IEC 62453-1:2025
(Main)Field device tool (FDT) interface specification - Part 1: Overview and guidance
Field device tool (FDT) interface specification - Part 1: Overview and guidance
IEC 62453-1:2025 is available as IEC 62453-1:2025 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 62453-1:2025 presents an overview and guidance for the IEC 62453 series. It
• explains the structure and content of the IEC 62453 series (see Clause 5);
• provides explanations of some aspects of the IEC 62453 series that are common to many of the parts of the series;
• describes the relationship to some other standards;
• provides definitions of terms used in other parts of the IEC 62453 series.
This third edition cancels and replaces the first edition published in 2016. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) introduction of a new implementation technology (defined in IEC TS 62453-43);
b) introduction of an OPC UA information model for FDT (defined in IEC 62453-71).
Spécification des interfaces des outils des dispositifs de terrain (FDT) - Partie 1: Vue d'ensemble et guide
IEC 62453-1:2025 est disponible sous forme de IEC 62453-1:2025 RLV qui contient la Norme internationale et sa version Redline, illustrant les modifications du contenu technique depuis l'édition précédente.L'IEC 62453-1:2025 présente une vue générale et fournit un guide pour la série IEC 62453. Elle:
• explique la structure et le contenu de la série IEC 62453 (voir Article 5);
• fournit des explications de certains aspects de la série IEC 62453 qui sont communs à beaucoup de parties de la série;
• décrit la relation avec d’autres normes;
• fournit les définitions des termes utilisés dans d’autres parties de la série IEC 62453.
Cette troisième édition annule et remplace la première édition parue en 2016. Cette édition constitue une révision technique.
Cette édition inclut les modifications techniques majeures suivantes par rapport à l’édition précédente:
a) introduction d’une nouvelle technologie de mise en œuvre (définie dans l’IEC TS 62453‑43);
b) introduction d’un modèle d’information d’architecture unifiée de l’OPC pour les outils FDT (défini dans l’IEC 62453-71).
General Information
- Status
- Published
- Publication Date
- 11-Aug-2025
- Technical Committee
- SC 65E - Devices and integration in enterprise systems
- Current Stage
- PPUB - Publication issued
- Start Date
- 12-Aug-2025
- Completion Date
- 15-Aug-2025
Relations
- Revises
IEC 62453-1:2016 - Field device tool (FDT) interface specification - Part 1: Overview and guidance - Effective Date
- 05-Sep-2023
Overview
IEC 62453-1:2025 - Field Device Tool (FDT) Interface Specification – Part 1: Overview and guidance - is the third edition (2025) of the FDT framework guidance. Published as an International Standard and Redline version (RLV), it presents a structured overview of the IEC 62453 series, explains common concepts and terminology used across the series, and describes relationships to other standards. This edition is a technical revision of the 2016 edition and introduces significant updates including a new implementation technology (see IEC TS 62453-43) and an OPC UA information model for FDT (see IEC 62453-71).
Key Topics
- Scope and structure of the IEC 62453 series: clear mapping of parts (Part 2 concepts, Parts 3xy communication profile integration, Parts 4z object model integration, Parts 51–53 implementation, Parts 6z styleguides, Part 71 OPC UA model).
- Common features and definitions: harmonized terms, symbols and conventions used across FDT parts to support interoperability.
- FDT model and architecture: concepts such as Device Type Manager (DTM), Frame Applications, communication channels, presentation objects and dynamic behaviour.
- Communication profile integration: relation to fieldbus and industrial network profiles (e.g., references to IEC 61784 profile families).
- Migration and implementation guidance: migration to DTM approaches, implementation policy and UML modelling guidance (Annex A).
- New technical elements: introduction of a new implementation technology and an OPC UA information model to align FDT with modern IIoT/industrial communication practices.
Applications
IEC 62453-1:2025 is practical for:
- Device manufacturers creating DTMs to ensure consistent device integration and configuration.
- Automation system vendors and integrators implementing FDT Frame Applications or integrating diverse field devices.
- Control engineers and system architects planning device lifecycle, commissioning, diagnostics and maintenance workflows.
- Software developers implementing FDT-compliant tools, OPC UA mappings or communication profile integrations.
- Standards and compliance teams assessing device interoperability and migration strategies.
Benefits include improved device interoperability, unified HMI/presentation of device parameters, reduced integration costs, and seamless mapping to OPC UA for modern industrial data models.
Related Standards
- IEC 62453 series (Parts 2, 3xy, 4z, 5x, 6z, 71)
- IEC TS 62453-43 (new implementation technology)
- IEC 62453-71 (OPC UA information model for FDT)
- IEC 61784 (communication profile families referenced for network integration)
Keywords: IEC 62453-1:2025, FDT, Field Device Tool, DTM, OPC UA, device integration, industrial automation, fieldbus, communication profile.
Buy Documents
IEC 62453-1:2025 - Field device tool (FDT) interface specification - Part 1: Overview and guidance Released:8/12/2025 Isbn:9782832705827
IEC 62453-1:2025 RLV - Field device tool (FDT) interface specification - Part 1: Overview and guidance Released:8/12/2025 Isbn:9782832706589
IEC 62453-1:2025 - Spécification des interfaces des outils des dispositifs de terrain (FDT) - Partie 1: Vue d'ensemble et guide Released:8/12/2025 Isbn:9782832705827
IEC 62453-1:2025 - Field device tool (FDT) interface specification - Part 1: Overview and guidance Released:8/12/2025 Isbn:9782832705827
Get Certified
Connect with accredited certification bodies for this standard

BSI Group
BSI (British Standards Institution) is the business standards company that helps organizations make excellence a habit.
National Aerospace and Defense Contractors Accreditation Program (NADCAP)
Global cooperative program for special process quality in aerospace.
CARES (UK Certification Authority for Reinforcing Steels)
UK certification for reinforcing steels and construction.
Sponsored listings
Frequently Asked Questions
IEC 62453-1:2025 is a standard published by the International Electrotechnical Commission (IEC). Its full title is "Field device tool (FDT) interface specification - Part 1: Overview and guidance". This standard covers: IEC 62453-1:2025 is available as IEC 62453-1:2025 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 62453-1:2025 presents an overview and guidance for the IEC 62453 series. It • explains the structure and content of the IEC 62453 series (see Clause 5); • provides explanations of some aspects of the IEC 62453 series that are common to many of the parts of the series; • describes the relationship to some other standards; • provides definitions of terms used in other parts of the IEC 62453 series. This third edition cancels and replaces the first edition published in 2016. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) introduction of a new implementation technology (defined in IEC TS 62453-43); b) introduction of an OPC UA information model for FDT (defined in IEC 62453-71).
IEC 62453-1:2025 is available as IEC 62453-1:2025 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 62453-1:2025 presents an overview and guidance for the IEC 62453 series. It • explains the structure and content of the IEC 62453 series (see Clause 5); • provides explanations of some aspects of the IEC 62453 series that are common to many of the parts of the series; • describes the relationship to some other standards; • provides definitions of terms used in other parts of the IEC 62453 series. This third edition cancels and replaces the first edition published in 2016. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) introduction of a new implementation technology (defined in IEC TS 62453-43); b) introduction of an OPC UA information model for FDT (defined in IEC 62453-71).
IEC 62453-1:2025 is classified under the following ICS (International Classification for Standards) categories: 25.040.40 - Industrial process measurement and control; 35.100.05 - Multilayer applications; 35.110 - Networking. The ICS classification helps identify the subject area and facilitates finding related standards.
IEC 62453-1:2025 has the following relationships with other standards: It is inter standard links to IEC 62453-1:2016. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.
IEC 62453-1:2025 is available in PDF format for immediate download after purchase. The document can be added to your cart and obtained through the secure checkout process. Digital delivery ensures instant access to the complete standard document.
Standards Content (Sample)
IEC 62453-1 ®
Edition 3.0 2025-08
INTERNATIONAL
STANDARD
Field device tool (FDT) interface specification -
Part 1: Overview and guidance
ICS 25.040.40; 35.100.05; 35.110 ISBN 978-2-8327-0582-7
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or
by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either
IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright
or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local
IEC member National Committee for further information.
IEC Secretariat Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.
About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigendum or an amendment might have been published.
IEC publications search - IEC Products & Services Portal - products.iec.ch
webstore.iec.ch/advsearchform Discover our powerful search engine and read freely all the
The advanced search enables to find IEC publications by a publications previews, graphical symbols and the glossary.
variety of criteria (reference number, text, technical With a subscription you will always have access to up to date
committee, …). It also gives information on projects, content tailored to your needs.
replaced and withdrawn publications.
Electropedia - www.electropedia.org
The world's leading online dictionary on electrotechnology,
IEC Just Published - webstore.iec.ch/justpublished
Stay up to date on all new IEC publications. Just Published containing more than 22 500 terminological entries in English
details all new publications released. Available online and and French, with equivalent terms in 25 additional languages.
once a month by email. Also known as the International Electrotechnical Vocabulary
(IEV) online.
IEC Customer Service Centre - webstore.iec.ch/csc
If you wish to give us your feedback on this publication or
need further assistance, please contact the Customer
Service Centre: sales@iec.ch.
CONTENTS
FOREWORD . 5
INTRODUCTION . 7
1 Scope . 9
2 Normative references . 9
3 Terms, definitions, symbols, abbreviated terms and conventions . 9
3.1 Terms and definitions. 9
3.2 Abbreviated terms . 15
3.3 Conventions . 15
4 FDT overview . 15
4.1 State of the art . 15
4.2 Objectives of FDT . 16
4.2.1 General features . 16
4.2.2 Device and module manufacturer benefits . 17
4.2.3 System manufacturer and integrator benefits . 18
4.2.4 Other applications . 18
4.3 FDT model . 18
4.3.1 General . 18
4.3.2 Frame Applications . 20
4.3.3 Device Type Manager . 21
4.3.4 Communication Channel concept . 22
4.3.5 Presentation object . 24
5 Structure of the IEC 62453 series . 24
5.1 Structure overview . 24
5.2 Part 2 – Concepts and detailed description . 26
5.3 Parts 3xy – Communication profile integration . 26
5.3.1 General . 26
5.3.2 Communication profile integration – IEC 61784 CPF 1 . 26
5.3.3 Communication profile integration – IEC 61784 CPF 2 . 27
5.3.4 Communication profile integration – IEC 61784 CP 3/1 and 3/2 . 27
5.3.5 Communication profile integration – IEC 61784 CP 3/4, CP 3/5 and 3/6 . 27
5.3.6 Communication profile integration – IEC 61784 CPF 6 . 27
5.3.7 Communication profile integration – IEC 61784 CPF 9 . 27
5.3.8 Communication profile integration – IEC 61784 CPF 15 . 27
5.4 Parts 4z – Object model integration profiles . 27
5.4.1 General . 27
5.4.2 Object model integration profile – Common object model (COM) . 28
5.4.3 Object model integration profile – Common language infrastructure
(CLI) . 28
5.4.4 Object model integration profile – CLI and HTML . 28
5.5 Parts 51-xy/52-xy/53-xy – Communication profile implementation . 28
5.5.1 General . 28
5.5.2 Communication profile implementation – IEC 61784 CPF 1 . 28
5.5.3 Communication profile implementation – IEC 61784 CPF 2 . 28
5.5.4 Communication profile implementation – IEC 61784 CP 3/1 and 3/2 . 28
5.5.5 Communication profile implementation – IEC 61784 CP 3/4,
CP 3/5 and 3/6 . 29
5.5.6 Communication profile implementation – IEC 61784 CPF 6 . 29
5.5.7 Communication profile implementation – IEC 61784 CPF 9 . 29
5.5.8 Communication profile implementation – IEC 61784 CPF 15 . 29
5.6 Parts 6z – DTM styleguides . 29
5.6.1 General . 29
5.6.2 Device Type Manager (DTM) styleguide for common object model . 29
5.6.3 Field Device Tool (FDT) styleguide for common language infrastructure . 29
5.7 Part 71 – OPC UA Information Model for FDT . 29
6 Relation of the IEC 62453 series to other standardization activities . 30
7 Migration to DTM . 33
8 How to read IEC 62453. 35
8.1 Architecture . 35
8.2 Dynamic behaviour . 35
8.3 Structured data types . 35
8.4 Fieldbus communication . 35
Annex A (normative) UML notation. 36
A.1 Common model elements . 36
A.1.1 General . 36
A.1.2 Note . 36
A.2 Class diagram . 36
A.2.1 General . 36
A.2.2 Class . 36
A.2.3 Abstract class . 37
A.2.4 Association . 37
A.2.5 Composition . 37
A.2.6 Aggregation . 37
A.2.7 Dependency . 38
A.2.8 Association class . 38
A.2.9 Generalization . 38
A.2.10 Interface . 39
A.2.11 Multiplicity . 39
A.2.12 Enumeration class . 39
A.3 Component diagram . 40
A.3.1 General . 40
A.3.2 Component . 40
A.4 Statechart diagram . 40
A.4.1 General . 40
A.4.2 State . 40
A.4.3 Initial state . 41
A.4.4 Final state . 41
A.4.5 Composite state. 41
A.5 Use case diagram . 41
A.5.1 General . 41
A.5.2 Actor . 42
A.5.3 Use case . 42
A.5.4 Inheritance relation . 42
A.6 Sequence diagram . 42
A.6.1 General . 42
A.6.2 Frame . 43
A.6.3 Object with life line . 43
A.6.4 Method calls . 44
A.6.5 State and constraint. 45
A.6.6 Alternative, optional and repetitive execution sequence . 45
A.6.7 Break notation . 46
A.6.8 Interaction references . 47
A.7 Object diagram . 47
Annex B (informative) Implementation policy . 48
Bibliography . 49
Figure 1 − Different tools and fieldbuses result in limited integration . 16
Figure 2 – Full integration of all devices and modules into a homogeneous system . 17
Figure 3 – General architecture and components . 19
Figure 4 – FDT software architecture . 21
Figure 5 – General FDT client/server relationship . 22
Figure 6 – Typical FDT channel architecture . 23
Figure 7 – Channel/parameter relationship. 24
Figure 8 – Structure of the IEC 62453 series . 25
Figure 9 – Standards related to IEC 62453 in an automation hierarchy . 30
Figure 10 – Standards related to IEC 62453 – Grouped by purpose . 33
Figure 11 – DTM implementations . 34
Figure A.1 – Note . 36
Figure A.2 – Class . 36
Figure A.3 – Icons for class members . 36
Figure A.4 – Association . 37
Figure A.5 – Navigable Association . 37
Figure A.6 – Composition . 37
Figure A.7 – Aggregation . 37
Figure A.8 – Dependency . 38
Figure A.9 – Association class . 38
Figure A.10 – Abstract class, generalization and interface . 38
Figure A.11 – Interface related notations . 39
Figure A.12 – Multiplicity . 39
Figure A.13 – Enumeration datatype . 40
Figure A.14 – Component . 40
Figure A.15 – Elements of UML statechart diagrams . 40
Figure A.16 – Example of UML state chart diagram . 41
Figure A.17 – UML use case syntax . 42
Figure A.18 – UML sequence diagram . 43
Figure A.19 – Empty UML sequence diagram frame . 43
Figure A.20 – Object with life line and activation . 44
Figure A.21 – Method calls . 44
Figure A.22 – Modelling guarded call and multiple calls . 44
Figure A.23 – Call to itself. 45
Figure A.24 – Continuation / StateInvariant . 45
Figure A.25 – Alternative fragment . 46
Figure A.26 – Option fragment . 46
Figure A.27 – Loop combination fragment . 46
Figure A.28 – Break notation . 46
Figure A.29 – Sequence reference . 47
Figure A.30 – Objects . 47
Figure A.31 – Object link . 47
Table 1 – Overview of IEC 62453 series . 26
Table 2 – Overview of related standards . 31
INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
Field device tool (FDT) interface specification -
Part 1: Overview and guidance
FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international
co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and
in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports,
Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their
preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with
may participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for
Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence between
any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in
respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which
may be required to implement this document. However, implementers are cautioned that this may not represent
the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC
shall not be held responsible for identifying any or all such patent rights.
