapproprié des
composants peut entraîner l’introduction de nouveaux polluants, tels que des produits d’oxydation, le
document de contrôle doit, le cas échéant, traiter de ces facteurs.
4.7.3 D’éventuels caches et bouchons provisoires destinés à l’expédition sont exclus du processus de
contrôle; les polluants dus à de tels caches et bouchons doivent en revanche être inclus dans l’évaluation
de la propreté du composant.
4.7.4 Les polluants dus à des défauts tels que des rainures, des imperfections et des décolorations
doivent être inclus dans l’évaluation de la propreté du composant.
4.7.5 Le cas échéant, il est possible d’intégrer une exigence relative à la densité magnétique résiduelle
admissible dans le document de contrôle.
NOTE Le magnétisme résiduel peut retenir un polluant sur les surfaces du composant et contribuer à la
formation d’agglomérats, deux phénomènes affectant l’extraction ou l’analyse des polluants.
5 Éléments de choix des méthodes d’extraction et d’analyse des polluants
5.1 Introduction
Les informations suivantes ne prétendent pas être exhaustives et n’ont pas pour objet d’être restrictives.
Elles sont uniquement destinées à aider l’utilisateur de la présente Norme internationale en lui indiquant
des méthodes d’extraction et d’analyse de la pollution ainsi que la présentation des données les plus
couramment utilisées selon les conditions choisies. Les exigences applicables à un composant spécifique
doivent être précisées dans le document de contrôle.
5.2 Extraction des polluants
Choisir la méthode d’extraction la plus adaptée au composant à contrôler dans le Tableau 1. La méthode
d’extraction des polluants doit faire l’objet d’un accord et être précisée dans le document de contrôle.
NOTE Le Tableau 1 résume les éléments de choix des méthodes d’extraction des polluants en fonction du type
de composant hydraulique à analyser.
6 © ISO 2015 – Tous droits réservés

Tableau 1 — Éléments de choix des méthodes d’extraction des polluants
Composant Méthode d’extraction des polluants
Agitation Rinçage sous pres- Vibrations ultra- Essai fonction-
sion sonores nel
Assemblages
Pompes et moteurs NR NR NA R
Clapets et vérins NR NR NA R
Collecteur et corps NR A A R
Accumulateurs A NR NA R
Formes simples et logements
Engrenages, tôles et arbres A R R NA
Tiroirs cylindriques, tiges de A R R NA
manœuvre et pistons
Équipements et joints A R R NA
Cuves et réservoirs A R NA NR
Pièces creuses
Collecteurs et corps R A A A
Flexibles et tubes R A A R
Raccords A R A A
Composants de filtration
Éléments filtrants — La méthode doit faire l’objet d’un accord entre le fournisseur et l’acheteur.
nettoyables
Éléments filtrants — La méthode doit faire l’objet d’un accord entre le fournisseur et l’acheteur.
non nettoyables
Boîtiers de filtre R A A R
R = Recommandé
A = Acceptable
NR = Non recommandé
NA = Non applicable
5.3 Analyse des polluants
Choisir la méthode d’analyse des polluants dans le Tableau 2. La méthode d’analyse des polluants doit
faire l’objet d’un accord et être précisée dans le document de contrôle.
Tableau 2 — Éléments de choix des méthodes d’analyse des polluants
Méthode d’analyse des polluants
Distribution granulométrique
Méthode d’extrac-
a
Analyse gra- Granulomé- Composition CAP
tion des polluants b
CAP ou FCM
vimétrique trie chimique
Microscopie
(en
(en ligne)
flacon)
Agitation R R R R R NA
Rinçage sous R R R R R A
pression
Vibrations R R R R R NA
ultrasonores
Essai fonctionnel A A A R A R
R = Recommandé
A = Acceptable
NR = Non recommandé
NA = Non applicable
a
Déterminée par comptage automatique de particules (CAP) à absorption de lumière conformément à l’ISO 11500.
b
Déterminée à l’aide d’un dispositif de surveillance de la pollution des fluides conformément à l’une des parties de
l’ISO 21018.
6 Principes d’extraction des polluants
6.1 Généralités
La méthode d’extraction des polluants doit faire l’objet d’un accord et être précisée dans le document de
contrôle. Le niveau de propreté mesuré du composant dépend de l’efficacité des méthodes d’extraction
choisies et de la validation de ces méthodes d’extraction (voir 6.3). Il convient que l’efficacité du processus
d’extraction des polluants soit validée en utilisant la notion de point final (voir 3.10). Le personnel
d’essai doit suivre le(s) protocole(s) d’extraction des polluants spécifié(s) dans le document de contrôle.
