Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz)

IEC 62209-1:2016 specifies protocols and test procedures for measurement of the peak spatial-average SAR induced inside a simplified model of the head with defined reproducibility. It applies to certain electromagnetic field (EMF) transmitting devices that are positioned next to the ear, where the radiating structures of the device are in close proximity to the human head, such as mobile phones, cordless phones, certain headsets, etc. These protocols and test procedures provide a conservative estimate with limited uncertainty for the peak-spatial SAR that would occur in the head for a significant majority of people during normal use of these devices. The applicable frequency range is from 300 MHz to 6 GHz. This second edition cancels and replaces the first edition published in 2005. This edition constitutes a technical revision.

Messverfahren für die Beurteilung der spezifischen Absorptionsrate bei der Exposition von Personen gegenüber hochfrequenten Feldern von handgehaltenen und am Körper getragenen schnurlosen Kommunikationsgeräten – Teil 1: Geräte, die in enger Nachbarschaft zum Ohr benutzt werden (Frequenzbereich von 300 MHz bis 6 GHz)

Procédure de mesure pour l'évaluation du débit d'absorption spécifique de l'exposition humaine aux champs radiofréquences produits par les dispositifs de communications sans fil tenus à la main ou portés près du corps - Partie 1: Dispositifs utilisés à proximité de l’oreille (Plage de fréquences de 300 MHz à 6 GHz)

L'IEC 62209-1:2016 spécifie les protocoles et les procédures d'essai pour le mesurage du DAS maximal moyenné induit à l'intérieur d'un modèle simplifié de la tête avec une reproductibilité définie. Elle s'applique à certains dispositifs de communication tels que les téléphones mobiles, les téléphones sans fil, les casques, etc., émettant des champs électromagnétiques (EMF) et qui sont utilisés tenus contre l'oreille, les structures rayonnantes étant proches de la tête. Ces protocoles et procédures d'essai fournissent une estimation prudente avec une incertitude limitée pour le DAS maximal qui se produirait dans la tête pour une grande majorité de personnes lors de l'utilisation normale de ces dispositifs. La plage de fréquences applicable s'étend de 300 MHz à 6 GHz. Cette deuxième édition annule et remplace la première édition parue en 2005. Cette édition constitue une révision technique.

Izpostavljenost ljudi elektromagnetnemu sevanju brezžičnih komunikacijskih naprav, ki se držijo v roki ali pritrdijo na telo, modeli človeka, instrumenti in postopki - 1. del: Postopki za ugotavljanje stopnje specifične absorpcije (SAR) za naprave, ki se uporabljajo v bližini ušesa (frekvenčno območje od 300 MHz do 6 GHz)

Ta del standarda IEC 62209 določa protokole in preskusne postopke za merjenje najvišje prostorsko-povprečne stopnje specifične absorpcije znotraj poenostavljenega modela glave z določeno ponovljivostjo. Uporablja se za nekatere prenosne naprave z elektromagnetnim poljem (EMF), ki so nameščene ob ušesu, pri čemer so sevajoči deli naprave v neposredni bližini uporabnikove glave, kot so mobilni telefoni, brezžični telefoni, nekateri tipi slušalk, itd. Ti protokoli in preskusni postopki zagotavljajo previdno oceno z omejeno negotovostjo glede najvišje prostorske stopnje specifične absorpcije, do katere bi prišlo v glavi za veliko večino uporabnikov naprave med običajno uporabo te naprave. Uporablja se frekvenčni razpon od 300 MHz do 6 GHz.