IEC 62453-1 has been prepared by subcommittee 65E: Devices and integration in enterprise
systems, of IEC technical committee 65: Industrial-process measurement, control and
automation. It is an International Standard.
This third edition cancels and replaces the first edition published in 2016. This edition
constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous
edition:
a) introduction of a new implementation technology (defined in IEC TS 62453-43);
b) introduction of an OPC UA information model for FDT (defined in IEC 62453-71).
The text of this International Standard is based on the following documents:
Draft Report on voting
65E/1173/FDIS 65E/1176/RVD
Full information on the voting for its approval can be found in the report on voting indicated in
the above table.
The language used for the development of this International Standard is English.
This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in
accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available
at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are
described in greater detail at www.iec.ch/publications.
A list of all parts of the IEC 62453 series, under the general title Field Device Tool (FDT)
interface specification, can be found on the IEC website.
The committee has decided that the contents of this document will remain unchanged until the
stability date indicated on the IEC website under webstore.iec.ch in the data related to the
specific document. At this date, the document will be
• reconfirmed,
• withdrawn, or
• revised.
INTRODUCTION
Enterprise automation employs two main data flows: a “vertical” data flow from enterprise level
down to the field devices including signals and configuration data, and a “horizontal”
communication between field devices operating on the same or different communication
technologies.
With the integration of fieldbuses into control systems, there are a few additional tasks to be
performed. They can result in a large number of fieldbus- and device-specific tools in addition
to system and engineering tools. Integration of these tools into higher-level system-wide
planning or engineering tools is an advantage. In particular, for use in extensive and
heterogeneous control systems, typically in the area of the process industry, the unambiguous
definition of engineering interfaces that are easy to use for all those involved is of great
importance.
Several different manufacturer specific tools are used. The data in these tools are often invisible
data islands from the viewpoint of system life-cycle management and plant-wide automation.
To ensure the consistent management of a plant-wide control and automation technology, it is
important to fully integrate fieldbuses, devices and sub-systems as a seamless part of a wide
range of automation tasks covering the whole automation life cycle.
IEC 62453 provides an interface specification for developers of FDT (Field Device Tool)
components to support function control and data access within a client/server architecture. The
availability of this standard interface facilitates development of servers and clients by multiple
manufacturers and supports open interoperation.
A device or module-specific software component, called a DTM (Device Type Manager) is
supplied by a manufacturer with the related device type or software entity type. Each DTM can
be integrated into engineering tools via defined FDT interfaces. This approach to integration is
in general open for all fieldbusses and thus supports integration of different devices and
software modules into heterogeneous control systems.
The IEC 62453 common application interface supports the interests of application developers,
system integrators, and manufacturers of field devices and network components. It also
simplifies procurement, reduces system costs and helps manage the lifecycle. Significant
savings are available in operating, engineering and maintaining the control systems.
The objectives of the IEC 62453 series are to support:
• universal plant-wide tools for life-cycle management of heterogeneous fieldbus
environments, multi-manufacturer devices, function blocks and modular sub-systems for all
automation domains (e.g. process automation, factory automation and similar monitoring
and control applications);
• integrated and consistent life-cycle data exchange within a control system including its
fieldbuses, devices, function blocks and modular sub-systems;
• simple and powerful manufacturer-independent integration of different automation devices,
function blocks and modular sub-systems into the life-cycle management tools of a control
system.
___________
FDT® is a registered trade name of FDT Group AISBL. This information is given for the convenience of users of
this document and does not constitute an endorsement by IEC of the trademark holder or any of its products.
Compliance to this document does not require use of the trade name. Use of the trade name requires permission
of the trade name holder.
The FDT concept supports planning and integration of monitoring and control applications, it
does not provide a solution for other engineering tasks such as "electrical wiring planning”,
“mechanical planning”. Plant management subjects such as "maintenance planning”, “control
optimization”, “data archiving”, are not part of this FDT standard. Some of these aspects can
be included in future editions of FDT publications.
1 Scope
This part of IEC 62453 presents an overview and guidance for the IEC 62453 series. It
• explains the structure and content of the IEC 62453 series (see Clause 5);
• provides explanations of some aspects of the IEC 62453 series that are common to many
of the parts of the series;
• describes the relationship to some other standards;
• provides definitions of terms used in other parts of the IEC 62453 series.
2 Normative references
There are no normative references in this document.
3 Terms, definitions, symbols, abbreviated terms and conventions
3.1 Terms and definitions
For the purposes of this document and of the IEC 62453 series, the following terms and
definitions apply.
ISO and IEC maintain terminology databases for use in standardization at the following
addresses:
• IEC Electropedia: available at http://www.electropedia.org/
• ISO Online browsing platform: available at http:www.iso.org/obp
3.1.1
actor
coherent set of roles that users of use cases play when interacting with these use cases
Note 1 to entry: An actor has one role for each use case with which it communicates.
[SOURCE: ISO/IEC 19501:2005, 4.11.2.1]
3.1.2
address
communication protocol specific access identifier
3.1.3
application
software functional unit that is specific to the solution of a problem in industrial-process
measurement and control
Note 1 to entry: An application may be distributed among resources, and may communicate with other applications.
3.1.4
business object
object representing specific behaviour (e.g. DTM, BTM and channel)
Note 1 to entry: The term business object has been defined originally as part of the design pattern three-tier
architecture, where the business object is part of the business layer.
3.1.5
Block Type Manager
BTM
specialized DTM to manage and handle a block
Note 1 to entry: This note applies to the French language only.
3.1.6
communication
fieldbus protocol specific data transfer
3.1.7
Communication Channel
access point for communication to field device
3.1.8
configuration
system created by configuring the plant components and the topology
3.1.9
configure
setting parameters at the instance data as well as the logical association of plant components
to build up the plant topology (off-line)
Note 1 to entry: See also parameterize (3.1.38).
3.1.10
connection
established data path for communication with a selected device
3.1.11
data
set of parameter values
3.1.12
data type
defined set of data objects of a specified data structure and a set of permissible operations,
such that these data objects act as operands in the execution of any one of these operations
[SOURCE: ISO/IEC 2382-15:1999, 15.04.01 (2382)]
3.1.13
DCS manufacturer
system manufacturer
manufacturer of the control system
3.1.14
device
independent physical entity of an automation system capable of performing specified functions
in a particular context and delimited by its interfaces
[SOURCE: IEC 61499-1:2012, 3.29, modified – The words “of an automation system” have been
added, the expression “one or more specified functions” has been replaced by “specified
functions” and the note has been deleted.]
3.1.15
field device
networked independent physical entity of an automation system capable of performing specified
functions in a particular context and delimited by its interfaces
[SOURCE: IEC 61375-3-3:2012, 3.1.3]
3.1.16
device manufacturer
manufacturer of fieldbus devices
3.1.17
device type
device characterization based on abstract properties such as manufacturer, fieldbus protocol,
device type identifier, device classification, version information or other information
Note 1 to entry: The scope of such characterizations can vary depending on the properties that are used in the
definition of such a set and is manufacturer specific for each DTM.
3.1.18
distributed system
FDT objects that jointly are executed on different PCs in a network
Note 1 to entry: The implementation of such a distributed system is vendor specific (for example: DTM and
Presentation are executed on different PCs or DTMs are executed in a multi-user system on different PCs).
3.1.19
documentation
human readable information about a device instance
Note 1 to entry: This can be electronic information in a database.
3.1.20
Device Type Manager
DTM
software component containing device-specific application software
Note 1 to entry: The DTM is a generic class and means "Type Manager". The D is kept because the acronym is
well-known in the market.
3.1.21
DTM device type
software module for a particular device type within the DTM
Note 1 to entry: A DTM can contain one or more DTM device types.
3.1.22
entity
particular thing, such as a person, place, process, object, concept, association, or event
[SOURCE: IEC 61499-1:2012, 3.31]
3.1.23
Frame Application
FDT runtime environment
3.1.24
FDT model
interface specification for objects and object behaviour in a monitoring and control system
3.1.25
function
specific purpose of an entity or its characteristic action
[SOURCE: IEC 61499-1:2012, 3.44]
3.1.26
Generic DTM
DTM which interprets device type or domain specific device descriptions and provides the FDT
interfaces
3.1.27
hardware
physical equipment, as opposed to programs, procedures, rules and associated documentation
[SOURCE: IEC 61499-1:2012, 3.49]
3.1.28
implementation
development phase in which the hardware and software of a system become operational
[SOURCE: IEC 61499-1:2012, 3.51]
3.1.29
instantiation
creation of an instance of a specified type
[SOURCE: IEC 61499-1:2012, 3.57]
3.1.30
interface
boundary between two functional units, defined by functional characteristics, signal
characteristics, or other characteristics as appropriate
[SOURCE: IEC 60050-351:2013, 351-42-25, modified – The notes have been deleted.]
3.1.31
Interpreter DTM
generic DTM which interprets device descriptions
3.1.32
mapping
set of features or attributes having defined correspondence with the members of another set
[SOURCE: IEC 61499-1:2012, 3.66]
3.1.33
multi-user environment
environment which allows operation by more than one user
3.1.34
network
all of the media, connectors, repeaters, routers, gateways and associated node communication
elements by which a given set of communicating devices are interconnected
Note 1 to entry: In this document, network is used to express that one or more interconnected fieldbus systems
with different protocols can be applied.
[SOURCE: IEC 61158-1:2014, 3.1.5, modified – Note 1 has been added.]
3.1.35
nested communication
communication using a hierarchy of communication systems
3.1.36
operation
well-defined action that, when applied to any permissible combination of known entities,
produces a new entity
[SOURCE: IEC 61499-1:2012, 3.73]
3.1.37
parameter
variable that is given a constant value for a specified application and that may denote the
application
[SOURCE: IEC 61499-1:2012, 3.75]
3.1.38
parameterize
setting parameters in a device or a block or an object
Note 1 to entry: See also configure (3.1.9).
3.1.39
persistent data
stored data that is preserved through shutdown/restart and maintenance activities
3.1.40
Process Channel
representation of process value and its properties
3.1.41
service
functional capability of a resource which can be modeled by a sequence of service primitives
[SOURCE: IEC 61499-1:2012, 3.87]
3.1.42
session
instance of user interactions within the FDT model
3.1.43
synchronization
synchronization of data depending on the context where used
Note 1 to entry: For example, synchronization can occur between the DTM and the device or between several DTM
instances having a reference to the same instance data.
3.1.44
system
set of interrelated elements considered in a defined context as a whole and separated from
their environment
Note 1 to entry: Elements of a system may be natural or man-made material objects, as well as modes of thinking
and the results thereof (for example forms of organization, mathematical methods, and programming languages).
Note 2 to entry: The system is considered to be separated from the environment and other external systems by an
imaginary surface, which can cut the links between them and the considered system.
[SOURCE: IEC 60050-351:2013, 351-42-08, modified – Note 1 has been deleted.]
