IEC 60644:2009
(Main)Specification for high-voltage fuse-links for motor circuit applications
Specification for high-voltage fuse-links for motor circuit applications
IEC 60644:2009 applies primarily to fuse-links used with motors started direct-on-line on alternating current systems of 50 Hz and 60 Hz. Standardizes time-current characteristics to formulate additional pulse withstand requirements regarding testing and to give guidance for the selection of fuse-links to be used with motors. Note: Fuse-links according to this specification should comply with the requirements of IEC 60282-1. The main changes with regard to the previous edition concern the following:
- update of the normative references;
- renewal of the figures.
Spécification relative aux éléments de remplacement à haute tension destinés à des circuits comprenant des moteurs
La CEI 60644:2009 s'applique principalement aux éléments de remplacement utilisés avec des moteurs à démarrage direct sur des réseaux en courant alternatif à 50 Hz et 60 Hz. Le but de la présente norme est de normaliser les caractéristiques temps-courant, d'établir des spécifications d'essais concernant la tenue aux impulsions et de donner des conseils pour le choix des éléments de remplacement destinés à être utilisés avec des moteurs. Note: Les éléments de remplacement répondant à cette spécification soient conformes aux exigences de la CEI 60282-1. Les changements majeurs par rapport à l'édition précédente sont les suivants:
- mise à jour des références normatives;
- reprise des figures.
General Information
Relations
Standards Content (Sample)
IEC 60644 ®
Edition 2.0 2009-08
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
Specification for high-voltage fuse-links for motor circuit applications
Spécification relative aux éléments de remplacement à haute tension destinés à
des circuits comprenant des moteurs
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by
any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or
IEC's member National Committee in the country of the requester.
If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication,
please contact the address below or your local IEC member National Committee for further information.
Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite
ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie
et les microfilms, sans l'accord écrit de la CEI ou du Comité national de la CEI du pays du demandeur.
Si vous avez des questions sur le copyright de la CEI ou si vous désirez obtenir des droits supplémentaires sur cette
publication, utilisez les coordonnées ci-après ou contactez le Comité national de la CEI de votre pays de résidence.
IEC Central Office
3, rue de Varembé
CH-1211 Geneva 20
Switzerland
Email: inmail@iec.ch
Web: www.iec.ch
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.
About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.
ƒ Catalogue of IEC publications: www.iec.ch/searchpub
The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,…).
It also gives information on projects, withdrawn and replaced publications.
ƒ IEC Just Published: www.iec.ch/online_news/justpub
Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available
on-line and also by email.
ƒ Electropedia: www.electropedia.org
The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions
in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical
Vocabulary online.
ƒ Customer Service Centre: www.iec.ch/webstore/custserv
If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service
Centre FAQ or contact us:
Email: csc@iec.ch
Tel.: +41 22 919 02 11
Fax: +41 22 919 03 00
A propos de la CEI
La Commission Electrotechnique Internationale (CEI) est la première organisation mondiale qui élabore et publie des
normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.
A propos des publications CEI
Le contenu technique des publications de la CEI est constamment revu. Veuillez vous assurer que vous possédez
l’édition la plus récente, un corrigendum ou amendement peut avoir été publié.
ƒ Catalogue des publications de la CEI: www.iec.ch/searchpub/cur_fut-f.htm
Le Catalogue en-ligne de la CEI vous permet d’effectuer des recherches en utilisant différents critères (numéro de référence,
texte, comité d’études,…). Il donne aussi des informations sur les projets et les publications retirées ou remplacées.
ƒ Just Published CEI: www.iec.ch/online_news/justpub
Restez informé sur les nouvelles publications de la CEI. Just Published détaille deux fois par mois les nouvelles
publications parues. Disponible en-ligne et aussi par email.
ƒ Electropedia: www.electropedia.org
Le premier dictionnaire en ligne au monde de termes électroniques et électriques. Il contient plus de 20 000 termes et
définitions en anglais et en français, ainsi que les termes équivalents dans les langues additionnelles. Egalement appelé
Vocabulaire Electrotechnique International en ligne.
ƒ Service Clients: www.iec.ch/webstore/custserv/custserv_entry-f.htm
Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions, visitez le FAQ du
Service clients ou contactez-nous:
Email: csc@iec.ch
Tél.: +41 22 919 02 11
Fax: +41 22 919 03 00
IEC 60644 ®
Edition 2.0 2009-08
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
Specification for high-voltage fuse-links for motor circuit applications
Spécification relative aux élements de remplacement à haute tension destinés à
des circuits comprenant des moteurs
INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
COMMISSION
ELECTROTECHNIQUE
PRICE CODE
INTERNATIONALE
M
CODE PRIX
ICS 29.120.50 ISBN 978-2-88910-241-9
– 2 – 60644 © IEC:2009
CONTENTS
FOREWORD.3
1 Scope.5
2 Normative references .5
3 Fuse-link time-current characteristics .5
4 K factor .6
5 Withstand requirements.6
6 Withstand tests.6
6.1 General .6
6.2 Test sequence No. 1 .7
6.3 Test sequence No. 2 .7
6.4 Interpretation of the test results.8
7 Information to be given to the user .8
8 Selection of fuse-links for motor circuit applications and correlation of fuse-link
characteristics with those of other components of the circuit.9
8.1 Selection of fuse-links .9
8.2 Co-ordination with other circuit components .9
Bibliography.12
Figure 1 – Diagrams of the test sequences .7
Figure 2 – Determination of K factor for fuse-links of intermediate rating of a
homogeneous series.8
Figure 3 – Characteristics relating to the protection of a motor circuit .11
60644 © IEC:2009 – 3 –
INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
SPECIFICATION FOR HIGH-VOLTAGE FUSE-LINKS
FOR MOTOR CIRCUIT APPLICATIONS
FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.
5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with an IEC Publication.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.
International Standard IEC 60644 has been prepared by subcommittee 32A: High voltage
fuses, of IEC technical committee 32: Fuses
This second edition cancels and replaces the first edition, published in 1979, and constitutes
a technical revision.