General Information

Status
Withdrawn
Publication Date
03-Nov-2016
Withdrawal Date
09-Aug-2019
Drafting Committee
IEC/TC 106 - IEC_TC_106
Current Stage
9960 - Withdrawal effective - Withdrawal
Start Date
19-Nov-2024
Completion Date
19-Nov-2024

Relations

Effective Date
29-Jan-2023
Effective Date
03-Mar-2020
Standard

EN 62209-1:2017 - BARVE

English language
228 pages
Preview
Preview
e-Library read for
1 day

Frequently Asked Questions

EN 62209-1:2016 is a standard published by CLC. Its full title is "Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz)". This standard covers: IEC 62209-1:2016 specifies protocols and test procedures for measurement of the peak spatial-average SAR induced inside a simplified model of the head with defined reproducibility. It applies to certain electromagnetic field (EMF) transmitting devices that are positioned next to the ear, where the radiating structures of the device are in close proximity to the human head, such as mobile phones, cordless phones, certain headsets, etc. These protocols and test procedures provide a conservative estimate with limited uncertainty for the peak-spatial SAR that would occur in the head for a significant majority of people during normal use of these devices. The applicable frequency range is from 300 MHz to 6 GHz. This second edition cancels and replaces the first edition published in 2005. This edition constitutes a technical revision.

IEC 62209-1:2016 specifies protocols and test procedures for measurement of the peak spatial-average SAR induced inside a simplified model of the head with defined reproducibility. It applies to certain electromagnetic field (EMF) transmitting devices that are positioned next to the ear, where the radiating structures of the device are in close proximity to the human head, such as mobile phones, cordless phones, certain headsets, etc. These protocols and test procedures provide a conservative estimate with limited uncertainty for the peak-spatial SAR that would occur in the head for a significant majority of people during normal use of these devices. The applicable frequency range is from 300 MHz to 6 GHz. This second edition cancels and replaces the first edition published in 2005. This edition constitutes a technical revision.

EN 62209-1:2016 is classified under the following ICS (International Classification for Standards) categories: 33.060.20 - Receiving and transmitting equipment. The ICS classification helps identify the subject area and facilitates finding related standards.

EN 62209-1:2016 has the following relationships with other standards: It is inter standard links to EN 62209-1:2006, EN IEC/IEEE 62209-1528:2021. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.

You can purchase EN 62209-1:2016 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of CLC standards.

Standards Content (Sample)


SLOVENSKI STANDARD
01-april-2017
1DGRPHãþD
SIST EN 62209-1:2006
,]SRVWDYOMHQRVWOMXGLHOHNWURPDJQHWQHPXVHYDQMXEUH]åLþQLKNRPXQLNDFLMVNLK
QDSUDYNLVHGUåLMRYURNLDOLSULWUGLMRQDWHORPRGHOLþORYHNDLQVWUXPHQWLLQ
SRVWRSNLGHO3RVWRSNL]DXJRWDYOMDQMHVWRSQMHVSHFLILþQHDEVRUSFLMH 6$5 ]D
QDSUDYHNLVHXSRUDEOMDMRYEOLåLQLXãHVD IUHNYHQþQRREPRþMHRG0+]GR
*+]
Human exposure to radio frequency fields from hand-held and body-mounted wireless
communication devices human models, instrumentation, and procedures - Part 1:
Procedure to determine the specific absorption rate (sar) for devices used next to the ear
(frequency range of 300 mhz to 6 ghz)
/
Exposition humaine aux champs radiofréquence produits par les dispositifs de
communications sans fils tenus à la main ou portés près du corps modèles de corps
humain, instrumentation et procédures - Partie 1: Détermination du débit d’absorption
spécifique (das) pour les dispositifs utilisés à proximité de l’oreille (gamme de fréquences
de 300 mhz à 6 ghz)
Ta slovenski standard je istoveten z: EN 62209-1:2016
ICS:
13.280 Varstvo pred sevanjem Radiation protection
33.050.10 Telefonska oprema Telephone equipment
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