3.1.45
transient data
temporary data which have not been stored (while configuring or parameterizing)
3.1.46
type
software element which specifies the common attributes shared by all instances of the type
[SOURCE: IEC 61499-1:2012, 3.99]
3.1.47
variable
software entity that can take different values, one at a time
Note 1 to entry: The values of a variable are usually restricted to a certain data type.
Note 2 to entry: Variables are described as input variables, output variables, internal variables and temporary
variables.
[SOURCE: IEC 61499-1:2012, 3.102]
3.1.48
use case
class specification of a sequence of actions, including variants, that a system (or other entity)
can perform, interacting with actors of the system
[SOURCE: IEC TR 62390:2005, 3.1.26]
3.2 Abbreviated terms
BTM Block Type Manager
CLI Common Language Infrastructure
COM Component Object Model
CP Communication profile
CPF Communication profile family
DCS Distributed control system
DD Device description
DTM Device Type Manager
ERP Enterprise resource planning
FA Frame Application
FB Function block
FDT Field device tool
GUI Graphical user interface
ID Identifier
IDL Interface definition language
I/O Input/output
IT Information technology
MES Manufacturing execution systems
OEM Original equipment manufacturer
OLE Object Linking and Embedding
OPC Open connectivity via open standards
(originally: OLE for Process Control)
PC Personal computer
PLC Programmable logic controller
SCADA Supervisory, control and data acquisition
UML Unified modeling language
UUID Universal unique identifier
XML Extensible markup language
3.3 Conventions
The conventions for UML notation that shall be used in the IEC 62453 series are defined in
Annex A.
4 FDT overview
4.1 State of the art
In industrial automation, a control system often comprises many binary and analogue
input/output signals transmitted via a communication network. Numerous field devices provided
by different manufacturers have to be included in the network by direct connection or I/O
multiplex units. Many applications use more than 100 different field device types from various
device manufacturers.
Each device has specific configuration and parameterization functions to support its designed
task. These device-specific properties and settings have to be taken into consideration when
configuring a fieldbus coupler and bus communication for the device. The device presence and
its capability have to be made known to the control system. Device input and output signals and
function block services need to be effectively integrated into the planning of the control system.
In the absence of a common interface standard, the large number of different device types and
suppliers within a control system project makes the configuration task difficult and time-
consuming. Various different tools have to be used (see Figure 1). The user requirement for
consistency of data, documentation and application configurations can only be guaranteed by
intensive and costly system testing.
A common location for service and diagnostic tasks in the control system does not fully cover
the functional capabilities of available fieldbus devices nor does it guarantee that different
device or module-specific tools can be integrated into other system software tools. Typically,
device-specific tools can only be connected directly to a specific fieldbus or directly to a specific
field device type.
Figure 1 − Different tools and fieldbuses result in limited integration
4.2 Objectives of FDT
4.2.1 General features
Full integration of fieldbus devices or modules into automation systems requires a
communication path from central engineering or operator terminals via the system and
fieldbuses to the individual field devices.
FDT supports:
• central facilities for planning, diagnostics and service with direct access to all devices;
• integrated, consistent configuration and documentation of the automation system, its
fieldbuses and devices;
• organization of common data for the automation system and the field devices;
• central data management and data security;
• simple, fast integration of different device and module types into the automation system.
Integration of field devices into the engineering systems of automation technology can cover a
small set of configuration, service and diagnostic functions as well as a large set of functions.
4.2.2 Device and module manufacturer benefits
Figure 2 shows how FDT technology allows integration of individual device and module
properties, including specific characteristics and special features for different device and
module types. Planning and service tools provided by the manufacturer can be integrated as
device or module-specific software components into the engineering system. The manufacturer
is able to define the configuration, service and diagnostic functions and also to design the
appearance of devices and modules in the engineering environment of the automation system.
This reduces the costs for the manufacturer, as one standardized software component is able
to support configurat
...
IEC 62453-1 ®
Edition 3.0 2025-08
INTERNATIONAL
STANDARD
REDLINE VERSION
Field device tool (FDT) interface specification -
Part 1: Overview and guidance
ICS 25.040.40; 35.100.05; 35.110 ISBN 978-2-8327-0658-9
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or
by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either
IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright
or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local
IEC member National Committee for further information.
IEC Secretariat Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.
About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigendum or an amendment might have been published.
IEC publications search - IEC Products & Services Portal - products.iec.ch
webstore.iec.ch/advsearchform Discover our powerful search engine and read freely all the
The advanced search enables to find IEC publications by a publications previews, graphical symbols and the glossary.
variety of criteria (reference number, text, technical With a subscription you will always have access to up to date
committee, …). It also gives information on projects, content tailored to your needs.
replaced and withdrawn publications.
Electropedia - www.electropedia.org
The world's leading online dictionary on electrotechnology,
IEC Just Published - webstore.iec.ch/justpublished
Stay up to date on all new IEC publications. Just Published containing more than 22 500 terminological entries in English
details all new publications released. Available online and and French, with equivalent terms in 25 additional languages.
once a month by email. Also known as the International Electrotechnical Vocabulary
(IEV) online.
IEC Customer Service Centre - webstore.iec.ch/csc
If you wish to give us your feedback on this publication or
need further assistance, please contact the Customer
Service Centre: sales@iec.ch.
CONTENTS
FOREWORD . 5
INTRODUCTION . 7
1 Scope . 9
2 Normative references . 9
3 Terms, definitions, symbols, abbreviated terms and conventions . 9
3.1 Terms and definitions. 9
3.2 Abbreviated terms . 15
3.3 Conventions . 15
4 FDT overview . 15
4.1 State of the art . 15
4.2 Objectives of FDT . 16
4.2.1 General features . 16
4.2.2 Device and module manufacturer benefits . 17
4.2.3 System manufacturer and integrator benefits . 18
4.2.4 Other applications . 18
4.3 FDT model . 18
4.3.1 General . 18
4.3.2 Frame Applications . 20
4.3.3 Device Type Manager . 21
4.3.4 Communication Channel concept . 22
4.3.5 Presentation object . 24
5 Structure of the IEC 62453 series . 24
5.1 Structure overview . 24
5.2 Part 2 – Concepts and detailed description . 27
5.3 Parts 3xy – Communication profile integration . 27
5.3.1 General . 27
5.3.2 Communication profile integration – IEC 61784 CPF 1 . 27
5.3.3 Communication profile integration – IEC 61784 CPF 2 . 28
5.3.4 Communication profile integration – IEC 61784 CP 3/1 and 3/2 . 28
5.3.5 Communication profile integration – IEC 61784 CP 3/4, CP 3/5 and 3/6 . 28
5.3.6 Communication profile integration – IEC 61784 CPF 6 . 28
5.3.7 Communication profile integration – IEC 61784 CPF 9 . 28
5.3.8 Communication profile integration – IEC 61784 CPF 15 . 28
5.4 Parts 4z – Object model integration profiles . 28
5.4.1 General . 28
5.4.2 Object model integration profile – Common object model (COM) . 29
5.4.3 Object model integration profile – Common language infrastructure
(CLI) . 29
5.4.4 Object model integration profile – CLI and HTML . 29
5.5 Parts 51-xy/52-xy/53-xy – Communication profile implementation . 29
5.5.1 General . 29
5.5.2 Communication profile implementation – IEC 61784 CPF 1 . 29
5.5.3 Communication profile implementation – IEC 61784 CPF 2 . 29
5.5.4 Communication profile implementation – IEC 61784 CP 3/1 and 3/2 . 30
5.5.5 Communication profile implementation – IEC 61784 CP 3/4,
CP 3/5 and 3/6 . 30
5.5.6 Communication profile implementation – IEC 61784 CPF 6 . 30
5.5.7 Communication profile implementation – IEC 61784 CPF 9 . 30
5.5.8 Communication profile implementation – IEC 61784 CPF 15 . 30
5.6 Parts 6z – DTM styleguides . 30
5.6.1 General . 30
5.6.2 Device Type Manager (DTM) styleguide for common object model . 30
5.6.3 Field Device Tool (FDT) styleguide for common language infrastructure . 30
5.7 Part 71 – OPC UA Information Model for FDT . 30
6 Relation of the IEC 62453 series to other standardization activities . 31
7 Migration to DTM . 36
8 How to read IEC 62453. 37
8.1 Architecture . 37
8.2 Dynamic behaviour . 37
8.3 Structured data types . 38
8.4 Fieldbus communication . 38
Annex A (informativenormative) UML notation . 39
A.1 Common model elements . 39
A.1.1 General . 39
A.1.2 Note . 39
A.2 Class diagram . 39
A.2.1 General . 39
A.2.2 Class . 39
A.2.3 Abstract class . 40
A.2.4 Association . 40
A.2.5 Composition . 40
A.2.6 Aggregation . 40
A.2.7 Dependency . 41
A.2.8 Association class . 41
A.2.9 Generalization . 41
A.2.10 Interface . 42
A.2.11 Multiplicity . 42
A.2.12 Enumeration class . 42
A.3 Component diagram . 43
A.3.1 General . 43
A.3.2 Component . 43
A.4 Statechart diagram . 43
A.4.1 General . 43
A.4.2 State . 43
A.4.3 Initial state . 44
A.4.4 Final state . 44
A.4.5 Composite state. 44
A.5 Use case diagram . 44
A.5.1 General . 44
A.5.2 Actor . 45
A.5.3 Use case . 45
A.5.4 Inheritance relation . 45
A.6 Sequence diagram . 45
A.6.1 General . 45
A.6.2 Frame . 47
A.6.3 Object with life line . 47
A.6.4 Method calls . 47
A.6.5 State and constraint. 48
A.6.6 Alternative, optional and repetitive execution sequence . 49
A.6.7 Break notation . 50
A.6.8 Interaction references . 50
A.7 Object diagram . 50
Annex B (informative) Implementation policy . 51
Bibliography . 52
Figure 1 − Different tools and fieldbuses result in limited integration . 16
Figure 2 – Full integration of all devices and modules into a homogeneous system . 17
Figure 3 – General architecture and components . 19
Figure 4 – FDT software architecture . 21
Figure 5 – General FDT client/server relationship . 22
Figure 6 – Typical FDT channel architecture . 23
Figure 7 – Channel/parameter relationship. 24
Figure 8 – Structure of the IEC 62453 series . 25
Figure 9 – Standards related to IEC 62453 in an automation hierarchy . 31
Figure 10 – Standards related to IEC 62453 – Grouped by purpose . 35
Figure 11 – DTM implementations . 37
Figure A.1 – Note . 39
Figure A.2 – Class . 39
Figure A.3 – Icons for class members . 39
Figure A.4 – Association . 40
Figure A.5 – Navigable Association . 40
Figure A.6 – Composition . 40
Figure A.7 – Aggregation . 40
Figure A.8 – Dependency . 41
Figure A.9 – Association class . 41
Figure A.10 – Abstract class, generalization and interface . 41
Figure A.11 – Interface related notations . 42
Figure A.12 – Multiplicity . 42
Figure A.13 – Enumeration datatype . 43
Figure A.14 – Component . 43
Figure A.15 – Elements of UML statechart diagrams . 43
Figure A.16 – Example of UML state chart diagram . 44
Figure A.17 – UML use case syntax . 45
Figure A.18 – UML sequence diagram . 46
Figure A.19 – Empty UML sequence diagram frame . 47
Figure A.20 – Object with life line and activation . 47
Figure A.21 – Method calls . 48
Figure A.22 – Modelling guarded call and multiple calls . 48
Figure A.23 – Call to itself. 48
Figure A.24 – Continuation / StateInvariant . 49
Figure A.25 – Alternative fragment . 49
Figure A.26 – Option fragment . 49
Figure A.27 – Loop combination fragment . 49
Figure A.28 – Break notation . 50
Figure A.29 – Sequence reference . 50
Figure A.30 – Objects . 50
Figure A.31 – Object link . 50
Table 1 – Overview of IEC 62453 series . 27
Table 2 – Overview of related standards . 32
INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
Field device tool (FDT) interface specification -
Part 1: Overview and guidance
FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international
co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and
in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports,
Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their
preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with
may participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for
Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence between
any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in
respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which
may be required to implement this document. However, implementers are cautioned that this may not represent
the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC
shall not be held responsible for identifying any or all such patent rights.
This redline version of the official IEC Standard allows the user to identify the changes made
to the previous edition IEC 62453-1:2016. A vertical bar appears in the margin wherever a
change has been made. Additions are in green text, deletions are in strikethrough red text.
IEC 62453-1 has been prepared by subcommittee 65E: Devices and integration in enterprise
systems, of IEC technical committee 65: Industrial-process measurement, control and
automation. It is an International Standard.
This third edition cancels and replaces the first edition published in 2016. This edition
constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous
edition:
a) introduction of a new implementation technology (defined in IEC TS 62453-43);
b) introduction of an OPC UA information model for FDT (defined in IEC 62453-71).
The text of this International Standard is based on the following documents:
Draft Report on voting
65E/1173/FDIS 65E/1176/RVD
Full information on the voting for its approval can be found in the report on voting indicated in
the above table.
The language used for the development of this International Standard is English.
This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in
accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available
at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are
described in greater detail at www.iec.ch/publications.
A list of all parts of the IEC 62453 series, under the general title Field Device Tool (FDT)
interface specification, can be found on the IEC website.
The committee has decided that the contents of this document will remain unchanged until the
stability date indicated on the IEC website under webstore.iec.ch in the data related to the
specific document. At this date, the document will be
• reconfirmed,
• withdrawn, or
• revised.