Les installations de contrôle et l’environnement doivent être aussi propres que possible afin de ne pas
affecter de manière significative le mesurage de la propreté du composant; leur propreté est quantifiée
par l’essai à blanc (voir 6.4.).
6.2 Introduction
L’extraction des polluants comprend différentes techniques destinées à extraire les polluants des surfaces
de contrôle des composants par l’action hydraulique et chimique d’un liquide approprié, à mettre ces
polluants en suspension dans le liquide d’essai, puis à recueillir le liquide d’extraction et les polluants
en suspension en vue d’une analyse. La présente Norme internationale décrit quatre techniques de base
d’extraction des polluants, à savoir l’agitation, le rinçage sous pression, les vibrations ultrasonores et la
méthode d’essai fonctionnel. Le fournisseur et l’acheteur peuvent également convenir d’utiliser d’autres
méthodes d’extraction des polluants. La méthode d’extraction des polluants doit être correctement
validée. La totalité du volume de liquide d’extraction utilisé doit être analysée et traitée en tant que tel.
6.3 Installation et validation de la méthode d’extraction
6.3.1 Environnement de l’installation
6.3.1.1 Le nombre de composants à analyser doit être choisi de manière à mesurer une quantité
significative de polluant satisfaisant à l’exigence relative au blanc.
8 © ISO 2015 – Tous droits réservés

6.3.1.2 Si le rodage du composant fait partie de son processus de fabrication, la méthode d’extraction
doit être convenue entre les parties et précisée dans le document de contrôle car le rodage peut modifier
son niveau de propreté initial.
6.3.1.3 Les polluants inclus dans le processus de contrôle sont les particules qui se sont détachées des
surfaces de contrôle pendant le transport du composant d’essai, les particules provenant de l’emballage
et celles contenues dans le liquide employé pour l’expédition. Elles doivent être extraites par une méthode
d’extraction appropriée (par exemple rinçage sous faible pression). Les méthodes d’extraction doivent
être précisées dans le document de contrôle.
6.3.1.4 Pour des composants actifs, il peut être nécessaire de les faire fonctionner pour faire passer le
liquide d’essai lors du processus d’extraction. Dans ce cas, le niveau de contamination initial peut être
modifié. Il convient que les conditions d’extraction soient convenues entre les parties et précisées dans le
document de contrôle.
6.3.1.5 Appliquer la méthode d’extraction appropriée au composant à soumettre à essai, analyser la
totalité du volume de liquide d’extraction conformément à l’Article 7 et désigner par S1 les résultats obtenus.
6.3.1.6 Répéter 6.3.1.5 sur le même composant en utilisant, si nécessaire, un récipient différent pour
chaque échantillon de liquide d’extraction, et désigner par S2 les résultats obtenus. Les extractions
doivent être effectuées l’une après l’autre.
6.3.1.7 Lorsque six extractions ont été effectuées sans atteindre le point final dans le nombre
d’extractions requis, comme spécifié en 6.3.2.2.1, cela signifie que les paramètres d’extraction ne sont pas
appropriés et doivent être modifiés. Répéter les opérations 6.3.1.5 à 6.3.1.7 avec de nouveaux paramètres
sur un nouveau composant.
6.3.1.8 Si le critère n’est pas satisfait, élaborer un nouveau protocole d’extraction et le valider
conformément à 6.3, ou appliquer une autre méthode d’extraction.
6.3.2 Validation
6.3.2.1 Essai à blanc
6.3.2.1.1 Quelle que soit la méthode d’extraction utilisée, un essai à blanc est effectué pour vérifier que
les conditions de fonctionnement, l’appareillage et les produits utilisés dans la méthode d’extraction ne
contribuent pas de manière significative à la contamination du composant analysé. Il convient d’effectuer
un essai à blanc en utilisant des paramètres d’essai identiques, aux intervalles établis dans le plan de
contrôle qualité du laboratoire d’essai.
6.3.2.1.2 Les valeurs à blanc du système doivent être déterminées dans des conditions identiques à
celles appliquées lors de l’essai du composant, mais sans le composant.
La valeur à blanc doit être déterminée et doit satisfaire aux exigences relatives à chaque méthode
d’analyse spécifiées dans le document de contrôle.