EUROPEAN STANDARD EN 62209-1
NORME EUROPÉENNE
EUROPÄISCHE NORM
November 2016
ICS 33.060.20 Supersedes EN 62209-1:2006
English Version
Measurement procedure for the assessment of specific
absorption rate of human exposure to radio frequency fields from
hand-held and body-mounted wireless communication devices -
Part 1: Devices used next to the ear (Frequency range of 300
MHz to 6 GHz)
(IEC 62209-1:2016)
Procédure de mesure pour l'évaluation du débit Sicherheit von Personen in hochfrequenten Feldern von
d'absorption spécifique de l'exposition humaine aux champs handgehaltenen und am Körper getragenen schnurlosen
radiofréquences produits par les dispositifs de Kommunikationsgeräten - Körpermodelle, Messgeräte und -
communications sans fil tenus à la main ou portés près du verfahren - Teil 1: Verfahren zur Bestimmung der
corps - Partie 1: Dispositifs utilisés à proximité de l'oreille spezifischen Absorptionsrate (SAR) von Geräten, die in
(Plage de fréquences de 300 MHz à 6 GHz) enger Nachbarschaft zum Ohr benutzt werden
(IEC 62209-1:2016) (Frequenzbereich von 300 MHz bis 6 GHz)
(IEC 62209-1:2016)
This European Standard was approved by CENELEC on 2016-08-10. CENELEC members are bound to comply with the CEN/CENELEC
Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.
Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC
Management Centre or to any CENELEC member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation
under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the
same status as the official versions.
CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic,
Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia,
Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Turkey and the United Kingdom.

European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung
CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels
© 2016 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.
Ref. No. EN 62209-1:2016 E
European foreword
The text of document 106/361/FDIS, future edition 2 of IEC 62209-1 prepared by IEC/TC 106X
"Methods for the assessment of electric, magnetic and electromagnetic fields associated with human
exposure" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as
The following dates are fixed:
• latest date by which the document has to be (dop) 2017-05-10
implemented at national level by
publication of an identical national
standard or by endorsement
(dow) 2019-08-10
• latest date by which the national
standards conflicting with the
document have to be withdrawn
This document supersedes EN 62209-1:2006.

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such
patent rights.
Endorsement notice
The text of the International Standard IEC 62209-1:2016 was approved by CENELEC as a European
Standard without any modification.
Annex ZA
(normative)
Normative references to international publications
with their corresponding European publications

The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 When an International Publication has been modified by common modifications, indicated by (mod), the relevant
EN/HD applies.
NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here:
www.cenelec.eu
Publication Year Title EN/HD Year

ISO/IEC 17025 2005 General requirements for the competence EN ISO/IEC 17025 2005
of testing and calibration laboratories
ISO/IEC 17043 2010 Conformity assessment - General EN ISO/IEC 17043 2010
requirements for proficiency testing

IEC 62209-1 ®
Edition 2.0 2016-07
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
colour
inside
Measurement procedure for the assessment of specific absorption rate of

human exposure to radio frequency fields from hand-held and body-mounted

wireless communication devices –

Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz)

Procédure de mesure pour l'évaluation du débit d'absorption spécifique de

l'exposition humaine aux champs radiofréquences produits par les dispositifs

de communications sans fil tenus à la main ou portés près du corps –

Partie 1: Dispositifs utilisés à proximité de l’oreille (Plage de fréquences de

300 MHz à 6 GHz)
INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
COMMISSION
ELECTROTECHNIQUE
INTERNATIONALE
ICS 33.060.20 ISBN 978-2-8322-3500-3

– 2 – IEC 62209-1:2016 © IEC 2016
CONTENTS
FOREWORD. 11
INTRODUCTION . 13
1 Scope . 14
2 Normative references . 14
3 Terms and definitions . 14
4 Symbols and abbreviations . 19
4.1 Physical quantities . 19
4.2 Constants . 20
4.3 Abbreviations . 20
5 Measurement system specifications . 20
5.1 General requirements . 20
5.2 Phantom specifications (shell and liquid) . 22
5.3 Hand and device holder considerations . 23
5.4 Scanning system requirements . 23
5.5 Device holder specifications . 23
5.6 Characteristics of the readout electronics . 24
6 Protocol for SAR assessment . 24
6.1 General . 24
6.2 Measurement preparation . 24
6.2.1 Preparation of tissue-equivalent liquid and system check . 24
6.2.2 Preparation of the wireless device under test (DUT) . 25
6.2.3 Operating modes . 26
6.2.4 Positioning of the DUT in relation to the phantom . 27
6.2.5 Test frequencies for DUT . 34
6.3 Tests to be performed . 34
6.4 Measurement procedure . 36
6.4.1 General . 36
6.4.2 General procedure . 37
6.4.3 SAR measurements of handsets with multiple antennas or multiple
transmitters . 39
6.5 Post-processing of SAR measurement data . 45
6.5.1 Interpolation . 45
6.5.2 Extrapolation . 46
6.5.3 Definition of the averaging volume . 46
6.5.4 Searching for the maxima . 46
6.6 Fast SAR testing . 46
6.6.1 General . 46
6.6.2 Fast SAR measurement procedure A . 47
6.6.3 Fast SAR testing of required frequency bands . 49
6.6.4 Fast SAR measurement procedure B . 50
6.7 SAR test reduction . 52
6.7.1 General requirements . 52
6.7.2 Test reduction for different operating modes in the same frequency
band using the same wireless technology . 53
6.7.3 Test reduction based on characteristics of DUT design . 54
6.7.4 Test reduction based on SAR level analysis . 55