INTRODUCTION
Enterprise automation requires employs two main data flows: a “vertical” data flow from
enterprise level down to the field devices including signals and configuration data, and a
“horizontal” communication between field devices operating on the same or different
communication technologies.
ieldbuses into control systems, there are a few additional tasks to be
With the integration of f
performed. They may can result in a large number of fieldbus- and device-specific tools in
addition to system and engineering tools. Integration of these tools into higher-level system-
wide planning or engineering tools is an advantage. In particular, for use in extensive and
heterogeneous control systems, typically in the area of the process industry, the unambiguous
definition of engineering interfaces that are easy to use for all those involved is of great
importance.
Several different manufacturer specific tools are used. The data in these tools are often invisible
data islands from the viewpoint of system life-cycle management and plant-wide automation.
To ensure the consistent management of a plant-wide control and automation technology, it is
important to fully integrate fieldbuses, devices and sub-systems as a seamless part of a wide
range of automation tasks covering the whole automation life cycle.
IEC 62453 provides an interface specification for developers of FDT (Field Device Tool)
components to support function control and data access within a client/server architecture. The
availability of this standard interface facilitates development of servers and clients by multiple
manufacturers and supports open interoperation.
A device or module-specific software component, called a DTM (Device Type Manager) is
supplied by a manufacturer with the related device type or software entity type. Each DTM can
be integrated into engineering tools via defined FDT interfaces. This approach to integration is
in general open for all fieldbusses and thus supports integration of different devices and
software modules into heterogeneous control systems.
The IEC 62453 common application interface supports the interests of application developers,
system integrators, and manufacturers of field devices and network components. It also
simplifies procurement, reduces system costs and helps manage the lifecycle. Significant
savings are available in operating, engineering and maintaining the control systems.
The objectives of the IEC 62453 series are to support:
• universal plant-wide tools for life-cycle management of heterogeneous fieldbus
environments, multi-manufacturer devices, function blocks and modular sub-systems for all
automation domains (e.g. process automation, factory automation and similar monitoring
and control applications);
• integrated and consistent life-cycle data exchange within a control system including its
fieldbuses, devices, function blocks and modular sub-systems;
• simple and powerful manufacturer-independent integration of different automation devices,
function blocks and modular sub-systems into the life-cycle management tools of a control
system.
___________
FDT® is a registered trade name of FDT Group AISBL. This information is given for the convenience of users of
this document and does not constitute an endorsement by IEC of the trademark holder or any of its products.
Compliance to this document does not require use of the trade name. Use of the trade name requires permission
of the trade name holder.
The FDT concept supports planning and integration of monitoring and control applications, it
does not provide a solution for other engineering tasks such as "electrical wiring planning”,
“mechanical planning”. Plant management subjects such as "maintenance planning”, “control
optimization”, “data archiving”, are not part of this FDT standard. Some of these aspects may
can be included in future editions of FDT publications.
1 Scope
This part of IEC 62453 presents an overview and guidance for the IEC 62453 series. It
• explains the structure and content of the IEC 62453 series (see Clause 5);
• provides explanations of some aspects of the IEC 62453 series that are common to many
of the parts of the series;
• describes the relationship to some other standards;
• provides definitions of terms used in other parts of the IEC 62453 series.
2 Normative references
The following documents, in whole or in part, are normatively referenced in this document and
are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments)
applies.
IEC 61158 (all parts), Industrial communication networks – Fieldbus specifications
IEC 61784 (all parts), Industrial communication networks – Profiles
There are no normative references in this document.
3 Terms, definitions, symbols, abbreviated terms and conventions
3.1 Terms and definitions
For the purposes of this document and of the IEC 62453 series, the following terms and
definitions apply.
ISO and IEC maintain terminology databases for use in standardization at the following
addresses:
• IEC Electropedia: available at http://www.electropedia.org/
• ISO Online browsing platform: available at http:www.iso.org/obp
3.1.1
actor
coherent set of roles that users of use cases play when interacting with these use cases
Note 1 to entry: An actor has one role for each use case with which it communicates.
[SOURCE: ISO/IEC 19501:2005, 4.11.2.1]
3.1.2
address
communication protocol specific access identifier
3.1.3
application
software functional unit that is specific to the solution of a problem in industrial-process
measurement and control
Note 1 to entry: An application may be distributed among resources, and may communicate with other applications.
3.1.4
business object
object representing specific behaviour (e.g. DTM, BTM and channel)
Note 1 to entry: The term business object has been defined originally as part of the design pattern three-tier
architecture, where the business object is part of the business layer.
3.1.5
Block Type Manager
BTM
specialized DTM to manage and handle a block
Note 1 to entry: This note applies to the French language only.
3.1.6
communication
fieldbus protocol specific data transfer
3.1.7
Communication Channel
access point for communication to field device
3.1.8
configuration
system created by configuring the plant components and the topology
3.1.9
configure
setting parameters at the instance data as well as the logical association of plant components
to build up the plant topology (off-line)
Note 1 to entry: See also parameterize (3.1.38).
3.1.10
connection
established data path for communication with a selected device
3.1.11
data
set of parameter values
3.1.12
data type
defined set of data objects of a specified data structure and a set of permissible operations,
such that these data objects act as operands in the execution of any one of these operations
[SOURCE: ISO/IEC 2382-15:1999, 15.04.01 (2382)]
3.1.13
DCS manufacturer
system manufacturer
manufacturer of the control system
Note 1 to entry: This note applies to the French language only.
3.1.14
device
independent physical entity of an automation system capable of performing specified functions
in a particular context and delimited by its interfaces
[SOURCE: IEC 61499-1:2012, 3.29, modified – The note has been deleted The words “of an
automation system” have been added, the expression “one or more specified functions” has
been replaced by “specified functions” and the note has been deleted.]
3.1.15
field device
networked independent physical entity of an automation system capable of performing specified
functions in a particular context and delimited by its interfaces
[SOURCE: IEC 61375-3-3:2012, 3.1.3]
3.1.16
device manufacturer
manufacturer of fieldbus devices
3.1.17
device type
device characterization based on abstract properties such as manufacturer, fieldbus protocol,
device type identifier, device classification, version information or other information
Note 1 to entry: The scope of such characterizations can vary depending on the properties that are used in the
definition of such a set and is manufacturer specific for each DTM.
3.1.18
distributed system
FDT objects that jointly are executed on different PCs in a network
Note 1 to entry: The implementation of such a distributed system is vendor specific (for example: DTM and
Presentation are executed on different PCs or DTMs are executed in a multi-user system on different PCs).
Note 2 to entry: This note applies to the French language only.
3.1.19
documentation
human readable information about a device instance
Note 1 to entry: This may can be electronic information in a database.
3.1.20
Device Type Manager
DTM
software component containing device-specific application software
Note 1 to entry: The DTM is a generic class and means "Type Manager". The D is kept because the acronym is
well-known in the market.
Note 2 to entry: This note applies to the French language only.
3.1.21
DTM device type
software module for a particular device type within the DTM
Note 1 to entry: A DTM may can contain one or more DTM device types.
3.1.22
entity
particular thing, such as a person, place, process, object, concept, association, or event
[SOURCE: IEC 61499-1:2012, 3.31]
3.1.23
Frame Application
FDT runtime environment
3.1.24
FDT model
interface specification for objects and object behaviour in a monitoring and control system
3.1.25
function
specific purpose of an entity or its characteristic action
[SOURCE: IEC 61499-1:2012, 3.44]
3.1.26
Generic DTM
DTM which interprets device type or domain specific device descriptions and provides the FDT
interfaces
Note 1 to entry: This note applies to the French language only.
3.1.27
hardware
physical equipment, as opposed to programs, procedures, rules and associated documentation
[SOURCE: IEC 61499-1:2012, 3.49]
3.1.28
implementation
development phase in which the hardware and software of a system become operational
[SOURCE: IEC 61499-1:2012, 3.51]
3.1.29
instantiation
creation of an instance of a specified type
[SOURCE: IEC 61499-1:2012, 3.57]
3.1.30
interface
shared boundary between two functional units, defined by functional characteristics, signal
characteristics, or other characteristics as appropriate
[SOURCE: IEC 60050-351:2013, 351-42-25, modified – The notes have been deleted.]
3.1.31
Interpreter DTM
generic DTM which interprets device descriptions
3.1.32
mapping
set of features or attributes having defined correspondence with the members of another set
[SOURCE: IEC 61499-1:2012, 3.66]
3.1.33
multi-user environment
environment which allows operation by more than one user
3.1.34
network
all of the media, connectors, repeaters, routers, gateways and associated node communication
elements by which a given set of communicating devices are interconnected
Note 1 to entry: In this document, network is used to express that one or more interconnected fieldbus systems
with different protocols can be applied.
[SOURCE: IEC 61158-1:2014, 3.1.5, modified – Note 1 has been added.]
3.1.35
nested communication
communication using a hierarchy of communication systems
3.1.36
operation
well-defined action that, when applied to any permissible combination of known entities,
produces a new entity
[SOURCE: IEC 61499-1:2012, 3.73]
3.1.37
parameter
variable that is given a constant value for a specified application and that may denote the
application
[SOURCE: IEC 61499-1:2012, 3.75]
3.1.38
parameterize
setting parameters in a device or a block or an object
Note 1 to entry: See also configure (3.1.9).
3.1.39
persistent data
stored data that is preserved through shutdown/restart and maintenance activities
3.1.40
Process Channel
representation of process value and its properties
3.1.41
service
functional capability of a resource which can be modeled by a sequence of service primitives
[SOURCE: IEC 61499-1:2012, 3.87]
3.1.42
session
instance of user interactions within the FDT model
3.1.43
synchronization
synchronization of data depending on the context where used
Note 1 to entry: For example, synchronization can occur between the DTM and the device or between several DTM
instances having a reference to the same instance data.
3.1.44
system
set of interrelated elements considered in a defined context as a whole and separated from
their environment
Note 1 to entry: Elements of a system may be natural or man-made material objects, as well as modes of thinking
and the results thereof (for example forms of organization, mathematical methods, and programming languages).
Note 2 to entry: The system is considered to be separated from the environment and other external systems by an
imaginary surface, which can cut the links between them and the considered system.
[SOURCE: IEC 60050-351:2013, 351-42-08, modified – some notes have Note 1 has been
deleted.]
3.1.45
transient data
temporary data which have not been stored (while configuring or parameterizing)
3.1.46
type
software element which specifies the common attributes shared by all instances of the type
[SOURCE: IEC 61499-1:2012, 3.99]
3.1.47
variable
ake different values, one at a time
software entity that may can t
Note 1 to entry: The values of a variable are usually restricted to a certain data type.
Note 2 to entry: Variables are described as input variables, output variables, internal variables and temporary
variables.
[SOURCE: IEC 61499-1:2012, 3.102]
3.1.48
use case
class specification of a sequence of actions, including variants, that a system (or other entity)
can perform, interacting with actors of the system
[SOURCE: IEC TR 62390:2005, 3.1.26]
3.2 Abbreviated terms
BTM Block Type Manager
CLI Common Language Infrastructure
COM Component Object Model [IEC 62541-1]
CP Communication profile [IEC 61784-1]
CPF Communication profile family [IEC 61784-1]
DCS Distributed control system [IEC 62351-2]
DD Device description
DTM Device Type Manager
ERP Enterprise resource planning
FA Frame Application
FB Function block [IEC 61784-3-3]
FDT Field device tool
GUI Graphical user interface
ID Identifier
IDL Interface definition language [ISO/IEC 24775]
I/O Input/output
IT Information technology [IEC 80001-2-1]
MES Manufacturing execution systems
OEM Original equipment manufacturer [IEC 62402]
OLE Object Linking and Embedding [IEC 61970-2]
OPC Open connectivity via open standards
(originally: OLE for Process Control) [IEC 61970-2]
PC Personal computer [IEC 62481-1]
PLC Programmable logic controller [IEC 61131-1]
SCADA Supervisory, control and data acquisition [IEC 62443-1-1]
UML Unified modeling language [ISO/IEC 19501]
UUID Universal unique identifier [IEC 62755]
XML Extensible markup language [IEC 61970-2]
3.3 Conventions
The conventions for UML notation that shall be used in the IEC 62453 series are defined in
Annex A.
4 FDT overview
4.1 State of the art
In industrial automation, a control system often comprises many binary and analogue
input/output signals transmitted via a communication network. Numerous field devices provided
by different manufacturers have to be included in the network by direct connection or I/O
multiplex units. Many applications use more than 100 different field device types from various
device manufacturers.
Each device has specific configuration and parameterization functions to support its designed
task. These device-specific properties and settings have to be taken into consideration when
configuring a fieldbus coupler and bus communication for the device. The device presence and
its capability have to be made known to the control system. Device input and output signals and
function block services need to be effectively integrated into the planning of the control system.
In the absence of a common interface standard, the large number of different device types and
suppliers within a control system project makes the configuration task difficult and time-
consuming. Various different tools have to be used (see Figure 1). The user requirement for
consistency of data, documentation and application configurations can only be guaranteed by
intensive and costly system testing.
A common location for service and diagnostic tasks in the control system does not fully cover
the functional capabilities of available fieldbus devices nor does it guarantee that different
device or module-specific tools can be integrated into other system software tools. Typically,
device-specific tools can only be connected directly to a specific fieldbus or directly to a specific
field device type.
Figure 1 − Different tools and fieldbuses result in limited integration
4.2 Objectives of FDT
4.2.1 General features
Full integration of fieldbus devices or modules into automation systems requires a
communication path from central engineering or operator terminals via the system and
fieldbuses to the individual field devices.