6.3.2.1.3 Procéder comme spécifié en 6.3.1.5 à 6.3.1.7 en utilisant le même appareillage et le même
volume total de liquide d’essai que requis pour le processus d’extraction, mais sans le composant.
6.3.2.1.4 Analyser la totalité du volume de liquide d’extraction comme spécifié à l’Article 7.
6.3.2.1.5 La valeur à blanc dépend du niveau de propreté présumé ou spécifié du (des) composant(s) et
de la méthode d’analyse. Si elles ne sont pas indiquées dans le document de contrôle, les valeurs à blanc
suivantes doivent être appliquées:
a) analyse gravimétrique: inférieur à 10 % du niveau de propreté gravimétrique présumé ou spécifié
du composant.
Lorsqu’une balance à quatre chiffres est utilisée dans des conditions environnementales non
contrôlées (c’est-à-dire humidité et température non contrôlées), la valeur à blanc minimale
mesurable est de 0,3 mg; il convient d’utiliser une balance à cinq chiffres ayant une précision de
0,1 mg. Par conséquent, pendant l’essai du composant, il convient d’extraire au moins 3 mg pour
satisfaire au critère à blanc de 10 %;
b) comptage et mesurage des particules:
1) nombres de particules: inférieurs à 10 % des nombres présumés ou spécifiés, pour les tailles
pertinentes, chaque nombre calculé étant arrondi par défaut. Par exemple, si un nombre
maximal de 167 particules d’une taille donnée est présumé ou spécifié, un nombre maximal de
16 particules de cette taille est autorisé dans le blanc. Si zéro particule est spécifié pour une taille
donnée, la valeur à blanc est de zéro particule pour la plage granulométrique immédiatement
inférieure. Pour l’essai à blanc, les tailles de particules doivent être celles spécifiées dans le
document de contrôle pour l’analyse de la contamination du composant.
2) Si le niveau de contamination du composant n’est pas connu ou si le document de contrôle
n’indique aucune exigence, le blanc doit contenir ce qui suit:
i) moins de 4 000 particules ≥ 5 µm et moins de 500 particules ≥ 15 µm par 100 mL de liquide
d’extraction;
ii) aucune particule ≥ 50 µm.
6.3.2.1.6 Si le niveau du blanc dépasse 10 %, deux explications sont possibles:
a) l’appareillage n’est pas propre; dans ce cas, nettoyer à nouveau tout l’appareillage et les solvants et
répéter 6.3.2.1 et 6.3.2.1.4;
b) les composants sont trop propres pour le blanc obtenu; dans ce cas, augmenter le nombre de
composants d’essai analysés afin d’extraire un plus grand nombre de particules et ainsi respecter la
limite de 10 %.
6.3.2.2 Validation de la méthode d’extraction des polluants
6.3.2.2.1 Valider la méthode d’extraction des polluants pour s’assurer de son efficacité, comme suit:
a) pour chacune des deux analyses décrites en 6.3.1.4 et 6.3.1.5, déterminer la masse totale cumulée
de polluants ou le nombre total cumulé de particules de taille supérieure aux tailles de particules
spécifiées dans le document de contrôle;
b) diviser le résultat du dernier échantillon par la somme de toutes les valeurs obtenues en 6.3.2.2.1 a);
c) si la valeur obtenue est inférieure ou égale à 0,10 (10 %), le point final est atteint et l’extraction achevée;
n
Sn≤ Si

i=1
d) sinon, répéter 6.3.1.5 à 6.3.2.2.1 b) jusqu’à ce que le dernier échantillon Sn produise un résultat ≤ 10 %
de la somme de tous les échantillons, tel que calculé en 6.3.2.2.1 c), ou jusqu’à ce que six extractions
aient été effectuées sans atteindre une valeur ≤ 10 % (voir 6.3.1.7), selon ce qui survient en premier.
NOTE 1 Cette procédure permet de tracer la courbe d’extraction et de démontrer le point final (≤ 10 %)
(voir Figure 3). Il est également possible de présenter les données et le calcul sous forme de tableau.
NOTE 2 Le niveau de propreté du composant est la somme de la pollution recueillie par toutes les extractions.
10 © ISO 2015 – Tous droits réservés

Dans certains cas (par exemple, un niveau de pollution très faible ou stable, des difficultés à extraire
les particules, un niveau de blanc inapproprié, etc.), la courbe d’extraction peut ne pas avoir la forme
représentée à la Figure 3. Si tel est le cas, s’assurer que tous les paramètres d’extraction ont été
convenablement étudiés.