IEC 62209-1:2016 © IEC 2016 – 3 –
6.7.5 Test reduction based on simultaneous multi-band transmission
considerations . 57
7 Uncertainty estimation . 58
7.1 General considerations. 58
7.1.1 Concept of uncertainty estimation . 58
7.1.2 Type A and Type B evaluation . 59
7.1.3 Degrees of freedom and coverage factor . 59
7.2 Components contributing to uncertainty . 60
7.2.1 General . 60
7.2.2 Calibration of the SAR probes . 60
7.2.3 Contribution of mechanical constraints . 65
7.2.4 Phantom shell . 66
7.2.5 Device positioning and holder uncertainties . 67
7.2.6 Tissue-equivalent liquid parameter uncertainty . 69
7.2.7 Uncertainty in SAR correction for deviations in permittivity and
conductivity . 72
7.2.8 Measured SAR drift . 74
7.2.9 RF ambient conditions . 75
7.2.10 Contribution of post-processing . 76
7.2.11 SAR scaling uncertainty . 81
7.2.12 Deviation of experimental sources . 82
7.2.13 Other uncertainty contributions when using system validation sources . 82
7.3 Calculation of the uncertainty budget . 83
7.3.1 Combined and expanded uncertainties . 83
7.3.2 Maximum expanded uncertainty . 83
7.4 Uncertainty of fast SAR methods based on specific measurement
procedures and post-processing techniques . 92
7.4.1 General . 92
7.4.2 Measurement uncertainty evaluation. 92
8 Measurement report . 101
8.1 General . 101
8.2 Items to be recorded in the measurement report . 101
Annex A (normative) Phantom specifications . 104
A.1 Rationale for the SAM phantom shape . 104
A.2 SAM phantom specifications . 104
A.2.1 General . 104
A.2.2 Phantom shell . 108
A.3 Flat phantom specifications . 110
A.4 Tissue-equivalent liquids . 111
Annex B (normative) Calibration and characterization of dosimetric probes . 113
B.1 Introductory remarks . 113
B.2 Linearity . 114
B.3 Assessment of the sensitivity of the dipole sensors . 114
B.3.1 General . 114
B.3.2 Two-step calibration procedures . 114
B.3.3 One step calibration procedures . 120
B.3.4 Coaxial calorimeter method . 124
B.4 Isotropy . 126
B.4.1 Axial isotropy . 126