IE
...
IEC 62453-1 ®
Edition 3.0 2025-08
NORME
INTERNATIONALE
Spécification des interfaces des outils des dispositifs de terrain (FDT) -
Partie 1: Vue d'ensemble et guide
ICS 25.040.40; 35.100.05; 35.110 ISBN 978-2-8327-0582-7
Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni
utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et
les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des
questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez
les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.
IEC Secretariat Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
A propos de l'IEC
La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des
Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.
A propos des publications IEC
Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l’édition la
plus récente, un corrigendum ou amendement peut avoir été publié.
Recherche de publications IEC - IEC Products & Services Portal - products.iec.ch
webstore.iec.ch/advsearchform Découvrez notre puissant moteur de recherche et consultez
La recherche avancée permet de trouver des publications gratuitement tous les aperçus des publications, symboles
IEC en utilisant différents critères (numéro de référence, graphiques et le glossaire. Avec un abonnement, vous aurez
texte, comité d’études, …). Elle donne aussi des toujours accès à un contenu à jour adapté à vos besoins.
informations sur les projets et les publications remplacées
ou retirées. Electropedia - www.electropedia.org
Le premier dictionnaire d'électrotechnologie en ligne au
IEC Just Published - webstore.iec.ch/justpublished monde, avec plus de 22 500 articles terminologiques en
Restez informé sur les nouvelles publications IEC. Just anglais et en français, ainsi que les termes équivalents
dans 25 langues additionnelles. Egalement appelé
Published détaille les nouvelles publications parues.
Disponible en ligne et une fois par mois par email. Vocabulaire Electrotechnique International (IEV) en ligne.
Service Clients - webstore.iec.ch/csc
Si vous désirez nous donner des commentaires sur cette
publication ou si vous avez des questions contactez-
nous: sales@iec.ch.
SOMMAIRE
AVANT-PROPOS . 5
INTRODUCTION . 7
1 Domaine d’application . 9
2 Références normatives . 9
3 Termes, définitions, symboles, abréviations et conventions . 9
3.1 Termes et définitions . 9
3.2 Abréviations . 15
3.3 Conventions . 16
4 Vue d’ensemble des outils des dispositifs de terrain . 16
4.1 État de la technique . 16
4.2 Objectifs des outils FDT . 17
4.2.1 Caractéristiques générales . 17
4.2.2 Avantages pour les fabricants d’équipements et de modules . 18
4.2.3 Avantages pour le fabricant et l’intégrateur de systèmes . 18
4.2.4 Autres applications . 19
4.3 Modèle des outils FDT . 19
4.3.1 Généralités . 19
4.3.2 Applications-cadres . 21
4.3.3 Gestionnaire de type d’équipements . 22
4.3.4 Concept de voie de communication . 23
4.3.5 Objet "presentation" . 25
5 Structure de la série IEC 62453 . 25
5.1 Vue d’ensemble de la structure . 25
5.2 Partie 2 – Concepts et description détaillée . 27
5.3 Parties 3xy – Intégration des profils de communication . 27
5.3.1 Généralités . 27
5.3.2 Intégration des profils de communication – CPF 1 de l’IEC 61784 . 28
5.3.3 Intégration des profils de communication – CPF 2 de l’IEC 61784 . 28
5.3.4 Intégration des profils de communication – CP 3/1 et CP 3/2 de
l’IEC 61784 . 28
5.3.5 Intégration des profils de communication – CP 3/4, CP 3/5 et CP 3/6 de
l’IEC 61784 . 28
5.3.6 Intégration des profils de communication – CPF 6 de l’IEC 61784 . 28
5.3.7 Intégration des profils de communication – CPF 9 de l’IEC 61784 . 28
5.3.8 Intégration des profils de communication – CPF 15 de l’IEC 61784 . 29
5.4 Parties 4z – Profils d’intégration des modèles d’objets . 29
5.4.1 Généralités . 29
5.4.2 Profil d’intégration des modèles d’objets – Modèle d’objet commun
(COM ou Common Object Model en anglais) . 29
5.4.3 Profil d’intégration des modèles d’objets – Infrastructure commune de
langage (CLI ou Common Language Infrastructure en anglais) . 29
5.4.4 Profil d’intégration des modèles d’objets – CLI et HTML . 29
5.5 Parties 51-xy/52-xy/53-xy – Mise en œuvre des profils de communication . 29
5.5.1 Généralités . 29
5.5.2 Mise en œuvre des profils de communication – CPF 1 de l’IEC 61784 . 30
5.5.3 Mise en œuvre des profils de communication – CPF 2 de l’IEC 61784 . 30
5.5.4 Mise en œuvre des profils de communication – CP 3/1 et CP 3/2 de
l’IEC 61784 . 30
5.5.5 Mise en œuvre des profils de communication – CP 3/4, CP 3/5 et
CP 3/6 de l’IEC 61784 . 30
5.5.6 Mise en œuvre des profils de communication – CPF 6 de l’IEC 61784 . 30
5.5.7 Mise en œuvre des profils de communication – CPF 9 de l’IEC 61784 . 30
5.5.8 Mise en œuvre des profils de communication – CPF 15 de l’IEC 61784 . 31
5.6 Parties 6z – Guides stylistiques de gestionnaires DTM . 31
5.6.1 Généralités . 31
5.6.2 Guide stylistique du gestionnaire de type d’équipements (DTM) pour le
modèle d’objet commun . 31
5.6.3 Guide stylistique de l’outil de dispositif de terrain (FDT) pour
l’infrastructure commune de langage . 31
5.7 Partie 71 – Modèle d’information de l’architecture unifiée de l’OPC pour les
outils FDT . 31
6 Relation de la série IEC 62453 avec d’autres activités de normalisation . 31
7 Migration vers le gestionnaire DTM . 35
8 Procédure de lecture de l’IEC 62453 . 37
8.1 Architecture . 37
8.2 Comportement dynamique . 37
8.3 Types structurés de données . 37
8.4 Communication des bus de terrain . 37
Annexe A (normative) Notation UML . 38
A.1 Éléments de modèle communs. 38
A.1.1 Généralités . 38
A.1.2 Note . 38
A.2 Diagramme de classe . 38
A.2.1 Généralités . 38
A.2.2 Classe . 38
A.2.3 Classe abstraite . 39
A.2.4 Association . 39
A.2.5 Composition . 39
A.2.6 Agrégation . 39
A.2.7 Dépendance . 40
A.2.8 Classe d’association . 40
A.2.9 Généralisation . 40
A.2.10 Interface . 41
A.2.11 Multiplicité . 41
A.2.12 Classe d’énumération . 41
A.3 Diagramme des composants . 42
A.3.1 Généralités . 42
A.3.2 Composant . 42
A.4 Diagramme d’états . 42
A.4.1 Généralités . 42
A.4.2 État . 43
A.4.3 État initial . 43
A.4.4 État final . 43
A.4.5 État composite . 43
A.5 Diagramme de cas d’utilisation . 43
A.5.1 Généralités . 43
A.5.2 Acteur . 44
A.5.3 Cas d’utilisation . 44
A.5.4 Relation d’héritage . 44
A.6 Diagramme de séquences . 44
A.6.1 Généralités . 44
A.6.2 Trame . 45
A.6.3 Objet avec ligne de vie . 45
A.6.4 Appels de méthode . 46
A.6.5 Etat et contrainte . 47
A.6.6 Autre séquence d’exécution facultative et répétitive . 47
A.6.7 Notation d’interruption . 48
A.6.8 Références d’interaction . 49
A.7 Diagramme d’objets . 49
Annexe B (informative) Politique de mise en œuvre . 51
Bibliographie . 52
Figure 1 − Différents outils et bus de terrain entraînent une intégration limitée . 17
Figure 2 – Intégration complète de tous les équipements et modules dans un système
homogène . 18
Figure 3 – Architecture générale et composants . 19
Figure 4 – Architecture logicielle des outils FDT . 21
Figure 5 – Relation générale client/serveur des outils FDT . 23
Figure 6 – Architecture typique des voies des outils des dispositifs de terrain . 24
Figure 7 – Relation voie/paramètres . 25
Figure 8 – Structure de la série IEC 62453 . 26
Figure 9 – Normes associées à l’IEC 62453 dans une hiérarchie d’automatisation . 32
Figure 10 – Normes associées à l’IEC 62453 – regroupées par objectif . 35
Figure 11 – Mises en œuvre de gestionnaires DTM . 36
Figure A.1 – Note . 38
Figure A.2 – Classe . 38
Figure A.3 – Icônes pour les membres de classe . 38
Figure A.4 – Association . 39
Figure A.5 – Association navigable . 39
Figure A.6 – Composition . 39
Figure A.7 – Agrégation . 39
Figure A.8 – Dépendance . 40
Figure A.9 – Classe d’association . 40
Figure A.10 – Classe abstraite, généralisation et interface . 40
Figure A.11 – Notations relatives à l’interface . 41
Figure A.12 – Multiplicité . 41
Figure A.13 – Type de données d’énumération . 42
Figure A.14 – Composant . 42
Figure A.15 – Éléments de diagrammes d’états UML . 42
Figure A.16 – Exemple de diagramme d’états UML . 43
Figure A.17 – Syntaxe de cas d’utilisation UML . 44
Figure A.18 – Diagramme de séquences UML . 45
Figure A.19 – Trame de diagramme de séquences UML vide . 45
Figure A.20 – Objet avec ligne de vie et activation . 46
Figure A.21 – Appels de méthode . 46
Figure A.22 – Modélisation des appels protégés et des appels multiples . 46
Figure A.23 – Demande d’appel à soi-même . 47
Figure A.24 – Continuation/StateInvariant . 47
Figure A.25 – Fragment alternatif. 48
Figure A.26 – Fragment d’option . 48
Figure A.27 – Fragments combinés de boucle . 48
Figure A.28 – Notation d’interruption . 49
Figure A.29 – Référence de séquence . 49
Figure A.30 – Objets . 49
Figure A.31 – Liaison d’objet . 49
Tableau 1 – Vue d’ensemble de la série IEC 62453 . 27
Tableau 2 – Vue d’ensemble des normes associées . 33
COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE
____________
Spécification des interfaces des outils des dispositifs de terrain (FDT) –
Partie 1: Vue d’ensemble et guide
AVANT-PROPOS
1) La Commission Électrotechnique Internationale (IEC) est une organisation mondiale de normalisation composée
de l’ensemble des comités électrotechniques nationaux (Comités nationaux de l’IEC). L’IEC a pour objet de
favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de
l’électricité et de l’électronique. À cet effet, l’IEC – entre autres activités – publie des Normes internationales,
des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au public (PAS) et des
Guides (ci-après dénommés "Publication(s) de l’IEC"). Leur élaboration est confiée à des comités d’études, aux
travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations
internationales, gouvernementales et non gouvernementales, en liaison avec l’IEC, participent également aux
travaux. L’IEC collabore étroitement avec l’Organisation Internationale de Normalisation (ISO), selon des
conditions fixées par accord entre les deux organisations.
2) Les décisions ou accords officiels de l’IEC concernant les questions techniques représentent, dans la mesure du
possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de l’IEC intéressés
sont représentés dans chaque comité d’études.
3) Les Publications de l’IEC se présentent sous la forme de recommandations internationales et sont agréées
comme telles par les Comités nationaux de l’IEC. Tous les efforts raisonnables sont entrepris afin que l’IEC
s’assure de l’exactitude du contenu technique de ses publications; l’IEC ne peut pas être tenue responsable de
l’éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
4) Dans le but d’encourager l’uniformité internationale, les Comités nationaux de l’IEC s’engagent, dans toute la
mesure possible, à appliquer de façon transparente les Publications de l’IEC dans leurs publications nationales
et régionales. Toutes divergences entre toutes Publications de l’IEC et toutes publications nationales ou
régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
5) L’IEC elle-même ne fournit aucune attestation de conformité. Des organismes de certification indépendants
fournissent des services d’évaluation de conformité et, dans certains secteurs, accèdent aux marques de
conformité de l’IEC. L’IEC n’est responsable d’aucun des services effectués par les organismes de certification
indépendants.
6) Tous les utilisateurs doivent s’assurer qu’ils sont en possession de la dernière édition de cette publication.
7) Aucune responsabilité ne doit être imputée à l’IEC, à ses administrateurs, employés, auxiliaires ou mandataires,
y compris ses experts particuliers et les membres de ses comités d’études et des Comités nationaux de l’IEC,
pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque
nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses
découlant de la publication ou de l’utilisation de cette Publication de l’IEC ou de toute autre Publication de l’IEC,
ou au crédit qui lui est accordé.
8) L’attention est attirée sur les références normatives citées dans cette publication. L’utilisation de publications
référencées est obligatoire pour une application correcte de la présente publication.
9) L’IEC attire l’attention sur le fait que la mise en application du présent document peut entraîner l’utilisation d’un
ou de plusieurs brevets. L’IEC ne prend pas position quant à la preuve, à la validité et à l’applicabilité de tout
droit de brevet revendiqué à cet égard. À la date de publication du présent document, l’IEC n’avait pas reçu
notification qu’un ou plusieurs brevets pouvaient être nécessaires à sa mise en application. Toutefois, il y a lieu
d’avertir les responsables de la mise en application du présent document que des informations plus récentes
sont susceptibles de figurer dans la base de données de brevets, disponible à l’adresse https://patents.iec.ch.
L’IEC ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de brevet.
