EN 17393:2020
(Main)Thermal spraying - Tubular coating tensile test
Thermal spraying - Tubular coating tensile test
This document specifies the procedure for the determination of coating strength, and hence of cohesive strength in a tubular coating tensile test.
The test is intended to determine the tensile coating strength parallel to the spray layers (normal to the spray direction) and to identify differences in particle cohesion quality, as caused by defects as internal delamination at cracks or oxides between the spray particles or splats.
The tubular coating tensile test is suitable for sprayed coatings deposited using metallic materials (not carbides and ceramics).
The tubular coating tensile test is not suitable for fused sprayed coatings deposited using self-fluxing alloys.
The test supports quality assurance and is intended to be applied for the purpose of coating optimization by identifying the influences of coating parameters and spray materials on the coatings's quality. Furthermore, the coating in particular for cold sprayed coatings can be compared with the characteristics of similar solid materials and the coating's quality can be assessed.
This test is not recommended for thin coatings (coating thickness < 500 µm), since massive scattering of results is to be expected here. Due to the size of the specimen, it is particularly suitable to apply the tubular coating tensile test for coating processes that use a concentrated spray jet and a highly focused spray spot, as in the case of cold spraying, high velocity flame spraying (HVOF) or plasma spraying. Applying the tubular coating tensile test for coating processes that use a broad spray jet, such as flame spraying and arc spraying, may require special spraying measures, e.g. the use of a template to ensure a nearly vertical impingement angle.
Thermisches Spritzen - Schichtzugversuch
Dieses Dokument legt die Vorgehensweise zur Ermittlung der Schichtzugfestigkeit und damit der Kohäsionsfestigkeit im Schichtzugversuch (en: tubular coating tensile test) fest.
Der Versuch dient zur Ermittlung der Schichtzugfestigkeit parallel zu den Spritzlagen (senkrecht zur Spritzrichtung) und zur Ermittlung von Unterschieden in der Qualität der Partikelbindung, die durch Fehler wie inneres Ablösen an Rissen oder Oxiden zwischen den Spritzpartikeln oder Spritzern verursacht werden.
Der Schichtzugversuch ist für Spritzschichten aus metallischen Werkstoffen (nicht aus Carbid und kerami-schen Werkstoffen) geeignet.
Der Schichtzugversuch ist nicht für eingeschmolzene Spritzschichten aus selbstfließenden Legierungen geeignet.
Die Prüfung dient der Qualitätssicherung und ist dafür vorgesehen, durch Ermitteln der Einflüsse von Spritzparametern und Spritzzusätzen auf die Qualität der Schicht bei der Optimierung der Schicht angewendet werden. Außerdem kann die Schicht insbesondere für bei Kaltgas gespritzte Schichten mit den Kenndaten von vergleichbaren Massivwerkstoffen verglichen und die Qualität der Schicht beurteilt werden.
Diese Prüfung wird bei dünnen Schichten (Schichtdicke < 500 μm) nicht empfohlen, da in diesem Fall eine zu große Streuung der Ergebnisse erwartet wird. Aufgrund der Größe des Probenkörpers ist die Anwendung des Schichtzugversuchs bei Spritzverfahren mit gebündeltem Spritzstrahl und stark fokussiertem Spritzfleck, wie beim Kaltgasspritzen, Hochgeschwindigkeits Flammspritzen (en: high velocity flame spraying, HVOF) oder Plasmaspritzen, besonders gut geeignet. Die Anwendung des Schichtzugversuchs bei Spritzverfahren mit breitem Spritzstrahl, wie beim Flamm und Lichtbogenspritzen, kann besondere Maßnahmen beim Spritzen, wie z. B. die Verwendung einer Schablone zur Sicherstellung eines möglichst senkrechten Auftreffwinkels, erfordern.
Projection thermique - Essai de traction
Le présent document spécifie la méthode de détermination de la résistance du revêtement et donc de la force d’adhésion au moyen d’un essai de traction.
L’essai a pour objectif de déterminer la résistance à la traction du revêtement parallèlement aux couches projetées (normalement dans la direction de la projection) et d’identifier les différences de qualité de la liaison entre particules pouvant être causées par des défauts tels que le délaminage interne au niveau des fissures ou des oxydes entre les particules projetées ou étalées.
L’essai de traction convient pour des revêtements obtenus par projection de matériaux métalliques (hors carbures et céramiques).