The main changes with regard to the previous edition concern the following:
• update of the normative references;
• renewal of the figures.
– 4 – 60644 © IEC:2009
The text of this standard is based on the following documents:
CDV Report on voting
32A/267/CDV 32A/270/RVC
Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.
This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.
The committee has decided that the contents of this publication will remain unchanged until
the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in
the data related to the specific publication. At this date, the publication will be
• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.
60644 © IEC:2009 – 5 –
SPECIFICATION FOR HIGH-VOLTAGE FUSE-LINKS
FOR MOTOR CIRCUIT APPLICATIONS
1 Scope
This standard applies primarily to fuse-links used with motors started direct-on-line on
alternating current systems of 50 Hz and 60 Hz.
NOTE When motors are used with assisted starting this specification can also be applied but particular attention
should be paid to the selection of the rated current of the fuse-link (see 8.1) and the manufacturer of the fuse-link
should preferably be consulted.
Fuse-links according to this specification are intended to withstand normal service conditions
and motor starting pulses. They should comply with the requirements of IEC 60282-1.
The purpose of this standard is to standardize time-current characteristics, to formulate pulse
withstand requirements regarding testing and to give guidance regarding the selection of fuse-
links intended to be used with motors.
2 Normative references
The following referenced documents are indispensable for the application of this document.
For dated references, only the edition cited applies. For undated references, the latest edition
of the referenced document (including any amendments) applies.
IEC 60282-1:2005, High-voltage fuses – Part 1: Current-limiting fuses
3 Fuse-link time-current characteristics
Compared to fuses typically used for distribution system protection, fuses for motor circuit
protection should have:
– relatively high melting current (slow operation) in the 10 s region of the pre-arcing time-
current characteristic to give maximum withstand against motor starting current;
– relatively low melting current (fast operation) in the region below 0,1 s to give maximum
short-circuit protection to associated switching devices, cables and motors and their
terminal boxes.
Therefore pre-arcing time-current characteristics of fuse-links for motor circuit applications
shall be within the following limits:
I ≤ 100
I / I ≥ 3 for
n
f n
I > 100
4I / I ≥ for
n
f n
0,25
()
I / I ≤ 20 I 100 for all current ratings
f n n
0,1
where
I is the numerical value of the current rating, expressed in amperes, of the fuse-link;
n
– 6 – 60644 © IEC:2009
I and I are the numerical values of the pre-arcing currents, expressed in amperes,
f f
10 0,1
corresponding to 10 s and 0,1 s respectively, as mean values with the tolerances specified in
4.11 of IEC 60282-1.
0,25
The term()I 100 is introduced to take account of the fact that the pre-arcing time-current
n
characteristics for a range of fuse-links diverge as they approach the short-time region.
4 K factor
Factor which defines an overload characteristic to which the fuse-link may be repeatedly
subjected under specified motor starting conditions, and other specified motor-operating
overloads, without deterioration.
For the purpose of this specification, the value of K is chosen at 10 s. Unless otherwise stated
by the fuse-link manufacturer, it is valid from 5 s to 60 s, for a frequency of starts up to six per
hour and for not more than two consecutive starts. For conditions different from those
specified above, for example where service conditions involve inching, plugging or more
frequent starts, the manufacturer should be consulted.
The overload characteristic is obtained by multiplying the current on the pre-arcing
characteristic by K (less than unity).
5 Withstand requirements
The performance of a fuse-link for motor circuit applications is in general determined by the
following criteria:
– to withstand without deterioration starting pulses in rapid succession due for example to
abnormal conditions, such as those occurring during commissioning of the equipment;
– to withstand without deterioration a large number of motor starts in normal service
conditions.
This standard therefore specifies two sequences of tests representative of these conditions:
100 cycles corresponding to abnormal service conditions; 2 000 cycles corresponding to
normal service conditions. It is expected that a fuse-link which passes these tests will have a
good behaviour during a satisfactory life duration.
6 Withstand tests
6.1 General
The withstand tests are type tests. Both test sequences shall be carried out on the same fuse-
link.
The fuse-link shall be tested under the same test conditions as in 6.5.1.2 of IEC 60282-1.
The values of test currents shall be K I for pulses simulating the motor starting pulses and
f
K I 6 for periods simulating the normal motor running, I being the pre-arcing current at
f f
10 10
+10
10 s. The tolerance on both values shall be %.
The duration of individual pulses shall be 10 s. The tolerance on the 10 s periods, both pulses
and off periods, shall be ±0,5 s.
Tests shall be made at any convenient voltage and at a frequency from 48 Hz to 62 Hz.
60644 © IEC:2009 – 7 –
6.2 Test sequence No. 1
This test sequence shall comprise 100 cycles of 1 h as follows:
– a current K I for 10 s;
f
– an off period of 10 s;
– a current K I for 10 s;
f
– a current K I 6 for 3 560 s;
f
– an off period of 10 s.
6.3 Test sequence No. 2
This test sequence shall comprise 2 000 cycles of 10 min as follows:
– a current K I for 10 s;
f
– a current K I 6 for 290 s;
f
– an off period of 300 s.
Test sequences No.1 and No.2 are illustrated in Figure 1.
KI
f10
100 cycles
KI
/6
f10
0 10 20 30 3 590 t (s)
3 600
Test sequence No. 1
IEC 1526/09
KI
f10
2 000 cycles
KI
/6
f10
0 10 300 600 t (s)
Test sequence No. 2
IEC 1527/09
Figure 1 – Diagrams of the test sequences
– 8 – 60644 © IEC:2009
6.4 Interpretation of the test results
After each test sequence is completed, the fuse-link shall be allowed to cool. After cooling,
there shall have been no significant change in its characteristics. A check need not be made
until after completion of both test sequences. Measurements to show that there is no
significant difference in the values of resistance of the fuse-links before and after test give an
indication of conformity with this requirement. In case of doubt, a further method is to subject
the fuse-link after cooling after test to the current K I sustained for a sufficient time to
f
cause the fuse-element to melt. The pre-arcing time shall lie within the tolerances of the pre-
arcing time-current characteristic given by the manufacturer.
