ISO 22262-3:2016
(Main)Air quality — Bulk materials — Part 3: Quantitative determination of asbestos by X-ray diffraction method
Air quality — Bulk materials — Part 3: Quantitative determination of asbestos by X-ray diffraction method
ISO 22262-3:2016 is primarily intended for quantitative analysis of samples in which asbestos has been identified at estimated mass fractions lower than approximately 5 % by weight. ISO 22262-3:2016 extends the applicability and limit of detection of quantitative analysis by the use of simple procedures of ashing and/or acid treatment prior to XRD quantification. ISO 22262-3:2016 is applicable to the asbestos-containing materials identified in ISO 22262‑1. The following are examples of sample matrices: a) any building materials in which asbestos was detected by the analysis in ISO 22262‑1; b) resilient floor tiles, asphaltic materials, roofing felts and any other materials in which asbestos is embedded in an organic matrix and in which asbestos was detected when using ISO 22262‑1; c) wall and ceiling plasters, with or without aggregate, in which asbestos was detected when using ISO 22262‑1. If non-asbestiform serpentine or non-asbestiform amphibole minerals are included in the matrix, the XRD peaks that are assumed to be "possible peaks of asbestos" will represent these minerals. This method is not for application to natural minerals that may contain asbestos or any products that incorporate such natural minerals. This method is intended only for application to building material samples that contain deliberately added commercial grade asbestos including tremolite asbestos. ISO 22262-3:2016 is intended for use by analysts who are familiar with X-ray diffraction methods and the other analytical procedures specified in the References [5] and [6]. It is not the intention of this part of ISO 22262 to provide basic instruction in the fundamental analytical procedures.
Qualité de l'air — Matériaux solides — Partie 3: Dosage quantitatif de l'amiante par la méthode de diffraction des rayons X
ISO 22262-3:2016 est principalement destinée à l'analyse quantitative d'échantillons dans lesquels de l'amiante a été identifié à des fractions massiques estimées inférieures à environ 5 % en masse. ISO 22262-3:2016 étend l'applicabilité et la limite de détection de l'analyse quantitative grâce à l'utilisation de modes opératoires simples de calcination et/ou de traitement à l'acide avant la quantification DRX. ISO 22262-3:2016 est applicable aux matériaux contenant de l'amiante identifiés dans l'ISO 22262‑1. Des exemples de matrices d'échantillons sont les suivants: a) tout matériau de construction dans lequel de l'amiante a été détecté par l'analyse décrite dans l'ISO 22262‑1: b) les dalles souples, les matériaux bitumineux, les feutres pour toitures et tout autre matériau dans lequel de l'amiante est incorporé dans une matrice organique et dans lequel de l'amiante a été détecté en utilisant l'ISO 22262‑1; c) les enduits muraux et de plafond, avec ou sans granulat, dans lesquels de l'amiante a été détecté en utilisant l'ISO 22262‑1. Si de la serpentine ou de l'amphibole non asbestiforme est incluse dans la matrice, les pics DRX considérés comme des «pics d'amiante potentiels» représenteront ces minéraux. Cette méthode ne s'applique ni aux minéraux naturels susceptibles de contenir de l'amiante ni aux produits constitués de minéraux naturels de ce type. Cette méthode s'applique uniquement aux échantillons de matériaux de construction contenant de l'amiante du commerce ajouté intentionnellement, y compris l'amiante trémolite. ISO 22262-3:2016 est destinée à être utilisée par les analystes familiarisés avec les méthodes de diffraction des rayons X et les autres modes opératoires d'analyse indiqués dans les Références [5] et [6]. L'objectif de la présente partie de l'ISO 22262 n'est pas de fournir des informations de base sur les modes opératoires d'analyse fondamentaux.
Kakovost zraka - Razsuti materiali - 3. del: Kvantitativno določevanje azbesta z uklonom rentgenskih žarkov
Ta del standarda ISO 22262 je namenjen zlasti kvantitativni analizi vzorcev, v katerih je bil odkrit azbest z ocenjenimi masnimi deleži, nižjimi od približno 5 % po teži.
Ta del standarda ISO 22262 razširja možnost uporabe in mejo zaznavanja kvantitativne analize z
uporabo preprostih postopkov upepelitve in/ali obdelave s kislino pred kvantifikacijo XRD.
Ta del standarda ISO 22262 se uporablja pri materialih, ki vsebujejo azbest, opisanih v standardu ISO 22262-1. V nadaljevanju sledijo primeri vzorčnih matric:
a) kateri koli materiali v stavbah, kjer je bil zaznan azbest z analizo po standardu ISO 22262-1;
b) netekstilne talne ploščice, asfaltni materiali, strešni polsti in kateri koli drugi materiali, v katerih je azbest
vgrajen v organski matrici ter je bil azbest ugotovljen z uporabo standarda ISO 22262-1;
c) stenski ali stropni omet, s kamnitimi zrni ali brez njih, kjer je bil azbest ugotovljen z uporabo standarda ISO 22262-1.
Če so v matrici vključeni minerali serpentina ali amfibola, ki niso podobni azbestu, bodo vrhovi XRD, ki bodo predpostavljeni kot »mogoči vrhovi azbesta«, predstavljali te minerale. Ta metoda ni namenjena uporabi pri naravnih mineralih, ki lahko vsebujejo azbest, ali katerih koli izdelkih, ki vsebujejo takšne naravne minerale. Ta metoda je namenjena samo za uporabo pri vzorcih gradbenega materiala, ki vsebujejo namensko dodani azbest komercialnega razreda, vključno z azbestom tremolitom.
Ta del standarda ISO 22262 je namenjen za uporabo s strani analitikov, ki poznajo metode difrakcije rentgenskih žarkov in druge analitične postopke, določene v referencah [5] in [6]. Ta del standarda ISO 22262 ni namenjen podajanju osnovnih navodil glede temeljnih analitičnih postopkov.
General Information
- Status
- Published
- Publication Date
- 04-Oct-2016
- Technical Committee
- ISO/TC 146/SC 3 - Ambient atmospheres
- Drafting Committee
- ISO/TC 146/SC 3/WG 1 - Determination of asbestos fibre content
- Current Stage
- 9060 - Close of review
- Completion Date
- 04-Jun-2027
Overview
ISO 22262-3:2016 specifies a quantitative X-ray diffraction (XRD) method for determining asbestos content in commercial bulk building materials where asbestos has been qualitatively identified and is estimated to be below ~5 % by weight. The standard extends XRD applicability and lowers detection limits by recommending simple pre‑treatments (ashing and/or acid digestion), gravimetric matrix reduction and a substrate standard mass absorption correction for accurate quantification. It is part of the ISO 22262 series on air quality - bulk materials.
Key technical topics and requirements
- Scope and applicability: Targeted at building materials previously found to contain asbestos using ISO 22262‑1 (e.g., tiles, roofing felts, plasters, floor materials with organic matrices).
- Pre-treatment and matrix reduction: Use of ashing and/or acid treatment and gravimetric matrix reduction from a 100 mg comminuted sample to reduce interfering matrix components before XRD analysis.
- Quantitative XRD principle: Employs a substrate standard mass absorption correction and working‑curve calibration to relate diffraction peak intensities to asbestos mass fraction.
- Limits of detection and quantification:
- Sensitive detection demonstrated to about 0.01 mg per 2 cm² filter for chrysotile in cited references.
- When residual ratio ≤ 10 %, limit of quantification (LOQ) can be as low as 0.03 wt%; LOQ rises with less effective matrix reduction (≈0.1 % at ~30 % residual).
- If matrix reduction is minimal, LOD/LOQ can increase (examples in the standard: LOD up to ~0.1 %, LOQ up to ~0.3 %).
- Interferences and limitations:
- XRD cannot distinguish asbestiform vs non‑asbestiform serpentine/amphiboles; where non‑asbestiform analogues exist, peaks represent those minerals.
- Not applicable to natural minerals containing asbestos or products incorporating such minerals.
- Analytical workflow: Comminution, heat/chemical pretreatment, residual/sub‑residual sample prep, selection of diagnostic diffraction peaks, working curve preparation, quantification and uncertainty evaluation.
- Documentation: Requirements for apparatus, reagents, diffractometer parameters, calculations and test reporting.
Practical applications and users
- Laboratories performing asbestos quantification in building materials
- Environmental and occupational hygiene consultants assessing renovation/demolition risk
- Regulatory compliance and forensic investigations of asbestos content
- Building owners and remediation contractors needing accurate low‑level asbestos measurements
Users should be experienced with XRD and the referenced analytical procedures. ISO 22262-3 is particularly useful when low asbestos fractions require sensitive, reproducible quantification prior to remediation or risk assessment.
Related standards and references
- ISO 22262-1: Sampling and qualitative determination of asbestos in bulk materials
- ISO 22262-2: Quantitative determination by gravimetric and microscopical methods
- Methodological basis also draws on NIOSH, EPA and JIS methods cited in the standard (e.g., NIOSH 9000/7500, EPA/600/R-93/116, JIS A 1481-3).
Get Certified
Connect with accredited certification bodies for this standard

NSF International
Global independent organization facilitating standards development and certification.
CIS Institut d.o.o.
Personal Protective Equipment (PPE) certification body. Notified Body NB-2890 for EU Regulation 2016/425 PPE.

Kiwa BDA Testing
Building and construction product certification.
Sponsored listings
Frequently Asked Questions
ISO 22262-3:2016 is a standard published by the International Organization for Standardization (ISO). Its full title is "Air quality — Bulk materials — Part 3: Quantitative determination of asbestos by X-ray diffraction method". This standard covers: ISO 22262-3:2016 is primarily intended for quantitative analysis of samples in which asbestos has been identified at estimated mass fractions lower than approximately 5 % by weight. ISO 22262-3:2016 extends the applicability and limit of detection of quantitative analysis by the use of simple procedures of ashing and/or acid treatment prior to XRD quantification. ISO 22262-3:2016 is applicable to the asbestos-containing materials identified in ISO 22262‑1. The following are examples of sample matrices: a) any building materials in which asbestos was detected by the analysis in ISO 22262‑1; b) resilient floor tiles, asphaltic materials, roofing felts and any other materials in which asbestos is embedded in an organic matrix and in which asbestos was detected when using ISO 22262‑1; c) wall and ceiling plasters, with or without aggregate, in which asbestos was detected when using ISO 22262‑1. If non-asbestiform serpentine or non-asbestiform amphibole minerals are included in the matrix, the XRD peaks that are assumed to be "possible peaks of asbestos" will represent these minerals. This method is not for application to natural minerals that may contain asbestos or any products that incorporate such natural minerals. This method is intended only for application to building material samples that contain deliberately added commercial grade asbestos including tremolite asbestos. ISO 22262-3:2016 is intended for use by analysts who are familiar with X-ray diffraction methods and the other analytical procedures specified in the References [5] and [6]. It is not the intention of this part of ISO 22262 to provide basic instruction in the fundamental analytical procedures.
ISO 22262-3:2016 is primarily intended for quantitative analysis of samples in which asbestos has been identified at estimated mass fractions lower than approximately 5 % by weight. ISO 22262-3:2016 extends the applicability and limit of detection of quantitative analysis by the use of simple procedures of ashing and/or acid treatment prior to XRD quantification. ISO 22262-3:2016 is applicable to the asbestos-containing materials identified in ISO 22262‑1. The following are examples of sample matrices: a) any building materials in which asbestos was detected by the analysis in ISO 22262‑1; b) resilient floor tiles, asphaltic materials, roofing felts and any other materials in which asbestos is embedded in an organic matrix and in which asbestos was detected when using ISO 22262‑1; c) wall and ceiling plasters, with or without aggregate, in which asbestos was detected when using ISO 22262‑1. If non-asbestiform serpentine or non-asbestiform amphibole minerals are included in the matrix, the XRD peaks that are assumed to be "possible peaks of asbestos" will represent these minerals. This method is not for application to natural minerals that may contain asbestos or any products that incorporate such natural minerals. This method is intended only for application to building material samples that contain deliberately added commercial grade asbestos including tremolite asbestos. ISO 22262-3:2016 is intended for use by analysts who are familiar with X-ray diffraction methods and the other analytical procedures specified in the References [5] and [6]. It is not the intention of this part of ISO 22262 to provide basic instruction in the fundamental analytical procedures.
ISO 22262-3:2016 is classified under the following ICS (International Classification for Standards) categories: 13.040.20 - Ambient atmospheres. The ICS classification helps identify the subject area and facilitates finding related standards.
ISO 22262-3:2016 is available in PDF format for immediate download after purchase. The document can be added to your cart and obtained through the secure checkout process. Digital delivery ensures instant access to the complete standard document.