L’essai de traction ne convient pas pour des revêtements obtenus par fusion au moyen d’alliages auto fondants.
Il s’agit d’un essai d’assurance qualité visant à optimiser le revêtement en identifiant l’influence des paramètres du revêtement et des matériaux pour projection thermique sur la qualité du revêtement. De plus, notamment dans le cas de projection à froid, le revêtement peut être comparé aux caractéristiques de matériaux solides similaires et la qualité du revêtement peut être évaluée.
L’essai n’est pas recommandé dans le cas de revêtements dont l’épaisseur est < 500 µm car cela aboutirait à une dispersion importante des résultats. En raison de la taille de l’éprouvette, l’essai de traction est particulièrement recommandé dans le cas de procédés de revêtement qui utilisent un jet de projection concentré et un point de projection extrêmement précis, comme c’est le cas pour la projection à froid, la projection à la flamme à grande vitesse (HVOF) ou la projection au plasma. La réalisation de l’essai de traction sur les procédés de revêtement qui utilisent un jet de projection large, tels que la projection au pistolet dans une flamme et la projection à l’arc, peut nécessiter l’emploi de mesures spéciales comme l’utilisation d’un masque pour assurer un angle de projection presque vertical.
Vroče brizganje - Preskus natezne trdnosti cevnih prevlek
General Information
Standards Content (Sample)
SLOVENSKI STANDARD
01-september-2020
Vroče brizganje - Preskus natezne trdnosti cevnih prevlek
Thermal spraying - Tubular coating tensile test
Thermisches Spritzen - Schichtzugversuch
Projection thermique - Essai de traction
Ta slovenski standard je istoveten z: EN 17393:2020
ICS:
25.220.20 Površinska obdelava Surface treatment
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
EN 17393
EUROPEAN STANDARD
NORME EUROPÉENNE
July 2020
EUROPÄISCHE NORM
ICS 25.220.20
English Version
Thermal spraying - Tubular coating tensile test
Projection thermique - Essai de traction Thermisches Spritzen - Schichtzugversuch
This European Standard was approved by CEN on 17 May 2020.
CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and
United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2020 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN 17393:2020 E
worldwide for CEN national Members.
Contents Page
European foreword . 3
Introduction . 4
1 Scope . 5
2 Normative references . 5
3 Terms and definitions . 5
4 Testing equipment . 6
5 Specimens . 7
5.1 Shape of base samples . 7
5.2 Preparation of the specimen to be sprayed . 7
5.3 Specimen to be sprayed, preparation and coating . 8
5.4 Determination of outer diameter . 8
5.5 Number of specimens to be tested . 8
6 Test procedure . 8
7 Possible sources of fault during procedure . 9
8 Evaluation . 9
9 Test report . 10
Annex A (informative) Test report for the tubular coating tensile (TCT) test according to
EN 17393 . 11
A.1 General . 11
A.2 TCT specimen . 11
A.3 Surface preparation for spraying . 11
A.4 Spraying procedure for TCT specimens — Component . 11
A.5 Preparation of specimens for the tubular coating tensile (TCT) test . 12
A.6 Testing of TCT specimens . 12
A.7 Test results . 13
Bibliography . 14
European foreword
This document (EN 17393:2020) has been prepared by Technical Committee CEN/TC 240 “Thermal
spraying and thermally sprayed coatings”, the secretariat of which is held by DIN.
This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by January 2021, and conflicting national standards shall
be withdrawn at the latest by January 2021.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
According to the CEN-CENELEC Internal Regulations, the national standards organisations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria,
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland,
Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of
North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the
United Kingdom.
Introduction
The determination of tensile strength of a thermally sprayed coating can be of substantial importance
regarding product-supporting quality control as well as coating development and, moreover, can have
an effect on important factors such as transfer efficiency, microstructure, surface quality, etc. Only a
little effort is required to carry out the tubular coating tensile test (TCT). However, it provides
reproducible values for the mechanical strength of sprayed coatings and gives information on
influences resulting from spraying conditions.
Microscopic examinations of the fractured surface can provide further information on failure modes
and support the quality assessment of the coating microstructure as well as the assessment of
influences resulting from loads during the TCT test.
1 Scope
This document specifies the procedure for the determination of coating strength, and hence of cohesive
strength in a tubular coating tensile test.
The test is intended to determine the tensile coating strength parallel to the spray layers (normal to the
spray direction) and to identify differences in particle cohesion quality, as caused by defects as internal
delamination at cracks or oxides between the spray particles or splats.