If fuse-links form part of a homogeneous series as defined in items d), e) and f) of 6.6.4.1 of
IEC 60282-1, the maximum and minimum current ratings only need be tested.
If the same value of K is assigned to both maximum and minimum current ratings, then that
value may also be deemed to apply to all intermediate current ratings within the
homogeneous series. If different values of K are assigned to the maximum and minimum
current ratings, then the K factors for intermediate ratings may be determined by linear
interpolation; see Figure 2.
If a manufacturer assigns a higher value of K for an intermediate rating than that resulting
from interpolation, this assigned value shall be proved by tests to the requirements of
Clause 6.
K
Pre-arcing current at 10 s
IEC 1528/09
Figure 2 – Determination of K factor for fuse-links of intermediate rating
of a homogeneous series
7 Information to be given to the user
Although in principle any high-voltage fuse-link can be used to protect motor circuits, there
are advantages in selecting a fuse-link specifically designed for this application.
Minimum current rating
Intermediate current rating
Maximum current rating
60644 © IEC:2009 – 9 –
For fuse-links intended to be used for motor circuit protection, the manufacturer shall state the
K factor which will indicate to the user the degree to which the fuse-link is capable of
withstanding cyclic overloads without deterioration. It shall be stated if the K factor is related
to the minimum or the mean pre-arcing time-current characteristic.
The pre-arcing time-current characteristic of the fuse-link with current values multiplied by
factor K thus defines the boundary of the overload curve for a given number of motor starts
per hour.
8 Selection of fuse-links for motor circuit applications and correlation of fuse-
link characteristics with those of other components of the circuit
8.1 Selection of fuse-links
The fuse-link is inserted into the motor circuit that the fuse-link is intended to protect. Some
ratings of the fuse-links (e.g. rated voltage and rated breaking current) are therefore
dependent on the system and others (e.g. rated current) are dependent on the motor.
The ability to withstand repetitive starting conditions is an important factor. When selecting a
fuse-link for a given motor circuit application, due regard should be paid to the K factor, which
should be applied to the pre-arcing time-current characteristic of the fuse-link to take account
of these starting conditions.
The usual concept of rated current, based upon the ability of a fuse-link to carry a given
current continuously without exceeding a specified temperature rise, is usually of secondary
importance where the motor is started direct-on-line. The fuse-link for such applications is
normally chosen by reference to the paragraphs above.
However, when the fuse-links are enclosed in motor circuit equipment, it should be verified
that their rated current exceeds the running current of the motor by an amount sufficient to
take account of the effects of the temperature of the air surrounding them (see Annex F of
IEC 60282-1).
Where assisted starting is used and thereby starting currents are reduced, the above method
of selection is generally applicable, but allowance may have to be made for the high transient
currents which, with some methods of starting, flow during transition from one connection to
the succeeding connection. Further, since assisted starting in general allows the use of fuse-
links of lower current rating, the temperature rise under running conditions is likely to be of
primary importance.
8.2 Co-ordination with other circuit components
Figure 3 illustrates a typical motor circuit application involving a motor, relay or relays
(providing one or more of the following: inverse overcurrent protection, instantaneous
overcurrent protection, instantaneous earth fault protection), contactor or other mechanical
switching device, the cable and the fuse-link itself.
The motor will be chosen for its particular duty, thus fixing the values of the full load current
and the starting current. The duration and frequency of the starts will also be fixed. The
characteristic of the associated inverse time overcurrent relay will then be chosen to give
adequate thermal protection to the motor. The switching device is selected in conjunction with
fuse-link to co-ordinate with the already selected motor.
In particular, referring to Figure 3:
a) the pre-arcing time-current characteristic of the fuse-link, when multiplied by the
appropriate K factor, should lie to the right of the motor starting current at point A;
– 10 – 60644 © IEC:2009
b) the switching device should be capable of withstanding the conditions defined by the
operating characteristic curves shown in Figure 3 and defined by the points D, B, C and E;
c) the rated current of the fuse-link should be chosen such that when the fuse-link is
mounted in its service position it is capable of carrying continuously the running current of
the motor without overheating. This is of particular importance where assisted starting is
used;
d) the current corresponding to the point of intersection B of the curves of the fuse-link and
the overcurrent relay should be less than the rated maximum breaking current of the
switching device;
e) the rated minimum breaking current of the fuse-link should not exceed the minimum take-
over current (where the switching device takes over breaking duty from the fuse, point B);
f) in the event of instantaneous protection being provided, the take-over point will move from
B to C. Due regard should be paid to the possibility that the switching device might open
at a current greater than its rated maximum breaking current;
g) the cut-off current of the fuse-link at the maximum fault current of the system should not
exceed the rated peak short-circuit withstand current (I ) of the switching device;
p
h) it is desirable that the rated minimum breaking current of the fuse-link should be as low as
possible and preferably should be at least as low as the starting current of the motor (see
also 9.3.3.5 of IEC 60282-1);
i) as shown in Figure 3, the whole of the withstand curve of the cable should lie to the right
of the operating characteristic DBCE. Where high ratings of fuse-link are necessary due to
the nature of the motor starting duty (for example, long starting times and frequent starts),
the section B, C and E moves to the right and may necessitate an appropriate increase of
cable size.
NOTE In cases where the switching device can be tripped by operation of the fuse striker, reference should be
made to IEC 60470[1] .
——————
...
IEC 60644 ®
Edition 2.1 2019-09
CONSOLIDATED VERSION
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
colour
inside
Specification for high-voltage fuse-links for motor circuit applications
Spécification relative aux éléments de remplacement à haute tension destinés à
des circuits comprenant des moteurs
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC
copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or
your local IEC member National Committee for further information.
Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite
ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie
et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des
questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez
les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.
IEC Central Office Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.
About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigendum or an amendment might have been published.