Standards Content (Sample)
SLOVENSKI STANDARD
01-marec-2018
.DNRYRVW]UDND5D]VXWLPDWHULDOLGHO.YDQWLWDWLYQRGRORþHYDQMHD]EHVWD]
XNORQRPUHQWJHQVNLKåDUNRY
Air quality - Bulk materials - Part 3: Quantitative determination of asbestos by X-ray
diffraction method
Qualité de l'air - Matériaux solides - Partie 3: Dosage quantitatif de l'amiante par la
méthode de diffraction des rayons X
Ta slovenski standard je istoveten z: ISO 22262-3:2016
ICS:
13.040.20 Kakovost okoljskega zraka Ambient atmospheres
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
INTERNATIONAL ISO
STANDARD 22262-3
First edition
2016-10-01
Air quality — Bulk materials —
Part 3:
Quantitative determination of
asbestos by X-ray diffraction method
Qualité de l’air — Matériaux solides —
Partie 3: Dosage quantitatif de l’amiante par la méthode de
diffraction des rayons X
Reference number
©
ISO 2016
© ISO 2016, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2016 – All rights reserved
Contents Page
Foreword .v
Introduction .vi
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Range . 3
5 Limit of quantification . 3
6 Symbols and abbreviated terms . 4
7 Requirements for quantification . 4
8 Apparatus and reagents . 5
8.1 Apparatus . 5
8.2 Reagents. 6
9 Quantitative XRD method and principle . 7
9.1 Quantitative XRD methods using an external standard . 7
9.2 Summary of the quantitative method . 7
9.3 Preparation of working curve and measurement . 8
9.4 Interference minerals . 9
10 Preparation of comminuted sample . 9
10.1 Preparation of comminuted sample from original sample . 9
10.2 Heat treatment of comminuted samples that contain organic constituents . 9
10.3 Pretreatment for preparation of residual samples .10
10.4 Preparation of sub-residual samples .11
11 Diffraction peaks for analysis of asbestos and of interference materials .11
11.1 Diffraction peaks for quantitative analysis of asbestos .11
11.2 Interference minerals .15
11.2.1 Possible interference minerals .15
11.2.2 Mass reduction treatments for dissolving interference minerals .16
12 Quantitative analysis by XRD employing substrate standard mass absorption correction 16
12.1 General .16
12.2 Preparation of working curve .17
12.2.1 Preparation of working curve I .17
12.2.2 Preparation of working curve II .17
12.3 Procedure for quantitative analysis .18
12.4 Calculation of asbestos mass fraction .18
12.4.1 Calculation of asbestos mass fraction from a residual sample .18
12.4.2 Calculation of the asbestos mass fraction from a sub-residual sample .19
12.5 Lower limits of detection and quantitative determination for the working curve .19
12.6 Evaluation of uncertainty of XRD measurement .20
13 Test report .20
Annex A (normative) X-ray diffractometer parameters for quantitative analysis of asbestos .22
Annex B (normative) Substrate standard mass absorption correction for
asbestos quantification .26
Annex C (informative) Types of commercial asbestos-containing materials and optimum
analytical procedures .27
Annex D (informative) Effects of matrix reduction methods .38
Annex E (informative) Range of typical detection limits and evaluation of uncertainty of
quantitative XRD measurements by XRD method .41
Bibliography .45
iv © ISO 2016 – All rights reserved
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the meaning of ISO specific terms and expressions related to conformity
assessment, as well as information about ISO’s adherence to the WTO principles in the Technical
Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information
The committee responsible for this document is ISO/TC 146, Air quality, Subcommittee SC 3, Ambient
atmospheres.
ISO 22262 consists of the following parts, under the general title Air quality — Bulk materials:
— Part 1: Sampling and qualitative determination of asbestos in commercial bulk materials
— Part 2: Quantitative determination of asbestos by gravimetric and microscopical methods
— Part 3: Quantitative determination of asbestos by X-ray diffraction method
Introduction
In the past, asbestos was used in a wide range of products. Materials containing high proportions
of asbestos were used in buildings and in industry for fireproofing, thermal insulation and acoustic
insulation. Asbestos was also used to reinforce materials and to improve fracture and bending
characteristics. A large proportion of the asbestos produced was used in asbestos-cement products.
These include flat sheets, tiles and corrugated sheets for roofing, pipes and open troughs for collection
of rainwater and pressure pipes for supply of potable water. Asbestos was also incorporated into
products such as decorative coatings and plasters, glues, sealants and resins, floor tiles, gaskets and
road paving. In some products, asbestos was incorporated to modify rheological properties, for example
in the manufacture of ceiling tile panels and oil drilling muds.
While the asbestos concentration in some products can be very high and in some cases approaches
100 %, in other products the concentrations of asbestos used were significantly lower and often
between 1 % and 15 %. In some ceiling tile panels, the concentration of asbestos used was close to 1 %.
There are only a few known materials in which the asbestos concentration used was less than 1 %.
Some adhesives, sealing compounds and fillers were manufactured in which asbestos concentrations
were lower than 1 %. There are no known commercially manufactured materials in which any one
of the common asbestos varieties (chrysotile, amosite, crocidolite or anthophyllite) was intentionally
added at concentrations lower than 0,1 %.
ISO 22262-1 specifies the procedures for collection of samples and qualitative analysis of asbestos in
commercial bulk materials using microscopical methods such as polarized light microscopy (PLM).
ISO 22262-2 specifies the procedures for the determination of asbestos mass fractions in bulk materials
by microscopical methods.
This part of ISO 22262 specifies the analytical procedures for the quantitative determination of asbestos
by X-ray powder diffraction (XRD). The procedure employs a substrate standard mass absorption
correction method to quantify asbestos that was previously identified by the microscopical method
in ISO 22262-1. While the XRD method is useful for qualitative analysis of crystalline substances in
powder samples by measurement of diffraction patterns that can be related to crystal structure, XRD
analysis cannot distinguish between different morphological habits of the same mineral. Thus, XRD
cannot discriminate between the asbestiform and non-asbestiform analogues of serpentine and the
amphiboles. Furthermore, the primary diffraction peaks for different amphiboles lie within a very
narrow range and it is not possible to quantify individual amphiboles when a mixture of amphiboles is
present. Diffraction peaks appearing in XRD patterns of the asbestos-forming minerals are considered
to be “possible peaks of asbestos”, assumed to represent the asbestos detected during analysis in
ISO 22262-1. However, if non-asbestiform serpentine or non-asbestiform amphibole minerals are
present in the sample matrix, the “possible peaks of asbestos” will represent them. Accordingly,
this method is not intended for application to samples in which non-asbestiform serpentine or non-
asbestiform amphibole minerals are present.
A conventional XRD method, which employs a powder sample mounted in a powder specimen holder
and a scintillation counter, can quantify a crystalline material at a concentration of approximately 1 %.
The XRD method using a substrate standard mass absorption correction method employed in this part
of ISO 22262 can detect the diffraction peaks of chrysotile asbestos from quantities as low as 0,01 mg
2 2
on a membrane filter of 2 cm area [0,01 mg/filter (2 cm )] as shown in References [13] and [14]. The
amount of sample on the filter is limited to 15 mg due to the limit of the X-ray absorption correction. In
this method, gravimetric matrix reduction procedures are used to reduce the matrix constituents and
interference minerals in a 100 mg comminuted sample. When the matrix reduction achieves a residual
ratio of 10 % or lower, the XRD method can provide a limit of detection of 0,01 wt% and the limit of
quantification can be as low as 0,03 wt%. When the matrix reduction is less effective and the residual
ratio is over 10 % of the initial 100 mg sample, a sub-divided 10 mg to 15 mg sample is taken from the
residual sample. In the case where none or very little of the matrix is reduced, the limit of detection can
increase up to approximately 0,1 % and the limit of quantification can increase up to approximately
0,3 %. When matrix reduction achieves a residual ratio of approximately 30 % of the original weight, the
limit of quantification is approximately 0,1 %. These limits of detection and quantification are further
vi © ISO 2016 – All rights reserved
degraded if interference X-ray peaks or high background X-ray intensities from matrix materials are
present.
[16]
The XRD method specified in this part of ISO 22262 is based on NIOSH 9000-1/7 , NIOSH
[17] [18] [19]
7500-1/10 , EPA/600/R-93/116 and JIS A 1481-3.
INTERNATIONAL STANDARD ISO 22262-3:2016(E)
Air quality — Bulk materials —
Part 3:
Quantitative determination of asbestos by X-ray
diffraction method
1 Scope
This part of ISO 22262 is primarily intended for quantitative analysis of samples in which asbestos has
been identified at estimated mass fractions lower than approximately 5 % by weight.
This part of ISO 22262 extends the applicability and limit of detection of quantitative analysis by the
use of simple procedures of ashing and/or acid treatment prior to XRD quantification.
This part of ISO 22262 is applicable to the asbestos-containing materials identified in ISO 22262-1. The
following are examples of sample matrices:
a) any building materials in which asbestos was detected by the analysis in ISO 22262-1;
b) resilient floor tiles, asphaltic materials, roofing felts and any other materials in which asbestos is
embedded in an organic matrix and in which asbestos was detected when using ISO 22262-1;
c) wall and ceiling plasters, with or without aggregate, in which asbestos was detected when using
ISO 22262-1.
If non-asbestiform serpentine or non-asbestiform amphibole minerals are included in the matrix, the
XRD peaks that are assumed to be “possible peaks of asbestos” will represent these minerals. This
method is not for application to natural minerals that may contain asbestos or any products that
incorporate such natural minerals. This method is intended only for application to building material
samples that contain deliberately added commercial grade asbestos including tremolite asbestos.
This part of ISO 22262 is intended for use by analysts who are familiar with X-ray diffraction methods
and the other analytical procedures specified in the References [5] and [6]. It is not the intention of this
part of ISO 22262 to provide basic instruction in the fundamental analytical procedures.
2 Normative references
The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.
ISO 22262-1:2012, Air quality — Bulk materials — Part 1: Sampling and qualitative determination of
asbestos in commercial bulk materials
ISO 22262-2:2014, Air quality — Bulk materials — Part 2: Quantitative determination of asbestos by
gravimetric and microscopical methods
3 Terms and definitions
For the purpose of this document, the following terms and definitions apply.
3.1
asbestiform
specific type of mineral fibrosity in which the fibres and fibrils possess high tensile strength and
flexibility
[SOURCE: ISO 13794:1999, 2.6]
3.2
asbestos
term applied to a group of silicate minerals belonging to the serpentine and amphibole groups which
have crystallized in the asbestiform habit, causing them to be easily separated into long, thin, flexible,
strong fibres when crushed or processed
Note 1 to entry: The Chemical Abstracts Service Registry Numbers of the most common asbestos varieties are:
chrysotile (12001–29–5), crocidolite (12001–28–4), grunerite asbestos (Amosite) (12172–73–5), anthophyllite
asbestos (77536–67–5), tremolite asbestos (77536–68–6) and actinolite asbestos (77536–66–4). Other varieties
[20]
of asbestiform amphibole, such as richterite asbestos and winchite asbestos , are also found in some products
such as vermiculite and talc.
[SOURCE: ISO 13794:1999, 2.7, modified]
3.3
comminuted sample
analytical sample prepared by comminution and sieving of the original sample
3.4
gravimetric matrix reduction
procedure in which constituents of a material are selectively dissolved or otherwise separated, leaving
a residue in which any asbestos present in the original material is concentrated
[SOURCE: ISO 22262-2:2014, 3.22]
3.5
integral intensity
peak area count (integral count) of a designated XRD peak after subtracting the background area
3.6
limit of detection
weight of asbestos on a filtered sample which produces a detectable XRD peak under the measurement
conditions shown in Annex A
Note 1 to entry: Expressed as a percentage mass fraction of the original sample.
3.7
limit of quantification
weight of asbestos on a filtered sample for which the integral intensity of the XRD peak can be measured
Note 1 to entry: Expressed as a percentage mass fraction of the original sample. Limit of quantification is
conventionally expressed as three times the limit of detection.
3.8
matrix
materials in a bulk sample within which fibres are dispersed
[SOURCE: ISO 22262-1:2012, 2.36, modified]
3.9
original sample
sample taken from a building material product which was analysed using ISO 22262-1
2 © ISO 2016 – All rights reserved
3.10
residual ratio
reduction ratio (percent) achieved by gravimetric matrix reduction of the comminuted sample
3.11
residual sample
analytical sample remaining after treatment with formic acid or other appropriate treatment to remove
matrix constituents
3.12
standard uncertainty
uncertainty of the result of a measurement expressed as a standard deviation
[SOURCE: ISO 20988:2007, 3.2]
3.13
sub-residual sample
analytical sub-sample taken from the residual sample for analysis when the residual ratio exceeds 15 %
4 Range
This part of ISO 22262 is for application to building material samples and the target range for the mass
fraction of asbestos is from 0,1 % to 5 %. In this method, gravimetric matrix reduction procedures
are used to reduce the matrix constituents and interference minerals in a 100 mg comminuted sample.
There is no upper limitation for quantification; this XRD method can quantify asbestos up to 100 %. The
lower end of the range depends on the residual ratio obtained by the matrix reduction methods. When
the matrix reduction method is not effective and 100 % of the sample remains, the limit of detection
(LOD) is 0,1 % and the limit of quantification (LOQ) is 0,3 %. When lower values of the residual ratio
can be achieved, the LOD and LOQ can decrease to 0,01 % or smaller. However, the LOD and LOQ that
can be obtained during analyses of actual building materials also depends on the X-ray peak selected
for analysis and whether interference X-ray peaks or high-intensity background from matrix materials
are present.
5 Limit of quantification
This XRD method can detect 0,01 mg asbestos in a 10 mg sample on a filter of area 2 cm and quantify
0,03 mg asbestos in a 10 mg sample on a filter of area 2 cm . The maximum sample weight for which
the X-ray absorption can be corrected is approximately 15 mg on a filter of area 2 cm . In this method,
gravimetric matrix reduction procedures are used to reduce the matrix constituents and interference
minerals in a 100 mg comminuted sample. When a 100 mg sample containing 0,01 mg asbestos is
reduced by matrix reduction to 10 mg (residual ratio: 10 %), the XRD method can detect the 0,01 mg
asbestos on the filter. Consequently, 0,01 % asbestos in the original sample of 100 mg can be detected.
In this case, the LOD and LOQ of the XRD method are approximately 0,01 % and 0,03 %, respectively.
When the matrix reduction methods are less effective and more than 15 mg of the sample remains,
the LOD and LOQ can increase up to 0,1 % and 0,3 %, respectively. An LOQ of approximately 0,1 % is
achieved when the sample is reduced to approximately 30 % by the matrix reduction methods.
The LOD and LOQ that can be achieved during analysis of actual building materials depend on the
following:
a) the type of asbestos being analysed;
b) whether a secondary peak is being measured because the primary peak has overlapping peaks;
c) the differences between the source of asbestos in the sample and that of the standard asbestos
reference material used to derive the working curve;
d) the extent to which gravimetric matrix reduction can remove matrix materials;
e) the presence of interference X-ray peaks or high backgrounds from matrix materials;
f) the power of the X-ray generator and the type of X-ray detector used.