Légende
1 pourcentage de pollution cumulée extraite
2 nombre d’échantillons d’extraction, i
3 courbe d’extraction en pourcentage de la pollution cumulée extraite
4 10 % de la pollution cumulée extraite: point final = extraction 4
5 niveau de blanc
Figure 3 — Exemple de courbe d’extraction
6.3.2.3 Essai de routine
6.3.2.3.1 Lorsque cela est convenu entre les parties, une méthode d’extraction simplifiée, connue en
tant qu’essai de routine, peut être déterminée pour des composants identiques. Elle repose sur le principe
que l’ensemble des paramètres d’une méthode d’extraction validée, quelle que soit la technique utilisée
(c’est-à-dire temps d’agitation, volume de rinçage, temps de sonication ou temps de rinçage), est utilisé
au cours d’une seule extraction sans tracer la courbe d’extraction. Cette opération est ensuite répétée
pour confirmer le respect du critère de 10 %.
6.3.2.3.2 Appliquer au composant la méthode d’extraction convenue décrite dans l’un des paragraphes
6.4 à 6.7 autant de fois que déterminé par la procédure de validation et analyser la totalité du volume de
liquide d’extraction comme spécifié à l’Article 7.
6.3.2.3.3 Si le contrôle de la propreté doit inclure les particules qui se sont détachées lors du transport
du composant d’essai ou les particules provenant de l’emballage, ces particules doivent être extraites par
une méthode d’extraction appropriée (par exemple rinçage sous faible pression). Cet accord doit être
inclus dans le document de contrôle.
6.3.2.3.4 Une combinaison de méthodes d’extraction peut être utilisée dans des conditions différentes
de celles utilisées pour valider la méthode d’extraction, sous réserve qu’il soit démontré que les conditions
sont suffisantes pour extraire le polluant et atteindre le critère de point final. Dans ce cas, le niveau de
propreté obtenu peut être différent. Cette méthode simplifiée doit être validée en réalisant au moins une
extraction supplémentaire pour voir si le point final a été atteint. Si ce n’est pas le cas, des extractions
supplémentaires sont nécessaires. Il convient que cela fasse l’objet d’un accord entre les parties et
soit inclus dans le document de contrôle. La procédure suivante peut être appliquée pour valider les
extractions de routine par rinçage sous pression et par la méthode d’essai fonctionnel:
a) conditionner et nettoyer l’appareillage de manière à atteindre le niveau de blanc requis;
b) si le niveau de blanc dépasse le niveau convenu, procéder comme indiqué en 6.3.2.1.6;
c) appliquer la méthode d’extraction au composant en utilisant les paramètres d’extraction révisés
définis en 6.3.2.3.4;
d) analyser la totalité du liquide d’extraction comme spécifié à l’Article 7, et enregistrer le résultat
en tant que S1;
NOTE Il est possible d’utiliser une combinaison de méthodes d’extraction à condition qu’au moins l’une
d’elles ait été validée.
e) répéter l’étape c) et enregistrer la valeur obtenue en tant que S2. Si S2 ≤ 0,1 × (S1 + S2), additionner
S1 et S2 et consigner le résultat dans le rapport. Si le niveau de 10 % n’est pas atteint après une
deuxième extraction, répéter 6.3.2.3.4 jusqu’à ce que le niveau de 10 % soit atteint.
NOTE Il convient que le niveau de 10 % soit atteint en deux extractions; si tel n’est pas le cas, cela indique
soit une variation du niveau de contamination du composant soit une diminution de l’efficacité de la méthode
d’extraction qu’il convient d’examiner.
6.3.2.3.5 Lorsqu’une méthode d’extraction est appliquée à plusieurs composants en raison de leur faible
niveau de contamination (par exemple par rapport à la valeur du niveau de blanc), il n’est pas nécessaire
de mesurer le niveau de contamination de l’échantillon d’extraction de chaque composant. Dans ce cas,
les liquides issus de toutes les extractions doivent être mélangés et analysés comme spécifié à l’Article 7, à
condition que la concentration de polluant n’ait pas d’incidence sur la méthode d’analyse choisie.
6.4 Agitation
6.4.1 L’extraction des polluants par agitation est mieux adaptée aux composants creux dont les
caractéristiques (masse, dimensions) leur pe
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...