IEC publications search - webstore.iec.ch/advsearchform Electropedia - www.electropedia.org
The advanced search enables to find IEC publications by a The world's leading online dictionary on electrotechnology,
variety of criteria (reference number, text, technical containing more than 22 000 terminological entries in English
committee,…). It also gives information on projects, replaced and French, with equivalent terms in 16 additional languages.
and withdrawn publications. Also known as the International Electrotechnical Vocabulary
(IEV) online.
IEC Just Published - webstore.iec.ch/justpublished
Stay up to date on all new IEC publications. Just Published IEC Glossary - std.iec.ch/glossary
details all new publications released. Available online and 67 000 electrotechnical terminology entries in English and
once a month by email. French extracted from the Terms and Definitions clause of
IEC publications issued since 2002. Some entries have been
IEC Customer Service Centre - webstore.iec.ch/csc collected from earlier publications of IEC TC 37, 77, 86 and
If you wish to give us your feedback on this publication or CISPR.
need further assistance, please contact the Customer Service
Centre: sales@iec.ch.
A propos de l'IEC
La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des
Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.
A propos des publications IEC
Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l’édition la
plus récente, un corrigendum ou amendement peut avoir été publié.
Recherche de publications IEC - Electropedia - www.electropedia.org
webstore.iec.ch/advsearchform Le premier dictionnaire d'électrotechnologie en ligne au
La recherche avancée permet de trouver des publications IEC monde, avec plus de 22 000 articles terminologiques en
en utilisant différents critères (numéro de référence, texte, anglais et en français, ainsi que les termes équivalents dans
comité d’études,…). Elle donne aussi des informations sur les 16 langues additionnelles. Egalement appelé Vocabulaire
projets et les publications remplacées ou retirées. Electrotechnique International (IEV) en ligne.
IEC Just Published - webstore.iec.ch/justpublished Glossaire IEC - std.iec.ch/glossary
Restez informé sur les nouvelles publications IEC. Just 67 000 entrées terminologiques électrotechniques, en anglais
Published détaille les nouvelles publications parues. et en français, extraites des articles Termes et Définitions des
Disponible en ligne et une fois par mois par email. publications IEC parues depuis 2002. Plus certaines entrées
antérieures extraites des publications des CE 37, 77, 86 et
Service Clients - webstore.iec.ch/csc CISPR de l'IEC.
Si vous désirez nous donner des commentaires sur cette
publication ou si vous avez des questions contactez-nous:
sales@iec.ch.
IEC 60644 ®
Edition 2.1 2019-09
CONSOLIDATED VERSION
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
colour
inside
Specification for high-voltage fuse-links for motor circuit applications
Spécification relative aux éléments de remplacement à haute tension destinés à
des circuits comprenant des moteurs
INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
COMMISSION
ELECTROTECHNIQUE
INTERNATIONALE
ICS 29.120.50 ISBN 978-2-8322-7425-5
IEC 60644 ®
Edition 2.1 2019-09
CONSOLIDATED VERSION
REDLINE VERSION
VERSION REDLINE
colour
inside
Specification for high-voltage fuse-links for motor circuit applications
Spécification relative aux éléments de remplacement à haute tension destinés à
des circuits comprenant des moteurs
– 2 – IEC 60644:2009+AMD1:2019 CSV
IEC 2019
CONTENTS
FOREWORD . 3
1 Scope . 5
2 Normative references . 5
3 Fuse-link time-current characteristics . 5
4 K factor . 6
5 Withstand requirements . 7
6 Withstand tests . 7
6.1 General . 7
6.2 Test sequence No. 1 . 7
6.3 Test sequence No. 2 . 7
6.4 Interpretation of the test results . 8
7 Information to be given to the user . 9
8 Selection of fuse-links for motor circuit applications and correlation of fuse-link
characteristics with those of other components of the circuit. 9
8.1 Selection of fuse-links .
8.2 Co-ordination with other circuit components .
Bibliography .
Figure 1 – Diagrams of the test sequences . 8
Figure 2 – Determination of K factor for fuse-links of intermediate rating of a
homogeneous series . 9
Figure 3 – Characteristics relating to the protection of a motor circuit .
IEC 2019
INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
SPECIFICATION FOR HIGH-VOLTAGE FUSE-LINKS
FOR MOTOR CIRCUIT APPLICATIONS
FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.
5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with an IEC Publication.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.
This consolidated version of the official IEC Standard and its amendment has been
prepared for user convenience.
IEC 60644 edition 2.1 contains the second edition (2009-08) [documents 32A/267/CDV
and 32A/270/RVC] and its amendment 1 (2019-09) [documents 32A/340/CDV and 32A/343/
RVC].
In this Redline version, a vertical line in the margin shows where the technical content
is modified by amendment 1. Additions are in green text, deletions are in strikethrough
red text. A separate Final version with all changes accepted is available in this
publication.
– 4 – IEC 60644:2009+AMD1:2019 CSV
IEC 2019
International Standard IEC 60644 has been prepared by subcommittee 32A: High voltage
fuses, of IEC technical committee 32: Fuses
This second edition constitutes a technical revision.
The main changes with regard to the previous edition concern the following:
• update of the normative references;
• renewal of the figures.
This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.
The committee has decided that the contents of the base publication and its amendment will
remain unchanged until the stability date indicated on the IEC web site under
"http://webstore.iec.ch" in the data related to the specific publication. At this date, the
publication will be
• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.
IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates
that it contains colours which are considered to be useful for the correct
understanding of its contents. Users should therefore print this document using a
colour printer.
IEC 2019
SPECIFICATION FOR HIGH-VOLTAGE FUSE-LINKS
FOR MOTOR CIRCUIT APPLICATIONS
1 Scope
This standard applies primarily to fuse-links used with motors started direct-on-line on
alternating current systems of 50 Hz and 60 Hz.
NOTE When motors are used with assisted starting this specification can also be applied but particular attention
should be paid to the selection of the rated current of the fuse-link (see 8.1) and the manufacturer of the fuse-link
should preferably be consulted.
