Fibre-optic communication subsystem test procedures - Part 4-2: Installed cabling plant - Single-mode attenuation and optical return loss measurements

IEC 62180-4-2:2024 is applicable to the measurements of attenuation and optical return loss of an installed optical fibre cabling plant using single-mode fibre. This cabling plant can include single-mode optical fibres, connectors, adapters, splices, and other passive devices. The cabling can be installed in a variety of environments including residential, commercial, industrial and data centre premises, as well as outside plant environments. This document is applicable to all single-mode fibre types including those designated by IEC 60793-2-50 as Class B fibres. The principles of this document can be applied to cabling plants containing branching devices (splitters) and at specific wavelength ranges in situations where passive wavelength selective components are deployed, such as WDM, CWDM and DWDM devices. This document is not intended to apply to cabling plants that include active devices such as fibre amplifiers or dynamic channel equalizers. This third edition cancels and replaces the second edition published in 2014. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
a) addition of the equipment cord method;
b) addition of test limit adjustment related to test cord grades;
c) refinements on measurement uncertainties.

Procédures d’essai des sous-systèmes de télécommunication fibroniques - Partie 4-2: Installations câblées - Mesures de l'affaiblissement de réflexion optique et de l'affaiblissement des fibres unimodales

L'IEC 61280-4-2:2024 s’applique aux mesures de l’affaiblissement et de l’affaiblissement de réflexion optique d’une installation câblée à fibres optiques utilisant des fibres unimodales. Cette installation câblée peut inclure des fibres optiques unimodales, des connecteurs, des adaptateurs, des épissures et d’autres dispositifs passifs. Le câblage peut être installé dans une diversité d’environnements, notamment dans des locaux résidentiels, commerciaux ou industriels et des centres de traitement de données, ainsi que dans des environnements d’installations extérieures. Le présent document s’applique à tous les types de fibres unimodales, y compris celles désignées comme des fibres de Classe B par l’IEC 60793-2-50. Les principes du présent document peuvent s’appliquer aux installations câblées contenant des dispositifs de commutation (répartiteurs) et sur des plages de longueurs d’onde spécifiques, dans des situations dans lesquelles sont déployés des composants passifs sélectifs en longueurs d’onde, par exemple des dispositifs WDM, CWDM et DWDM. Le présent document n’est pas destiné à s’appliquer à des installations câblées qui incluent des dispositifs actifs tels que des amplificateurs à fibres ou des égaliseurs de canaux de transmission dynamiques. Cette troisième édition annule et remplace la deuxième édition parue en 2014. Cette édition constitue une révision technique. Cette édition inclut les modifications techniques majeures suivantes par rapport à l’édition précédente:
a) ajout de la méthode des cordons d’équipement;
b) ajout de l’ajustement de limite d’essai lié aux classes de cordons d’essai;
c) affinements des incertitudes de mesure.

General Information

Status
Published
Publication Date
05-May-2024
Drafting Committee
WG 1 - TC 86/SC 86C/WG 1
Current Stage
PPUB - Publication issued
Start Date
06-May-2024
Completion Date
10-May-2024

Relations

Effective Date
05-Sep-2023

Overview

IEC 61280-4-2:2024 is the third edition of the IEC international standard that defines test procedures for measuring single-mode attenuation and optical return loss (ORL) of an installed optical fibre cabling plant. It covers passive installed elements - single-mode fibres, connectors, adapters, splices and other passive devices - across environments such as residential, commercial, industrial, data centres and outside plant. The standard applies to all single‑mode fibre types (including IEC 60793-2-50 Class B fibres) and addresses scenarios with passive wavelength‑selective components (WDM, CWDM, DWDM and splitters). It explicitly excludes cabling plants containing active devices (e.g., fibre amplifiers or dynamic channel equalizers).

Key topics and technical requirements

  • Measurement methods: Normative methods include one‑cord, two‑cord, three‑cord reference methods, the newly added equipment cord method, OTDR-based procedures and continuous‑wave ORL methods (Method A and B).
  • Reference and test cords: Requirements for launch/receive/substitution cords, connector grades and the impact of test cord choice on results. The 2024 edition introduces test limit adjustment related to test cord grades.
  • Measurement uncertainty: Refined guidance on estimating and reporting uncertainties for attenuation and ORL measurements, including typical uncertainty budgets and examples for different methods.
  • Bi‑directional testing: Guidance on when and how to perform bi‑directional attenuation measurements to reduce uncertainty and account for installation asymmetry.
  • Apparatus and calibration: Specifications for light sources, power meters, OTDRs, test sets for ORL, connector inspection and cleaning, and calibration/traceability expectations.
  • Procedures and documentation: Standardized procedures for making reference measurements (LSPM - light source/power meter - and OCWR methods), performing tests, calculating results, and documenting test data for acceptance and troubleshooting.

Practical applications and users

IEC 61280-4-2:2024 is intended for:

  • Fibre installers and cabling contractors performing acceptance and commissioning tests
  • Data centre operators and premises cabling teams validating installed links
  • Telecommunications and network operators specifying and verifying passive plant performance
  • Test labs and certification bodies performing formal link certification
  • Design and maintenance engineers using OTDR and power‑meter methods for troubleshooting and performance assurance

Typical uses include acceptance testing, compliance verification, performance benchmarking, and diagnosing attenuation or reflection issues that can affect single‑mode fibre links and wavelength‑division multiplexed systems.

Related standards

  • IEC 60793-2-50 - single‑mode fibre classes (referenced for fibre types)
  • Other parts of the IEC 61280 series covering fibre‑optic subsystem test procedures

Keywords: IEC 61280-4-2, single‑mode attenuation, optical return loss, installed cabling plant, fibre‑optic test procedures, OTDR, test cords, measurement uncertainty, equipment cord method.

Standard

IEC 61280-4-2:2024 RLV - Fibre-optic communication subsystem test procedures - Part 4-2: Installed cabling plant - Single-mode attenuation and optical return loss measurements Released:5/6/2024 Isbn:9782832288924

English language
302 pages
sale 15% off
Preview
sale 15% off
Preview
Standard

IEC 61280-4-2:2024 - Fibre-optic communication subsystem test procedures - Part 4-2: Installed cabling plant - Single-mode attenuation and optical return loss measurements Released:5/6/2024 Isbn:9782832287897

English and French language
190 pages
sale 15% off
Preview
sale 15% off
Preview

Frequently Asked Questions

IEC 61280-4-2:2024 is a standard published by the International Electrotechnical Commission (IEC). Its full title is "Fibre-optic communication subsystem test procedures - Part 4-2: Installed cabling plant - Single-mode attenuation and optical return loss measurements". This standard covers: IEC 62180-4-2:2024 is applicable to the measurements of attenuation and optical return loss of an installed optical fibre cabling plant using single-mode fibre. This cabling plant can include single-mode optical fibres, connectors, adapters, splices, and other passive devices. The cabling can be installed in a variety of environments including residential, commercial, industrial and data centre premises, as well as outside plant environments. This document is applicable to all single-mode fibre types including those designated by IEC 60793-2-50 as Class B fibres. The principles of this document can be applied to cabling plants containing branching devices (splitters) and at specific wavelength ranges in situations where passive wavelength selective components are deployed, such as WDM, CWDM and DWDM devices. This document is not intended to apply to cabling plants that include active devices such as fibre amplifiers or dynamic channel equalizers. This third edition cancels and replaces the second edition published in 2014. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) addition of the equipment cord method; b) addition of test limit adjustment related to test cord grades; c) refinements on measurement uncertainties.

IEC 62180-4-2:2024 is applicable to the measurements of attenuation and optical return loss of an installed optical fibre cabling plant using single-mode fibre. This cabling plant can include single-mode optical fibres, connectors, adapters, splices, and other passive devices. The cabling can be installed in a variety of environments including residential, commercial, industrial and data centre premises, as well as outside plant environments. This document is applicable to all single-mode fibre types including those designated by IEC 60793-2-50 as Class B fibres. The principles of this document can be applied to cabling plants containing branching devices (splitters) and at specific wavelength ranges in situations where passive wavelength selective components are deployed, such as WDM, CWDM and DWDM devices. This document is not intended to apply to cabling plants that include active devices such as fibre amplifiers or dynamic channel equalizers. This third edition cancels and replaces the second edition published in 2014. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) addition of the equipment cord method; b) addition of test limit adjustment related to test cord grades; c) refinements on measurement uncertainties.