6 Symbols and abbreviated terms
m weight of comminuted sample at the time of X-ray quantitative analysis (mg)
m weight of residual sample at the time of X-ray quantitative analysis (mg)
m weight of sub-residual sample at the time of X-ray quantitative analysis (mg)
A weight of asbestos in the residual sample, derived from working curve (mg)
s
w asbestos mass fraction of one analytical sample (%)
i
w asbestos mass fraction of one sub-residual sample (%)
r
w asbestos mass fraction in building material products or other products (%)
r weight loss ratio after heat treatment for a sample containing organic constituents
V integral X-ray diffraction intensity in counts
s standard deviation of integral X-ray diffraction intensity of i times
i
a gradient of working curve
w lower limit of detection of asbestos mass fraction (%)
k
w lower limit of determination of asbestos mass fraction (%)
t
XRD X-ray powder diffraction
7 Requirements for quantification
A prerequisite for use of this part of ISO 22262 is that the sample shall have been examined using
ISO 22262-1.
Quantification of asbestos beyond the estimate of mass fraction achieved using ISO 22262-1 may not
be necessary, depending on the applicable regulatory limit for definition of an asbestos-containing
material, the variety of asbestos identified and whether the sample can be recognized as a manufactured
product. Common regulatory definitions of asbestos-containing materials range from “presence of any
asbestos” to >0,1 %, >0,5 % to >1 % by mass fraction of one or more of the regulated asbestos varieties.
For many bulk samples analysed using ISO 22262-1, it is intuitively obvious to an experienced analyst
that the asbestos mass fraction far exceeds these mass fraction limits. In the case of these types of
samples, an experienced analyst can also confidently determine that the asbestos mass fraction is
well below these regulatory limits. More precise quantification of asbestos in these types of samples
is unnecessary, since a more precise and significantly more expensive determination of the asbestos
mass fraction will neither change the regulatory status of the asbestos-containing material nor any
subsequent decisions concerning its treatment. Annex C shows a tabulation of most asbestos-containing
materials, the variety of asbestos used in these materials and the range of asbestos mass fraction that
may be present. Annex C also indicates whether, in general, the estimate of asbestos mass fraction
provided by the use of ISO 22262-1 is sufficient to establish the regulatory status of the material or
whether quantification of asbestos by this part of ISO 22262 is necessary. The analyst should refer to
Annex C for guidance on the probable asbestos mass fractions in specific classes of product and the
optimum analytical procedure to obtain a reliable result.
4 © ISO 2016 – All rights reserved
Asbestos was never deliberately incorporated for any functional purpose into commercially
manufactured asbestos-containing materials at mass fractions lower than 0,1 %. Accordingly, if any
one or more of the commercial asbestos varieties (chrysotile, amosite, crocidolite or anthophyllite)
is detected in a manufactured product, the assumption can be made that asbestos is present in the
product at a mass fraction exceeding 0,1 %. Therefore, if the regulatory definition of an asbestos-
containing material in a jurisdiction is either “presence of any asbestos” or greater than 0,1 %, then
detection of one or more of the commercial asbestos varieties in a recognizable manufactured product
automatically defines the regulatory status of the material. If the regulatory definition is either 0,5 %
or 1 % and the mass fraction of asbestos is estimated to be lower than approximately 5 %, then more
precise quantification is necessary to guarantee the regulatory status of the material.
Detection of tremolite, actinolite or richterite/winchite in a material does not allow any assumptions
to be made regarding the asbestos mass fraction because these asbestos varieties were, in general, not
deliberately added to the products. Rather, they generally occur as accessory minerals in some of the
constituents used to manufacture products. Since the non-asbestiform analogues of the amphiboles
are not generally regulated, it is also necessary to discriminate between the asbestiform and non-
asbestiform analogues of these minerals. When present, these amphibole minerals often occur as
mixtures of the two analogues in industrial minerals.
It is not possible to specify a single analytical procedure for all types of material that may contain
asbestos because the range of matrices in which the asbestos may be embedded is very diverse. Some
materials are amenable to gravimetric matrix reduction and some are not.
The requirements for quantification beyond that achieved in ISO 22262-1 are summarized in Table 1.
Table 1 — Summary of requirements for quantification of asbestos in bulk samples
Regulatory control limit
Type of material
Mass fraction Mass fraction Mass fraction
“Any asbestos”
>0,1 % >0,5 % >1 %
If asbestos is detected at an estimated
Commercially If any commercial asbestos variety is mass fraction of <5 %, more precise
manufactured detected, no further quantification is quantification is required to establish
product required. the
regulatory status of the material.
If any variety of
asbestos is If asbestos is detected at an estimated mass fraction of
detected, no fur- <5 %, more precise quantification is required to establish
Other materials
ther the regulatory
quantification is status of the material.
required.
8 Apparatus and reagents
8.1 Apparatus
8.1.1 Sample comminution equipment
An agate mortar and pestle, or a mill, is required for grinding of samples to suitable sizes for XRD
measurement. This equipment shall be used in a negative pressure HEPA-filtered dust hood with a
minimum face velocity of 0,4 m/s.
8.1.2 Negative pressure, HEPA-filtered dust hood
A HEPA-filtered dust hood with a minimum face velocity of 0,4 m/s is required to accommodate
equipment for comminution of samples.
8.1.3 Analytical balance
An analytical balance with a readability of 0,000 01 g (0,01 mg) or lower is required.
8.1.4 Muffle furnace
For ashing of samples to remove interference organic constituents, a muffle furnace with a minimum
temperature of 500 °C, and a temperature stability of ±10 °C, is required.
8.1.5 Ultrasonic cleaner
An ultrasonic cleaner is required for dispersion of residual samples before carrying out the filtration
process.
8.1.6 Glass filtration assembly (25 mm diameter)
A glass filtration assembly with a vacuum filtration flask is required.
8.1.7 General laboratory supplies
The following supplies and equipment, or equivalent, are required:
a) glassine paper sheets, approximately 10 cm × 10 cm, for examination of the original samples and
the comminuted samples;
b) disposable aluminium or plastic weighing cups, approximately 3 cm to 5 cm in diameter;
c) sampling utensils, including tweezers, needles and others;
d) conical beakers, 50 ml;
e) beakers, 500 ml;
f) volumetric flasks, 1 000 ml;
g) petri dishes;
h) disposable pipettes, 20 μl, 100 μl, 200 μl, 400 μl, 600 μl, 1 ml and 2 ml;
i) polytetrafluoroethylene (PFTE)-coated glass fibre filters, 25 mm diameter.
8.1.8 X-ray diffractometer
An X-ray powder diffractometer using Bragg-Brentano (para-focusing) geometry is required and
equipped as follows:
a) copper target X-ray tube, with a power of 1,6 kW or higher;
b) sample spinner to improve particle statistics;
c) nickel filter, graphite monochromator or other X-ray optics with similar or better energy resolution
to obtain a monochromatic X-ray beam (CuKα line);
d) high-efficiency position-sensitive X-ray detector, e.g. position-sensitive semiconductor detector.
NOTE Due to the low detection limits required, older type scintillation or proportional counters are not
recommended.
8.2 Reagents
8.2.1 Dust-free distilled water.
6 © ISO 2016 – All rights reserved
8.2.2 Concentrated formic acid, reagent grade.
8.2.3 Sodium hydroxide pellets, reagent grade.
8.2.4 Isopropyl alcohol, reagent grade.
9 Quantitative XRD method and principle
9.1 Quantitative XRD methods using an external standard
Since the intensity of an XRD peak depends on the amount of a crystalline substance in a sample, the
mass fraction of a crystalline substance can be determined by measurement of the diffraction intensity.
However, as the diffraction intensity is influenced not only by the mass fraction of the crystalline
materials but also by the absorption of the X-rays by the sample itself, the measured intensity should
be corrected for this absorption to enable quantification. The well-known quantitative methods for
correcting the absorption in XRD of powder samples are the internal standard method and the standard
[5][6]
addition method. The analytical accuracies of these methods are high for most substances; however,
for fibrous particles, such as asbestos, accuracy can suffer because the fibre orientation varies greatly
and this affects the diffraction intensity. An external standard method using a substrate standard was
[7]
developed for small samples of powder and it was simplified by mounting the sample on a copper
foil and measuring the diffraction intensity from the foil with and without the sample in place. A
correction factor can then be calculated from the observed attenuation of the diffraction peak from
[8]
the copper foil. Another method, using a silver membrane filter which replaced the copper foil, was
[9]
developed. Then, a technique was developed in which a sample of airborne particulate is collected on
[10][11][12]
a polycarbonate filter and the particulate is re-deposited on a silver membrane filter. It was
recognized that a fibrous sample deposited on a thin filter yields a stable and reproducible diffraction
[13][14]
intensity due to the fact that fibres are oriented parallel to the filter surface. A thin filter asbestos
sample is placed on a substrate metal plate and the diffraction intensities from both asbestos on
the filter and the substrate metal plate can be measured because a thin filter does not significantly
absorb X-rays. The technique using a membrane filter of mixed esters of cellulose and a substrate zinc
[15]
plate was developed for measurement of airborne quartz samples. These XRD methods using a
substrate metal filter or a thin filter on a substrate metal plate are employed by various organizations
[16][17][18][19]
for quantitative analysis of asbestos and crystalline silica. The substrate standard mass
absorption correction method is employed in this part of ISO 22262.
9.2 Summary of the quantitative method
The XRD method specified in this part of ISO 22262 is applicable to the quantitative analysis of asbestos
in asbestos-containing samples as identified by ISO 22262-1. The observed diffraction intensities of all
crystalline substances in a sample are attenuated as a result of X-ray absorption by the sample matrix.
The attenuation of the diffraction intensities from a crystalline substance can be corrected using a
correction factor, based on the reduction of the diffraction intensity of the substrate standard material,
as shown in Annex B. The diffraction intensities from asbestos in the working curves shown in Annex A
are those that have been corrected for the attenuation due to X-ray absorption. The weight of material
2 [13][14]
on a filter (2 cm ) should be less than 15 mg. For weights up to 15 mg, under optimum conditions,
the diffraction intensity (integral intensity) of asbestos can be measured to as low as 0,01 mg/filter
2 [13][14]
(2 cm ), provided that interference X-ray peaks or high background from matrix materials are
not present. For the quantification of asbestos in bulk materials by this part of ISO 22262, gravimetric
matrix reduction methods are used to remove as much as possible of the matrix constituents of the
sample, so that any asbestos is concentrated to a higher mass fraction in the final residual sample.
A summary of the quantitative procedure is as follows.
a) An appropriate sub-sample (0,5 g or more) is taken from the original sample, in which asbestos has
already been identified by ISO 22262-1.
b) The sample is ground and sieved through a 250 μm mesh sieve to prepare a comminuted sample. It
is necessary to grind the sample in this way in order to obtain high quality data by XRD analysis.
Depending on the matrices, such as organic components, it may be necessary to ash the sample
before grinding.
c) A sub-sample of 100 mg is taken from the comminuted sample and treated with formic acid and/or
ashing and the residue is filtered onto a membrane filter, such as a PTFE-coated glass fibre filter,
a silver filter or a polyvinylchloride (PVC) filter. After weighing, if the residual ratio is lower than
15 %, the filtered residual sample is used for the quantitative analysis of asbestos by the XRD
method. Prior to the quantitative analysis, a qualitative XRD scan is recommended to examine the
diffraction intensities of any asbestos minerals and also to check whether peaks from any other
minerals in the matrix interfere with them.
NOTE For some lagging samples composed of calcium silicates, a chemical treatment using formic
acid is sometimes not effective and more than 15 % residue remains after the treatment. In this case, an
alkali treatment using 20 % sodium hydroxide solution is effective to reduce the matrix. The procedure is
described in 10.3.
d) When the residue from the matrix reduction by ashing and treatment with formic acid or alkali
exceeds 15 %, take a sub-residual sample of 10 mg to 15 mg from the residual sample and transfer
it onto a filter. The maximum amount of sample on a membrane filter is limited to 15 mg due to
limitations of the mass absorption correction.
e) When matrix reduction of a 100 mg comminuted sample yields a residual sample of 10 mg (residual
ratio: 10 %), the XRD method can provide a limit of detection (LOD) of approximately 0,01 % and
a limit of quantification (LOQ) of approximately 0,03 %. When the residual ratio is higher, the LOD
can increase up to 0,1 % and the LOQ can increase up to 0,3 %. A LOQ of approximately 0,1 % is
achieved when matrix reduction results in a residual ratio of approximately 30 %. However, the
LOD and LOQ that can be obtained during analyses of actual building materials also depends on the
X-ray peak selected for analysis and whether interference X-ray peaks or high-intensity background
from matrix materials are present.
9.3 Preparation of working curve and measurement
Measure the diffraction intensity from the substrate standard metallic plate (zinc, aluminium, etc.), to
which is attached a blank filter (the same type of filter to be used for the preparation of the working
curves).
Asbestos standards (12.2, Note 1) in the range between 0,05 mg and 5 mg are deposited on the filters
and the each filter is placed on a substrate standard zinc plate. The diffraction intensities from zinc and
asbestos are then measured for each filter.
The diffraction intensity of a zinc plate to which a filter containing asbestos is attached will be
attenuated compared with that of zinc plate to which a blank filter is attached. From this attenuation
ratio, the correction factor, K , is calculated using Formula (B.1). The absorption-corrected diffraction
f
intensity of the asbestos is calculated using Formula (B.2).
The working curve is obtained by plotting the weights of asbestos in the range between 0,05 mg/filter
2 2
(2 cm ) and 5 mg/filter (2 cm ) on the abscissa and the respective absorption-corrected diffraction
intensities of the asbestos on the ordinate.