L’IEC 62453-1 a été établie par le sous-comité 65E: Les dispositifs et leur intégration dans les
systèmes de l’entreprise, du comité d’études 65 de l’IEC: Mesure, commande et automation
dans les processus industriels Il s’agit d’une Norme internationale.
Cette troisième édition annule et remplace la première édition parue en 2016. Cette édition
constitue une révision technique.
Cette édition inclut les modifications techniques majeures suivantes par rapport à l’édition
précédente:
a) introduction d’une nouvelle technologie de mise en œuvre (définie dans l’IEC TS 62453-43);
b) introduction d’un modèle d’information d’architecture unifiée de l’OPC pour les outils FDT
(défini dans l’IEC 62453-71).
Le texte de cette Norme internationale est issu des documents suivants:
Projet Rapport de vote
65E/1173/FDIS 65E/1176/RVD
Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant
abouti à son approbation.
La langue employée pour l’élaboration de cette Norme internationale est l’anglais.
Ce document a été rédigé selon les Directives ISO/IEC, Partie 2, il a été développé selon les
Directives ISO/IEC, Partie 1 et les Directives ISO/IEC, Supplément IEC, disponibles sous
www.iec.ch/members_experts/refdocs. Les principaux types de documents développés par
l’IEC sont décrits plus en détail sous www.iec.ch/publications.
Une liste de toutes les parties de la série IEC 62453, publiées sous le titre général Spécification
des interfaces des outils des dispositifs de terrain (FDT), se trouve sur le site web de l’IEC.
Le comité a décidé que le contenu de ce document ne sera pas modifié avant la date de stabilité
indiquée sur le site web de l’IEC sous webstore.iec.ch dans les données relatives au document
recherché. À cette date, le document sera
• reconduit,
• supprimé, ou
• révisé.
INTRODUCTION
L’automatisation de l’entreprise emploie deux flux de données principaux, à savoir: un flux de
données "vertical" descendant du niveau d’entreprise jusqu’aux dispositifs de terrain, y compris
les signaux et les données de configuration, et une communication "horizontale" entre les
dispositifs de terrain fonctionnant selon les mêmes technologies de communication ou des
technologies de communication différentes.
L’intégration de bus de terrain dans les systèmes de commande nécessite d’effectuer quelques
tâches supplémentaires. Ces tâches peuvent produire un grand nombre d’outils spécifiques aux
bus de terrain et aux dispositifs, outre les outils système et les outils d’ingénierie. L’intégration
de ces outils dans des outils d’ingénierie ou de planification à l’échelle d’un système de plus
haut niveau constitue un avantage. La définition claire des interfaces d’ingénierie faciles à
utiliser pour tous les outils concernés revêt une grande importance, en particulier, pour une
utilisation dans des systèmes de commande importants et hétérogènes, généralement dans le
domaine de l’industrie de transformation.
Plusieurs outils différents spécifiques aux fabricants sont utilisés. Les données de ces outils
sont souvent des îlots de données invisibles du point de vue de la gestion du cycle de vie du
système et de l’automatisation à l’échelle de l’installation de site.
Pour assurer la gestion cohérente d’une technologie de commande et d’automatisation à
l’échelle de l’installation de site, l’intégration complète des bus de terrain, des équipements et
des sous-systèmes réalisée de manière homogène dans le cadre d’une large étendue de tâches
d’automatisation couvrant tout le cycle de vie de l’automatisation, est particulièrement
importante.
L’IEC 62453 fournit une spécification d’interface pour les développeurs des composants des
outils des dispositifs de terrain (FDT ou Field Device Tool en anglais) afin de prendre en
charge le contrôle de fonction et l’accès aux données dans une architecture client/serveur.
L’application de cette interface normale permet à de nombreux fabricants de développer des
serveurs et des clients dans le cadre d’une interaction ouverte.
Un composant logiciel spécifique à un équipement ou à un module, appelé gestionnaire de type
d’équipements (DTM ou Device Type Manager en anglais) est fourni par un fabricant avec le
type correspondant d’équipement ou d’entité logicielle. Chaque DTM peut être intégré dans des
outils d’ingénierie par l’intermédiaire des interfaces des outils FDT définies. Cette approche
d’intégration est en général applicable à tous les bus de terrain et permet ainsi d’intégrer
plusieurs équipements et modules logiciels dans des systèmes de commande hétérogènes.
L’interface d’application commune de l’IEC 62453 répond tout particulièrement aux besoins des
développeurs des programmes d’application, des intégrateurs système et des fabricants de
dispositifs de terrain et de composants réseau. Elle simplifie aussi l’approvisionnement, réduit
les coûts du système et permet de gérer le cycle de vie. L’exploitation, l’ingénierie et la
maintenance des systèmes de commande permettent de réaliser des économies importantes.
___________
FDT® est une marque commerciale enregistrée du groupe FDT AISBL. Cette information est donnée à l’intention
des utilisateurs du présent document et ne signifie nullement que l’IEC approuve ou recommande le détenteur
de la marque ou de l’un quelconque de ses produits. La conformité au présent document n’exige pas l’emploi de
l’appellation commerciale. L’utilisation de l’appellation commerciale exige l’autorisation de son détenteur.
La série IEC 62453 a pour objectif de prendre en charge:
• des outils universels à l’échelle de l’installation de site pour la gestion de cycle de vie des
environnements hétérogènes de bus de terrain, des équipements multifabricants, des blocs
fonctionnels et des sous-systèmes modulaires pour tous les domaines d’automatisation (par
exemple automatisation des processus, automatisation industrielle et des applications
analogues de surveillance et de commande);
• un échange de données de cycles de vie cohérent et intégré dans un système de commande
y compris ses bus de terrain, ses équipements, ses blocs fonctionnels et ses sous-systèmes
modulaires;
• une intégration indépendante du fabricant, simple et puissante, de plusieurs équipements
d’automatisation, blocs fonctionnels et sous-systèmes modulaires dans les outils de gestion
de cycle de vie d’un système de commande.
Le concept relatif aux outils FDT prend en charge la planification et l’intégration des
applications de surveillance et de commande. Il ne fournit pas de solution pour d’autres tâches
d’ingénierie comme "planification de câblage électrique", "planification mécanique". Les sujets
relatifs à la gestion d’installation comme "planification de maintenance", "optimisation de
commande", "archivage de données", ne font pas partie de la présente norme relative aux outils
FDT. Certains de ces aspects peuvent être inclus dans les prochaines éditions des publications
relatives aux outils FDT.
1 Domaine d’application
La présente partie de l’IEC 62453 présente une vue générale et fournit un guide pour la série
IEC 62453. Elle:
• explique la structure et le contenu de la série IEC 62453 (voir Article 5);
• fournit des explications de certains aspects de la série IEC 62453 qui sont communs à
beaucoup de parties de la série;
• décrit la relation avec d’autres normes;
• fournit les définitions des termes utilisés dans d’autres parties de la série IEC 62453.
2 Références normatives
Le présent document ne contient aucune référence normative.
3 Termes, définitions, symboles, abréviations et conventions
3.1 Termes et définitions
Pour les besoins du présent document et de la série IEC 62453, les termes et définitions
suivants s’appliquent.
L’ISO et l’IEC tiennent à jour des bases de données terminologiques destinées à être utilisées
en normalisation, consultables aux adresses suivantes:
• IEC Electropedia: disponible à l’adresse http://www.electropedia.org/
• ISO Online browsing platform: disponible à l’adresse https://www.iso.org/obp
3.1.1
acteur
ensemble cohérent de rôles que jouent les utilisateurs des cas d’utilisation lors de l’interaction
avec ces cas d’utilisation
Note 1 à l’article: Un acteur a un rôle unique pour chaque cas d’utilisation avec lequel il communique.
[SOURCE: ISO/IEC 19501:2005, 4.11.2.1]
3.1.2
adresse
identificateur d’accès spécifique au protocole de communication
3.1.3
application
unité fonctionnelle logicielle qui est spécifique à la solution d’un problème de mesure et de
commande dans les processus industriels
Note 1 à l’article: Une application peut être distribuée entre les ressources et peut communiquer avec d’autres
applications.
3.1.4
objet métier
objet représentant un comportement spécifique (par exemple DTM, BTM et voie)
Note 1 à l’article: Le terme objet métier a été originellement défini comme une partie de l’architecture à trois niveaux
du motif de conception, où l’objet métier est une partie de la couche métier.
3.1.5
gestionnaire de type de blocs
BTM
gestionnaire DTM spécialisé pour gérer et traiter un bloc
Note 1 à l’article: L’abréviation "DTM" est dérivée du terme anglais développé correspondant "Device Type
Manager".
3.1.6
communication
transfert de données spécifiques au protocole de bus de terrain
3.1.7
voie de communication
point d’accès pour la communication avec le dispositif de terrain
3.1.8
configuration
système créé par la configuration des composants de l’installation et de la topologie
3.1.9
configurer
mettre des paramètres aux données d’instances ainsi que l’association logique des composants
de l’installation pour développer la topologie d’installation (hors ligne)
Note 1 à l’article: Voir aussi paramétrer (3.1.38).
3.1.10
connexion
chemin de données établi pour la communication avec un équipement choisi
3.1.11
données
ensemble de valeurs de paramètres
3.1.12
type de données
ensemble défini d’objets de données d’une structure de données spécifiée et ensemble
d’opérations admissibles, telles que ces objets de données agissent comme opérandes dans
l’exécution de l’une quelconque de ces opérations
[SOURCE: ISO/IEC 2382-15:1999, 15.04.01 (2382)]
3.1.13
fabricant de système de commande distribué (DCS)
fabricant de système
fabricant du système de commande
3.1.14
équipement
entité physique indépendante d’un système d’automatisation capable d’accomplir des fonctions
spécifiées dans un contexte particulier et délimitée par ses interfaces
[SOURCE: IEC 61499-1:2012, 3.29, modifié – L’expression "d’un système d’automatisation" a
été ajoutée, l’expression "une ou plusieurs fonctions spécifiées" a été remplacée par "des
fonctions spécifiées" et la note à l’article a été supprimée.]
3.1.15
dispositif de terrain
entité physique indépendante mise en réseau d’un système d’automatisation capable
d’exécuter des fonctions spécifiées dans un contexte particulier et délimité par ses interfaces
[SOURCE: IEC 61375-3-3:2012, 3.1.3]
3.1.16
fabricant d’équipements
fabricant d’équipements de bus de terrain
3.1.17
type d’équipement
caractérisation d’équipement basée sur des propriétés abstraites telles que fabricant, protocole
de bus de terrain, identificateur de type d’équipement, classification d’équipement, information
sur la version ou autre information
Note 1 à l’article: Le domaine d’application de telles caractérisations peut varier en fonction des propriétés qui sont
utilisées dans la définition d’un tel ensemble et est spécifique au fabricant pour chaque gestionnaire DTM.
3.1.18
système distribué
ensemble d’objets d’outils FDT qui sont conjointement exécutés sur différents ordinateurs
personnels dans un réseau
Note 1 à l’article: La mise en œuvre d’un tel système distribué est spécifique à un fournisseur (par exemple DTM
et Presentation sont exécutés sur différents ordinateurs personnels ou les gestionnaires DTM sont exécutés dans
un système multi-utilisateur sur différents ordinateurs personnels).
3.1.19
documentation
information lisible par un humain relative à l’instance d’équipement
Note 1 à l’article: Il peut s’agir d’une information électronique dans une base de données.
3.1.20
gestionnaire de type d’équipements
DTM
composant logiciel comprenant un logiciel d’application spécifique à un équipement
Note 1 à l’article: Le DTM est de classe générique et signifie "gestionnaire type". La lettre D est gardée parce que
l’acronyme est bien connu sur le marché.
3.1.21
type d’équipement du DTM
module logiciel pour un type d’équipement particulier dans le gestionnaire DTM
Note 1 à l’article: Un gestionnaire DTM peut contenir un ou plusieurs types d’équipements du DTM.
3.1.22
entité
objet particulier, tel qu’une personne, un lieu, un processus, un objet, un concept, une
association ou un événement
[SOURCE: IEC 61499-1:2012, 3.31, modifié - L’expression "telle qu’une" a été remplacée par
"tel qu’une".]
3.1.23
application-cadre
environnement d’exécution des outils FDT
3.1.24
modèle des outils FDT
spécification d’interfaces pour objets et comportement d’objets dans un système de commande
et de surveillance
3.1.25
fonction
but spécifique d’une entité ou son action caractéristique
[SOURCE: IEC 61499-1:2012, 3.44]
3.1.26
gestionnaire DTM générique
gestionnaire DTM qui interprète des descriptions d’équipements spécifiques à un type
d’équipement ou à un domaine et fournit les interfaces des outils FDT
3.1.27
matériel
équipement physique, par opposition aux programmes, procédures, règles et documentation
associée
[SOURCE: IEC 61499-1:2012, 3.49]
3.1.28
mise en œuvre
phase de développement dans laquelle le matériel et le logiciel d’un système deviennent
opérationnels
[SOURCE: IEC 61499-1:2012, 3.51]
3.1.29
instanciation
création d’une instance d’un type spécifié
[SOURCE: IEC 61499-1:2012, 3.57]
3.1.30
interface
frontière entre deux unités fonctionnelles, définie par des caractéristiques fonctionnelles, des
caractéristiques de signal, ou d’autres caractéristiques appropriées
[SOURCE: IEC 60050-351:2013, 351-42-25, modifié – Les notes ont été supprimées.]