Fuse-links according to this specification are intended to withstand normal service conditions
and motor starting pulses. They should comply with the requirements of IEC 60282-1.
The purpose of this standard is to standardize time-current characteristics, to formulate pulse
withstand requirements regarding testing and to give guidance regarding the selection of fuse-
links intended to be used with motors.
This document applies to fuse-links complying with IEC 60282-1 that are used with motors
started direct-on-line on alternating current systems of 50 Hz and 60 Hz.
Fuse-links according to this document are intended to withstand normal service conditions
and motor starting pulses.
The purpose of this document is to standardize time-current characteristics and to formulate
pulse withstand requirements regarding testing.
This document also applies to fuse-links used with motors that use assisted starting when
appropriate care has been taken with selecting the rated current of the fuse-link (using advice
from 5.2.3 of IEC TR 62655:2013 and from the fuse manufacturer).
2 Normative references
The following referenced documents are indispensable for the application of this document.
For dated references, only the edition cited applies. For undated references, the latest edition
of the referenced document (including any amendments) applies.
The following documents are referred to in the text in such a way that some or all of their
content constitutes requirements of this document. For dated references, only the edition
cited applies. For undated references, the latest edition of the referenced document (including
any amendments) applies.
IEC 60282-1:20052009, High-voltage fuses – Part 1: Current-limiting fuses
IEC 60262-1:2009/AMD1:2014
IEC TR 62655:2013, Tutorial and application guide for high-voltage fuses
3 Fuse-link time-current characteristics
Compared to fuses typically used for distribution system protection, fuses for motor circuit
protection should have:
– 6 – IEC 60644:2009+AMD1:2019 CSV
IEC 2019
– relatively high melting current (slow operation) in the 10 s region of the pre-arcing time-
current characteristic to give maximum withstand against motor starting current;
– relatively low melting current (fast operation) in the region below 0,1 s to give maximum
short-circuit protection to associated switching devices, cables and motors and their
terminal boxes.
Therefore pre-arcing time-current characteristics of fuse-links for motor circuit applications
shall be within the following limits:
I ≤100
I / I ≥ 3 for
n
f n
I >100
I / I ≥ 4 for
n
f n
0,25
I / I ≤ 20(I 100) for all current ratings
f n n
0,1
where
I is the numerical value of the current rating, expressed in amperes, of the fuse-link;
n
I / I ≥ 3 for I ≤ 100
f r r
I / I ≥ 4 for
I > 100
f r r
0,25
I / I ≤ 20(I 100) for all current ratings
f r r
0,1
where
I is the numerical value of the rated current, expressed in amperes, of the fuse-link;
r
I and I are the numerical values of the pre-arcing currents, expressed in amperes,
f f
10 0,1
corresponding to 10 s and 0,1 s respectively, as mean values with the tolerances specified in
4.11 of IEC 60282-1.
0,25
0,25
The term (I 100) (I 100) is introduced to take account of the fact that the pre-arcing
n r
time-current characteristics for a range of fuse-links diverge as they approach the short-time
region.
4 K factor
Factor which defines an overload characteristic to which the fuse-link may be repeatedly
subjected under specified motor starting conditions, and other specified motor-operating
overloads, without deterioration.
For the purpose of this specification, the value of K is chosen at 10 s. Unless otherwise stated
by the fuse-link manufacturer, it is valid from 5 s to 60 s, for a frequency of starts up to six per
hour and for not more than two consecutive starts. For conditions different from those
specified above, for example where service conditions involve inching, plugging or more
frequent starts, the manufacturer should be consulted.
The overload characteristic is obtained by multiplying the current on the pre-arcing
characteristic by K (less than unity).
IEC 2019
5 Withstand requirements
The performance of a fuse-link for motor circuit applications is in general determined by the
following criteria:
– to withstand without deterioration starting pulses in rapid succession due for example to
abnormal conditions, such as those occurring during commissioning of the equipment;
– to withstand without deterioration a large number of motor starts in normal service
conditions.
This standard therefore specifies two sequences of tests representative of these conditions:
100 cycles corresponding to abnormal service conditions; 2 000 cycles corresponding to
normal service conditions. It is expected that a fuse-link which passes these tests will have a
good behaviour during a satisfactory life duration.
6 Withstand tests
6.1 General
The withstand tests are type tests. Both test sequences shall be carried out on the same fuse-
link.
The fuse-link shall be tested under the same test conditions as in 6.5.1.2 of IEC 60282-1.
The values of test currents shall be K I for pulses simulating the motor starting pulses and
f
K I 6 for periods simulating the normal motor running, I being the pre-arcing current at
f f
10 10
+10
10 s. The tolerance on both values shall be %.
The duration of individual pulses shall be 10 s. The tolerance on the 10 s periods, both pulses
and off periods, shall be ±0,5 s.
Tests shall be made at any convenient voltage and at a frequency from 48 Hz to 62 Hz.
6.2 Test sequence No. 1
This test sequence shall comprise 100 cycles of 1 h as follows:
– a current K I for 10 s;
f
– an off period of 10 s;
– a current K I for 10 s;
f
– a current K I 6 for 3 560 s;
f
– an off period of 10 s.
6.3 Test sequence No. 2
This test sequence shall comprise 2 000 cycles of 10 min as follows:
– a current K I for 10 s;
f
– a current K I 6 for 290 s;
f
– an off period of 300 s.
Test sequences No.1 and No.2 are illustrated in Figure 1.
– 8 – IEC 60644:2009+AMD1:2019 CSV
IEC 2019
KI
f10
100 cycles
KI
/6
f10
0 10 20 30 3 590 t (s)
3 600
Test sequence No. 1
IEC 1526/09
KI
f10
2 000 cycles
KI
/6
f10
0 10 300 600 t (s)
Test sequence No. 2
IEC 1527/09
Figure 1 – Diagrams of the test sequences
6.4 Interpretation of the test results
After each test sequence is completed, the fuse-link shall be allowed to cool. After cooling,
there shall have been no significant change in its characteristics. A check need not be made
until after completion of both test sequences. Measurements to show that there is no
significant difference in the values of resistance of the fuse-links before and after test give an
indication of conformity with this requirement. In case of doubt, a further method is to subject
the fuse-link after cooling after test to the current K I sustained for a sufficient time to
f
cause the fuse-element to melt. The pre-arcing time shall lie within the tolerances of the pre-
arcing time-current characteristic given by the manufacturer.
