EN ISO 178:2019
(Main)Plastics - Determination of flexural properties (ISO 178:2019)
Plastics - Determination of flexural properties (ISO 178:2019)
This document specifies a method for determining the flexural properties of rigid and semi-rigid plastics under defined conditions. A preferred test specimen is defined, but parameters are included for alternative specimen sizes for use where appropriate. A range of test speeds is included.
The method is used to investigate the flexural behaviour of the test specimens and to determine the flexural strength, flexural modulus and other aspects of the flexural stress/strain relationship under the conditions defined. It applies to a freely supported beam, loaded at midspan (three-point loading test).
The method is suitable for use with the following range of materials:
— thermoplastic moulding, extrusion and casting materials, including filled and reinforced compounds in addition to unfilled types; rigid thermoplastics sheets;
— thermosetting moulding materials, including filled and reinforced compounds; thermosetting sheets.
In agreement with ISO 10350-1[5] and ISO 10350-2[6], this document applies to fibre-reinforced compounds with fibre lengths ≤7,5 mm prior to processing. For long-fibre-reinforced materials (laminates) with fibre lengths >7,5 mm, see ISO 14125[7].
The method is not normally suitable for use with rigid cellular materials or sandwich structures containing cellular material. In such cases, ISO 1209-1[3] and/or ISO 1209-2[4] can be used.
NOTE 1 For certain types of textile-fibre-reinforced plastic, a four-point bending test is used. This is described in ISO 14125.
The method is performed using specimens which can be either moulded to the specified dimensions, machined from the central section of a standard multipurpose test specimen (see ISO 20753) or machined from finished or semi-finished products, such as mouldings, laminates, or extruded or cast sheet.
The method specifies the preferred dimensions for the test specimen. Tests which are carried out on specimens of different dimensions, or on specimens which are prepared under different conditions, can produce results which are not comparable. Other factors, such as the test speed and the conditioning of the specimens, can also influence the results.
NOTE 2 Especially for injection moulded semi-crystalline polymers, the thickness of the oriented skin layer, which is dependent on the moulding conditions, also affects the flexural properties.
The method is not suitable for the determination of design parameters but can be used in materials testing and as a quality control test.
Kunststoffe - Bestimmung der Biegeeigenschaften (ISO 178:2019)
Dieses Dokument legt ein Verfahren zur Ermittlung der Biegeeigenschaften von steifen und halbsteifen Kunststoffen unter definierten Bedingungen fest. Ein bevorzugter Probekörper wird festgelegt, jedoch sind die Parameter für andere gegebenenfalls anzuwendende Probekörpergrößen enthalten. Ein Bereich von Prüfgeschwindigkeiten ist enthalten.
Das Verfahren wird für die Untersuchung des Biegeverhaltens der Probekörper und für die Bestimmung der Biegefestigkeit, des Biegemoduls und anderer Gesichtspunkte der Beziehung Biegespannung/Biegedehnung unter den definierten Bedingungen eingesetzt. Es bezieht sich auf einen frei unterstützten Biegebalken, der mittig belastet wird (Dreipunkt-Biegeversuch).
Das Prüfverfahren ist zur Anwendung auf folgende Werkstoffgruppen geeignet:
— thermoplastische Formmassen, Extrusions- und Vergussmassen, einschließlich gefüllter und verstärkter Compounds in Ergänzung zu ungefüllten Sorten; steife thermoplastische Platten;
— duroplastische Formmassen, einschließlich gefüllter und verstärkter Compounds; duro¬plastische Platten.
In Übereinstimmung mit ISO 10350 1 [5] und ISO 10350 2 [6] gilt dieses Dokument für faserverstärkte Compounds mit Faserlängen ≤ 7,5 mm vor der Verarbeitung. In Bezug auf langfaserverstärkte Werkstoffe (Laminate) mit Faserlängen > 7,5 mm siehe ISO 14125 [7].
Das Verfahren ist üblicherweise nicht für Hartschäume oder Schicht Verbundwerkstoffe geeignet, die geschäumte Strukturen enthalten. In solchen Fällen können ISO 1209 1 [3] und/oder ISO 1209 2 [4] angewendet werden.
ANMERKUNG 1 Für bestimmte Sorten textilfaserverstärkter Kunststoffe wird ein Vierpunktbiegeversuch angewendet. Dies ist in ISO 14125 beschrieben.
Das Verfahren wird mit Probekörpern durchgeführt, die direkt in den festgelegten Maßen gegossen, aus dem Mittelteil eines Standard Vielzweckprobekörpers (siehe ISO 20753) herausgearbeitet oder aus fertigen oder halbfertigen Produkten wie Formteilen, Laminate oder extrudierten oder gegossenen Platten aus¬gearbeitet werden können.