For the quantitative measurement of asbestos in a sample, the weight of asbestos (mg) corresponding
to the observed diffraction intensity can be obtained by comparison of the absorption-corrected
diffraction intensity of the asbestos in the sample with the diffraction intensity shown in the working
curve. The asbestos mass fraction (%) is then calculated from the ratio of the weight of asbestos and
the weight of the original sample, i.e. 100 mg.
8 © ISO 2016 – All rights reserved
9.4 Interference minerals
Before quantitative analysis, it is necessary to investigate whether any interference minerals are
present from which diffraction peaks appear at or near those of chrysotile or amphibole (see Table 2).
Precise checks of diffraction patterns for potentially overlapping peaks can establish the existence of
these interference minerals. When a diffraction peak from an interference mineral appears at or near
that used for determination of asbestos, chemical treatment (using acid and/or alkali) may effectively
dissolve those interference minerals and also reduce the matrix. When interference minerals cannot
be removed effectively by such treatment, it will be necessary to use a secondary diffraction peak of
asbestos for the quantification (see 11.1 and 11.2). When a secondary peak is employed for quantitative
analysis, the quantification limit of the measurement is sometimes degraded.
10 Preparation of comminuted sample
The various sample preparation procedures described in ISO 22262-2 for the quantification of asbestos
by PLM can also be used for this XRD method.
Comminution of asbestos-containing materi
...
INTERNATIONAL ISO
STANDARD 22262-3
First edition
2016-10-01
Air quality — Bulk materials —
Part 3:
Quantitative determination of
asbestos by X-ray diffraction method
Qualité de l’air — Matériaux solides —
Partie 3: Dosage quantitatif de l’amiante par la méthode de
diffraction des rayons X
Reference number
©
ISO 2016
© ISO 2016, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2016 – All rights reserved
Contents Page
Foreword .v
Introduction .vi
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Range . 3
5 Limit of quantification . 3
6 Symbols and abbreviated terms . 4
7 Requirements for quantification . 4
8 Apparatus and reagents . 5
8.1 Apparatus . 5
8.2 Reagents. 6
9 Quantitative XRD method and principle . 7
9.1 Quantitative XRD methods using an external standard . 7
9.2 Summary of the quantitative method . 7
9.3 Preparation of working curve and measurement . 8
9.4 Interference minerals . 9
10 Preparation of comminuted sample . 9
10.1 Preparation of comminuted sample from original sample . 9
10.2 Heat treatment of comminuted samples that contain organic constituents . 9
10.3 Pretreatment for preparation of residual samples .10
10.4 Preparation of sub-residual samples .11
11 Diffraction peaks for analysis of asbestos and of interference materials .11
11.1 Diffraction peaks for quantitative analysis of asbestos .11
11.2 Interference minerals .15
11.2.1 Possible interference minerals .15
11.2.2 Mass reduction treatments for dissolving interference minerals .16
12 Quantitative analysis by XRD employing substrate standard mass absorption correction 16
12.1 General .16
12.2 Preparation of working curve .17
12.2.1 Preparation of working curve I .17
12.2.2 Preparation of working curve II .17
12.3 Procedure for quantitative analysis .18
12.4 Calculation of asbestos mass fraction .18
12.4.1 Calculation of asbestos mass fraction from a residual sample .18
12.4.2 Calculation of the asbestos mass fraction from a sub-residual sample .19
12.5 Lower limits of detection and quantitative determination for the working curve .19
12.6 Evaluation of uncertainty of XRD measurement .20
13 Test report .20
Annex A (normative) X-ray diffractometer parameters for quantitative analysis of asbestos .22
Annex B (normative) Substrate standard mass absorption correction for
asbestos quantification .26
Annex C (informative) Types of commercial asbestos-containing materials and optimum
analytical procedures .27
Annex D (informative) Effects of matrix reduction methods .38
Annex E (informative) Range of typical detection limits and evaluation of uncertainty of
quantitative XRD measurements by XRD method .41
Bibliography .45
iv © ISO 2016 – All rights reserved
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the meaning of ISO specific terms and expressions related to conformity
assessment, as well as information about ISO’s adherence to the WTO principles in the Technical
Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information
The committee responsible for this document is ISO/TC 146, Air quality, Subcommittee SC 3, Ambient
atmospheres.
ISO 22262 consists of the following parts, under the general title Air quality — Bulk materials:
— Part 1: Sampling and qualitative determination of asbestos in commercial bulk materials
— Part 2: Quantitative determination of asbestos by gravimetric and microscopical methods
— Part 3: Quantitative determination of asbestos by X-ray diffraction method
Introduction
In the past, asbestos was used in a wide range of products. Materials containing high proportions
of asbestos were used in buildings and in industry for fireproofing, thermal insulation and acoustic
insulation. Asbestos was also used to reinforce materials and to improve fracture and bending
characteristics. A large proportion of the asbestos produced was used in asbestos-cement products.
These include flat sheets, tiles and corrugated sheets for roofing, pipes and open troughs for collection
of rainwater and pressure pipes for supply of potable water. Asbestos was also incorporated into
products such as decorative coatings and plasters, glues, sealants and resins, floor tiles, gaskets and
road paving. In some products, asbestos was incorporated to modify rheological properties, for example
in the manufacture of ceiling tile panels and oil drilling muds.
While the asbestos concentration in some products can be very high and in some cases approaches
100 %, in other products the concentrations of asbestos used were significantly lower and often
between 1 % and 15 %. In some ceiling tile panels, the concentration of asbestos used was close to 1 %.
There are only a few known materials in which the asbestos concentration used was less than 1 %.
Some adhesives, sealing compounds and fillers were manufactured in which asbestos concentrations
were lower than 1 %. There are no known commercially manufactured materials in which any one
of the common asbestos varieties (chrysotile, amosite, crocidolite or anthophyllite) was intentionally
added at concentrations lower than 0,1 %.
ISO 22262-1 specifies the procedures for collection of samples and qualitative analysis of asbestos in
commercial bulk materials using microscopical methods such as polarized light microscopy (PLM).
ISO 22262-2 specifies the procedures for the determination of asbestos mass fractions in bulk materials
by microscopical methods.
This part of ISO 22262 specifies the analytical procedures for the quantitative determination of asbestos
by X-ray powder diffraction (XRD). The procedure employs a substrate standard mass absorption
correction method to quantify asbestos that was previously identified by the microscopical method
in ISO 22262-1. While the XRD method is useful for qualitative analysis of crystalline substances in
powder samples by measurement of diffraction patterns that can be related to crystal structure, XRD
analysis cannot distinguish between different morphological habits of the same mineral. Thus, XRD
cannot discriminate between the asbestiform and non-asbestiform analogues of serpentine and the
amphiboles. Furthermore, the primary diffraction peaks for different amphiboles lie within a very
narrow range and it is not possible to quantify individual amphiboles when a mixture of amphiboles is
present. Diffraction peaks appearing in XRD patterns of the asbestos-forming minerals are considered
to be “possible peaks of asbestos”, assumed to represent the asbestos detected during analysis in
ISO 22262-1. However, if non-asbestiform serpentine or non-asbestiform amphibole minerals are
present in the sample matrix, the “possible peaks of asbestos” will represent them. Accordingly,
this method is not intended for application to samples in which non-asbestiform serpentine or non-
asbestiform amphibole minerals are present.
A conventional XRD method, which employs a powder sample mounted in a powder specimen holder
and a scintillation counter, can quantify a crystalline material at a concentration of approximately 1 %.
The XRD method using a substrate standard mass absorption correction method employed in this part
of ISO 22262 can detect the diffraction peaks of chrysotile asbestos from quantities as low as 0,01 mg
2 2
on a membrane filter of 2 cm area [0,01 mg/filter (2 cm )] as shown in References [13] and [14]. The
amount of sample on the filter is limited to 15 mg due to the limit of the X-ray absorption correction. In
this method, gravimetric matrix reduction procedures are used to reduce the matrix constituents and
interference minerals in a 100 mg comminuted sample. When the matrix reduction achieves a residual
ratio of 10 % or lower, the XRD method can provide a limit of detection of 0,01 wt% and the limit of
quantification can be as low as 0,03 wt%. When the matrix reduction is less effective and the residual
ratio is over 10 % of the initial 100 mg sample, a sub-divided 10 mg to 15 mg sample is taken from the
residual sample. In the case where none or very little of the matrix is reduced, the limit of detection can
increase up to approximately 0,1 % and the limit of quantification can increase up to approximately
0,3 %. When matrix reduction achieves a residual ratio of approximately 30 % of the original weight, the
limit of quantification is approximately 0,1 %. These limits of detection and quantification are further
vi © ISO 2016 – All rights reserved
degraded if interference X-ray peaks or high background X-ray intensities from matrix materials are
present.
[16]
The XRD method specified in this part of ISO 22262 is based on NIOSH 9000-1/7 , NIOSH
[17] [18] [19]
7500-1/10 , EPA/600/R-93/116 and JIS A 1481-3.
INTERNATIONAL STANDARD ISO 22262-3:2016(E)
Air quality — Bulk materials —
Part 3:
Quantitative determination of asbestos by X-ray
diffraction method
1 Scope
This part of ISO 22262 is primarily intended for quantitative analysis of samples in which asbestos has
been identified at estimated mass fractions lower than approximately 5 % by weight.
This part of ISO 22262 extends the applicability and limit of detection of quantitative analysis by the
use of simple procedures of ashing and/or acid treatment prior to XRD quantification.
This part of ISO 22262 is applicable to the asbestos-containing materials identified in ISO 22262-1. The
following are examples of sample matrices:
a) any building materials in which asbestos was detected by the analysis in ISO 22262-1;
b) resilient floor tiles, asphaltic materials, roofing felts and any other materials in which asbestos is
embedded in an organic matrix and in which asbestos was detected when using ISO 22262-1;
c) wall and ceiling plasters, with or without aggregate, in which asbestos was detected when using
ISO 22262-1.
If non-asbestiform serpentine or non-asbestiform amphibole minerals are included in the matrix, the
XRD peaks that are assumed to be “possible peaks of asbestos” will represent these minerals. This
method is not for application to natural minerals that may contain asbestos or any products that
incorporate such natural minerals. This method is intended only for application to building material
samples that contain deliberately added commercial grade asbestos including tremolite asbestos.
This part of ISO 22262 is intended for use by analysts who are familiar with X-ray diffraction methods
and the other analytical procedures specified in the References [5] and [6]. It is not the intention of this
part of ISO 22262 to provide basic instruction in the fundamental analytical procedures.
2 Normative references
The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.
ISO 22262-1:2012, Air quality — Bulk materials — Part 1: Sampling and qualitative determination of
asbestos in commercial bulk materials
ISO 22262-2:2014, Air quality — Bulk materials — Part 2: Quantitative determination of asbestos by
gravimetric and microscopical methods
3 Terms and definitions
For the purpose of this document, the following terms and definitions apply.
3.1
asbestiform
specific type of mineral fibrosity in which the fibres and fibrils possess high tensile strength and
flexibility
[SOURCE: ISO 13794:1999, 2.6]
3.2
asbestos
term applied to a group of silicate minerals belonging to the serpentine and amphibole groups which
have crystallized in the asbestiform habit, causing them to be easily separated into long, thin, flexible,
strong fibres when crushed or processed
Note 1 to entry: The Chemical Abstracts Service Registry Numbers of the most common asbestos varieties are:
chrysotile (12001–29–5), crocidolite (12001–28–4), grunerite asbestos (Amosite) (12172–73–5), anthophyllite
asbestos (77536–67–5), tremolite asbestos (77536–68–6) and actinolite asbestos (77536–66–4). Other varieties
[20]
of asbestiform amphibole, such as richterite asbestos and winchite asbestos , are also found in some products
such as vermiculite and talc.
[SOURCE: ISO 13794:1999, 2.7, modified]
3.3
comminuted sample
analytical sample prepared by comminution and sieving of the original sample
3.4
gravimetric matrix reduction
procedure in which constituents of a material are selectively dissolved or otherwise separated, leaving
a residue in which any asbestos present in the original material is concentrated
[SOURCE: ISO 22262-2:2014, 3.22]
3.5
integral intensity
peak area count (integral count) of a designated XRD peak after subtracting the background area
3.6
limit of detection
weight of asbestos on a filtered sample which produces a detectable XRD peak under the measurement
conditions shown in Annex A
Note 1 to entry: Expressed as a percentage mass fraction of the original sample.
3.7
limit of quantification
weight of asbestos on a filtered sample for which the integral intensity of the XRD peak can be measured
Note 1 to entry: Expressed as a percentage mass fraction of the original sample. Limit of quantification is
conventionally expressed as three times the limit of detection.
3.8
matrix
materials in a bulk sample within which fibres are dispersed
[SOURCE: ISO 22262-1:2012, 2.36, modified]
3.9
original sample
sample taken from a building material product which was analysed using ISO 22262-1
2 © ISO 2016 – All rights reserved
3.10
residual ratio
reduction ratio (percent) achieved by gravimetric matrix reduction of the comminuted sample
3.11
residual sample
analytical sample remaining after treatment with formic acid or other appropriate treatment to remove
matrix constituents
3.12
standard uncertainty
uncertainty of the result of a measurement expressed as a standard deviation
[SOURCE: ISO 20988:2007, 3.2]
3.13
sub-residual sample
analytical sub-sample taken from the residual sample for analysis when the residual ratio exceeds 15 %
4 Range
This part of ISO 22262 is for application to building material samples and the target range for the mass
fraction of asbestos is from 0,1 % to 5 %. In this method, gravimetric matrix reduction procedures
are used to reduce the matrix constituents and interference minerals in a 100 mg comminuted sample.