If fuse-links form part of a homogeneous series as defined in items d), e) and f) of 6.6.4.1 of
IEC 60282-1, the maximum and minimum current ratings only need be tested.
If the same value of K is assigned to both maximum and minimum current ratings, then that
value may also be deemed to apply to all intermediate current ratings within the
homogeneous series. If different values of K are assigned to the maximum and minimum
current ratings, then the K factors for intermediate ratings may be determined by linear
interpolation; see Figure 2.
If a manufacturer assigns a higher value of K for an intermediate rating than that resulting
from interpolation, this assigned value shall be proved by tests to the requirements of
Clause 6.
IEC 2019
K
Pre-arcing current at 10 s
IEC 1528/09
Figure 2 – Determination of K factor for fuse-links of intermediate rating
of a homogeneous series
7 Information to be given to the user
Although in principle any high-voltage fuse-link can be used to protect motor circuits, there
are advantages in selecting a fuse-link specifically designed for this application.
For fuse-links intended to be used for motor circuit protection, the manufacturer shall state the
K factor which will indicate to the user the degree to which the fuse-link is capable of
withstanding cyclic overloads without deterioration. It shall be stated if the K factor is related
to the minimum or the mean pre-arcing time-current characteristic.
The pre-arcing time-current characteristic of the fuse-link with current values multiplied by
factor K thus defines the boundary of the overload curve for a given number of motor starts
per hour.
8 Selection of fuse-links for motor circuit applications and correlation of fuse-
link characteristics with those of other components of the circuit
8.1 Selection of fuse-links
The fuse-link is inserted into the motor circuit that the fuse-link is intended to protect. Some
ratings of the fuse-links (e.g. rated voltage and rated breaking current) are therefore
dependent on the system and others (e.g. rated current) are dependent on the motor.
The ability to withstand repetitive starting conditions is an important factor. When selecting a
fuse-link for a given motor circuit application, due regard should be paid to the K factor, which
should be applied to the pre-arcing time-current characteristic of the fuse-link to take account
of these starting conditions.
Minimum current rating
Intermediate current rating
Maximum current rating
– 10 – IEC 60644:2009+AMD1:2019 CSV
IEC 2019
The usual concept of rated current, based upon the ability of a fuse-link to carry a given
current continuously without exceeding a specified temperature rise, is usually of secondary
importance where the motor is started direct-on-line. The fuse-link for such applications is
normally chosen by reference to the paragraphs above.
However, when the fuse-links are enclosed in motor circuit equipment, it should be verified
that their rated current exceeds the running current of the motor by an amount sufficient to
take account of the effects of the temperature of the air surrounding them (see Annex F of
IEC 60282-1).
Where assisted starting is used and thereby starting currents are reduced, the above method
of selection is generally applicable, but allowance may have to be made for the high transient
currents which, with some methods of starting, flow during transition from one connection to
the succeeding connection. Further, since assisted starting in general allows the use of fuse-
links of lower current rating, the temperature rise under running conditions is likely to be of
primary importance.
8.2 Co-ordination with other circuit components
Figure 3 illustrates a typical motor circuit application involving a motor, relay or relays
(providing one or more of the following: inverse overcurrent protection, instantaneous
overcurrent protection, instantaneous earth fault protection), contactor or other mechanical
switching device, the cable and the fuse-link itself.
The motor will be chosen for its particular duty, thus fixing the values of the full load current
and the starting current. The duration and frequency of the starts will also be fixed. The
characteristic of the associated inverse time overcurrent relay will then be chosen to give
adequate thermal protection to the motor. The switching device is selected in conjunction with
fuse-link to co-ordinate with the already selected motor.
In particular, referring to Figure 3:
a) the pre-arcing time-current characteristic of the fuse-link, when multiplied by the
appropriate K factor, should lie to the right of the motor starting current at point A;
b) the switching device should be capable of withstanding the conditions defined by the
operating characteristic curves shown in Figure 3 and defined by the points D, B, C and E;
c) the rated current of the fuse-link should be chosen such that when the fuse-link is
mounted in its service position it is capable of carrying continuously the running current of
the motor without overheating. This is of particular importance where assisted starting is
used;
d) the current corresponding to the point of intersection B of the curves of the fuse-link and
the overcurrent relay should be less than the rated maximum breaking current of the
switching device;
e) the rated minimum breaking current of the fuse-link should not exceed the minimum take-
over current (where the switching device takes over breaking duty from the fuse, point B);
f) in the event of instantaneous protection being provided, the take-over point will move from
B to C. Due regard should be paid to the possibility that the switching device might open
at a current greater than its rated maximum breaking current;
g) the cut-off current of the fuse-link at the maximum fault current of the system should not
exceed the rated peak short-circuit withstand current (Ip) of the switching device;
h) it is desirable that the rated minimum breaking current of the fuse-link should be as low as
possible and preferably should be at least as low as the starting current of the motor (see
also 9.3.3.5 of IEC 60282-1);
i) as shown in Figure 3, the whole of the withstand curve of the cable should lie to the right
of the operating characteristic DBCE. Where high ratings of fuse-link are necessary due to
the nature of the motor starting duty (for example, long starting times and frequent starts),
IEC 2019
the section B, C and E moves to the right and may necessitate an appropriate increase of
cable size.
NOTE In cases where the switching device can be tripped by operation of the fuse striker, reference should be
made to IEC 60470[1] .
—————————
Figures in square brackets refer to the bibliography.