IEC 61280-4-2:2024 is classified under the following ICS (International Classification for Standards) categories: 33.180.01 - Fibre optic systems in general. The ICS classification helps identify the subject area and facilitates finding related standards.

IEC 61280-4-2:2024 has the following relationships with other standards: It is inter standard links to IEC 61280-4-2:2014. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.

You can purchase IEC 61280-4-2:2024 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of IEC standards.

Standards Content (Sample)


IEC 61280-4-2 ®
Edition 3.0 2024-05
REDLINE VERSION
INTERNATIONAL
STANDARD
colour
inside
Fibre- optic communication subsystem test procedures –
Part 4-2: Installed cable cabling plant – Single-mode attenuation and optical
return loss measurements
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC
copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or
your local IEC member National Committee for further information.

IEC Secretariat Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform IEC Products & Services Portal - products.iec.ch
The advanced search enables to find IEC publications by a Discover our powerful search engine and read freely all the
variety of criteria (reference number, text, technical publications previews, graphical symbols and the glossary.
committee, …). It also gives information on projects, replaced With a subscription you will always have access to up to date
and withdrawn publications. content tailored to your needs.

IEC Just Published - webstore.iec.ch/justpublished
Electropedia - www.electropedia.org
Stay up to date on all new IEC publications. Just Published
The world's leading online dictionary on electrotechnology,
details all new publications released. Available online and once
containing more than 22 500 terminological entries in English
a month by email.
and French, with equivalent terms in 25 additional languages.

Also known as the International Electrotechnical Vocabulary
IEC Customer Service Centre - webstore.iec.ch/csc
(IEV) online.
If you wish to give us your feedback on this publication or need

further assistance, please contact the Customer Service
Centre: sales@iec.ch.
IEC 61280-4-2 ®
Edition 3.0 2024-05
REDLINE VERSION
INTERNATIONAL
STANDARD
colour
inside
Fibre- optic communication subsystem test procedures –
Part 4-2: Installed cable cabling plant – Single-mode attenuation and optical
return loss measurements
INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
ICS 33.100.01 ISBN 978-2-8322-8892-4
– 2 – IEC 61280-4-2:2024 RLV © IEC 2024
CONTENTS
FOREWORD . 8
INTRODUCTION . 10
1 Scope . 11
2 Normative references . 11
3 Terms, definitions, graphical symbols and abbreviated terms. 12
3.1 Terms and definitions . 12
3.2 Graphical symbols . 15
3.3 Abbreviated terms . 16
4 Measurement methods . 17
4.1 General . 17
4.1.1 Document structure . 17
4.1.2 Attenuation . 17
4.1.3 Optical return loss . 18
4.2 Cabling configurations and applicable test methods . 18
4.2.1 Cabling configurations and applicable test methods for attenuation
measurements . 18
4.2.2 Cabling configurations and applicable test methods for optical return
loss measurements . 23
5 Overview of uncertainties for attenuation measurements . 23
5.1 General . 23
5.2 Sources of significant uncertainties . 24
5.3 Consideration of the power meter . 24
5.4 Consideration of test cord and connector grade . 24
5.4.1 General . 24
5.4.2 Mode field diameter variation . 24
5.5 Reflections from other interfaces. 25
5.6 Optical source . 25
5.7 Output power reference . 25
4.3.6 Received power reference .
5.8 Bi-directional measurements . 25
5.9 Typical uncertainties for attenuation methods A, B, C, and D . 25
5.10 Typical uncertainty values for single-mode attenuation testing for method E . 27
6 Apparatus . 28
6.1 General . 28
6.2 Light source . 28
6.2.1 Stability . 28
6.2.2 Spectral characteristics . 28
6.3 Launch cord . 29
6.4 Receive or tail cords . 29
6.5 Substitution cord . 29
6.6 Power meter – LSPM methods only. 30
6.7 OTDR apparatus . 30
6.8 Return loss test set . 30
6.9 Connector end-face cleaning and inspection equipment . 31
6.10 Adapters . 32
7 Procedures . 32
7.1 General . 32

7.2 Common procedures . 32
7.2.1 Care of the test cords . 32
7.2.2 Make reference measurements (LSPM and OCWR methods only) . 32
7.2.3 Inspect and clean the ends of the fibres in the cabling . 32
7.2.4 Make the measurements . 33
7.2.5 Make the calculations . 33
7.3 Calibration . 33
7.4 Safety . 33
8 Calculations . 33
9 Documentation . 33
9.1 Information for each test . 33
9.2 Information to be made available . 34
Annex A (normative) One-cord reference method . 35
A.1 Applicability of test method . 35
A.2 Apparatus . 35
A.3 Procedure . 35
A.4 Calculation . 36
A.5 Components of reported attenuation . 37
Annex B (normative) Three-cord reference method . 38
B.1 Applicability of test method . 38
B.2 Apparatus . 38
B.3 Procedure . 38
B.4 Calculations . 40
B.5 Components of reported attenuation . 40
Annex C (normative) Two-cord reference method . 42
C.1 Applicability of test method . 42
C.2 Apparatus . 42
C.3 Procedure . 42
C.4 Calculations . 44
C.5 Components of reported attenuation . 44
Annex D (normative) Equipment cord method . 46
D.1 Applicability of the test method . 46
D.2 Apparatus . 46
D.3 Procedure . 46
D.4 Calculation . 47
D.5 Components of reported attenuation . 48
Annex E (normative) Optical time domain reflectometer . 49
E.1 Applicability of test method . 49
E.2 Apparatus . 49
E.2.1 General . 49
E.2.2 OTDR . 49
E.2.3 Test cords . 49
E.3 Procedure (test method) . 50
E.4 Calculation of attenuation . 51
E.4.1 General . 51
E.4.2 Connection location . 52
E.4.3 Definition of the power levels F and F . 54
1 2
E.4.4 Alternative calculation. 56

– 4 – IEC 61280-4-2:2024 RLV © IEC 2024
E.5 Calculation of optical return loss . 58
E.6 Calculation of reflectance for discrete components . 60
E.7 OTDR uncertainties . 62
Annex F (normative) Continuous wave optical return loss measurement – Method A. 63
F.1 Applicability of test method . 63
F.2 Apparatus . 63
F.2.1 General . 63
F.2.2 Light source . 63
F.2.3 Branching device or coupler . 63
F.2.4 Power meters . 64
F.2.5 Connector interface . 64
F.2.6 Low reflection termination . 64
F.3 Procedure . 64
F.3.1 Test set characterization. 64
F.3.2 Measurement procedure . 66
F.3.3 Calculations . 66
E.3.4 Measurement uncertainty.
Annex G (normative) Continuous wave optical return loss measurement – Method B . 68
G.1 Applicability of test method . 68
G.2 Apparatus . 68
G.2.1 General requirements . 68
G.2.2 Known reflectance termination . 69
G.3 Procedure . 69
G.3.1 Set-up characterization . 69
G.3.2 Measurement procedure . 70
G.3.3 Calculation . 70
F.3.4 Measurement uncertainty.
Annex G (informative) Measurement uncertainty examples .
G.1 Reduction of uncertainty by using reference grade terminations and related
issues .
G.1.1 Motivations for using reference grade terminations on test cords .
G.1.2 Adjusting acceptance limits to allow for different expected losses when
using reference grade and standard grade connectors .
G.2 Estimation of the measurement uncertainties .
G.2.1 Measurement uncertainty.
G.2.2 Uncertainty due to the instrument .
G.2.3 Uncertainty due to the source .
G.2.4 Uncertainty due to the device under test .
G.2.5 Example of uncertainty accumulation using a single power meter .
G.2.6 Example of uncertainty accumulation using two power meters .
Annex H (normative) On the use of reference-grade test cords . 78
H.1 General . 78
H.2 Practical configurations and assumptions. 78
H.2.1 Component specifications . 78
H.2.2 Conventions . 79
H.2.3 Reference planes . 79
H.3 Impact of using reference-grade test cords for recommended LSPM methods . 80
H.4 Examples for LSPM measurements . 80
H.4.1 Example 1 (configuration A, one-cord method, Annex A) . 80