There is no upper limitation for quantification; this XRD method can quantify asbestos up to 100 %. The
lower end of the range depends on the residual ratio obtained by the matrix reduction methods. When
the matrix reduction method is not effective and 100 % of the sample remains, the limit of detection
(LOD) is 0,1 % and the limit of quantification (LOQ) is 0,3 %. When lower values of the residual ratio
can be achieved, the LOD and LOQ can decrease to 0,01 % or smaller. However, the LOD and LOQ that
can be obtained during analyses of actual building materials also depends on the X-ray peak selected
for analysis and whether interference X-ray peaks or high-intensity background from matrix materials
are present.
5 Limit of quantification
This XRD method can detect 0,01 mg asbestos in a 10 mg sample on a filter of area 2 cm and quantify
0,03 mg asbestos in a 10 mg sample on a filter of area 2 cm . The maximum sample weight for which
the X-ray absorption can be corrected is approximately 15 mg on a filter of area 2 cm . In this method,
gravimetric matrix reduction procedures are used to reduce the matrix constituents and interference
minerals in a 100 mg comminuted sample. When a 100 mg sample containing 0,01 mg asbestos is
reduced by matrix reduction to 10 mg (residual ratio: 10 %), the XRD method can detect the 0,01 mg
asbestos on the filter. Consequently, 0,01 % asbestos in the original sample of 100 mg can be detected.
In this case, the LOD and LOQ of the XRD method are approximately 0,01 % and 0,03 %, respectively.
When the matrix reduction methods are less effective and more than 15 mg of the sample remains,
the LOD and LOQ can increase up to 0,1 % and 0,3 %, respectively. An LOQ of approximately 0,1 % is
achieved when the sample is reduced to approximately 30 % by the matrix reduction methods.
The LOD and LOQ that can be achieved during analysis of actual building materials depend on the
following:
a) the type of asbestos being analysed;
b) whether a secondary peak is being measured because the primary peak has overlapping peaks;
c) the differences between the source of asbestos in the sample and that of the standard asbestos
reference material used to derive the working curve;
d) the extent to which gravimetric matrix reduction can remove matrix materials;
e) the presence of interference X-ray peaks or high backgrounds from matrix materials;
f) the power of the X-ray generator and the type of X-ray detector used.
6 Symbols and abbreviated terms
m weight of comminuted sample at the time of X-ray quantitative analysis (mg)
m weight of residual sample at the time of X-ray quantitative analysis (mg)
m weight of sub-residual sample at the time of X-ray quantitative analysis (mg)
A weight of asbestos in the residual sample, derived from working curve (mg)
s
w asbestos mass fraction of one analytical sample (%)
i
w asbestos mass fraction of one sub-residual sample (%)
r
w asbestos mass fraction in building material products or other products (%)
r weight loss ratio after heat treatment for a sample containing organic constituents
V integral X-ray diffraction intensity in counts
s standard deviation of integral X-ray diffraction intensity of i times
i
a gradient of working curve
w lower limit of detection of asbestos mass fraction (%)
k
w lower limit of determination of asbestos mass fraction (%)
t
XRD X-ray powder diffraction
7 Requirements for quantification
A prerequisite for use of this part of ISO 22262 is that the sample shall have been examined using
ISO 22262-1.
Quantification of asbestos beyond the estimate of mass fraction achieved using ISO 22262-1 may not
be necessary, depending on the applicable regulatory limit for definition of an asbestos-containing
material, the variety of asbestos identified and whether the sample can be recognized as a manufactured
product. Common regulatory definitions of asbestos-containing materials range from “presence of any
asbestos” to >0,1 %, >0,5 % to >1 % by mass fraction of one or more of the regulated asbestos varieties.
For many bulk samples analysed using ISO 22262-1, it is intuitively obvious to an experienced analyst
that the asbestos mass fraction far exceeds these mass fraction limits. In the case of these types of
samples, an experienced analyst can also confidently determine that the asbestos mass fraction is
well below these regulatory limits. More precise quantification of asbestos in these types of samples
is unnecessary, since a more precise and significantly more expensive determination of the asbestos
mass fraction will neither change the regulatory status of the asbestos-containing material nor any
subsequent decisions concerning its treatment. Annex C shows a tabulation of most asbestos-containing
materials, the variety of asbestos used in these materials and the range of asbestos mass fraction that
may be present. Annex C also indicates whether, in general, the estimate of asbestos mass fraction
provided by the use of ISO 22262-1 is sufficient to establish the regulatory status of the material or
whether quantification of asbestos by this part of ISO 22262 is necessary. The analyst should refer to
Annex C for guidance on the probable asbestos mass fractions in specific classes of product and the
optimum analytical procedure to obtain a reliable result.
4 © ISO 2016 – All rights reserved
Asbestos was never deliberately incorporated for any functional purpose into commercially
manufactured asbestos-containing materials at mass fractions lower than 0,1 %. Accordingly, if any
one or more of the commercial asbestos varieties (chrysotile, amosite, crocidolite or anthophyllite)
is detected in a manufactured product, the assumption can be made that asbestos is present in the
product at a mass fraction exceeding 0,1 %. Therefore, if the regulatory definition of an asbestos-
containing material in a jurisdiction is either “presence of any asbestos” or greater than 0,1 %, then
detection of one or more of the commercial asbestos varieties in a recognizable manufactured product
automatically defines the regulatory status of the material. If the regulatory definition is either 0,5 %
or 1 % and the mass fraction of asbestos is estimated to be lower than approximately 5 %, then more
precise quantification is necessary to guarantee the regulatory status of the material.
Detection of tremolite, actinolite or richterite/winchite in a material does not allow any assumptions
to be made regarding the asbestos mass fraction because these asbestos varieties were, in general, not
deliberately added to the products. Rather, they generally occur as accessory minerals in some of the
constituents used to manufacture products. Since the non-asbestiform analogues of the amphiboles
are not generally regulated, it is also necessary to discriminate between the asbestiform and non-
asbestiform analogues of these minerals. When present, these amphibole minerals often occur as
mixtures of the two analogues in industrial minerals.
It is not possible to specify a single analytical procedure for all types of material that may contain
asbestos because the range of matrices in which the asbestos may be embedded is very diverse. Some
materials are amenable to gravimetric matrix reduction and some are not.
The requirements for quantification beyond that achieved in ISO 22262-1 are summarized in Table 1.
Table 1 — Summary of requirements for quantification of asbestos in bulk samples
Regulatory control limit
Type of material
Mass fraction Mass fraction Mass fraction
“Any asbestos”
>0,1 % >0,5 % >1 %
If asbestos is detected at an estimated
Commercially If any commercial asbestos variety is mass fraction of <5 %, more precise
manufactured detected, no further quantification is quantification is required to establish
product required. the
regulatory status of the material.
If any variety of
asbestos is If asbestos is detected at an estimated mass fraction of
detected, no fur- <5 %, more precise quantification is required to establish
Other materials
ther the regulatory
quantification is status of the material.
required.
8 Apparatus and reagents
8.1 Apparatus
8.1.1 Sample comminution equipment
An agate mortar and pestle, or a mill, is required for grinding of samples to suitable sizes for XRD
measurement. This equipment shall be used in a negative pressure HEPA-filtered dust hood with a
minimum face velocity of 0,4 m/s.
8.1.2 Negative pressure, HEPA-filtered dust hood
A HEPA-filtered dust hood with a minimum face velocity of 0,4 m/s is required to accommodate
equipment for comminution of samples.
8.1.3 Analytical balance
An analytical balance with a readability of 0,000 01 g (0,01 mg) or lower is required.
8.1.4 Muffle furnace
For ashing of samples to remove interference organic constituents, a muffle furnace with a minimum
temperature of 500 °C, and a temperature stability of ±10 °C, is required.
8.1.5 Ultrasonic cleaner
An ultrasonic cleaner is required for dispersion of residual samples before carrying out the filtration
process.
8.1.6 Glass filtration assembly (25 mm diameter)
A glass filtration assembly with a vacuum filtration flask is required.
8.1.7 General laboratory supplies
The following supplies and equipment, or equivalent, are required:
a) glassine paper sheets, approximately 10 cm × 10 cm, for examination of the original samples and
the comminuted samples;
b) disposable aluminium or plastic weighing cups, approximately 3 cm to 5 cm in diameter;
c) sampling utensils, including tweezers, needles and others;
d) conical beakers, 50 ml;
e) beakers, 500 ml;
f) volumetric flasks, 1 000 ml;
g) petri dishes;
h) disposable pipettes, 20 μl, 100 μl, 200 μl, 400 μl, 600 μl, 1 ml and 2 ml;
i) polytetrafluoroethylene (PFTE)-coated glass fibre filters, 25 mm diameter.
8.1.8 X-ray diffractometer
An X-ray powder diffractometer using Bragg-Brentano (para-focusing) geometry is required and
equipped as follows:
a) copper target X-ray tube, with a power of 1,6 kW or higher;
b) sample spinner to improve particle statistics;
c) nickel filter, graphite monochromator or other X-ray optics with similar or better energy resolution
to obtain a monochromatic X-ray beam (CuKα line);
d) high-efficiency position-sensitive X-ray detector, e.g. position-sensitive semiconductor detector.
NOTE Due to the low detection limits required, older type scintillation or proportional counters are not
recommended.
8.2 Reagents
8.2.1 Dust-free distilled water.
6 © ISO 2016 – All rights reserved
8.2.2 Concentrated formic acid, reagent grade.
8.2.3 Sodium hydroxide pellets, reagent grade.
8.2.4 Isopropyl alcohol, reagent grade.
9 Quantitative XRD method and principle
9.1 Quantitative XRD methods using an external standard
Since the intensity of an XRD peak depends on the amount of a crystalline substance in a sample, the
mass fraction of a crystalline substance can be determined by measurement of the diffraction intensity.
However, as the diffraction intensity is influenced not only by the mass fraction of the crystalline
materials but also by the absorption of the X-rays by the sample itself, the measured intensity should
be corrected for this absorption to enable quantification. The well-known quantitative methods for
correcting the absorption in XRD of powder samples are the internal standard method and the standard
[5][6]
addition method. The analytical accuracies of these methods are high for most substances; however,
for fibrous particles, such as asbestos, accuracy can suffer because the fibre orientation varies greatly
and this affects the diffraction intensity. An external standard method using a substrate standard was
[7]
developed for small samples of powder and it was simplified by mounting the sample on a copper
foil and measuring the diffraction intensity from the foil with and without the sample in place. A
correction factor can then be calculated from the observed attenuation of the diffraction peak from
[8]
the copper foil. Another method, using a silver membrane filter which replaced the copper foil, was
[9]
developed. Then, a technique was developed in which a sample of airborne particulate is collected on
[10][11][12]
a polycarbonate filter and the particulate is re-deposited on a silver membrane filter. It was
recognized that a fibrous sample deposited on a thin filter yields a stable and reproducible diffraction
[13][14]
intensity due to the fact that fibres are oriented parallel to the filter surface. A thin filter asbestos
sample is placed on a substrate metal plate and the diffraction intensities from both asbestos on
the filter and the substrate metal plate can be measured because a thin filter does not significantly
absorb X-rays. The technique using a membrane filter of mixed esters of cellulose and a substrate zinc
[15]
plate was developed for measurement of airborne quartz samples. These XRD methods using a
substrate metal filter or a thin filter on a substrate metal plate are employed by various organizations
[16][17][18][19]
for quantitative analysis of asbestos and crystalline silica. The substrate standard mass
absorption correction method is employed in this part of ISO 22262.
9.2 Summary of the quantitative method
The XRD method specified in this part of ISO 22262 is applicable to the quantitative analysis of asbestos
in asbestos-containing samples as identified by ISO 22262-1. The observed diffraction intensities of all
crystalline substances in a sample are attenuated as a result of X-ray absorption by the sample matrix.
The attenuation of the diffraction intensities from a crystalline substance can be corrected using a
correction factor, based on the reduction of the diffraction intensity of the substrate standard material,
as shown in Annex B. The diffraction intensities from asbestos in the working curves shown in Annex A
are those that have been corrected for the attenuation due to X-ray absorption. The weight of material
2 [13][14]
on a filter (2 cm ) should be less than 15 mg. For weights up to 15 mg, under optimum conditions,
the diffraction intensity (integral intensity) of asbestos can be measured to as low as 0,01 mg/filter
2 [13][14]
(2 cm ), provided that interference X-ray peaks or high background from matrix materials are
not present. For the quantification of asbestos in bulk materials by this part of ISO 22262, gravimetric
matrix reduction methods are used to remove as much as possible of the matrix constituents of the
sample, so that any asbestos is concentrated to a higher mass fraction in the final residual sample.
A summary of the quantitative procedure is as follows.
a) An appropriate sub-sample (0,5 g or more) is taken from the original sample, in which asbestos has
already been identified by ISO 22262-1.
b) The sample is ground and sieved through a 250 μm mesh sieve to prepare a comminuted sample. It
is necessary to grind the sample in this way in order to obtain high quality data by XRD analysis.
Depending on the matrices, such as organic components, it may be necessary to ash the sample
before grinding.
c) A sub-sample of 100 mg is taken from the comminuted sample and treated with formic acid and/or
ashing and the residue is filtered onto a membrane filter, such as a PTFE-coated glass fibre filter,
a silver filter or a polyvinylchloride (PVC) filter. After weighing, if the residual ratio is lower than
15 %, the filtered residual sample is used for the quantitative analysis of asbestos by the XRD
method. Prior to the quantitative analysis, a qualitative XRD scan is recommended to examine the
diffraction intensities of any asbestos minerals and also to check whether peaks from any other
minerals in the matrix interfere with them.