3.1.31
gestionnaire DTM interpréteur
gestionnaire DTM générique qui interprète des descriptions d’équipements
3.1.32
mapping
ensemble de caractéristiques ou d’attributs ayant une correspondance définie avec les
membres d’un autre ensemble
[SOURCE: IEC 61499-1:2012, 3.66]
3.1.33
environnement multiutilisateur
environnement permettant une opération par plus d’un utilisateur
3.1.34
réseau
ensemble de tous les médias, connecteurs, répéteurs, routeurs, passerelles et éléments de
communication des nœuds associés par lesquels un ensemble donné d’équipements de
communication sont interconnectés
Note 1 à l’article: Dans ce document, le réseau est utilisé pour exprimer qu’un ou plusieurs systèmes de bus de
terrain interconnectés avec plusieurs protocoles peuvent s’appliquer.
[SOURCE: IEC 61158-1:2014, 3.1.5, modifié – La Note 1 a été ajoutée.]
3.1.35
communication imbriquée
communication utilisant une hiérarchie de systèmes de communication
3.1.36
opération
action bien définie qui, lorsqu’elle est appliquée à n’importe quelle combinaison admissible
d’entités connues, produit une nouvelle entité
[SOURCE: IEC 61499-1:2012, 3.73]
3.1.37
paramètre
variable à laquelle est donnée une valeur constante pour une application spécifiée et qui peut
représenter l’application
[SOURCE: IEC 61499-1:2012, 3.75]
3.1.38
paramétrer
mettre des paramètres dans un équipement, un bloc ou un objet
Note 1 à l’article: Voir aussi configurer (3.1.9).
3.1.39
donnée persistante
donnée stockée qui est préservée par arrêt/redémarrage et des activités de maintenance
3.1.40
voie de processus
représentation d’une valeur de processus et ses propriétés
3.1.41
service
capacité fonctionnelle d’une ressource qui peut être modélisée par une séquence de primitives
de service
[SOURCE: IEC 61499-1:2012, 3.87]
3.1.42
session
instance d’interactions d’utilisateurs dans le modèle des outils FDT
3.1.43
synchronisation
synchronisation de données en fonction du contexte où elles sont utilisées
Note 1 à l’article: Par exemple, la synchronisation peut se produire entre le gestionnaire DTM et l’équipement ou
entre plusieurs instances de gestionnaires DTM ayant une référence à la même donnée d’instance.
3.1.44
système
ensemble d’éléments reliés entre eux, considéré comme un tout dans un contexte défini et
séparé de son environnement
Note 1 à l’article: Les éléments d’un système peuvent être aussi bien des objets matériels, naturels ou artificiels,
que des modes de pensée et les résultats de ceux-ci (par exemple des formes d’organisation, des méthodes
mathématiques, des langages de programmation).
Note 2 à l’article: Le système est considéré comme séparé de l’environnement et d’autres systèmes extérieurs par
une surface imaginaire qui peut couper les liaisons entre eux et le système considéré.
[SOURCE: IEC 60050-351:2013, 351-42-08, modifié – La Note 1 a été supprimée.]
3.1.45
donnée transitoire
donnée temporaire qui n’a pas été stockée (pendant la configuration ou le paramétrage)
3.1.46
type
élément logiciel qui spécifie les attributs communs partagés par toutes les instances du type
[SOURCE: IEC 61499-1:2012, 3.99]
3.1.47
variable
entité logicielle qui peut prendre différentes valeurs, une à la fois
Note 1 à l’article: Les valeurs d’une variable sont habituellement limitées à un certain type de données.
Note 2 à l’article: Les variables sont décrites comme étant des variables d’entrée, des variables de sortie, des
variables internes et des variables temporaires.
[SOURCE: IEC 61499-1:2012, 3.102]
3.1.48
cas d’utilisation
spécification de classe d’une séquence d’actions, y compris les variantes, qu’un système (ou
une autre entité) peut effectuer, en interaction avec des acteurs du système
[SOURCE: IEC TR 62390:2005, 3.1.26]
3.2 Abréviations
BTM Block Type Manager (Gestionnaire de type de blocs)
CLI Common Language Infrastructure (Infrastructure
commune de langage)
COM Component Object Model (Modèle d’objet de
composant)
CP Communication Profile (Profil de commu
...
IEC 62453-1 ®
Edition 3.0 2025-08
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
Field device tool (FDT) interface specification -
Part 1: Overview and guidance
Spécification des interfaces des outils des dispositifs de terrain (FDT) -
Partie 1: Vue d'ensemble et guide
ICS 25.040.40, 35.100.05, 35.110 ISBN 978-2-8327-0582-7
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or
by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either
IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright
or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local
IEC member National Committee for further information.
Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni
utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et
les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des
questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez
les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.
IEC Secretariat Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.
About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigendum or an amendment might have been published.
IEC publications search - IEC Products & Services Portal - products.iec.ch
webstore.iec.ch/advsearchform Discover our powerful search engine and read freely all the
The advanced search enables to find IEC publications by a publications previews, graphical symbols and the glossary.
variety of criteria (reference number, text, technical With a subscription you will always have access to up to date
committee, …). It also gives information on projects, content tailored to your needs.
replaced and withdrawn publications.
Electropedia - www.electropedia.org
IEC Just Published - webstore.iec.ch/justpublished The world's leading online dictionary on electrotechnology,
Stay up to date on all new IEC publications. Just Published containing more than 22 500 terminological entries in English
details all new publications released. Available online and and French, with equivalent terms in 25 additional languages.
once a month by email. Also known as the International Electrotechnical Vocabulary
(IEV) online.
IEC Customer Service Centre - webstore.iec.ch/csc
If you wish to give us your feedback on this publication or
need further assistance, please contact the Customer
Service Centre: sales@iec.ch.
A propos de l'IEC
La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des
Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.
A propos des publications IEC
Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l’édition la
plus récente, un corrigendum ou amendement peut avoir été publié.
Recherche de publications IEC - IEC Products & Services Portal - products.iec.ch
webstore.iec.ch/advsearchform Découvrez notre puissant moteur de recherche et consultez
La recherche avancée permet de trouver des publications gratuitement tous les aperçus des publications, symboles
IEC en utilisant différents critères (numéro de référence, graphiques et le glossaire. Avec un abonnement, vous aurez
texte, comité d’études, …). Elle donne aussi des toujours accès à un contenu à jour adapté à vos besoins.
informations sur les projets et les publications remplacées
ou retirées. Electropedia - www.electropedia.org
Le premier dictionnaire d'électrotechnologie en ligne au
IEC Just Published - webstore.iec.ch/justpublished monde, avec plus de 22 500 articles terminologiques en
Restez informé sur les nouvelles publications IEC. Just anglais et en français, ainsi que les termes équivalents
Published détaille les nouvelles publications parues. dans 25 langues additionnelles. Egalement appelé
Disponible en ligne et une fois par mois par email. Vocabulaire Electrotechnique International (IEV) en ligne.
Service Clients - webstore.iec.ch/csc
Si vous désirez nous donner des commentaires sur cette
publication ou si vous avez des questions contactez-
nous: sales@iec.ch.
CONTENTS
FOREWORD . 5
INTRODUCTION . 7
1 Scope . 9
2 Normative references . 9
3 Terms, definitions, symbols, abbreviated terms and conventions . 9
3.1 Terms and definitions. 9
3.2 Abbreviated terms . 15
3.3 Conventions . 15
4 FDT overview . 15
4.1 State of the art . 15
4.2 Objectives of FDT . 16
4.2.1 General features . 16
4.2.2 Device and module manufacturer benefits . 17
4.2.3 System manufacturer and integrator benefits . 18
4.2.4 Other applications . 18
4.3 FDT model . 18
4.3.1 General . 18
4.3.2 Frame Applications . 20
4.3.3 Device Type Manager . 21
4.3.4 Communication Channel concept . 22
4.3.5 Presentation object . 24
5 Structure of the IEC 62453 series . 24
5.1 Structure overview . 24
5.2 Part 2 – Concepts and detailed description . 26
5.3 Parts 3xy – Communication profile integration . 26
5.3.1 General . 26
5.3.2 Communication profile integration – IEC 61784 CPF 1 . 26
5.3.3 Communication profile integration – IEC 61784 CPF 2 . 27
5.3.4 Communication profile integration – IEC 61784 CP 3/1 and 3/2 . 27
5.3.5 Communication profile integration – IEC 61784 CP 3/4, CP 3/5 and 3/6 . 27
5.3.6 Communication profile integration – IEC 61784 CPF 6 . 27
5.3.7 Communication profile integration – IEC 61784 CPF 9 . 27
5.3.8 Communication profile integration – IEC 61784 CPF 15 . 27
5.4 Parts 4z – Object model integration profiles . 27
5.4.1 General . 27
5.4.2 Object model integration profile – Common object model (COM) . 28
5.4.3 Object model integration profile – Common language infrastructure
(CLI) . 28
5.4.4 Object model integration profile – CLI and HTML . 28
5.5 Parts 51-xy/52-xy/53-xy – Communication profile implementation . 28
5.5.1 General . 28
5.5.2 Communication profile implementation – IEC 61784 CPF 1 . 28
5.5.3 Communication profile implementation – IEC 61784 CPF 2 . 28
5.5.4 Communication profile implementation – IEC 61784 CP 3/1 and 3/2 . 28
5.5.5 Communication profile implementation – IEC 61784 CP 3/4,
CP 3/5 and 3/6 . 29
5.5.6 Communication profile implementation – IEC 61784 CPF 6 . 29
5.5.7 Communication profile implementation – IEC 61784 CPF 9 . 29
5.5.8 Communication profile implementation – IEC 61784 CPF 15 . 29
5.6 Parts 6z – DTM styleguides . 29
5.6.1 General . 29
5.6.2 Device Type Manager (DTM) styleguide for common object model . 29
5.6.3 Field Device Tool (FDT) styleguide for common language infrastructure . 29
5.7 Part 71 – OPC UA Information Model for FDT . 29
6 Relation of the IEC 62453 series to other standardization activities . 30
7 Migration to DTM . 33
8 How to read IEC 62453. 35
8.1 Architecture . 35
8.2 Dynamic behaviour . 35
8.3 Structured data types . 35
8.4 Fieldbus communication . 35
Annex A (normative) UML notation. 36
A.1 Common model elements . 36
A.1.1 General . 36
A.1.2 Note . 36
A.2 Class diagram . 36
A.2.1 General . 36
A.2.2 Class . 36
A.2.3 Abstract class . 37
A.2.4 Association . 37
A.2.5 Composition . 37
A.2.6 Aggregation . 37
A.2.7 Dependency . 38
A.2.8 Association class . 38
A.2.9 Generalization . 38
A.2.10 Interface . 39
A.2.11 Multiplicity . 39
A.2.12 Enumeration class . 39
A.3 Component diagram . 40
A.3.1 General . 40
A.3.2 Component . 40
A.4 Statechart diagram . 40
A.4.1 General . 40
A.4.2 State . 40
A.4.3 Initial state . 41
A.4.4 Final state . 41
A.4.5 Composite state. 41
A.5 Use case diagram . 41
A.5.1 General . 41
A.5.2 Actor . 42
A.5.3 Use case . 42
A.5.4 Inheritance relation . 42
A.6 Sequence diagram . 42
A.6.1 General . 42
A.6.2 Frame . 43
A.6.3 Object with life line . 43
A.6.4 Method calls . 44
A.6.5 State and constraint. 45
A.6.6 Alternative, optional and repetitive execution sequence . 45
A.6.7 Break notation . 46
A.6.8 Interaction references . 47
A.7 Object diagram . 47
Annex B (informative) Implementation policy . 48
Bibliography . 49
Figure 1 − Different tools and fieldbuses result in limited integration . 16
Figure 2 – Full integration of all devices and modules into a homogeneous system . 17
Figure 3 – General architecture and components . 19
Figure 4 – FDT software architecture . 21
Figure 5 – General FDT client/server relationship . 22
Figure 6 – Typical FDT channel architecture . 23
Figure 7 – Channel/parameter relationship. 24
Figure 8 – Structure of the IEC 62453 series . 25
Figure 9 – Standards related to IEC 62453 in an automation hierarchy . 30
Figure 10 – Standards related to IEC 62453 – Grouped by purpose . 33
Figure 11 – DTM implementations . 34
Figure A.1 – Note . 36
Figure A.2 – Class . 36
Figure A.3 – Icons for class members . 36
Figure A.4 – Association . 37
Figure A.5 – Navigable Association . 37
Figure A.6 – Composition . 37
Figure A.7 – Aggregation . 37
Figure A.8 – Dependency . 38
Figure A.9 – Association class . 38
Figure A.10 – Abstract class, generalization and interface . 38
Figure A.11 – Interface related notations . 39
Figure A.12 – Multiplicity . 39
Figure A.13 – Enumeration datatype . 40
Figure A.14 – Component . 40
Figure A.15 – Elements of UML statechart diagrams . 40
Figure A.16 – Example of UML state chart diagram . 41
Figure A.17 – UML use case syntax . 42
Figure A.18 – UML sequence diagram . 43
Figure A.19 – Empty UML sequence diagram frame . 43
Figure A.20 – Object with life line and activation . 44
Figure A.21 – Method calls . 44
Figure A.22 – Modelling guarded call and multiple calls . 44
Figure A.23 – Call to itself. 45
Figure A.24 – Continuation / StateInvariant . 45
Figure A.25 – Alternative fragment . 46
Figure A.26 – Option fragment . 46
Figure A.27 – Loop combination fragment . 46
Figure A.28 – Break notation . 46
Figure A.29 – Sequence reference . 47
Figure A.30 – Objects . 47
Figure A.31 – Object link . 47
Table 1 – Overview of IEC 62453 series . 26
Table 2 – Overview of related standards . 31
INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
Field device tool (FDT) interface specification -
Part 1: Overview and guidance
FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international
co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and
in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports,
Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their
preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with
may participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for
Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence between
any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in
respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which
may be required to implement this document. However, implementers are cautioned that this may not represent
the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC
shall not be held responsible for identifying any or all such patent rights.