H.4.2 Example 2 (configuration B, three-cord method, Annex B) . 81
H.4.3 Example 3 (configuration C, two-cord method, Annex C) . 81
H.4.4 Example 4 – Long haul system (one-cord reference method) . 82
H.5 Impact of using reference-grade test cords for different configurations using
the OTDR test method . 82
H.5.1 Cabling configurations A, B and C . 82
H.5.2 Cabling configuration D . 83
Annex I (informative) OTDR configuration information . 85
I.1 Introductory remarks . 85
I.2 Fundamental parameters that define the operational capability of an OTDR . 86
I.2.1 Dynamic range . 86
I.2.2 Dynamic margin . 86
I.2.3 Pulse width . 86
I.2.4 Averaging time . 86
I.2.5 Dead zone . 86
I.3 Other parameters . 87
I.3.1 Index of refraction . 87
I.3.2 Measurement range . 87
I.3.3 Distance sampling . 87
I.4 Other measurement configurations . 87
I.4.1 General . 87
I.4.2 Macrobend attenuation measurement . 87
I.4.3 Splice attenuation measurement . 90
I.4.4 Measurement with high reflection connectors or short length cabling . 90
I.4.5 Ghost . 94
I.5 More on the measurement method . 96
I.6 Bi-directional measurement . 98
I.7 OTDR bi-directional trace analysis . 98
I.8 Non-recommended practices. 99
I.8.1 Measurement without tail cord . 99
I.8.2 Two cursors measurement . 99
Annex J (informative) Test cord attenuation verification . 101
J.1 Introductory remarks . 101
J.2 Apparatus . 101
J.3 Procedure . 101
J.3.1 General . 101
J.3.2 Test cord verification for the one-cord and two-cord reference test
methods when using non-pinned or unpinned and non-plug or socket
style connectors . 102
J.3.3 Test cord verification for the one-cord and two-cord reference test
methods using pinned-to-unpinned or plug-to-socket style connectors . 103
J.3.4 Test cord verification for the three-cord reference test method using
non-pinned or unpinned and non-plug or socket style connectors . 105
J.3.5 Test cord verification for the three-cord reference test method using
pinned-to-unpinned or plug-to-socket style connectors . 107
Annex K (informative) Spectral attenuation measurement . 109
K.1 Applicability of test method . 109
K.2 Apparatus . 109
K.2.1 Broadband light source . 109
K.2.2 Optical spectrum analyser . 109

– 6 – IEC 61280-4-2:2024 RLV © IEC 2024
K.3 Procedure . 110
K.3.1 Reference scan . 110
K.3.2 Measurement scan . 110
K.4 Calculations . 110
Bibliography . 111

Figure 1 – Connector symbols . 15
Figure 2 – Symbol for cabling under test . 16
Figure 3 – Configuration A – Start and end of measured losses in reference test
method .
Figure 4 – Configuration B – Start and end of measured losses in reference test
method .
Figure 5 – Configuration C – Start and end of measured losses in reference test
method .
Figure 3 – Configuration A – Start and end of measured attenuations in RTM . 20
Figure 4 – Configuration B – Start and end of measured attenuations in RTM . 21
Figure 5 – Configuration C – Start and end of measured attenuations in RTM . 21
Figure 6 – Configuration D – Start and end of measured attenuations in RTM . 22
Figure 7 – Typical OTDR schematic diagram . 30
Figure 8 – Illustration of return loss test set . 31
Figure A.1 – One-cord reference measurement . 36
Figure A.2 – One-cord test measurement . 36
Figure B.1 – Three-cord reference measurement . 39
Figure B.2 – Three-cord test measurement . 40
Figure C.1 – Two-cord reference measurement. 43
Figure C.2 – Two-cord test measurement. 43
Figure C.3 – Two-cord test measurement for plug-to-socket style connectors . 44
Figure D.1 – Reference measurement . 47
Figure D.2 – Test measurement . 47
Figure E.1 – Test measurement for OTDR method D . 51
Figure E.2 – Location of the cabling under test ports . 53
Figure E.3 – Graphic construction of F and F . 55
1 2
Figure E.4 – Graphic construction of F , F , F and F . 57
1 11 21 2
Figure E.5 – Graphic representation of OTDR ORL measurement . 60
Figure E.6 – Graphic representation of reflectance measurement . 61
Figure F.1 – Return loss test set illustration . 63
Figure F.2 – Measurement of the system internal attenuation P . 65
ref2
Figure F.3 – Measurement of the system internal attenuation P . 65
ref1
Figure F.4 – Measurement of the system reflected power P . 65
rs
Figure F.5 – Measurement of the input power P . 66
in
Figure F.6 – Measurement of the reflected power P . 66
r
Figure G.1 – Return loss test set illustration . 68
Figure G.2 – Measurement of P with reflections suppressed . 69
rs
Figure G.3 – Measurement of P with reference reflector . 69
ref
Figure G.4 – Measurement of the system reflected power P . 70
rs
Figure G.5 – Measurement of the reflected power P . 70
r
Figure H.1 – Cabling configurations A, B and C tested with the OTDR method . 82
Figure H.2 – Cabling configuration D tested with the OTDR method . 84
Figure I.1 – Splice and macrobend attenuation measurement . 89
Figure I.2 – Attenuation measurement with high reflection connectors . 91
Figure I.3 – Attenuation measurement of a short length cabling . 93
Figure I.4 – OTDR trace with ghost . 95
Figure I.5 – Cursor positioning . 97
Figure I.6 – Bi-directional OTDR trace display . 99
Figure I.7 – Bi-directional OTDR trace loss attenuation analysis . 99
Figure J.1 – Obtaining reference power level P . 103
Figure J.2 – Obtaining power level P . 103
Figure J.3 – Obtaining reference power level P . 104
Figure J.4 – Obtaining power level P . 104
Figure J.5 – Obtaining reference power level P . 105
Figure J.6 – Obtaining power level P . 105
Figure J.7 – Obtaining reference power level P . 106
Figure J.8 – Obtaining power level P . 107
Figure J.9 – Obtaining power level P . 107
Figure J.10 – Obtaining reference power level P . 108
Figure J.11 – Obtaining power level P . 108
Figure K.1 – Result of spectral attenuation measurement . 110

Table 1 – Cabling configurations . 18
Table 2 – Test methods and configurations . 23
Table 3 – Test limit adjustment and uncertainty related to test cord connector grade . 24
Table 4 – Uncertainty for given fibre length and attenuation at
1 310 nm, 1 550 nm and 1 625 nm . 26
Table 5 – Uncertainty for a given fibre length at 1 310 nm and 1 550 nm using an

OTDR . 27
Table 6 – Spectral requirements . 29
Table E.1 – Typical launch and tail cord lengths . 50
Table H.1 – Expected attenuation for examples . 79
Table H.2 – Test limit adjustment when using reference-grade test cords . 80
Table H.3 – Test limit adjustment when using reference-grade test cords – OTDR test
method . 83
Table I.1 – Example of effective group index of refraction values . 87

– 8 – IEC 61280-4-2:2024 RLV © IEC 2024
INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
FIBRE-OPTIC COMMUNICATION SUBSYSTEM TEST PROCEDURES –

Part 4-2: Installed cable cabling plant –
Single-mode attenuation and optical return loss measurements

FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international
co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and
in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports,
Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their
preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with
may participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for
Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence between
any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in
respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which
may be required to implement this document. However, implementers are cautioned that this may not represent
the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC
shall not be held responsible for identifying any or all such patent rights.
This redline version of the official IEC Standard allows the user to identify the changes
made to the previous edition IEC 61280-4-2:2014. A vertical bar appears in the margin
wherever a change has been made. Additions are in green text, deletions are in
strikethrough red text.
IEC 61280-4-2 has been prepared by subcommittee 86C: Fibre optic systems and active
devices, of IEC technical committee 86: Fibre optics. It is an International Standard.
This third edition cancels and replaces the second edition published in 2014. This edition
constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous
edition:
a) addition of the equipment cord method;
b) addition of test limit adjustment related to test cord grades;
c) refinements on measurement uncertainties.
The text of this International Standard is based on the following documents:
Draft Report on voting
86C/1912/FDIS 86C/1916/RVD
Full information on the voting for its approval can be found in the report on voting indicated in
the above table.
The language used for the development of this International Standard is English.
This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in
accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available
at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are
described in greater detail at www.iec.ch/publications.
A list of all parts in the IEC 61280 series, published under the general title Fibre optic
communication subsystem test procedures, can be found on the IEC website.
The committee has decided that the contents of this document will remain unchanged until the
stability date indicated on the IEC website under webstore.iec.ch in the data related to the
specific document. At this date, the document will be
• reconfirmed,
• withdrawn, or
• revised.
IMPORTANT – The "colour inside" logo on the cover page of this document indicates
that it contains colours which are considered to be useful for the correct understanding
of its contents. Users should therefore print this document using a colour printer.