NOTE For some lagging samples composed of calcium silicates, a chemical treatment using formic
acid is sometimes not effective and more than 15 % residue remains after the treatment. In this case, an
alkali treatment using 20 % sodium hydroxide solution is effective to reduce the matrix. The procedure is
described in 10.3.
d) When the residue from the matrix reduction by ashing and treatment with formic acid or alkali
exceeds 15 %, take a sub-residual sample of 10 mg to 15 mg from the residual sample and transfer
it onto a filter. The maximum amount of sample on a membrane filter is limited to 15 mg due to
limitations of the mass absorption correction.
e) When matrix reduction of a 100 mg comminuted sample yields a residual sample of 10 mg (residual
ratio: 10 %), the XRD method can provide a limit of detection (LOD) of approximately 0,01 % and
a limit of quantification (LOQ) of approximately 0,03 %. When the residual ratio is higher, the LOD
can increase up to 0,1 % and the LOQ can increase up to 0,3 %. A LOQ of approximately 0,1 % is
achieved when matrix reduction results in a residual ratio of approximately 30 %. However, the
LOD and LOQ that can be obtained during analyses of actual building materials also depends on the
X-ray peak selected for analysis and whether interference X-ray peaks or high-intensity background
from matrix materials are present.
9.3 Preparation of working curve and measurement
Measure the diffraction intensity from the substrate standard metallic plate (zinc, aluminium, etc.), to
which is attached a blank filter (the same type of filter to be used for the preparation of the working
curves).
Asbestos standards (12.2, Note 1) in the range between 0,05 mg and 5 mg are deposited on the filters
and the each filter is placed on a substrate standard zinc plate. The diffraction intensities from zinc and
asbestos are then measured for each filter.
The diffraction intensity of a zinc plate to which a filter containing asbestos is attached will be
attenuated compared with that of zinc plate to which a blank filter is attached. From this attenuation
ratio, the correction factor, K , is calculated using Formula (B.1). The absorption-corrected diffraction
f
intensity of the asbestos is calculated using Formula (B.2).
The working curve is obtained by plotting the weights of asbestos in the range between 0,05 mg/filter
2 2
(2 cm ) and 5 mg/filter (2 cm ) on the abscissa and the respective absorption-corrected diffraction
intensities of the asbestos on the ordinate.
For the quantitative measurement of asbestos in a sample, the weight of asbestos (mg) corresponding
to the observed diffraction intensity can be obtained by comparison of the absorption-corrected
diffraction intensity of the asbestos in the sample with the diffraction intensity shown in the working
curve. The asbestos mass fraction (%) is then calculated from the ratio of the weight of asbestos and
the weight of the original sample, i.e. 100 mg.
8 © ISO 2016 – All rights reserved
9.4 Interference minerals
Before quantitative analysis, it is necessary to investigate whether any interference minerals are
present from which diffraction peaks appear at or near those of chrysotile or amphibole (see Table 2).
Precise checks of diffraction patterns for potentially overlapping peaks can establish the existence of
these interference minerals. When a diffraction peak from an interference mineral appears at or near
that used for determination of asbestos, chemical treatment (using acid and/or alkali) may effectively
dissolve those interference minerals and also reduce the matrix. When interference minerals cannot
be removed effectively by such treatment, it will be necessary to use a secondary diffraction peak of
asbestos for the quantification (see 11.1 and 11.2). When a secondary peak is employed for quantitative
analysis, the quantification limit of the measurement is sometimes degraded.
10 Preparation of comminuted sample
The various sample preparation procedures described in ISO 22262-2 for the quantification of asbestos
by PLM can also be used for this XRD method.
Comminution of asbestos-containing materials can generate airborne asbestos fibres and is therefore
hazardous. Accordingly, the preparation of samples shall be carried out in a HEPA-filtered containment
apparatus.
10.1 Preparation of comminuted sample from original sample
Prepare the comminuted samples from the original samples as follows.
a) Original samples analysed by the qualitative analysis in ISO 22262-1 are pulverized into powder.
The comminution procedure shall be as follows.
1) If the original sample is hard, scrape material from the side surface using a knife or other
appropriate tool. Obtain approximately 0,5 g of sub-sample before putting it in a pulverizer.
2) For the comminution, use a mortar (porcelain mortar, agate mortar or alumina mortar,
etc.), Wiley mill, an ultra-centrifugal cutter, a vibrating mill, a ball mill or other appropriate
pulverizing device.
3) For some resilient materials, such as asphaltic and vinyl materials, ashing at a temperature
lower than 450 °C for a period of approximately 10 h is effective for removal of the organic
constituents (see ISO 22262-2:2014, 6.2). After ashing, the sample is milled using an agate
mortar or a vibrating mill.
b) Take care to avoid excessive comminution.
c) A small portion of the comminuted sample is p
...
NORME ISO
INTERNATIONALE 22262-3
Première édition
2016-10-01
Qualité de l’air — Matériaux solides —
Partie 3:
Dosage quantitatif de l’amiante par la
méthode de diffraction des rayons X
Air quality — Bulk materials —
Part 3: Quantitative determination of asbestos by X-ray diffraction
method
Numéro de référence
©
ISO 2016
DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2016, Publié en Suisse
Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée
sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie, l’affichage sur
l’internet ou sur un Intranet, sans autorisation écrite préalable. Les demandes d’autorisation peuvent être adressées à l’ISO à
l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2016 – Tous droits réservés
Sommaire Page
Avant-propos .iv
Introduction .v
1 Domaine d’application . 1
2 Références normatives . 1
3 Termes et définitions . 2
4 Étendue de mesure . 3
5 Limite de quantification . 3
6 Symboles et abréviations . 4
7 Exigences relatives à la quantification . 4
8 Appareillage et réactifs . 6
8.1 Appareillage. 6
8.2 Réactifs . 7
9 Méthode DRX quantitative et principe . 7
9.1 Méthodes DRX quantitatives utilisant un étalon externe . 7
9.2 Résumé de la méthode quantitative . 8
9.3 Préparation de la courbe d’étalonnage et mesurage . 9
9.4 Minéraux interférents . 9
10 Préparation de l’échantillon broyé . 9
10.1 Préparation de l’échantillon broyé à partir de l’échantillon d’origine . 9
10.2 Traitement thermique des échantillons broyés contenant des constituants organiques .10
10.3 Prétraitement en vue de la préparation d’échantillons résiduels.10
10.4 Préparation des sous-échantillons résiduels .11
11 Pics de diffraction utilisés pour l’analyse de l’amiante et des minéraux interférents .12
11.1 Pics de diffraction utilisés pour l’analyse quantitative de l’amiante .12
11.2 Minéraux interférents .15
11.2.1 Minéraux interférents potentiels .15
11.2.2 Traitements de réduction de la masse pour dissoudre des
minéraux interférents .16
12 Analyse quantitative par DRX utilisant la correction de l’absorption de masse du
substrat étalon .17
12.1 Généralités .17
12.2 Préparation de la courbe d’étalonnage .17
12.2.1 Préparation de la courbe d’étalonnage I .17
12.2.2 Préparation de la courbe d’étalonnage II .18
12.3 Mode opératoire d’analyse quantitative .18
12.4 Calcul de la fraction massique d’amiante .19
12.4.1 Calcul de la fraction massique d’amiante à partir d’un échantillon résiduel .19
12.4.2 Calcul de la fraction massique d’amiante à partir d’un sous-
échantillon résiduel .19
12.5 Limites inférieures de détection et de dosage quantitatif applicables à la
courbe d’étalonnage .20
12.6 Évaluation de l’incertitude de mesure DRX .20
13 Rapport d’essai .21
Annexe A (normative) Paramètres du diffractomètre à rayons X pour l’analyse quantitative
de l’amiante .22
Annexe B (normative) Correction de l’absorption de masse du substrat étalon pour la
quantification de l’amiante .29
Avant-propos
L’ISO (Organisation internationale de normalisation) est une fédération mondiale d’organismes
nationaux de normalisation (comités membres de l’ISO). L’élaboration des Normes internationales est
en général confiée aux comités techniques de l’ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l’ISO participent également aux travaux.
L’ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui
concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier de prendre note des différents
critères d’approbation requis pour les différents types de documents ISO. Le présent document a été
rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2 (voir www.
iso.org/directives).
L’attention est appelée sur le fait que certains des éléments du présent document peuvent faire l’objet de
droits de propriété intellectuelle ou de droits analogues. L’ISO ne saurait être tenue pour responsable
de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant
les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de
l’élaboration du document sont indiqués dans l’Introduction et/ou dans la liste des déclarations de
brevets reçues par l’ISO (voir www.iso.org/patents).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données
pour information, par souci de commodité à l’intention des utilisateurs et ne sauraient constituer un
engagement.
Pour une explication de la signification des termes et expressions spécifiques de l’ISO liés à l’évaluation
de la conformité, et pour toute autre information au sujet de l’adhésion de l’ISO aux principes de
l’OMC concernant les obstacles techniques au commerce (OTC), voir le lien suivant: Avant-propos –
Informations supplémentaires.
Le comité chargé de l’élaboration du présent document est l’ISO/TC 146, Qualité de l’air, sous-comité
SC 3, Atmosphères ambiantes.
L’ISO 22262 comprend les parties suivantes, présentées sous le titre général Qualité de l’air — Matériaux
solides:
— Partie 1: Échantillonnage et dosage qualitatif de l’amiante dans les matériaux solides d’origine
commerciale
— Partie 2: Dosage quantitatif de l’amiante en utilisant les méthodes gravimétrique et microscopique
— Partie 3: Dosage quantitatif de l’amiante par la méthode de diffraction des rayons X
iviv © ISO 2016 – T© ISO 2016 – Tous drous droits roits réservéservésés
Introduction
L’amiante était auparavant utilisé dans une vaste gamme de produits. Des matériaux contenant de
grandes proportions d’amiante étaient utilisés dans les secteurs de la construction et de l’industrie
pour l’ignifugation, l’isolation thermique et l’isolation phonique. L’amiante était également utilisé pour
renforcer les matériaux et pour améliorer les caractéristiques de rupture et de flexion. Une grande
proportion de l’amiante produit était utilisée dans les produits en amiante-ciment, notamment les
plaques planes, les tuiles et les plaques ondulées pour la couverture, les tuyaux et gouttières pour la
récupération d’eau de pluie et les tuyaux sous pression pour l’alimentation en eau potable. L’amiante
était également incorporé dans des produits tels que les revêtements et les enduits décoratifs, les
colles, les mastics, les résines, les dalles, les joints et les revêtements routiers. Dans certains produits,
de l’amiante était ajouté pour modifier les propriétés rhéologiques, par exemple dans la fabrication de
plaques de faux plafond et les boues de forage pétrolier.
Alors que la concentration en amiante dans certains produits a pu être très élevée et approcher parfois
les 100 %, les concentrations en amiante dans d’autres produits étaient nettement inférieures et souvent
comprises entre 1 % et 15 %. Dans certaines plaques de faux plafond, la concentration en amiante
utilisée était proche de 1 %. Il n’existe que quelques matériaux connus dans lesquels la concentration
en amiante était inférieure à 1 %. Certains adhésifs, produits d’étanchéité et mastics ont été fabriqués
avec des concentrations en amiante inférieures à 1 %. On ne connaît aucun matériau du commerce dans
lequel l’une des variétés d’amiante courantes (chrysotile, amosite, crocidolite ou anthophyllite) a été
intentionnellement ajoutée à des concentrations inférieures à 0,1 %.
L’ISO 22262-1 spécifie les modes opératoires de prélèvement d’échantillons et d’analyse qualitative
de l’amiante dans des matériaux solides d’origine commerciale à l’aide de méthodes microscopiques
telles que la microscopie en lumière polarisée (MLP). L’ISO 22262-2 spécifie les modes opératoires
de détermination de la fraction massique d’amiante dans les matériaux solides à l’aide de méthodes
microscopiques.
La présente partie de l’ISO 22262 spécifie les modes opératoires d’analyse applicables au dosage
quantitatif de l’amiante par diffraction des rayons X (DRX). Le mode opératoire utilise une méthode
de correction de l’absorption de masse du substrat étalon pour quantifier l’amiante préalablement
identifié par la méthode microscopique de l’ISO 22262-1. Alors que la méthode DRX est efficace pour
l’analyse qualitative de substances cristallines dans les échantillons pulvérulents par mesurage des
diagrammes de diffraction associés à la structure cristalline, elle ne permet toutefois pas de différencier
les différentes propriétés morphologiques d’un même matériau. Ainsi, la méthode DRX ne permet pas
de différencier les analogues asbestiformes et non asbestiformes de la serpentine des amphiboles.
En outre, les principaux pics de diffraction des différentes amphiboles se situent dans une gamme
très étroite et il n’est pas possible de quantifier chaque amphibole lorsqu’un mélange d’amphiboles
est présent. Les pics de diffraction apparaissant dans les diagrammes DRX des minéraux contenant
de l’amiante sont considérés comme des «pics d’amiante potentiels» censés représenter l’amiante
détecté lors de l’analyse décrite dans l’ISO 22262-1. Cependant, si de la serpentine et de l’amphibole
non asbestiformes sont présentes dans la matrice d’échantillon, les «pics d’amiante potentiels» les
représenteront. Par conséquent, cette méthode ne s’applique pas aux échantillons dans lesquels de la
serpentine ou de l’amphibole non asbestiforme est présente.