IEC 62453-1 has been prepared by subcommittee 65E: Devices and integration in enterprise
systems, of IEC technical committee 65: Industrial-process measurement, control and
automation. It is an International Standard.
This third edition cancels and replaces the first edition published in 2016. This edition
constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous
edition:
a) introduction of a new implementation technology (defined in IEC TS 62453-43);
b) introduction of an OPC UA information model for FDT (defined in IEC 62453-71).
The text of this International Standard is based on the following documents:
Draft Report on voting
65E/1173/FDIS 65E/1176/RVD
Full information on the voting for its approval can be found in the report on voting indicated in
the above table.
The language used for the development of this International Standard is English.
This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in
accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available
at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are
described in greater detail at www.iec.ch/publications.
A list of all parts of the IEC 62453 series, under the general title Field Device Tool (FDT)
interface specification, can be found on the IEC website.
The committee has decided that the contents of this document will remain unchanged until the
stability date indicated on the IEC website under webstore.iec.ch in the data related to the
specific document. At this date, the document will be
• reconfirmed,
• withdrawn, or
• revised.
INTRODUCTION
Enterprise automation employs two main data flows: a “vertical” data flow from enterprise level
down to the field devices including signals and configuration data, and a “horizontal”
communication between field devices operating on the same or different communication
technologies.
With the integration of fieldbuses into control systems, there are a few additional tasks to be
performed. They can result in a large number of fieldbus- and device-specific tools in addition
to system and engineering tools. Integration of these tools into higher-level system-wide
planning or engineering tools is an advantage. In particular, for use in extensive and
heterogeneous control systems, typically in the area of the process industry, the unambiguous
definition of engineering interfaces that are easy to use for all those involved is of great
importance.
Several different manufacturer specific tools are used. The data in these tools are often invisible
data islands from the viewpoint of system life-cycle management and plant-wide automation.
To ensure the consistent management of a plant-wide control and automation technology, it is
important to fully integrate fieldbuses, devices and sub-systems as a seamless part of a wide
range of automation tasks covering the whole automation life cycle.
IEC 62453 provides an interface specification for developers of FDT (Field Device Tool)
components to support function control and data access within a client/server architecture. The
availability of this standard interface facilitates development of servers and clients by multiple
manufacturers and supports open interoperation.
A device or module-specific software component, called a DTM (Device Type Manager) is
supplied by a manufacturer with the related device type or software entity type. Each DTM can
be integrated into engineering tools via defined FDT interfaces. This approach to integration is
in general open for all fieldbusses and thus supports integration of different devices and
software modules into heterogeneous control systems.
The IEC 62453 common application interface supports the interests of application developers,
system integrators, and manufacturers of field devices and network components. It also
simplifies procurement, reduces system costs and helps manage the lifecycle. Significant
savings are available in operating, engineering and maintaining the control systems.
The objectives of the IEC 62453 series are to support:
• universal plant-wide tools for life-cycle management of heterogeneous fieldbus
environments, multi-manufacturer devices, function blocks and modular sub-systems for all
automation domains (e.g. process automation, factory automation and similar monitoring
and control applications);
• integrated and consistent life-cycle data exchange within a control system including its
fieldbuses, devices, function blocks and modular sub-systems;
• simple and powerful manufacturer-independent integration of different automation devices,
function blocks and modular sub-systems into the life-cycle management tools of a control
system.
___________
FDT® is a registered trade name of FDT Group AISBL. This information is given for the convenience of users of
this document and does not constitute an endorsement by IEC of the trademark holder or any of its products.
Compliance to this document does not require use of the trade name. Use of the trade name requires permission
of the trade name holder.
The FDT concept supports planning and integration of monitoring and control applications, it
does not provide a solution for other engineering tasks such as "electrical wiring planning”,
“mechanical planning”. Plant management subjects such as "maintenance planning”, “control
optimization”, “data archiving”, are not part of this FDT standard. Some of these aspects can
be included in future editions of FDT publications.
1 Scope
This part of IEC 62453 presents an overview and guidance for the IEC 62453 series. It
• explains the structure and content of the IEC 62453 series (see Clause 5);
• provides explanations of some aspects of the IEC 62453 series that are common to many
of the parts of the series;
• describes the relationship to some other standards;
• provides definitions of terms used in other parts of the IEC 62453 series.
2 Normative references
There are no normative references in this document.
3 Terms, definitions, symbols, abbreviated terms and conventions
3.1 Terms and definitions
For the purposes of this document and of the IEC 62453 series, the following terms and
definitions apply.
ISO and IEC maintain terminology databases for use in standardization at the following
addresses:
• IEC Electropedia: available at http://www.electropedia.org/
• ISO Online browsing platform: available at http:www.iso.org/obp
3.1.1
actor
coherent set of roles that users of use cases play when interacting with these use cases
Note 1 to entry: An actor has one role for each use case with which it communicates.
[SOURCE: ISO/IEC 19501:2005, 4.11.2.1]
3.1.2
address
communication protocol specific access identifier
3.1.3
application
software functional unit that is specific to the solution of a problem in industrial-process
measurement and control
Note 1 to entry: An application may be distributed among resources, and may communicate with other applications.
3.1.4
business object
object representing specific behaviour (e.g. DTM, BTM and channel)
Note 1 to entry: The term business object has been defined originally as part of the design pattern three-tier
architecture, where the business object is part of the business layer.
3.1.5
Block Type Manager
BTM
specialized DTM to manage and handle a block
Note 1 to entry: This note applies to the French language only.
3.1.6
communication
fieldbus protocol specific data transfer
3.1.7
Communication Channel
access point for communication to field device
3.1.8
configuration
system created by configuring the plant components and the topology
3.1.9
configure
setting parameters at the instance data as well as the logical association of plant components
to build up the plant topology (off-line)
Note 1 to entry: See also parameterize (3.1.38).
3.1.10
connection
established data path for communication with a selected device
3.1.11
data
set of parameter values
3.1.12
data type
defined set of data objects of a specified data structure and a set of permissible operations,
such that these data objects act as operands in the execution of any one of these operations
[SOURCE: ISO/IEC 2382-15:1999, 15.04.01 (2382)]
3.1.13
DCS manufacturer
system manufacturer
manufacturer of the control system
3.1.14
device
independent physical entity of an automation system capable of performing specified functions
in a particular context and delimited by its interfaces
[SOURCE: IEC 61499-1:2012, 3.29, modified – The words “of an automation system” have been
added, the expression “one or more specified functions” has been replaced by “specified
functions” and the note has been deleted.]
3.1.15
field device
networked independent physical entity of an automation system capable of performing specified
functions in a particular context and delimited by its interfaces
[SOURCE: IEC 61375-3-3:2012, 3.1.3]
3.1.16
device manufacturer
manufacturer of fieldbus devices
3.1.17
device type
device characterization based on abstract properties such as manufacturer, fieldbus protocol,
device type identifier, device classification, version information or other information
Note 1 to entry: The scope of such characterizations can vary depending on the properties that are used in the
definition of such a set and is manufacturer specific for each DTM.
3.1.18
distributed system
FDT objects that jointly are executed on different PCs in a network
Note 1 to entry: The implementation of such a distributed system is vendor specific (for example: DTM and
Presentation are executed on different PCs or DTMs are executed in a multi-user system on different PCs).
3.1.19
documentation
human readable information about a device instance
Note 1 to entry: This can be electronic information in a database.
3.1.20
Device Type Manager
DTM
software component containing device-specific application software
Note 1 to entry: The DTM is a generic class and means "Type Manager". The D is kept because the acronym is
well-known in the market.
3.1.21
DTM device type
software module for a particular device type within the DTM
Note 1 to entry: A DTM can contain one or more DTM device types.
3.1.22
entity
particular thing, such as a person, place, process, object, concept, association, or event
[SOURCE: IEC 61499-1:2012, 3.31]
3.1.23
Frame Application
FDT runtime environment
3.1.24
FDT model
interface specification for objects and object behaviour in a monitoring and control system
3.1.25
function
specific purpose of an entity or its characteristic action
[SOURCE: IEC 61499-1:2012, 3.44]
3.1.26
Generic DTM
DTM which interprets device type or domain specific device descriptions and provides the FDT
interfaces
3.1.27
hardware
physical equipment, as opposed to programs, procedures, rules and associated documentation
[SOURCE: IEC 61499-1:2012, 3.49]
3.1.28
implementation
development phase in which the hardware and software of a system become operational
[SOURCE: IEC 61499-1:2012, 3.51]
3.1.29
instantiation
creation of an instance of a specified type
[SOURCE: IEC 61499-1:2012, 3.57]
3.1.30
interface
boundary between two functional units, defined by functional characteristics, signal
characteristics, or other characteristics as appropriate
[SOURCE: IEC 60050-351:2013, 351-42-25, modified – The notes have been deleted.]
3.1.31
Interpreter DTM
generic DTM which interprets device descriptions
3.1.32
mapping
set of features or attributes having defined correspondence with the members of another set
[SOURCE: IEC 61499-1:2012, 3.66]
3.1.33
multi-user environment
environment which allows operation by more than one user
3.1.34
network
all of the media, connectors, repeaters, routers, gateways and associated node communication
elements by which a given set of communicating devices are interconnected
Note 1 to entry: In this document, network is used to express that one or more interconnected fieldbus systems
with different protocols can be applied.
[SOURCE: IEC 61158-1:2014, 3.1.5, modified – Note 1 has been added.]
3.1.35
nested communication
communication using a hierarchy of communication systems
3.1.36
operation
well-defined action that, when applied to any permissible combination of known entities,
produces a new entity
[SOURCE: IEC 61499-1:2012, 3.73]
3.1.37
parameter
variable that is given a constant value for a specified application and that may denote the
application
[SOURCE: IEC 61499-1:2012, 3.75]
3.1.38
parameterize
setting parameters in a device or a block or an object
Note 1 to entry: See also configure (3.1.9).
3.1.39
persistent data
stored data that is preserved through shutdown/restart and maintenance activities
3.1.40
Process Channel
representation of process value and its properties
3.1.41
service
functional capability of a resource which can be modeled by a sequence of service primitives
[SOURCE: IEC 61499-1:2012, 3.87]
3.1.42
session
instance of user interactions within the FDT model
3.1.43
synchronization
synchronization of data depending on the context where used
Note 1 to entry: For example, synchronization can occur between the DTM and the device or between several DTM
instances having a reference to the same instance data.
3.1.44
system
set of interrelated elements considered in a defined context as a whole and separated from
their environment
Note 1 to entry: Elements of a system may be natural or man-made material objects, as well as modes of thinking
and the results thereof (for example forms of organization, mathematical methods, and programming languages).
Note 2 to entry: The system is considered to be separated from the environment and other external systems by an
imaginary surface, which can cut the links between them and the considered system.
[SOURCE: IEC 60050-351:2013, 351-42-08, modified – Note 1 has been deleted.]
3.1.45
transient data
temporary data which have not been stored (while configuring or parameterizing)
3.1.46
type
software element which specifies the common attributes shared by all instances of the type
[SOURCE: IEC 61499-1:2012, 3.99]
3.1.47
variable
software entity that can take different values, one at a time
Note 1 to entry: The values of a variable are usually restricted to a certain data type.
Note 2 to entry: Variables are described as input variables, output variables, internal variables and temporary
variables.
[SOURCE: IEC 61499-1:2012, 3.102]
3.1.48
use case
class specification of a sequence of actions, including variants, that a system (or other entity)
can perform, interacting with actors of the system
[SOURCE: IEC TR 62390:2005, 3.1.26]
3.2 Abbreviated terms
BTM Block Type Manager
CLI Common Language Infrastructure
COM Component Object Model
CP Communication profile
CPF Communication profile family
DCS Distributed control system
DD Device description
DTM Device Type Manager
ERP Enterprise resource planning
FA Frame Application
FB Function block
FDT Field device tool
GUI Graphical user interface
ID Identifier
IDL Interface definition language
I/O Input/output
IT Information technology
MES Manufacturing execution systems
OEM Original equipment manufacturer
OLE Object Linking and Embedding
OPC Open connectivity via open standards
(originally: OLE for Process Control)
PC Personal computer
PLC Programmable logic controller
SCADA Supervisory, control and data acquisition
UML Unified modeling language
UUID Universal unique identifier
XML Extensible markup language
3.3 Conventions
The conventions for UML notation that shall be used in the IEC 62453 series are defined in
Annex A.
4 FDT overview
4.1 State of the art
In industrial automation, a control system often comprises many binary and analogue
input/output signals transmitted via a communication network. Numerous field devices provided
by different manufacturers have to be included in the network by direct connection or I/O
multiplex units. Many applications use more than 100 different field device types from various
device manufacturers.
Each device has specific configuration and parameterization functions to support its designed
task. These device-specific properties and settings have to be taken into consideration when
configuring a fieldbus coupler and bus communication for the device. The device presence and
its capability have to be made known to the control system. Device input and output signals and
function block services need to be effectively integrated into the planning of the control system.
In the absence of a
...
















Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...