– 4 – IEC 62209-1:2016 © IEC 2016
B.4.2 Hemispherical isotropy . 126
B.5 Lower detection limit . 131
B.6 Boundary effects . 131
B.7 Response time . 131
Annex C (normative) Post-processing techniques . 132
C.1 Extrapolation and interpolation schemes . 132
C.1.1 Introductory remarks . 132
C.1.2 Interpolation schemes . 132
C.1.3 Extrapolation schemes . 132
C.2 Averaging scheme and maximum finding . 132
C.2.1 Volume average schemes . 132
C.2.2 Extrude method of averaging . 132
C.2.3 Maximum peak SAR finding and uncertainty estimation . 133
C.3 Example implementation of parameters for scanning and data evaluation . 133
C.3.1 General . 133
C.3.2 Area scan measurement requirements . 133
C.3.3 Zoom scan . 133
C.3.4 Extrapolation . 134
C.3.5 Interpolation . 134
C.3.6 Integration . 134
Annex D (normative) SAR measurement system verification . 135
D.1 Overview . 135
D.2 System check . 135
D.2.1 Purpose . 135
D.2.2 Phantom set-up. 136
D.2.3 System check source . 136
D.2.4 System check source input power measurement . 137
D.2.5 System check procedure . 138
D.3 System validation . 139
D.3.1 Purpose . 139
D.3.2 Phantom set-up. 139
D.3.3 System validation sources . 139
D.3.4 Reference dipole input power measurement . 140
D.3.5 System validation procedure . 140
D.3.6 Numerical target SAR values . 141
D.4 Fast SAR method system validation and system check . 144
D.4.1 General . 144
D.4.2 Fast SAR method system validation. 144
D.4.3 Fast SAR method system check . 145
Annex E (normative) Interlaboratory comparisons . 146
E.1 Purpose . 146
E.2 Phantom set-up . 146
E.3 Reference wireless handsets . 146
E.4 Power set-up . 146
E.5 Interlaboratory comparison – Procedure . 147
Annex F (informative) Definition of a phantom coordinate system and a device under
test coordinate system . 148
Annex G (informative) SAR system validation sources . 150

IEC 62209-1:2016 © IEC 2016 – 5 –
G.1 Standard dipole source . 150
G.2 Standard waveguide source . 151
Annex H (informative) Flat phantom . 153
Annex I (informative) Example recipes for phantom head tissue-equivalent liquids . 156
I.1 Overview . 156
I.2 Ingredients . 156
I.3 Tissue-equivalent liquid formulas (permittivity/conductivity) . 157
Annex J (informative) Measurement of the dielectric properties of liquids and
uncertainty estimation . 160
J.1 Introductory remarks . 160
J.2 Measurement techniques . 160
J.2.1 General . 160
J.2.2 Instrumentation . 160
J.2.3 General principles . 160
J.3 Slotted coaxial transmission line . 161
J.3.1 General . 161
J.3.2 Equipment set-up . 161
J.3.3 Measurement procedure . 161
J.4 Contact coaxial probe . 162
J.4.1 General . 162
J.4.2 Equipment set-up . 162
J.4.3 Measurement procedure . 164
J.5 TEM transmission line . 164
J.5.1 General . 164
J.5.2 Equipment set-up . 164
J.5.3 Measurement procedure . 165
J.6 Dielectric properties of reference liquids . 166
Annex K (informative) Measurement uncertainty of specific fast SAR methods and
fast SAR examples . 169
K.1 General . 169
K.2 Measurement uncertainty evaluation . 169
K.2.1 General . 169
K.2.2 Probe calibration and system calibration drift . 170
K.2.3 Isotropy . 170
K.2.4 Sensor positioning uncertainty . 171
K.2.5 Sensor location sensitivity . 171
K.2.6 Mutual sensor coupling . 172
K.2.7 Sensor coupling with the DUT . 172
K.2.8 Measurement system immunity / secondary reception . 172
K.2.9 Deviations in phantom shape . 172
K.2.10 Spatial variation in dielectric parameters . 173
K.3 Fast SAR examples . 178
K.3.1 General . 178
K.3.2 Example 1: Tests for one frequency band and mode . 179
K.3.3 Example 2: Tests over multiple frequency bands and modes . 183
K.3.4 Example 3: Tests for one frequency band and mode (Procedure B) . 186
K.3.5 Example 4: Tests over multiple frequency bands and modes (Procedure
B) . 190
Annex L (informative) SAR test reduction supporting information . 194