– 10 – IEC 61280-4-2:2024 RLV © IEC 2024
INTRODUCTION
This second edition of IEC 61280-4-2 for testing single-mode cable plant follows on from the
second edition of IEC 61280-4-1, dealing with multimode cable plants.
This document is part of a series of IEC standards for measurements of installed fibre optic
cabling plants. This document is applicable for the measurement of installed single-mode fibres.
Cabling design standards such as ISO/IEC 11801-1 for commercial premises, ISO/IEC 24702
for industrial premises, ISO/IEC 24764 for data centres and ISO/IEC 15018 for residential
cabling contain specifications provide general requirements for this type of cabling. These
standards support cabling lengths of up to 2 km for commercial premises and data centres and
up to 10 km for industrial premises. ISO/IEC 14763-3, which supports these design standards,
makes reference to the test methods of this standard ISO/IEC 11801-1, normatively references
IEC 61280-4-2.
Various recommendations from ITU-T have requirements for longer distance applications,
including short haul (40 km), long haul (80 km), and ultra-long haul (160 km). The testing of
cable cabling plant for these applications is covered in ITU-T Recommendation G.650.3, which
refers to the test methods of this document.

FIBRE-OPTIC COMMUNICATION SUBSYSTEM TEST PROCEDURES –

Part 4-2: Installed cable cabling plant –
Single-mode attenuation and optical return loss measurements

1 Scope
This part of IEC 61280 is applicable to the measurements of attenuation and optical return loss
of an installed optical fibre cable cabling plant using single-mode fibre. This cable cabling plant
can include single-mode optical fibres, connectors, adapters, splices, and other passive
devices. The cabling may can be installed in a variety of environments including residential,
commercial, industrial and data centre premises, as well as outside plant environments.
This document may be applied is applicable to all single-mode fibre types including those
designated by IEC 60793-2-50 as Class B fibres.
The principles of this document may can be applied to cable cabling plants containing branching
devices (splitters) and at specific wavelength ranges in situations where passive wavelength
selective components are deployed, such as WDM, CWDM and DWDM devices.
This document is not intended to apply to cable cabling plants that include active devices such
as fibre amplifiers or dynamic channel equalizers.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies.
For undated references, the latest edition of the referenced document (including any
amendments) applies.
IEC 60793-2-50, Optical fibres – Part 2-50: Product specifications – Sectional specification for
class B single
...


IEC 61280-4-2 ®
Edition 3.0 2024-05
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
Fibre- optic communication subsystem test procedures –
Part 4-2: Installed cabling plant – Single-mode attenuation and optical return
loss measurements
Procédures d’essai des sous-systèmes de télécommunication fibroniques –
Partie 4-2: Installations câblées – Mesures de l'affaiblissement de réflexion
optique et de l'affaiblissement des fibres unimodales
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC
copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or
your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni
utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et
les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des
questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez
les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Secretariat Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform IEC Products & Services Portal - products.iec.ch
The advanced search enables to find IEC publications by a Discover our powerful search engine and read freely all the
variety of criteria (reference number, text, technical publications previews, graphical symbols and the glossary.
committee, …). It also gives information on projects, replaced With a subscription you will always have access to up to date
and withdrawn publications. content tailored to your needs.

IEC Just Published - webstore.iec.ch/justpublished
Electropedia - www.electropedia.org
Stay up to date on all new IEC publications. Just Published
The world's leading online dictionary on electrotechnology,
details all new publications released. Available online and once
containing more than 22 500 terminological entries in English
a month by email.
and French, with equivalent terms in 25 additional languages.

Also known as the International Electrotechnical Vocabulary
IEC Customer Service Centre - webstore.iec.ch/csc
(IEV) online.
If you wish to give us your feedback on this publication or need

further assistance, please contact the Customer Service
Centre: sales@iec.ch.
A propos de l'IEC
La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des
Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC
Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l’édition la
plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC -  IEC Products & Services Portal - products.iec.ch
webstore.iec.ch/advsearchform Découvrez notre puissant moteur de recherche et consultez
La recherche avancée permet de trouver des publications IEC gratuitement tous les aperçus des publications, symboles
en utilisant différents critères (numéro de référence, texte, graphiques et le glossaire. Avec un abonnement, vous aurez
comité d’études, …). Elle donne aussi des informations sur les toujours accès à un contenu à jour adapté à vos besoins.
projets et les publications remplacées ou retirées.

Electropedia - www.electropedia.org
IEC Just Published - webstore.iec.ch/justpublished
Le premier dictionnaire d'électrotechnologie en ligne au monde,
Restez informé sur les nouvelles publications IEC. Just
avec plus de 22 500 articles terminologiques en anglais et en
Published détaille les nouvelles publications parues.
français, ainsi que les termes équivalents dans 25 langues
Disponible en ligne et une fois par mois par email.
additionnelles. Egalement appelé Vocabulaire

Electrotechnique International (IEV) en ligne.
Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette
publication ou si vous avez des questions contactez-nous:
sales@iec.ch.
IEC 61280-4-2 ®
Edition 3.0 2024-05
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
Fibre- optic communication subsystem test procedures –

Part 4-2: Installed cabling plant – Single-mode attenuation and optical return

loss measurements
Procédures d’essai des sous-systèmes de télécommunication fibroniques –

Partie 4-2: Installations câblées – Mesures de l'affaiblissement de réflexion

optique et de l'affaiblissement des fibres unimodales

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
COMMISSION
ELECTROTECHNIQUE
INTERNATIONALE
ICS 33.180.01  ISBN 978-2-8322-8789-7

– 2 – IEC 61280-4-2:2024 © IEC 2024
CONTENTS
FOREWORD . 8
INTRODUCTION . 10
1 Scope . 11
2 Normative references . 11
3 Terms, definitions, graphical symbols and abbreviated terms. 12
3.1 Terms and definitions . 12
3.2 Graphical symbols . 14
3.3 Abbreviated terms . 16
4 Measurement methods . 16
4.1 General . 16
4.1.1 Document structure . 16
4.1.2 Attenuation . 17
4.1.3 Optical return loss . 17
4.2 Cabling configurations and applicable test methods . 18
4.2.1 Cabling configurations and applicable test methods for attenuation
measurements . 18
4.2.2 Cabling configurations and applicable test methods for optical return
loss measurements . 22
5 Overview of uncertainties for attenuation measurements . 22
5.1 General . 22
5.2 Sources of significant uncertainties . 22
5.3 Consideration of the power meter . 22
5.4 Consideration of test cord and connector grade . 23
5.4.1 General . 23
5.4.2 Mode field diameter variation . 23
5.5 Reflections from other interfaces. 23
5.6 Optical source . 24
5.7 Output power reference . 24
5.8 Bi-directional measurements . 24
5.9 Typical uncertainties for attenuation methods A, B, C, and D . 24
5.10 Typical uncertainty values for single-mode attenuation testing for method E . 26
6 Apparatus . 26
6.1 General . 26
6.2 Light source . 26
6.2.1 Stability . 26
6.2.2 Spectral characteristics . 27
6.3 Launch cord . 28
6.4 Receive or tail cords . 28
6.5 Substitution cord . 28
6.6 Power meter – LSPM methods only. 28
6.7 OTDR apparatus . 29
6.8 Return loss test set . 29
6.9 Connector end-face cleaning and inspection equipment . 30
6.10 Adapters . 30
7 Procedures . 31
7.1 General . 31
7.2 Common procedures . 31