The tubular coating tensile test is suitable for sprayed coatings deposited using metallic materials (not
carbides and ceramics).
The tubular coating tensile test is not suitable for fused sprayed coatings deposited using self-fluxing
alloys.
The test supports quality assurance and is intended to be applied for the purpose of coating
optimization by identifying the influences of coating parameters and spray materials on the coatings's
quality. Furthermore, the coating in particular for cold sprayed coatings can be compared with the
characteristics of similar solid materials and the coating's quality can be assessed.
This test is not recommended for thin coatings (coating thickness < 500 µm), since massive scattering of
results is to be expected here. Due to the size of the specimen, it is particularly suitable to apply the
tubular coating tensile test for coating processes that use a concentrated spray jet and a highly focused
spray spot, as in the case of cold spraying, high velocity flame spraying (HVOF) or plasma spraying.
Applying the tubular coating tensile test for coating processes that use a broad spray jet, such as flame
spraying and arc spraying, may require special spraying measures, e.g. the use of a template to ensure a
nearly vertical impingement angle.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
EN ISO 14916, Thermal spraying — Determination of tensile adhesive strength (ISO 14916)
EN ISO 14917, Thermal spraying — Terminology, classification (ISO 14917)
EN ISO 7500-1:2018, Metallic materials — Calibration and verification of static uniaxial testing
machines — Part 1: Tension/compression testing machines — Calibration and verification of the force-
measuring system (ISO 7500-1:2018)
3 Terms and definitions
For the purposes of this document, the terms and definitions given in EN ISO 14917 and the following
apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— IEC Electropedia: available at http://www.electropedia.org/
— ISO Online browsing platform: available at https://www.iso.org/obp
3.1
tensile coating strength
R
m,TCT
tensile strength of the coating determined in a tension test, parallel to the coating layers (normal to the
spray direction), which is calculated from the quotient of the maximum load F and the coating's cross-
m
section
4 Testing equipment
A tensile testing machine in accordance with EN ISO 7500-1:2018, class 1, shall be used having a
suitable clamping system to ensure concentric clamping and loading of the specimens, see Figure 1.
Key
1 substrate 1
2 substrate 2
3 ball joint
4 clamping part
Figure 1 — Tubular coating tensile test arrangement
5 Specimens
5.1 Shape of base samples
The base samples are made of aluminium or non alloy steel. Their outer dimensions shall be equal to
those of the specimens used in the determination of tensile adhesive strength according to
EN ISO 14916 (diameter: 25 mm or 40 mm), and they have a central bore (6 mm through bore) for
fixation, see Figure 2. Rounding or chamfering the front face is not permitted.
Dimensions in millimetres
Key
a sharp edge
Figure 2 — Base sample
5.2 Preparation of the specimen to be sprayed
Install the base samples in the fixture, see Figure 3, and adjust them to the maximum common diameter
(tolerance ± 0,02 mm) using a lathe. A uniform surface quality Rz of about 40 µm shall be achieved. This
type of levelling is important, because otherwise a discrepancy between the two cylinders would
significantly weaken the coating that is to be applied. The diameter that is reached, D , which is
i
represented in the drawing as the outer diameter of the specimen (underneath the coating), shall be
recorded.
Key
1 substrate 1
2 substrate 2
3 fixing screw
4 fixture
5 coating
Figure 3 — Specimen to be sprayed (consisting of 2 base samples)
5.3 Specimen to be sprayed, preparation and coating
The preparation of the specimen to be sprayed as well as the spraying parameters, such as the spraying
procedure, spray material, coating thickness, energy data, movement pattern, etc., shall be in
accordance with the specifications for the spraying procedure of the corresponding workpiece, if any.
The rotating specimen to be sprayed shall be coated over the entire length of its outer surface.
The temperature of the specimen to be sprayed shall under no circumstances exceed those values
reached when spraying the corresponding workpiece, if any, which can occur particularly when
applying coatings of larger thicknesses. The sprayed specimen shall be removed from the fixture and
the central fixing screw shall be taken out. Then the specimen can be directly tested in a tensile testing
machine using the same clamping devices as in the tensile adhesive strength test according to
EN ISO 14916. See Figure 1 in Clause 4.
5.4 Determination of outer diameter
After spraying, and before the test, the outer diameter shall be measured in at least 3 points along the
surface of the cylinder length of the spray specimen, where one section shall be on the junction between
the base samples.
...
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.