– 12 – IEC 60644:2009+AMD1:2019 CSV
IEC 2019
Time (s)
D
Fuse TCC × K factor
Time-current characteristic of the fuse
Inverse time overcurrent relay
B
A
Cable withstand
Motor current
C
0,1
Instantaneous fault relay
E
0,01
100 1 000 10 000 Current (A)
Rated maximum breaking
current of switching device
TCC Time-current characteristic
IEC 1529/09
NOTE For simplicity, only mean characteristics are shown. In practice, manufacturing tolerances and the variations
between the “cold” and “hot” characteristics of the various components of the circuit should be taken into account.
Figure 3 – Characteristics relating to the protection of a motor circuit
For application information see 5.2.3 of IEC TR 62655:2013, which discusses motor-circuit
applications.
IEC 2019
Bibliography
[1] IEC 60470, High-voltage alternating current contactors and contactor-based motor-
starters
___________
– 14 – IEC 60644:2009+AMD1:2019 CSV
IEC 2019
SOMMAIRE
AVANT-PROPOS . 15
1 Domaine d’application . 17
2 Références normatives . 17
3 Caractéristique temps-courant des éléments de remplacement . 18
4 Facteur K . 18
5 Exigences relatives à la tenue . 19
6 Essais de tenue . 19
6.1 Généralités. 19
6.2 Séquence d’essais n° 1 . 19
6.3 Séquence d’essais n° 2 . 20
6.4 Interprétation des résultats d’essai . 21
7 Renseignements à donner à l’utilisateur . 22
8 Choix des éléments de remplacement utilisés sur des circuits comprenant des
moteurs et coordination des caractéristiques des éléments de remplacement avec
celles des autres composants du circuit. 23
8.1 Choix des éléments de remplacement .
8.2 Coordination avec les autres composants du circuit .
Bibliographie .
Figure 1 – Diagrammes des séquences d'essai . 21
Figure 2 – Détermination du facteur K pour les éléments de remplacement du courant
assigné intermédiaire d'une série homogène . 22
Figure 3 – Courbes caractéristiques pour la protection d'un circuit de moteur .
IEC 2019
COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE
____________
SPÉCIFICATION RELATIVE AUX ÉLEMENTS
DE REMPLACEMENT À HAUTE TENSION DESTINÉS
À DES CIRCUITS COMPRENANT DES MOTEURS
AVANT-PROPOS
1) La Commission Electrotechnique Internationale (IEC) est une organisation mondiale de normalisation
composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de l’IEC). L’IEC a pour
objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines
de l'électricité et de l'électronique. A cet effet, l’IEC – entre autres activités – publie des Normes
internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au
public (PAS) et des Guides (ci-après dénommés "Publication(s) de l’IEC"). Leur élaboration est confiée à des
comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les
organisations internationales, gouvernementales et non gouvernementales, en liaison avec l’IEC, participent
également aux travaux. L’IEC collabore étroitement avec l'Organisation Internationale de Normalisation (ISO),
selon des conditions fixées par accord entre les deux organisations.
2) Les décisions ou accords officiels de l’IEC concernant les questions techniques représentent, dans la mesure
du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de l’IEC
intéressés sont représentés dans chaque comité d’études.
3) Les Publications de l’IEC se présentent sous la forme de recommandations internationales et sont agréées
comme telles par les Comités nationaux de l’IEC. Tous les efforts raisonnables sont entrepris afin que l’IEC
s'assure de l'exactitude du contenu technique de ses publications; l’IEC ne peut pas être tenue responsable de
l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de l’IEC s'engagent, dans toute la
mesure possible, à appliquer de façon transparente les Publications de l’IEC dans leurs publications nationales
et régionales. Toutes divergences entre toutes Publications de l’IEC et toutes publications nationales ou
régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
5) L’IEC elle-même ne fournit aucune attestation de conformité. Des organismes de certification indépendants
fournissent des services d'évaluation de conformité et, dans certains secteurs, accèdent aux marques de
conformité de l’IEC. L’IEC n'est responsable d'aucun des services effectués par les organismes de certification
indépendants.
6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.
7) Aucune responsabilité ne doit être imputée à l’IEC, à ses administrateurs, employés, auxiliaires ou
mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités
nationaux de l’IEC, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre
dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais
de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de l’IEC ou de
toute autre Publication de l’IEC, ou au crédit qui lui est accordé.
8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications
référencées est obligatoire pour une application correcte de la présente publication.
9) L’attention est attirée sur le fait que certains des éléments de la présente Publication de l’IEC peuvent faire
l’objet de droits de brevet. L’IEC ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits
de brevets et de ne pas avoir signalé leur existence.
Cette version consolidée de la Norme IEC officielle et de son amendement a été
préparée pour la commodité de l'utilisateur.
L'IEC 60644 édition 2.1 contient la deuxième édition (2009-08) [documents 32A/267/CDV
et 32A/270/RVC] et son amendement 1 (2019-09) [documents 32A/340/CDV et 32A/343/
RVC].
Dans cette version Redline, une ligne verticale dans la marge indique où le contenu
technique est modifié par l'amendement 1. Les ajouts sont en vert, les suppressions
sont en rouge, barrées. Une version Finale avec toutes les modifications acceptées est
disponible dans cette publication.
– 16 – IEC 60644:2009+AMD1:2019 CSV
IEC 2019
La Norme internationale IEC 60644 a été établie par le sous-comité 32A: Coupe-circuit à
fusibles à haute tension, du comité d'études 32 de l'IEC: Coupe-circuit à fusibles.
Cette deuxième édition constitue une révision technique.
Les changements majeurs par rapport à l’édition précédente sont les suivants:
• mise à jour des références normatives ;
• reprise des figures.
Cette publication a été rédigée selon les Directives ISO/IEC, Partie 2.
Le comité a décidé que le contenu de la publication de base et de son amendement ne sera
pas modifié avant la date de stabilité indiquée sur le site web de l’IEC sous
"http://webstore.iec.ch" dans les données relatives à la publication recherchée. A cette date,
la publication sera
• reconduite,
• supprimée,
• remplacée par une édition révisée, ou
• amendée.