Das Verfahren legt die bevorzugten Maße für den Probekörper fest. Prüfungen an Probekörpern mit abweichenden Maßen oder Probekörpern, die unter anderen Bedingungen hergestellt wurden, können zu Ergebnissen führen, die nicht vergleichbar sind. Andere Einflüsse, wie z. B. die Prüfgeschwindigkeit und das Konditionieren der Probekörper können ebenfalls die Prüfergebnisse beeinflussen.
ANMERKUNG 2 Besonders bei spritzgegossenen teilkristallinen Polymeren wirkt sich die Dicke der orientierten Außenhaut, die von den Spritzgießbedingungen abhängt, auch auf die Biegeeigenschaften aus.
Das Verfahren ist nicht für die Bestimmung von Konstruktionseigenschaften geeignet, kann jedoch für Materialprüfungen und in der Qualitätskontrolle eingesetzt werden.
Plastiques - Détermination des propriétés en flexion (ISO 178:2019)
Le présent document spécifie une méthode pour la détermination des propriétés en flexion des plastiques rigides et semi-rigides dans des conditions définies. Une éprouvette recommandée est définie, mais des paramètres sont inclus pour d'autres dimensions d'éprouvettes lorsque l'usage est approprié. Une gamme de vitesses d'essai est incluse.
La méthode est utilisée pour l'étude du comportement en flexion des éprouvettes et pour la détermination de la résistance en flexion, du module en flexion et d'autres aspects des relations entre la contrainte et la déformation en flexion dans les conditions définies. Elle s'applique à une poutre supportée sans contrainte, chargée au milieu de sa portée (essai de chargement en trois points).
La méthode est adaptée à la gamme de matériaux suivants:
— matériaux thermoplastiques pour moulage, extrusion et coulée, y compris les compositions chargées et renforcées en plus des types non chargés; feuilles thermoplastiques rigides;
— matériaux thermodurcissables pour moulage, y compris les compositions chargées et renforcées; feuilles thermodurcissables.
En accord avec l'ISO 10350-1[5] et l'ISO 10350-2,[6] le présent document s'applique aux compositions renforcées de fibres dont les longueurs avant mise en œuvre sont inférieures ou égales à 7,5 mm. Pour les matériaux renforcés de fibres longues (stratifiés) avec des longueurs de fibres supérieures à 7,5 mm, voir l'ISO 14125[7].
La méthode n'est normalement pas adaptée pour utilisation avec des matériaux alvéolaires rigides ou à structures sandwich contenant des matériaux alvéolaires. Dans ces cas, les normes ISO 1209-1[3] et/ou ISO 1209-2[4] peuvent être utilisées.
NOTE 1 Pour certains types de plastiques renforcés de fibres textiles, un essai de flexion en quatre points est utilisé. Ce dernier est décrit dans l'ISO 14125.
La méthode est réalisée à l'aide d'éprouvettes qui peuvent être soit moulées aux dimensions spécifiées, soit usinées à partir de la partie centrale d'une éprouvette normalisée à usages multiples (voir l'ISO 20753) ou usinées à partir de produits finis ou semi-finis, tels que des pièces moulées, des stratifiés ou des feuilles extrudées ou coulées.
La méthode spécifie les dimensions recommandées pour les éprouvettes. Des essais réalisés avec des éprouvettes de dimensions différentes ou avec des éprouvettes préparées dans des conditions différentes peuvent donner des résultats qui ne sont pas comparables. D'autres facteurs, tels que la vitesse d'essai et le conditionnement des éprouvettes, peuvent également influer sur les résultats.
NOTE 2 En fonction des conditions de moulage, pour les polymères semi-cristallins moulés par injection en particulier, l'épaisseur de la couche (peau) orientée affecte les propriétés en flexion.
La méthode n'est pas adaptée pour la détermination des paramètres de calcul mais elle peut être utilisée pour les essais de matériaux et comme essai dans un contrôle qualité.
Polimerni materiali - Določanje upogibnih lastnosti (ISO 178:2019)
Ta dokument določa metodo za določanje upogibnih lastnosti togih in poltogih polimernih materialov pri določenih pogojih. Določen je prednostni preskušanec, vendar so dodani parametri za druge velikosti preskušancev za uporabo po potrebi. Vključen je nabor preskusnih hitrosti.
Metoda se uporablja za preučevanje upogibnih lastnosti preskušancev in za določanje
upogibne trdnosti, modula upogibnosti in drugih vidikov razmerja upogibna napetost/deformacija pri določenih pogojih. Uporablja se za prosto podprt nosilec, obremenjen na sredini (preskus z obremenitvijo v treh točkah).
Metoda je ustrezna za naslednje vrste materialov:
– plastomerni materiali za oblikovanje, ekstrudiranje in ulivanje, vključno s polnjenimi, nepolnjenimi in ojačenimi spojinami; trde plastomerne plošče;
– termoreaktivni materiali za oblikovanje, vključno s polnjenimi in ojačenimi spojinami; termoreaktivne plošče.