7.2.1 Care of the test cords . 31
7.2.2 Make reference measurements (LSPM and OCWR methods only) . 31
7.2.3 Inspect and clean the ends of the fibres in the cabling . 31
7.2.4 Make the measurements . 32
7.2.5 Make the calculations . 32
7.3 Calibration . 32
7.4 Safety . 32
8 Calculations . 32
9 Documentation . 32
9.1 Information for each test . 32
9.2 Information to be made available . 33
Annex A (normative) One-cord reference method . 34
A.1 Applicability of test method . 34
A.2 Apparatus . 34
A.3 Procedure . 34
A.4 Calculation . 35
A.5 Components of reported attenuation . 36
Annex B (normative) Three-cord reference method . 37
B.1 Applicability of test method . 37
B.2 Apparatus . 37
B.3 Procedure . 37
B.4 Calculations . 38
B.5 Components of reported attenuation . 38
Annex C (normative) Two-cord reference method . 39
C.1 Applicability of test method . 39
C.2 Apparatus . 39
C.3 Procedure . 39
C.4 Calculations . 41
C.5 Components of reported attenuation . 41
Annex D (normative) Equipment cord method . 42
D.1 Applicability of the test method . 42
D.2 Apparatus . 42
D.3 Procedure . 42
D.4 Calculation . 43
D.5 Components of reported attenuation . 44
Annex E (normative) Optical time domain reflectometer . 45
E.1 Applicability of test method . 45
E.2 Apparatus . 45
E.2.1 General . 45
E.2.2 OTDR . 45
E.2.3 Test cords . 45
E.3 Procedure (test method) . 46
E.4 Calculation of attenuation . 47
E.4.1 General . 47
E.4.2 Connection location . 47
E.4.3 Definition of the power levels F and F . 48
1 2
E.4.4 Alternative calculation. 49
E.5 Calculation of optical return loss . 51

– 4 – IEC 61280-4-2:2024 © IEC 2024
E.6 Calculation of reflectance for discrete components . 53
E.7 OTDR uncertainties . 55
Annex F (normative) Continuous wave optical return loss measurement – Method A. 56
F.1 Applicability of test method . 56
F.2 Apparatus . 56
F.2.1 General . 56
F.2.2 Light source . 56
F.2.3 Branching device or coupler . 56
F.2.4 Power meters . 57
F.2.5 Connector interface . 57
F.2.6 Low reflection termination . 57
F.3 Procedure . 57
F.3.1 Test set characterization. 57
F.3.2 Measurement procedure . 59
F.3.3 Calculations . 59
Annex G (normative) Continuous wave optical return loss measurement – Method B . 61
G.1 Applicability of test method . 61
G.2 Apparatus . 61
G.2.1 General requirements . 61
G.2.2 Known reflectance termination . 61
G.3 Procedure . 62
G.3.1 Set-up characterization . 62
G.3.2 Measurement procedure . 62
G.3.3 Calculation . 63
Annex H (normative) On the use of reference-grade test cords . 64
H.1 General . 64
H.2 Practical configurations and assumptions. 64
H.2.1 Component specifications . 64
H.2.2 Conventions . 65
H.2.3 Reference planes . 65
H.3 Impact of using reference-grade test cords for recommended LSPM methods . 66
H.4 Examples for LSPM measurements . 66
H.4.1 Example 1 (configuration A, one-cord method, Annex A) . 66
H.4.2 Example 2 (configuration B, three-cord method, Annex B) . 67
H.4.3 Example 3 (configuration C, two-cord method, Annex C) . 67
H.4.4 Example 4 – Long haul system (one-cord reference method) . 68
H.5 Impact of using reference-grade test cords for different configurations using
the OTDR test method . 68
H.5.1 Cabling configurations A, B and C . 68
H.5.2 Cabling configuration D . 69
Annex I (informative) OTDR configuration information . 71
I.1 Introductory remarks . 71
I.2 Fundamental parameters that define the operational capability of an OTDR . 72
I.2.1 Dynamic range . 72
I.2.2 Dynamic margin . 72
I.2.3 Pulse width . 72
I.2.4 Averaging time . 72
I.2.5 Dead zone . 72
I.3 Other parameters . 73

I.3.1 Index of refraction . 73
I.3.2 Measurement range . 73
I.3.3 Distance sampling . 73
I.4 Other measurement configurations . 73
I.4.1 General . 73
I.4.2 Macrobend attenuation measurement . 73
I.4.3 Splice attenuation measurement . 74
I.4.4 Measurement with high reflection connectors or short length cabling . 74
I.4.5 Ghost . 76
I.5 More on the measurement method . 77
I.6 Bi-directional measurement . 78
I.7 OTDR bi-directional trace analysis . 79
I.8 Non-recommended practices. 80
I.8.1 Measurement without tail cord . 80
I.8.2 Two cursors measurement . 80
Annex J (informative) Test cord attenuation verification . 81
J.1 Introductory remarks . 81
J.2 Apparatus . 81
J.3 Procedure . 81
J.3.1 General . 81
J.3.2 Test cord verification for the one-cord and two-cord reference test
methods when using non-pinned or unpinned and non-plug or socket
style connectors . 82
J.3.3 Test cord verification for the one-cord and two-cord reference test
methods using pinned-to-unpinned or plug-to-socket style connectors . 83
J.3.4 Test cord verification for the three-cord reference test method using
non-pinned or unpinned and non-plug or socket style connectors . 85
J.3.5 Test cord verification for the three-cord reference test method using
pinned-to-unpinned or plug-to-socket style connectors . 87
Annex K (informative) Spectral attenuation measurement . 89
K.1 Applicability of test method . 89
K.2 Apparatus . 89
K.2.1 Broadband light source . 89
K.2.2 Optical spectrum analyser . 89
K.3 Procedure . 90
K.3.1 Reference scan . 90
K.3.2 Measurement scan . 90
K.4 Calculations . 90
Bibliography . 91

Figure 1 – Connector symbols . 15
Figure 2 – Symbol for cabling under test . 16
Figure 3 – Configuration A – Start and end of measured attenuations in RTM . 19
Figure 4 – Configuration B – Start and end of measured attenuations in RTM . 20
Figure 5 – Configuration C – Start and end of measured attenuations in RTM . 20
Figure 6 – Configuration D – Start and end of measured attenuations in RTM . 21
Figure 7 – Typical OTDR schematic diagram . 29
Figure 8 – Illustration of return loss test set . 30

– 6 – IEC 61280-4-2:2024 © IEC 2024
Figure A.1 – One-cord reference measurement . 35
Figure A.2 – One-cord test measurement . 35
Figure B.1 – Three-cord reference measurement . 37
Figure B.2 – Three-cord test measurement . 38
Figure C.1 – Two-cord reference measurement. 40
Figure C.2 – Two-cord test measurement. 40
Figure C.3 – Two-cord test measurement for plug-to-socket style connectors . 40
Figure D.1 – Reference measurement . 43
Figure D.2 – Test measurement . 43
Figure E.1 – Test measurement for OTDR method . 47
Figure E.2 – Location of the cabling under test ports . 48
Figure E.3 – Graphic construction of F and F . 49
1 2
Figure E.4 – Graphic construction of F , F , F and F . 51
1 11 21 2
Figure E.5 – Graphic representation of OTDR ORL measurement . 53
Figure E.6 – Graphic representation of reflectance measurement . 54
Figure F.1 – Return loss test set illustration . 56
Figure F.2 – Measurement of the system internal attenuation P . 58
ref2
Figure F.3 – Measurement of the system internal attenuation P . 58
ref1
Figure F.4 – Measurement of the system reflected power P . 58
rs
Figure F.5 – Measurement of the input power P . 59
in
Figure F.6 – Measurement of the reflected power P . 59
r
Figure G.1 – Return loss test set illustration . 61
Figure G.2 – Measurement of P with reflections suppressed . 62
rs
Figure G.3 – Measurement of P with reference reflector . 62
ref
Figure G.4 – Measurement of the system reflected power P . 63
rs
Figure G.5 – Measurement of the reflected power P . 63
r
Figure H.1 – Cabling configurations A, B and C tested with the OTDR method . 68
Figure H.2 – Cabling configuration D tested with the OTDR method . 70
Figure I.1 – Splice and macrobend attenuation measurement . 74
Figure I.2 – Attenuation measurement with high reflection connectors . 75
Figure I.3 – Attenuation measurement of a short length cabling . 76
Figure I.4 – OTDR trace with ghost . 77
Figure I.5 – Cursor positioning . 78
Figure I.6 – Bi-directional OTDR trace display . 79
Figure I.7 – Bi-directional OTDR trace attenuation analysis . 80
Figure J.1 – Obtaining reference power level P . 83
Figure J.2 – Obtaining power level P . 83
Figure J.3 – Obtaining reference power level P . 84
Figure J.4 – Obtaining power level P . 84
Figure J.5 – Obtaining reference power level P . 85
Figure J.6 – Obtaining power level P . 85
Figure J.7 – Obtaining reference power level P . 86
Figure J.8 – Obtaining power level P . 87
Figure J.9 – Obtaining power level P . 87
Figure J.10 – Obtaining reference power level P . 88
Figure J.11 – Obtaining power level P . 88
Figure K.1 – Result of spectral attenuation measurement . 90