– 6 – IEC 62209-1:2016 © IEC 2016
L.1 General . 194
L.2 Test reduction based on characteristics of DUT design . 194
L.2.1 General . 194
L.2.2 Statistical analysis overview . 194
L.2.3 Analysis results . 195
L.2.4 Conclusions . 198
L.2.5 Expansion to multi transmission antennas . 198
L.2.6 Test reduction based on analysis of SAR results on other signal
modulations . 198
L.3 Test reduction based on SAR level analysis . 200
L.3.1 General . 200
L.3.2 Statistical analysis . 201
L.3.3 Test reduction applicability example . 204
L.4 Other statistical approaches to search for the high SAR test conditions . 205
L.4.1 General . 205
L.4.2 Test reductions based on a design of experiments (DOE) . 205
L.4.3 Analysis of unstructured data . 206
Annex M (informative) Applying the head SAR test procedures . 207
Annex N (informative) Studies for potential hand effects on head SAR . 210
N.1 Overview . 210
N.2 Background . 210
N.2.1 General . 210
N.2.2 Hand phantoms . 211
N.3 Summary of experimental studies . 211
N.3.1 General . 211
N.3.2 Experimental studies using fully compliant SAR measurement systems . 211
N.3.3 Experimental studies using other SAR measurement systems . 211
N.4 Summary of computational studies . 212
N.5 Conclusions . 212
Annex O (informative) Quick start guide . 213
O.1 General . 213
O.2 Quick start guide high level flow-chart . 213
Bibliography . 217

Figure 1 – Vertical and horizontal reference lines and reference Points A, B on two
example device types: a full touch screen smart phone (top) and a keyboard handset
(bottom) . 29
Figure 2 – Cheek position of the wireless device on the left side of SAM where the
device shall be maintained for the phantom test set-up. . 32
Figure 3 – Tilt position of the wireless device on the left side of SAM . 32
Figure 4 – An alternative form factor DUT and standard coordinate and reference
points applied . 33
Figure 5 – Block diagram of the tests to be performed . 36
Figure 6 – Orientation of the probe with respect to the line normal to the phantom
surface, shown at two different locations . 39
Figure 7 – Measurement procedure for different types of correlated signals . 45
Figure 8 – The Fast SAR measurement procedure B. . 52
Figure 9 – Modified chart of 6.4.2 . 57

IEC 62209-1:2016 © IEC 2016 – 7 –
Figure 10 – Orientation and surface of the averaging volume relative to the phantom
surface . 81
Figure A.1 – Illustration of dimensions in Table A.1 and Table A.2 . 105
Figure A.2 – Close-up side view of phantom showing the ear region . 107
Figure A.3 – Side view of the phantom showing relevant markings . 107
Figure A.4 – Sagittally bisected phantom with extended perimeter (shown placed on
its side as used for device SAR tests) . 109
Figure A.5 – Picture of the phantom showing the central strip . 109
Figure A.6 – Cross-sectional view of SAM at the reference plane . 110
Figure A.7 – Dimensions of the elliptical phantom . 111
Figure B.1 – Experimental set-up for assessment of the sensitivity (conversion factor)
using a vertically-oriented rectangular waveguide . 118
Figure B.2 – Illustration of the antenna gain evaluation set-up . 121
Figure B.3 – Schematic of the coaxial calorimeter system . 125
Figure B.4 – Set-up to assess spherical isotropy deviation in tissue-equivalent liquid . 127
Figure B.5 – Alternative set-up to assess spherical isotropy deviation in tissue-
equivalent liquid. 128
Figure B.6 – Experimental set-up for the hemispherical isotropy assessment . 129
Figure B.7 – Conventions for dipole position (ξ) and polarization (θ ) . 129
Figure B.8 – Measurement of hemispherical isotropy with reference antenna . 130
Figure C.1 – Extrude method of averaging . 133
Figure C.2 – Extrapolation of SAR data to the inner surface of the phantom based on
a fourth-order least-square polynomial fit of the measured data (squares) . 134
Figure D.1 – Test set-up for the system check . 137
Figure F.1 – Example reference coordinate system for the left ERP of the SAM
phantom . 148
Figure F.2 – Example coordinate system on the device under test . 149
Figure G.1 – Mechanical details of the standard dipole . 151
Figure G.2 – Standard waveguide source (dimensions are according to Table G.2) . 152
Figure H.1 – Dimensions of the flat phantom set-up used for deriving the minimal
phantom dimensions for W and L for a given phantom depth D . 154
Figure H.2 – FDTD predicted uncertainty in the 10 g peak spatial-average SAR as a
function of the dimensions of the flat phantom compared with an infinite flat phantom,
at 800 MHz . 154
Figure J.1 – Slotted line set-up . 161
Figure J.2 – An open-ended coaxial probe with inner and outer radii a and b,
respectively . 163
Figure J.3 – TEM line dielectric test set-up [143] . 165
Figure K.1 – SAR values for twelve hypothetical test configurations measured in the
same frequency band and modulation (e.g. GSM 900 MHz) using a hypothetical full
SAR (full SAR) and two fast SAR (fast SAR 1 and fast SAR 2) evaluations . 178
Figure L.1 – Distribution of "Tilt/Cheek" . 195
Figure L.2 – SAR relative to SAR in position with maximum SAR in GSM mode . 200
Figure L.3 – Two points identifying the minimum distance between the position of the
interpolated maximum SAR and the points at 0,6 × SAR . 201
max
Figure L.4 – Histogram for D in the case of GSM 900 and iso-level at 0,6 × SAR . 202
min max
Figure L.5 – Histogram for random variable Factor1g1800 . 203