Une méthode DRX classique, qui utilise un échantillon pulvérulent monté dans un support pour
échantillon pulvérulent et un compteur de scintillations, permet de quantifier un matériau cristallin à
une concentration d’environ 1 %. La méthode DRX utilisant une méthode de correction de l’absorption
de masse du substrat étalon employée dans la présente partie de l’ISO 22262 permet de détecter les
pics de diffraction d’amiante chrysotile de 0,01 mg sur un filtre à membrane de 2 cm [0,01 mg/filtre
(2 cm )] comme indiqué dans les Références [13] et [14]. La quantité d’échantillon sur le filtre est
limitée à 15 mg en raison de la limite de correction de l’absorption des rayons X. Dans cette méthode,
des modes opératoires de réduction gravimétrique de la matrice sont utilisés pour réduire les
constituants matriciels et les minéraux interférents dans un échantillon broyé de 100 mg. Lorsque la
réduction de la matrice atteint un taux résiduel de 10 % ou moins, la méthode DRX peut donner une
limite de détection de 0,01 % en masse et la limite de quantification peut diminuer jusqu’à 0,03 % en
masse. Lorsque la réduction de la matrice est moins efficace et que le taux résiduel dépasse 10 % de
l’échantillon d’origine de 100 mg, un échantillon subdivisé de 10 mg à 15 mg est prélevé sur l’échantillon
résiduel. Si la réduction de la matrice est faible ou inexistante, la limite de détection peut augmenter
jusqu’à environ 0,1 % et la limite de quantification peut augmenter jusqu’à environ 0,3 %. Lorsque
la réduction de la matrice atteint un taux résiduel d’environ 30 % de la masse d’origine, la limite de
quantification est d’environ 0,1 %. Ces limites de détection et de quantification sont encore dégradées
si des pics de rayons X interférents ou des intensités de rayons X à bruit de fond élevé sont présents
dans les matériaux matriciels.
La méthode DRX spécifiée dans la présente partie de l’ISO 22262 repose sur les méthodes NIOSH
[16] [17] [18] [19]
9000-1/7, NIOSH 7500-1/10, EPA/600/R-93/116 et JIS A 1481-3 .
vi © ISO 2016 – Tous droits réservés
NORME INTERNATIONALE ISO 22262-3:2016(F)
Qualité de l’air — Matériaux solides —
Partie 3:
Dosage quantitatif de l’amiante par la méthode de
diffraction des rayons X
1 Domaine d’application
La présente partie de l’ISO 22262 est principalement destinée à l’analyse quantitative d’échantillons
dans lesquels de l’amiante a été identifié à des fractions massiques estimées inférieures à environ 5 %
en masse.
La présente partie de l’ISO 22262 étend l’applicabilité et la limite de détection de l’analyse quantitative
grâce à l’utilisation de modes opératoires simples de calcination et/ou de traitement à l’acide avant la
quantification DRX.
La présente partie de l’ISO 22262 est applicable aux matériaux contenant de l’amiante identifiés dans
l’ISO 22262-1. Des exemples de matrices d’échantillons sont les suivants:
a) tout matériau de construction dans lequel de l’amiante a été détecté par l’analyse décrite dans
l’ISO 22262-1:
b) les dalles souples, les matériaux bitumineux, les feutres pour toitures et tout autre matériau dans
lequel de l’amiante est incorporé dans une matrice organique et dans lequel de l’amiante a été
détecté en utilisant l’ISO 22262-1;
c) les enduits muraux et de plafond, avec ou sans granulat, dans lesquels de l’amiante a été détecté en
utilisant l’ISO 22262-1.
Si de la serpentine ou de l’amphibole non asbestiforme est incluse dans la matrice, les pics DRX
considérés comme des «pics d’amiante potentiels» représenteront ces minéraux. Cette méthode ne
s’applique ni aux minéraux naturels susceptibles de contenir de l’amiante ni aux produits constitués
de minéraux naturels de ce type. Cette méthode s’applique uniquement aux échantillons de matériaux
de construction contenant de l’amiante du commerce ajouté intentionnellement, y compris l’amiante
trémolite.
La présente partie de l’ISO 22262 est destinée à être utilisée par les analystes familiarisés avec les
méthodes de diffraction des rayons X et les autres modes opératoires d’analyse indiqués dans les
Références [5] et [6]. L’objectif de la présente partie de l’ISO 22262 n’est pas de fournir des informations
de base sur les modes opératoires d’analyse fondamentaux.
2 Références normatives
Les documents ci-après, dans leur intégralité ou non, sont des références normatives indispensables à
l’application du présent document. Pour les références datées, seule l’édition citée s’applique. Pour les
références non datées, la dernière édition du document de référence s’applique (y compris les éventuels
amendements).
ISO 22262-1:2012, Qualité de l’air — Matériaux solides — Partie 1: Échantillonnage et dosage qualitatif de
l’amiante dans les matériaux solides d’origine commerciale
ISO 22262-2:2014, Qualité de l’air — Matériaux solides — Partie 2: Dosage quantitatif de l’amiante en
utilisant les méthodes gravimétrique et microscopique
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions suivants s’appliquent.
3.1
asbestiforme
type de fibrosité minérale spécifique dans lequel les fibres et les fibrilles possèdent une résistance à la
traction et une flexibilité élevées
[SOURCE: ISO 13794:1999, 2.6]
3.2
amiante
groupe de minéraux de silicates appartenant aux groupes des serpentines et des amphiboles qui se
sont cristallisés en faciès asbestiforme, ce qui permet, lorsqu’ils sont traités ou broyés, de les séparer
facilement en fibres longues, minces, flexibles et solides
Note 1 à l’article: Les numéros de registre CAS des variétés d’amiante les plus courantes sont: chrysotile (12001-
29-5), crocidolite (12001-28-4), amiante grunérite (amosite) (12172-73-5), amiante anthophyllite (77536-67-5),
amiante trémolite (77536-68-6) et amiante actinolite (77536-66-4). D’autres variétés d’amphibole asbestiforme,
[20]
notamment l’amiante richtérite et l’amiante winchite, sont également présentes dans certains produits tels
que la vermiculite et le talc.
[SOURCE: ISO 13794:1999, 2.7, modifiée]
3.3
échantillon broyé
échantillon analytique préparé par broyage et tamisage de l’échantillon d’origine
3.4
réduction gravimétrique de la matrice
opération au cours de laquelle les constituants d’un matériau sont sélectivement dissous ou séparés,
laissant un résidu dans lequel tout amiante présent dans le matériau d’origine est concentré
[SOURCE: ISO 22262-2:2014, 3.22]
3.5
intensité intégrale
comptage des surfaces des pics (comptage global) d’un pic DRX désigné après soustraction de la
surface de fond
3.6
limite de détection
masse d’amiante sur un échantillon filtré qui produit un pic DRX détectable dans les conditions de
mesure indiquées dans l’Annexe A
Note 1 à l’article: Exprimée en pourcentage (fraction massique) de l’échantillon d’origine.
3.7
limite de quantification
masse d’amiante sur un échantillon filtré pour lequel l’intensité intégrale du pic DRX peut être mesurée
Note 1 à l’article: Exprimée en pourcentage (fraction massique) de l’échantillon d’origine. La limite de
quantification représente généralement trois fois la limite de détection.
3.8
matrice
matériau dans un échantillon solide dans lequel les fibres sont dispersées
[SOURCE: ISO 22262-1:2012, 2.36, modifiée]
2 © ISO 2016 – Tous droits réservés
3.9
échantillon d’origine
échantillon prélevé sur un matériau de construction et qui a été analysé selon l’ISO 22262-1
3.10
taux résiduel
taux (pourcentage) de réduction obtenu par réduction gravimétrique de la matrice de l’échantillon broyé
3.11
échantillon résiduel
échantillon analytique restant après traitement à l’acide formique ou après un autre traitement
approprié pour éliminer les constituants matriciels
3.12
incertitude-type
incertitude du résultat de mesure, exprimée sous forme d’écart-type
[SOURCE: ISO 20988:2007, 3.2]
3.13
sous-échantillon résiduel
sous-échantillon analytique prélevé sur l’échantillon résiduel pour l’analyse lorsque le taux résiduel
dépasse 15 %
4 Étendue de mesure
La présente partie de l’ISO 22262 est applicable aux échantillons de matériaux de construction et
l’étendue cible pour la fraction massique d’amiante est comprise entre 0,1 % et 5 %. Dans cette
méthode, des modes opératoires de réduction gravimétrique de la matrice sont utilisés pour réduire
les constituants matriciels et les minéraux interférents dans un échantillon broyé de 100 mg. Il n’existe
pas de limite supérieure de quantification; cette méthode DRX permet de quantifier l’amiante jusqu’à
100 %. La limite inférieure de l’étendue dépend du taux résiduel obtenu par les méthodes de réduction
de la matrice. Lorsque la méthode de réduction de la matrice n’est pas efficace et que l’échantillon reste
présent en totalité, la limite de détection (LOD) est de 0,1 % et la limite de quantification (LOQ) est
de 0,3 %. Lorsque des valeurs moins élevées du taux résiduel peuvent être atteintes, la LOD et la LOQ
peuvent diminuer jusqu’à 0,01 % ou moins. Cependant, la LOD et la LOQ qui peuvent être obtenues
pendant les analyses des matériaux de construction dépendent également du pic de rayons X choisi
pour l’analyse et du fait que des pics de rayons X interférents ou un bruit de fond de haute intensité sont
présents dans les matériaux matriciels.
5 Limite de quantification
Cette méthode DRX permet de détecter 0,01 mg d’amiante dans un échantillon de 10 mg sur un filtre
2 2
de 2 cm et de quantifier 0,03 mg d’amiante dans un échantillon de 10 mg sur un filtre de 2 cm . La
masse maximale de l’échantillon pour lequel l’absorption des rayons X peut être corrigée est d’environ
15 mg sur un filtre de 2 cm . Dans cette méthode, des modes opératoires de réduction gravimétrique
de la matrice sont utilisés pour réduire les constituants matriciels et les minéraux interférents dans un
échantillon broyé de 100 mg. Lorsqu’un échantillon de 100 mg contenant 0,01 mg d’amiante est réduit
par réduction de la matrice à 10 mg (taux résiduel: 10 %), la méthode DRX permet de détecter 0,01 mg
d’amiante sur le filtre. Par conséquent, il est possible de détecter 0,01 % d’amiante dans l’échantillon
d’origine de 100 mg. Dans ce cas, la LOD et la LOQ de la méthode DRX sont d’environ 0,01 % et 0,03 %,
respectivement. Lorsque les méthodes de réduction de la matrice sont moins efficaces et que plus de
15 mg de l’échantillon restent présents, la LOD et la LOQ peuvent augmenter jusqu’à 0,1 % et 0,3 %,
respectivement. Une LOQ d’environ 0,1 % est atteinte lorsque l’échantillon est réduit à environ 30 %
par les méthodes de réduction de la matrice.
La LOD et la LOQ qui peuvent être atteintes pendant l’analyse de matériaux de construction dépendent:
a) du type d’amiante analysé;
b) du fait qu’un pic secondaire est mesuré parce que les pics principaux sont interférés;
c) des différences entre l’origine de l’amiante présente dans l’échantillon et celle du matériau de
référence utilisé pour établir la courbe d’étalonnage;
d) du niveau selon lequel la réduction gravimétrique de la matrice permet d’éliminer les matériaux
matriciels;
e) de la présence de pics de rayons X interférents ou de bruits de fond élevés dans les matériaux
matriciels;
f) de la puissance du générateur de rayons X et du type de détecteur de rayons X utilisé
6 Symboles et abréviations
m masse de l’échantillon broyé au moment de l’analyse quantitative des rayons X (mg)
m masse de l’échantillon résiduel au moment de l’analyse quantitative des rayons X (mg)
m masse du sous-échantillon résiduel au moment de l’analyse quantitative des rayons X (mg)
A masse de l’amiante dans l’échantillon résiduel d’après la courbe d’étalonnage (mg)
s
w fraction massique d’amiante d’un échantillon analytique (%)
i
w fraction massique d’amiante d’un sous-échantillon résiduel (%)
r
w fraction massique d’amiante d’un matériau de construction ou d’autres matériaux (%)
r taux de perte de masse après traitement thermique d’un échantillon contenant des consti-
tuants organiques
V intensité intégrale de diffraction des rayons X lors du comptage
s écart-type de l’intensité intégrale de diffraction des rayons X de i fois
i
a gradient de la courbe d’étalonnage
w limite inférieure de détection de la fraction massique d’amiante (%)
k
w limite inférieure de détermination de la fraction massique d’amiante (%)
t
DRX diffraction des rayons X
7 Exigences relatives à la quantification
Avant d’utiliser la présente partie de l’ISO 22262, l’échantillon doit avoir été examiné conformément à
l’ISO 22262-1.
Il n’est pas forcément nécessaire de quantifier l’amiante à un niveau supérieur à l’estimation de la fraction
massique obtenue à l’aide de l’ISO 22262-1. Cela dépend de la limite réglementaire en vigueur relative
à la définition d’un matériau contenant de l’amiante, de la variété d’amiante identifiée et du fait que
l’échantillon peut être reconnu ou non en tant que produit manufacturé. Les définitions réglementaires
courantes des matériaux contenant de l’amiante vont de « présence de tout amiante » jusqu’à > 0,1 %,
> 0,5 % et > 1 % en fraction massique d’une ou plusieurs des variétés d’amiante réglementées. Pour
de nombreux échantillons solides analysés à l’aide de l’ISO 22262-1, il est intuitivement évident pour
l’analyste expérimenté que la fraction massique d’amiante dépasse largement ces limites de fraction
massique. Pour ces types d’échantillons, un analyste expérimenté peut également déterminer avec
fiabilité que la fraction massique d’amiante est nettement inférieure à ces limites réglementaires.
Toute quantification plus précise de l’amiante dans ces types d’échantillons est inutile car une
4 © ISO 2016 – Tous droits réservés
détermination plus précise et donc plus coûteuse de la fraction massique d’amiante ne changera ni le
statut réglementaire du matériau contenant de l’amiante ni aucune décision ultérieure concernant son
traitement. L’Annexe C contient un tableau illustrant les principaux matériaux contenant de l’amiante,
la variété d’amiante utilisée dans ces matériaux et la gamme de fraction massique susceptible d’être
présente. L’Annexe C indique également si, en général, l’estimation de la fraction massique d’amiante
découlant de l’utilisation de l’ISO 22262-1 suffit à établir le statut réglementaire du matériau, ou si une
quantification de l’amiante à l’aide de la présente partie de l’ISO 22262 est nécessaire. Il convient que
l’analyste se réfère à l’Annexe C pour connaître les lignes directrices relatives aux possibles fractions
massiques d’amiante observées dans des classes de produits spécifiques, ainsi que le mode opératoire
d’analyse optimal pour obtenir un résultat fiable.