Table 1 – Cabling configurations . 18
Table 2 – Test methods and configurations . 21
Table 3 – Test limit adjustment and uncertainty related to test cord connector grade . 23
Table 4 – Uncertainty for given fibre length and attenuation at
1 310 nm, 1 550 nm and 1 625 nm . 25
Table 5 – Uncertainty for a given fibre length at 1 310 nm and 1 550 nm using an
OTDR . 26
Table 6 – Spectral requirements . 27
Table E.1 – Typical launch and tail cord lengths . 46
Table H.1 – Expected attenuation for examples . 65
Table H.2 – Test limit adjustment when using reference-grade test cords . 66
Table H.3 – Test limit adjustment when using reference-grade test cords – OTDR test
method . 69
Table I.1 – Example of effective group index of refraction values . 73

– 8 – IEC 61280-4-2:2024 © IEC 2024
INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
FIBRE-OPTIC COMMUNICATION SUBSYSTEM TEST PROCEDURES –

Part 4-2: Installed cabling plant –
Single-mode attenuation and optical return loss measurements

FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international
co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and
in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports,
Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their
preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with
may participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for
Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence between
any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in
respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which
may be required to implement this document. However, implementers are cautioned that this may not represent
the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC
shall not be held responsible for identifying any or all such patent rights.
IEC 61280-4-2 has been prepared by subcommittee 86C: Fibre optic systems and active
devices, of IEC technical committee 86: Fibre optics. It is an International Standard.
This third edition cancels and replaces the second edition published in 2014. This edition
constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous
edition:
a) addition of the equipment cord method;
b) addition of test limit adjustment related to test cord grades;
c) refinements on measurement uncertainties.

The text of this International Standard is based on the following documents:
Draft Report on voting
86C/1912/FDIS 86C/1916/RVD
Full information on the voting for its approval can be found in the report on voting indicated in
the above table.
The language used for the development of this International Standard is English.
This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in
accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available
at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are
described in greater detail at www.iec.ch/publications.
A list of all parts in the IEC 61280 series, published under the general title Fibre optic
communication subsystem test procedures, can be found on the IEC website.
The committee has decided that the contents of this document will remain unchanged until the
stability date indicated on the IEC website under webstore.iec.ch in the data related to the
specific document. At this date, the document will be
• reconfirmed,
• withdrawn, or
• revised.
IMPORTANT – The "colour inside" logo on the cover page of this document indicates
that it contains colours which are considered to be useful for the correct understanding
of its contents. Users should therefore print this document using a colour printer.

– 10 – IEC 61280-4-2:2024 © IEC 2024
INTRODUCTION
This document is part of a series of IEC standards for measurements of installed fibre optic
cabling plants. This document is applicable for the measurement of installed single-mode fibres.
Cabling design standards such as ISO/IEC 11801-1 provide general requirements for this type
of cabling. These standards support cabling lengths of up to 2 km for commercial premises and
data centres and up to 10 km for industrial premises. ISO/IEC 14763-3, which supports
ISO/IEC 11801-1, normatively references IEC 61280-4-2.
Various recommendations from ITU-T have requirements for longer distance applications,
including short haul (40 km), long haul (80 km), and ultra-long haul (160 km). The testing of
cabling plant for these applications is covered in ITU-T Recommendation G.650.3, which refers
to the test methods of this document.

FIBRE-OPTIC COMMUNICATION SUBSYSTEM TEST PROCEDURES –

Part 4-2: Installed cabling plant –
Single-mode attenuation and optical return loss measurements

1 Scope
This part of IEC 61280 is applicable to the measurements of attenuation and optical return loss
of an installed optical fibre cabling plant using single-mode fibre. This cabling plant can include
single-mode optical fibres, connectors, adapters, splices, and other passive devices. The
cabling can be installed in a variety of environments including residential, commercial, industrial
and data centre premises, as well as outside plant environments.
This document is applicable to all single-mode fibre types including those designated by
IEC 60793-2-50 as Class B fibres.
The principles of this document can be applied to cabling plants containing branching devices
(splitters) and at specific wavelength ranges in situations where passive wavelength selective
components are deployed, such as WDM, CWDM and DWDM devices.
This document is not intended to apply to cabling plants that include active devices such as
fibre amplifiers or dynamic channel equalizers.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies.
For undated references, the latest edition of the referenced document (including any
amendments) applies.
IEC 60825-2, Safety of laser products – Part 2: Safety of optical fibre communication systems
(OFCSs)
IEC 61300-3-35, Fibre optic interconnecting devices a
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...

IEC 61280-4-2:2024は、導入された単モード光ファイバー配線プラントにおける減衰および光学帰還損失の測定に関する標準であり、その適用範囲は非常に広範です。この標準は、単モード光ファイバー、コネクタ、アダプタ、スプライス、およびその他の受動デバイスを含む配線プラントに適用されます。住宅、商業、産業、データセンターなど、多様な環境において設置された配線も含まれます。 このドキュメントは、IEC 60793-2-50によってクラスB光ファイバーとして指定されたすべての単モード光ファイバータイプに対応しており、非常に汎用性の高い標準です。さらに、分岐デバイス(スプリッタ)が含まれる配線プラントや、WDM、CWDM、DWDMデバイスのような受動波長選択コンポーネントが使用される特定の波長範囲においても、その原則が適用可能です。これにより、技術者や管理者は、さまざまな環境条件とニーズに基づいて、標準に従った正確な測定を行うことができます。 この第三版は、2014年に発行された第二版を取り消し、更新した技術的内容を含んでいます。主な技術的変更点には、以下の項目が含まれています。まず、機器コード方法の追加があり、これにより測定の柔軟性が向上しました。次に、試験コードグレードに関連する試験制限調整の追加があり、測定の精度が強化されています。最後に、測定不確かさの洗練が行われており、より信頼性の高い結果を得るための基盤が提供されています。 これらの強化により、IEC 61280-4-2:2024は、単モード光ファイバー配線の減衰および光学帰還損失の測定において、業界標準としての重要性を増しており、信頼性の高い通信インフラの構築に寄与するものです。この標準は、特に新しい技術や複雑な配線が採用される現代の通信環境において、高度な精度と一貫性を提供し続けます。

La norme IEC 61280-4-2:2024, intitulée « Procédures de test des sous-systèmes de communication par fibre optique - Partie 4-2 : Installation de câblage - Mesures d'atténuation et de perte de retour optique », est essentielle pour garantir la performance des systèmes de câblage en fibre optique à mode unique. Son champ d'application est vaste, puisqu'il couvre la mesure de l'atténuation et de la perte de retour optique dans divers environnements, qu'ils soient résidentiels, commerciaux, industriels ou dans des centres de données. Cela en fait une référence incontournable pour les professionnels du secteur cherchant à assurer la fiabilité et l'efficacité des réseaux de communication. Parmi les forces notables de cette norme, on trouve l'inclusion de nouvelles méthodes de mesure, notamment celle relative aux cordons d'équipement, qui enrichit la précision et l'applicabilité des tests. De plus, l'ajustement des limites de test en relation avec les classes de cordons testés offre une flexibilité supplémentaire aux utilisateurs, permettant d’adapter les méthodes de test aux exigences spécifiques des installations. Les refinements concernant les incertitudes de mesure fournissent également une base solide pour améliorer la confiance dans les résultats obtenus. La norme est pertinente non seulement pour les types de fibre à mode unique, mais elle s'applique aussi à des dispositifs passifs tels que les connecteurs, les adaptateurs et les épissures, ce qui démontre sa capacité à s'adapter à différentes configurations de câblage. En introduisant des améliorations techniques significatives par rapport à son édition précédente, publiée en 2014, cette troisième édition constitue un pas en avant crucial pour le secteur. En somme, la norme IEC 61280-4-2:2024 est un outil indispensable pour ceux qui travaillent avec des réseaux de fibre optique, fournissant des directives claires et actualisées pour faire face aux défis d'installation et de test.