– 8 – IEC 62209-1:2016 © IEC 2016
Figure O.1 – Quick guide flow-chart . 214

Table 1 – Area scan parameters. 38
Table 2 – Zoom scan parameters . 38
Table 3 – Example method to determine the combined SAR value using Alternative 1 . 43
Table 4 – Threshold values TH(f) used in this proposed test reduction protocol . 56
Table 5 – Example uncertainty template and example numerical values for dielectric
constant ( ε ′ ) and conductivity (σ) measurement . 71
r
Table 6 –Uncertainty of Formula (41) as a function of the maximum change in
permittivity or conductivity . 73
Table 7 – Parameters for the reference function f in Formula (48) . 77
Table 8 – Uncertainties relating to the deviations of the parameters of the standard

waveguide source from theory . 82
Table 9 – Other uncertainty contributions relating to the dipole sources described in
Annex G. . 83
Table 10 – Other uncertainty contributions relating to the standard waveguide sources
described in Annex G . 83
Table 11 – Example of measurement uncertainty evaluation template for handset SAR test . 85
Table 12 – Example of measurement uncertainty evaluation template for system
validation . 88
Table 13 – Example of measurement repeatability evaluation template for system
check (applicable for one system). . 90
Table 14 – Measurement uncertainty budget for relative fast SAR tests . 97
Table 15 – Measurement uncertainty budget for system check using fast SAR methods . 99
Table A.1 – Dimensions used in deriving SAM phantom from the ARMY 90th percentile
male head data (Gordon et al. [56]) . 106
Table A.2 – Additional SAM dimensions compared with selected dimensions from the
ARMY 90th-percentile male head data (Gordon et al. [56]) – specialist head
measurement section . 106
Table A.3 – Dielectric properties of the head tissue-equivalent liquid . 112
Table B.1 – Uncertainty analysis for transfer calibration using temperature probes . 116
Table B.2 – Guidelines for designing calibration waveguides . 119
Table B.3 – Uncertainty analysis of the probe calibration in waveguide . 120
Table B.4 – Uncertainty template for evaluation of reference antenna gain . 122
Table B.5 – Uncertainty template for calibration using reference antenna . 123
Table B.6 – Uncertainty components for probe calibration using thermal methods . 126
Table D.1 – Numerical target SAR values (W/kg) for standard dipole and flat phantom . 142
Table D.2 – Numerical target SAR values for waveguides specified in Clause G.2
placed in contact with flat phantom [94] . 143
Table G.1 – Mechanical dimensions of the reference dipoles . 150
Table G.2 – Mechanical dimensions of the standard waveguide . 152
Table H.1 – Parameters used for calculation of reference SAR values in Table D.1 . 155
Table I.1 – Suggested recipes for achieving target dielectric parameters: 300 MHz to
900 MHz .
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...