IMPORTANT – Le logo "colour inside" qui se trouve sur la page de couverture de cette
publication indique qu'elle contient des couleurs qui sont considérées comme utiles à
une bonne compréhension de son contenu. Les utilisateurs devraient, par conséquent,
imprimer cette publication en utilisant une imprimante couleur.
IEC 2019
SPÉCIFICATION RELATIVE AUX ÉLEMENTS
DE REMPLACEMENT À HAUTE TENSION DESTINÉS
À DES CIRCUITS COMPRENANT DES MOTEURS
1 Domaine d’application
La présente norme s’applique principalement aux éléments de remplacement utilisés avec
des moteurs à démarrage direct sur des réseaux en courant alternatif à 50 Hz et 60 Hz.
NOTE Lorsque les moteurs sont utilisés avec démarrage indirect, la présente spécification peut également être
appliquée mais il convient de prêter attention au choix du courant assigné de l’élément de remplacement (voir 8.1)
et de consulter le constructeur de l’élément de remplacement.
Les éléments de remplacement répondant à cette spécification sont destinés à supporter les
conditions normales de service et les impulsions de démarrage de moteur. Il convient qu’ils
soient conformes aux exigences de l'IEC 60282-1.
Le but de la présente norme est de normaliser les caractéristiques temps-courant, d’établir
des spécifications d’essais concernant la tenue aux impulsions et de donner des conseils
pour le choix des éléments de remplacement destinés à être utilisés avec des moteurs.
Le présent document s’applique aux éléments de remplacement conformes à l’IEC 60282-1
utilisés avec des moteurs à démarrage direct sur des réseaux en courant alternatif à 50 Hz et
60 Hz.
Les éléments de remplacement répondant au présent document sont destinés à supporter les
conditions normales de service et les impulsions de démarrage de moteur.
L’objet du présent document est de normaliser les caractéristiques temps-courant et d’établir
des exigences d’essais concernant la tenue aux impulsions.
Le présent document s'applique également aux éléments de remplacement utilisés avec des
moteurs fonctionnant avec un démarrage assisté, lorsque le choix du courant assigné de
l’élément de remplacement a été effectué avec un soin approprié (en se fondant sur les
recommandations du 5.2.3 de l’IEC TR 62655:2013 et celles du fabricant de coupe-circuits à
fusibles).
2 Références normatives
Les documents de référence suivants sont indispensables pour l'application du présent
document. Pour les références datées, seule l'édition citée s'applique. Pour les références
non datées, la dernière édition du document de référence s'applique (y compris les éventuels
amendements).
Les documents suivants sont cités dans le texte de sorte qu'ils constituent, pour tout ou partie
de leur contenu, des exigences du présent document. Pour les références datées, seule
l’édition citée s’applique. Pour les références non datées, la dernière édition du document de
référence s'applique (y compris les éventuels amendements).
IEC 60282-1:20052009, Fusibles à haute tension – Partie 1: Fusibles limiteurs de courant
IEC 60262-1:2009/AMD1:2014
IEC TR 62655:2013, Guide explicatif et d'application pour les fusibles à haute tension
– 18 – IEC 60644:2009+AMD1:2019 CSV
IEC 2019
3 Caractéristique temps-courant des éléments de remplacement
Comparés aux fusibles utilisés habituellement pour la protection des systèmes de distribution,
il convient que les fusibles pour la protection des circuits comprenant des moteurs aient:
– un courant de fusion relativement élevé (intervention lente) dans la zone de 10 s de la
caractéristique temps-courant de préarc pour obtenir la tenue maximale au courant de
démarrage du moteur ;
– un courant de fusion relativement bas (intervention rapide) dans la zone au-dessous de
0,1 s pour obtenir la meilleure protection en cas de court-circuit des appareils de
connexion associés, des câbles, des moteurs et de leurs boîtes de raccordement.
C’est pourquoi les caractéristiques temps-courant de préarc des éléments de remplacement
utilisés dans des circuits comprenant des moteurs doivent se placer dans les limites
suivantes:
I ≤100
I / I ≥ 3 pour
n
f n
I >100
I / I ≥ 4 pour
n
f n
0,25
I / I ≤ 20(I 100) pour toutes valeurs de courant assigné
f n n
0,1
où
I est la valeur numérique du courant assigné, exprimé en ampères, des éléments de
n
remplacement;
I / I ≥ 3
I ≤ 100
f r
10 r
pour
I / I ≥ 4
f r I > 100
r
pour
0,25
( )
I / I ≤ 20 I 100
f r r
0,1
pour toutes valeurs de courant assigné
où
I est la valeur numérique du courant assigné, exprimée en ampères, de l’élément de
r
remplacement;
I et I sont les valeurs numériques des courants de préarc, exprimés en ampères,
f f
10 0,1
correspondant respectivement à 10 s et à 0,1 s exprimés en valeur moyenne avec les
tolérances spécifiées en 4.11 de l'IEC 60282-1.
0,25
0,25
Le terme (I 100) (I 100) est introduit pour tenir compte du fait que, sur une gamme
n r
d’éléments de remplacement, les caractéristiques temps-courant de préarc sont divergentes
au voisinage de la zone des temps courts.
4 Facteur K
Facteur définissant une caractéristique de surcharge à laquelle l’élément de remplacement
peut être soumis de manière répétitive et sans détérioration, dans des conditions spécifiées
de démarrage et pour d’autres surcharges de fonctionnement d’un moteur.
IEC 2019
Pour l’application de cette spécification, la valeur de K est choisie à 10 s. Sauf spécification
contraire du constructeur de l’élément de remplacement, elle est applicable de 5 s à 60 s pour
une fréquence de démarrage n’excédant pas six par heure et pour deux démarrages
consécutifs au plus. Pour des conditions différentes de celles spécifiées ci-dessus, par
exemple lorsque les conditions de service impliquent la marche par à-coups, le freinage par
inversion de phases ou des démarrages plus fréquents, il convient de consulter le
constructeur.
La
...










Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...