IEC 61280-4-2:2024 표준은 단일모드 광섬유 케이블링 플랜트의 감쇠 및 광학 반사 손실 측정에 대한 절차를 제공하는 중요한 문서입니다. 이 문서는 주거, 상업, 산업 및 데이터 센터 환경을 포함한 다양한 설치 환경에서 적용 가능하며, 사용되는 단일모드 광섬유의 유형에 제한이 없습니다. 품질 표준인 IEC 60793-2-50에 따라 Class B 섬유로 지정된 유형도 포함되어 있습니다. 이 표준은 광 섬유 커넥터, 어댑터, 접속편 및 기타 수동 장치를 포함한 설치된 케이블링 시스템에 적용될 수 있으며, 분기 장치(스플리터)가 포함된 케이블링 플랜트에서도 그 원칙이 적용됩니다. 특히 WDM, CWDM 및 DWDM과 같은 수동 파장 선택 구성 요소가 배치된 경우에도 적용 가능하다는 점에서 광범위한 유용성을 보여줍니다. IEC 61280-4-2:2024는 기술 개정을 통해 이전 버전보다 향상된 측정 방법을 제시하고 있으며, 장비 코드 방법의 추가와 테스트 코드 등급 관련 테스트 한도 조정이 포함되어 있습니다. 이러한 정세는 기존 버전에서의 측정 불확실성을 세분화시켜, 사용자들이 보다 정확한 측정을 수행할 수 있도록 돕습니다. 따라서 이 문서는 단일모드 광섬유의 표준화된 측정 방법을 명확히 제시하여 설치된 케이블링 플랜트의 성능을 평가하는 데 있어 중요한 역할을 합니다.

Die Norm IEC 61280-4-2:2024 befasst sich mit den Messverfahren für die Dämpfung und den optischen Rückflussverlust von installierten Glasfaserverkabelungen, die Single-Mode-Fasern nutzen. Die Relevanz dieser Norm liegt in ihrer umfassenden Anwendbarkeit auf verschiedene Umgebungen, einschließlich Wohn-, Geschäfts-, Industrie- und Rechenzentrumsräumen sowie Außenanlagen. Dies stellt sicher, dass die Betreiber und Techniker über klare Richtlinien verfügen, um die Leistungsfähigkeit ihrer Netzwerke zuverlässig zu bewerten. Stärken der IEC 61280-4-2:2024 umfassen die Berücksichtigung aller Typen von Single-Mode-Fasern, einschließlich der gemäß IEC 60793-2-50 als Klasse B klassifizierten Fasern. Zudem werden die Messprincipien auch für Verkabelungsanlagen, die Verzweigungsgeräte (Splitter) enthalten, sowie in speziellen Wellenlängenbereichen angewendet, in denen passive wellenlängenselektive Komponenten eingesetzt werden, wie bei WDM-, CWDM- oder DWDM-Geräten. Die vorliegende dritte Ausgabe ist eine technische Überarbeitung und bringt wesentliche Änderungen im Vergleich zur vorherigen Auflage von 2014 mit sich. Zu den hervorzuhebenden Neuerungen gehören die Einführung der Messmethode für Ausrüstungskabel, Anpassungen der Testgrenzwerte in Bezug auf Testkabelklassen sowie Verfeinerungen bei den Messunsicherheiten. Diese Anpassungen verbessern nicht nur die Genauigkeit der Messungen, sondern auch die allgemeine Effizienz der Tests, was die Norm besonders relevant für Fachleute in der Telekommunikationsbranche macht. Durch die Standards und Richtlinien in diesem Dokument wird sichergestellt, dass Installateure und Prüfingenieure eine einheitliche Basis für die Überprüfung und Wartung ihrer Single-Mode-Glasfaserverkabelungen haben. In diesem Kontext zeigt sich, dass IEC 61280-4-2:2024 nicht nur technische Präzision bietet, sondern auch maßgeblich zur Gewährleistung der Netzwerkqualität und -zuverlässigkeit beiträgt.

Die Norm IEC 61280-4-2:2024 bietet einen umfassenden Rahmen für die Messung der Dämpfung und der optischen Rückreflexion in installierten optischen Kabelanlagen, die mit Einzelmodusfasern arbeiten. Sie deckt eine Vielzahl von Komponenten ab, darunter Einzelmodusoptikfasern, Steckverbinder, Adapter, Spleiße und andere passive Geräte. Dies macht die Norm besonders relevant für unterschiedlichste Anwendungsbereiche wie Wohn- und Geschäftsräume, industrielle Anwendungen und Rechenzentren, sowie für Außenanlagen. Ein wesentlicher Vorteil der IEC 61280-4-2:2024 ist ihre Flexibilität, die es ermöglicht, die Prinzipien auch auf Kabelanlagen anzuwenden, die Verzweigungsgeräte, wie Splitter, enthalten. Zudem werden spezifische Wellenlängenbereiche berücksichtigt, die für passive, wellenlängenabhängige Komponenten wie WDM-, CWDM- und DWDM-Geräte von Bedeutung sind. Dies erweitert den Anwendungsbereich der Norm erheblich und stellt sicher, dass sie in modernen Netzwerkinfrastrukturen breiten Einsatz findet. Die Überarbeitung in dieser dritten Ausgabe, die die zweite Ausgabe von 2014 ersetzt, bringt bedeutende technische Änderungen mit sich. Dazu gehört die Einführung des Equipment Cord-Methodenansatzes, der die Durchführung von Messungen unter verschiedenen Bedingungen erleichtert. Darüber hinaus werden Anpassungen der Testgrenzen in Bezug auf die Qualitätsstufen von Testkabeln vorgenommen, was zu präziseren und zuverlässigeren Messergebnissen führt. Die Verfeinerung der Messunsicherheiten trägt zur Verbesserung der Messgenauigkeit bei und sorgt dafür, dass die Norm den aktuellen Anforderungen der Branche gerecht wird. Insgesamt bietet die IEC 61280-4-2:2024 eine solide Grundlage für Fachleute, die im Bereich der optischen Kommunikation tätig sind. Ihre klare Definition des Anwendungsgebiets und die Berücksichtigung aktueller technischer Entwicklungen machen sie zu einem unverzichtbaren Instrument für die Qualitätssicherung und die Aufrechterhaltung hoher Standards in der optischen Verkabelung.