L’amiante n’a jamais été délibérément ajouté à aucune fin fonctionnelle dans les produits manufacturés
d’origine commerciale contenant de l’amiante à des fractions massiques inférieures à 0,1 %. Par
conséquent, si une ou plusieurs variétés d’amiante d’origine commerciale (chrysotile, amosite,
crocidolite ou anthophyllite) sont détectées dans un produit manufacturé, il se peut que la fraction
massique d’amiante dans le produit soit supérieure à 0,1 %. Ainsi, si la définition réglementaire d’un
matériau contenant de l’amiante dans un domaine précis indique soit la « présence de tout amiante » soit
une fraction massique supérieure à 0,1 %, alors la détection d’une ou de plusieurs variétés d’amiante
d’origine commerciale dans un produit manufacturé reconnaissable définit automatiquement le statut
réglementaire du matériau. Si la définition réglementaire indique 0,5 % ou 1 % et si la fraction massique
d’amiante est estimée à moins d’environ 5 %, alors une quantification plus précise est nécessaire pour
garantir le statut réglementaire du matériau.
La détection de trémolite, d’actinolite ou de richtérite/winchite dans un matériau ne permet pas
d’émettre des hypothèses concernant la fraction massique d’amiante car ces variétés d’amiante n’ont,
en général, pas été délibérément ajoutées dans les produits. Elles sont plutôt présentes sous formes de
traces minérales dans certains des constituants utilisés pour fabriquer les produits. Étant donné que
les variétés non asbestiformes des amphiboles ne sont soumises à aucune réglementation mondiale,
il est également nécessaire de différencier les variétés asbestiformes des variétés non asbestiformes
de ces minéraux. Dans les minéraux industriels, ces minéraux amphiboles se présentent sous forme de
mélanges des deux variétés.
Il est impossible de spécifier un seul mode opératoire d’analyse pour tous les types de matériaux
susceptibles de contenir de l’amiante car la gamme de matrices dans lesquelles l’amiante peut être
incorporé est très vaste. Certains matériaux sont sujets à la réduction gravimétrique de la matrice,
d’autres non.
Les exigences relatives à une quantification au-delà de celle atteinte dans l’ISO 22262-1 sont résumées
dans le Tableau 1.
Tableau 1 — Récapitulatif des exigences de quantification de l’amiante dans des
échantillons solides
Limite de contrôle réglementaire
Type de matériau
«Tout amiante Fraction massique Fraction massique Fraction massique
détecté» > 0,1 % > 0,5 % > 1 %
Si de l’amiante est détecté à une fraction
Produit manu- Si une quelconque variété d’amiante d’origine
massique estimée < 5 %, une quantifica-
facturé d’origine commerciale est détectée, aucune autre
tion plus précise est requise pour établir le
commerciale quantification n’est requise.
statut réglementaire du matériau.
Si une quelconque
variété d’amiante Si de l’amiante est détecté à une fraction massique estimée < 5 %,
Autres matériaux est détectée, aucune une quantification plus précise est requise pour établir le statut
autre quantification réglementaire du matériau.
n’est requise.
8 Appareillage et réactifs
8.1 Appareillage
8.1.1 Équipement de broyage des échantillons
Un mortier et pilon en agate, ou un broyeur, sont requis pour broyer les échantillons jusqu’à obtenir
une taille appropriée pour le mesurage DRX. Cet équipement doit être utilisé dans une enceinte de
confinement sous pression négative équipée de filtres HEPA ayant un débit de face minimal de 0,4 m/s.
8.1.2 Enceinte de confinement sous pression négative équipée de filtres HEPA
Une enceinte de confinement équipée de filtres HEPA ayant un débit de face minimal de 0,4 m/s est
requise pour accueillir l’équipement de broyage des échantillons.
8.1.3 Balance analytique
Une balance analytique précise à 0,000 01 g (0,01 mg) ou moins est requise.
8.1.4 Four à moufle
Pour la calcination des échantillons pour éliminer les constituants organiques interférents, un four à
moufle à 500 °C minimum, avec une stabilité de température de ±10 °C, est requis.
8.1.5 Cuve à ultrason
Une cuve à ultrason est requise pour disperser les échantillons résiduels avant d’effectuer la filtration.
8.1.6 Dispositif de filtration en verre (25 mm de diamètre)
Un dispositif de filtration en verre équipé d’une fiole de filtration sous vide est requis.
8.1.7 Fournitures générales pour laboratoire
Les fournitures et l’équipement suivants, ou équivalents, sont requis:
a) feuilles de papier cristal, environ 10 cm × 10 cm, pour l’examen des échantillons d’origine et des
échantillons broyés;
b) bécher à échantillons à usage unique en aluminium ou en plastique, de 3 cm à 5 cm de diamètre
environ;
c) outils d’échantillonnage, notamment pinces, aiguilles et autres;
d) béchers coniques, 50 ml;
e) béchers, 500 ml;
f) fioles jaugées, 1 000 ml;
g) boîtes de Pétri;
h) pipettes à usage unique, 20 µl, 100 µl, 200 µl, 400 µl, 600 µl, 1 ml et 2 ml;
i) filtres en fibre de verre enduits de polytétrafluoroéthylène (PTFE), de 25 mm de diamètre.
6 © ISO 2016 – Tous droits réservés
8.1.8 Diffractomètre à rayons X
Un diffractomètre à rayons X utilisant la géométrie de Bragg-Brentano (para-focalisation) doit être
équipé comme suit:
a) tube à rayons X ayant une cible de cuivre, d’une puissance de 1,6 kW ou plus;
b) centrifugeuse à échantillons pour améliorer la statistique des particules;
c) filtre en nickel, monochromateur graphite ou autre optique de rayons X de résolution similaire ou
supérieure pour obtenir un faisceau de rayons X monochromatiques (raie CuKα);
d) détecteur de rayons X à haute efficacité sensible à la position, par exemple détecteur à semi-
conducteur sensible à la position.
NOTE En raison des faibles limites de détection requises, il n’est pas recommandé d’utiliser les anciens
compteurs de scintillations ou proportionnels.
8.2 Réactifs
8.2.1 Eau distillée exempte de poussière.
8.2.2 Acide formique concentré, de qualité réactif.
8.2.3 Granulés d’hydroxyde de sodium, de qualité réactif.
8.2.4 Alcool isopropylique, de qualité réactif.
9 Méthode DRX quantitative et principe
9.1 Méthodes DRX quantitatives utilisant un étalon externe
Étant donné que l’intensité d’un pic DRX dépend de la quantité d’une substance cristalline présente
dans un échantillon, la fraction massique d’une substance cristalline peut être déterminée en mesurant
l’intensité de diffraction. Cependant, comme l’intensité de diffraction est influencée non seulement
par la fraction massique des substances cristallines mais également par l’absorption des rayons
X de l’échantillon lui-même, il convient de corriger l’intensité mesurée pour tenir compte de cette
absorption pour pouvoir effectuer la quantification. Les méthodes DRX quantitatives connues pour
corriger l’absorption d’échantillons pulvérulents sont la méthode de l’étalon interne et la méthode des
[5][6]
ajouts dosés . La précision analytique de ces méthodes est élevée pour la plupart des substances;
cependant, la précision peut être affectée en cas de particules fibreuses telles que l’amiante car
l’orientation des fibres varie considérablement, ce qui affecte l’intensité de diffraction. Une méthode de
l’étalon externe utilisant un substrat étalon a été mise au point pour de petits échantillons pulvérulents.
[7]
Elle a été simplifiée en montant l’échantillon sur une feuille de cuivre et en mesurant l’intensité de
diffraction depuis la feuille, avec et sans l’échantillon. Un facteur de correction peut ensuite être calculé
[8]
à partir de l’atténuation observée du pic de diffraction depuis la feuille de cuivre. Une autre méthode
[9]
utilisant un filtre à membrane en argent, qui a remplacé la feuille de cuivre, a été développée. Une
technique a ensuite été mise au point pour placer un échantillon de particules en suspension prélevé
[10]
sur un filtre en polycarbonate et pour redéposer les particules sur un filtre à membrane en argent
[11][12]
. Il a été établi qu’un échantillon fibreux déposé sur un filtre mince donnait une intensité de
[13]
diffraction stable et reproductible en raison des fibres orientées parallèlement à la surface du filtre
[14]
. Un échantillon d’amiante filtré sur un filtre mince est placé sur une plaque de support en métal
et les intensités de diffraction de l’amiante sur le filtre et la plaque de support en métal peuvent être
mesurées car un filtre mince n’absorbe pas considérablement les rayons X. La technique utilisant à la
fois un filtre à membrane d’esters mixtes de cellulose et une plaque de support en zinc a été mise au
[15]
point pour mesurer les échantillons de quartz en suspension . Ces méthodes DRX utilisant un filtre
de support en métal ou un filtre mince sur une plaque de support en métal sont employées par plusieurs
[16][17][18][19]
organismes dans le cadre de l’analyse quantitative de l’amiante et de la silice cristalline . La
méthode de correction de l’absorption de masse du substrat étalon est utilisée dans la présente partie
de l’ISO 22262.
9.2 Résumé de la méthode quantitative
La méthode DRX spécifiée dans la présente partie de l’ISO 22262 est applicable à l’analyse quantitative
de l’amiante dans des échantillons contenant de l’amiante identifiés par l’ISO 22262-1. Les intensités de
diffraction observées de toutes les substances cristallines présentes dans un échantillon sont atténuées
par l’effet de l’absorption des rayons X par la matrice d’échantillons. L’atténuation des intensités de
diffraction d’une substance cristalline peut être corrigée à l’aide d’un facteur de correction, en se
basant sur la réduction de l’intensité de diffraction du matériau du substrat étalon, comme indiqué
dans l’Annexe B. Les intensités de diffraction de l’amiante des courbes d’étalonnage illustrées dans
l’Annexe A sont les intensités corrigées pour tenir compte de l’atténuation due à l’absorption des rayons
2 [13][14]
X. Il convient que la masse de l’échantillon sur un filtre (2 cm ) soit inférieure à 15 mg . Pour
les masses allant jusqu’à 15 mg, dans des conditions optimales, l’intensité de diffraction (intensité
2 [13][14]
intégrale) mesurée de l’amiante peut descendre jusqu’à 0,01 mg/filtre (2 cm ) , à condition
qu’aucun pic de rayons X interférents ou bruit de fond ne soit présent dans le matériau matriciel. Pour
la quantification de l’amiante dans des matériaux solides selon la présente partie de l’ISO 22262, des
méthodes de réduction gravimétrique de la matrice sont utilisées pour éliminer le plus possible de
constituants matriciels de l’échantillon, de telle sorte que l’amiante présent est concentré à une fraction
massique supérieure dans l’échantillon résiduel final.
Un résumé de la méthode quantitative est donné ci-dessous.
a) Une quantité appropriée du sous-échantillon (0,5 g ou plus) est prélevée de l’échantillon d’origine
dans lequel l’amiante a déjà été identifié par l’ISO 22262-1.
b) L’échantillon est broyé et tamisé sur un tamis de 250 µm pour préparer un échantillon broyé Il est
nécessaire de broyer l’échantillon de cette façon pour obtenir des données de haute qualité par
analyse DRX. Selon les matrices, notamment les constituants organiques, il peut être nécessaire de
calciner l’échantillon avant de le broyer.
c) Un sous-échantillon de 100 mg est prélevé de l’échantillon broyé et traité avec de l’acide formique
et/ou par calcination, et le résidu est filtré sur un filtre à membrane, notamment un filtre en
fibre de verre enduit de PTFE, un filtre en argent ou un filtre en polychlorure de vinyle (PVC).
Après pesée, si le taux résiduel est inférieur à 15 %, l’échantillon résiduel filtré est utilisé pour
l’analyse quantitative de l’amiante par la méthode DRX. Avant d’effectuer l’analyse quantitative ,
il est recommandé d’effectuer un balayage DRX pour examiner les intensités de diffraction de
tout minéral amiante et également de vérifier si les pics de tous les autres minéraux de la matrice
interférent avec celles-ci.
NOTE Pour certains échantillons composés de résidus de silicate de calcium, un traitement chimique à
l’acide formique n’est pas toujours efficace et laisse plus de 15 % de résidus après traitement. Dans ce cas,
un traitement alcalin utilisant une solution d’hydroxyde de sodium à 20 % permet de réduire la matrice. Le
mode opératoire est décrit en 10.3.
d) Si le taux résiduel dépasse 15 % après réduction de la matrice par calcination et traitement à
l’acide formique ou à l’alcali, un sous-échantillon résiduel de 10 mg à 15 mg doit être prélevé de
l’échantillon résiduel et transféré sur un filtre. La quantité maximale d’échantillon sur un filtre à
membrane est limitée à 15 mg en raison de la limite de correction de l’absorption de masse.
e) Lorsqu’une réduction de la matrice d’un échantillon broyé de 100 mg donne un échantillon résiduel
de 10 mg (taux résiduel: 10 %), la méthode DRX peut donner une limite de détection (LOD) d’environ
0,01 % et une limite de quantification (LOQ) d’environ 0,03 %. Lorsque le taux résiduel est plus
élevé, la LOD peut augmenter jusqu’à 0,1 % et la LOQ jusqu’à 0,3 %. Une LOQ d’environ 0,1 % est
atteinte lorsque la réduction de la matrice donne un taux résiduel d’environ 30 %. Cependant,
la LOD et la LOQ qui peuvent être obtenues pendant les analyses des matériaux de construction
dépendent également du pic de rayons X choisi pour l’analyse et du fait que des pics de rayons X
interférents ou un bruit de fond de haute intensité sont présents dans les matériaux matriciels.
8 © ISO 2016 – Tous droi
...












Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...