IEC 61280-4-2:2024 표준 문서는 광섬유 통신 시스템의 설치된 배선 공장을 위한 단일 모드 감쇠 및 광학 반사 손실 측정 절차에 대한 포괄적인 지침을 제공합니다. 이 표준은 단일 모드 광섬유를 사용하는 설치된 배선 공장의 감쇠와 광학 반사 손실의 측정에 적용됩니다. 해당 배선 공장은 단일 모드 광섬유, 커넥터, 어댑터, 스플라이스 및 기타 수동 장치를 포함할 수 있으며, 주거, 상업, 산업, 데이터 센터 등의 다양한 환경과 외부 공장 환경에도 설치 가능합니다. IEC 61280-4-2:2024는 IEC 60793-2-50에 따라 B 클래스로 지정된 모든 단일 모드 광섬유 유형에 적용가능하며, 분기 장치(스플리터)를 포함하는 배선 공장 및 WDM, CWDM, DWDM 장치와 같은 수동 파장 선택 구성 요소가 배포된 특정 파장 범위에서도 원칙을 적용할 수 있습니다. 이 표준은 광섬유 앰프나 동적 채널 이퀄라이저와 같은 능동 장치를 포함하는 배선 공장에는 적용되지 않으며, 이는 명확한 적용 범위를 제공하는 강점으로 작용합니다. 이 표준의 최근 개정판인 제3판은 2014년에 발표된 제2판을 대체하며, 기술적으로 중요한 여러 변화가 포함되어 있습니다. 주요 기술 변경 사항으로는 장비 코드 방법의 추가, 테스트 코드 등급과 관련된 테스트 한계 조정의 추가, 측정 불확실성에 대한 정제 등이 있습니다. 이러한 개선 사항들은 측정의 정확성과 신뢰성을 높이는 데 기여하여, 사용자에게 더 나은 결과를 제공할 것으로 기대됩니다. 결론적으로, IEC 61280-4-2:2024 표준은 단일 모드 광섬유를 사용한 설치된 배선 공장의 신뢰할 수 있는 평가를 위한 중요한 문서로, 다양한 환경에서의 적용 가능성과 개선된 측정 절차로 인해 광통신 분야의 전문가들에게 높은 관련성을 지니고 있습니다.

IEC 61280-4-2:2024は、単一モードファイバを使用したインストールされた光ファイバ配線プラントの減衰および光学帰還損失の測定に関する標準であり、その範囲は広範です。この標準は、単一モード光ファイバ、コネクタ、アダプタ、スプライス、その他の受動デバイスを含む光ファイバ配線プラントに適用されます。さらに、住宅、商業、産業、データセンターの施設や屋外での環境にも対応しており、多様な使用状況に適している点が特筆されます。 この標準の強みは、IEC 60793-2-50でクラスBファイバとして指定されるすべての単一モードファイバタイプに適用可能である点です。また、分岐デバイス(スプリッタ)が含まれる配線プラントや、WDM、CWDM、DWDMデバイスなどの受動波長選択コンポーネントが展開される特定の波長範囲での測定にも対応しています。これにより、ユーザーはより幅広いアプリケーションでの利用が可能となります。 2024年版は、2014年に発行された第2版をキャンセルし、技術的改訂を行っています。この改訂版では、機器コード法の追加、テストコードグレードに関連するテスト制限の調整の追加、測定の不確実性に関する見直しが含まれており、より正確で信頼性の高い測定が実現されています。これらの改良は、ユーザーが光ファイバ配線プラントの性能をより正確に評価できるようにするための重要な進展です。 総じて、IEC 61280-4-2:2024は、光ファイバ通信システムのインストールされた配線プラントの評価において、強力かつ関連性の高い標準を提供しています。

IEC 61280-4-2:2024 presents a comprehensive framework for measuring attenuation and optical return loss in installed optical fibre cabling plants utilizing single-mode fibre. This standard's scope is particularly robust, covering various environments, including residential, commercial, industrial, and data centre settings. It addresses a variety of components linked to single-mode optical fibres, such as connectors, adapters, and splices, which are essential for maintaining optimal performance in varied installation scenarios. One of the key strengths of IEC 61280-4-2:2024 is its inclusivity of all single-mode fibre types, especially those designated by IEC 60793-2-50 as Class B fibres. This broad applicability ensures that the standard can be leveraged across different fibre optics implementations. Moreover, it extends its guidelines to include systems with branching devices like splitters and considerations for specific wavelength ranges using passive wavelength selective components, such as WDM, CWDM, and DWDM devices. However, it is crucial to note that this standard explicitly excludes active devices like fibre amplifiers and dynamic channel equalizers, which clarifies its intended use and helps users focus on passive components. The recent edition of this standard marks a significant revision, as compared to its predecessor from 2014. Notable enhancements include the addition of the equipment cord method, providing a more precise approach to testing, and adjustments pertaining to test limitations based on cord grades, which tailor the procedures to varying levels of cable quality. Furthermore, refinements regarding measurement uncertainties contribute to greater accuracy and reliability in test results. These updates reflect ongoing advancements in fibre-optic technology and the need for standards to evolve accordingly. Overall, IEC 61280-4-2:2024 stands out for its detailed approach to addressing the challenges of measuring single-mode attenuation and optical return loss, thereby reinforcing best practices in the installation and maintenance of optical fibre cabling systems. Its comprehensive nature and focus on both contemporary issues and technical advancements make it a critical reference for professionals in the field of fibre-optic communications.

La norme IEC 61280-4-2:2024 est un document essentiel qui traite des procédures de test pour les systèmes de communication par fibre optique, plus précisément pour les mesures d'atténuation et de perte de retour optique d'un réseau de câblage de fibre optique installé utilisant de la fibre monomode. Son champ d'application couvre un large éventail d'environnements, incluant des installations résidentielles, commerciales, industrielles et des centres de données, ainsi que des environnements extérieurs, ce qui en fait un standard particulièrement pertinent dans le domaine des infrastructures de communication modernes. L'un des points forts de cette norme réside dans son exhaustivité. En effet, elle est applicable à tous les types de fibres monomodes, y compris celles classées B selon la norme IEC 60793-2-50, assurant ainsi une standardisation claire pour les professionnels du secteur. Cette portée élargie garantit que les tests peuvent s'appliquer à divers dispositifs passifs, tels que les connecteurs, adaptateurs et épissures, en plus des fibres elles-mêmes. La norme inclut également des recommandations pour les infrastructures intégrant des dispositifs de branchement tels que des diviseurs, ce qui est essentiel pour les installations complexes qui intègrent des composants sélectifs en longueur d'onde. Cette édition de 2024 représente une révision technique significative par rapport à la précédente de 2014, renforçant ainsi son importance. Elle introduit de nouvelles méthodes, notamment la méthode du cordon d'équipement, et ajuste les limites des tests en lien avec les grades des cordons de test, ce qui améliore la précision et la fiabilité des résultats de mesure. De plus, les refinements concernant les incertitudes de mesure contribuent à une meilleure interprétation des données, offrant ainsi aux professionnels un cadre rigoureux pour évaluer la performance des installations de câblage. En résumé, la norme IEC 61280-4-2:2024 est non seulement un outil indispensable pour les ingénieurs et techniciens travaillant avec des réseaux de fibre optique, mais elle renforce également la sécurité et l'efficacité des installations de câblage en fibre monomode. L'intégration des évolutions techniques et la prise en compte des différents environnements d'installation témoignent de sa pertinence et de son adaptabilité aux besoins du marché actuel.

The IEC 61280-4-2:2024 standard is a comprehensive document that outlines the measurement procedures for attenuation and optical return loss specific to installed optical fibre cabling plants utilizing single-mode fibre. Its scope encompasses a broad range of environments, including residential, commercial, industrial, and data centers, thus ensuring wide applicability across various sectors. This inclusion of diverse environments adds significant relevance to the standard, as it caters to real-world deployment scenarios encountered in fibre-optic communication systems. One of the key strengths of IEC 61280-4-2:2024 lies in its detailed methodology for assessing single-mode optical fibres, connectors, adapters, splices, and related passive components. By accommodating all single-mode fibre types designated by IEC 60793-2-50 as Class B fibres, the standard establishes a clear foundation for measurement accuracy and consistency. Furthermore, the principles articulated in this document have been thoughtfully designed to extend to cabling plants incorporating branching devices, such as splitters and passive wavelength selective components like WDM, CWDM, and DWDM devices, enhancing its practical application in advanced fibre-optic networks. The 2024 edition marks a significant technical revision over its predecessor, introducing critical enhancements such as the equipment cord method and adjustments related to test cord grades. These additions facilitate improved measurement precision and reliability. Moreover, the refinements concerning measurement uncertainties underscore a commitment to uphold the highest standards of accuracy within the fibre-optic testing community. Overall, IEC 61280-4-2:2024 is not only relevant but essential for professionals involved in the installation and testing of single-mode fibre optic communication subsystems. Its comprehensive scope and strengthened methodologies make it a pivotal resource for ensuring the integrity and performance of fibre-optic networks.