V skladu s standardoma ISO 10350-1[5] in ISO 10350-2[6] se ta dokument nanaša na spojine, ojačene z vlakni dolžine ≤ 7,5 mm pred predelavo. Za z dolgimi vlakni ojačene materiale (laminate) z dolžino vlaken > 7,5 mm glej ISO 14125[7].
Metoda običajno ni primerna za trde penjene materiale ali strukture tipa »sendvič«, ki vsebujejo penjeni material. V takih primerih se uporablja ISO 1209-1[3] in/ali ISO 1209-2[4].
OPOMBA 1: Za nekatere vrste polimernih materialov, ojačenih s tekstilnimi vlakni, se uporablja štiritočkovni preskus upogibanja. Ta je opisan v standardu ISO 14125.
Metoda se izvaja s preskušanci, ki so lahko oblikovani na določene mere,
strojno obdelani iz osrednjega dela standardnega večnamenskega preskusnega vzorca (glej ISO 20753) ali strojno obdelani iz končnih izdelkov ali polizdelkov, kot so oblikovanci, laminati ali ekstrudirane oziroma lite plošče.
Metoda določa prednostne dimenzije preskusnih vzorcev. Preskusi, ki se opravljajo
na preskušancih drugih velikosti ali na preskušancih, ki so pripravljeni pod drugačnimi pogoji, lahko dajo rezultate, ki niso primerljivi. Na rezultate lahko vplivajo tudi drugi dejavniki, kot sta hitrost preskušanja in priprava preskušancev.
OPOMBA 2: Debelina usmerjenega vrhnjega sloja, ki je odvisna od pogojev oblikovanja, vpliva tudi na upogibne lastnosti, zlasti za polkristalinične polimere, oblikovane z brizganjem.
Metoda ni primerna za ugotavljanje parametrov zasnove, lahko pa se uporabi za preskušanje materialov
in kot preskus za nadzor kakovosti.
General Information
- Status
- Published
- Publication Date
- 07-May-2019
- Withdrawal Date
- 29-Nov-2019
- Technical Committee
- CEN/TC 249 - Plastics
- Drafting Committee
- CEN/TC 249 - Plastics
- Current Stage
- 6060 - Definitive text made available (DAV) - Publishing
- Start Date
- 08-May-2019
- Completion Date
- 08-May-2019
Relations
- Effective Date
- 08-Jun-2022
- Replaces
EN ISO 178:2010/A1:2013 - Plastics - Determination of flexural properties (ISO 178:2010/Amd 1:2013) - Effective Date
- 15-May-2019
Overview
EN ISO 178:2019 - Plastics: Determination of flexural properties (ISO 178:2019) specifies a standardized method to assess the flexural behaviour of rigid and semi-rigid plastics using a three‑point bending (freely supported beam, midspan loading) test. The standard defines a preferred test specimen, allows alternative specimen sizes, and includes a range of test speeds and conditioning requirements. Results include flexural strength, flexural modulus and other aspects of the stress/strain relationship under defined test conditions. EN ISO 178:2019 is intended for materials testing and quality control rather than for deriving final design parameters.
Key Topics and Requirements
- Test principle: Three‑point loading of a simply supported beam with midspan force application.
- Specimens: Preferred specimen dimensions are specified; machining from mouldings, extruded or cast sheets, or multipurpose specimens is permitted. Tests on different specimen sizes or preparation methods can produce non‑comparable results.
- Materials covered: Thermoplastic moulding, extrusion and casting materials (filled, reinforced, unfilled), rigid thermoplastic sheets; thermosetting moulding materials and sheets. Applies to fibre‑reinforced compounds with fibre lengths ≤ 7.5 mm prior to processing.
- Excluded / alternative methods: Not normally suitable for rigid cellular materials or sandwich structures (see ISO 1209‑1 / ISO 1209‑2). Long‑fibre laminates (>7.5 mm) are covered by ISO 14125; certain textile‑fibre reinforcements may require four‑point bending (ISO 14125).
- Test parameters: Range of test speeds provided; conditioning and atmosphere requirements referenced (e.g., ISO 291). Instrumentation requirements include force and deflection measurement, calibration differentiated by test type, and acceptance of deflectometers.
- Accuracy and corrections: Precision statements, compliance corrections (Type III tests), and statistical reporting requirements are included.
- Annexes: Informative and normative annexes cover precision, influence of test speed, compliance correction, and relation between tensile and flexural modulus.
Applications and Who Uses It
- Materials testing labs measuring flexural strength and modulus for material characterization.
- Quality control in production of thermoplastics and thermosets to monitor batch consistency.
- R&D and formulation teams evaluating the effect of fillers, reinforcement and processing on flexural properties.
- Moulders, extruders and compounders needing standardized test data for specifications, comparison or supplier acceptance testing.
- Certification and compliance testing where standardized mechanical property data are required.
Related Standards (if applicable)
- ISO 14125 - Fibre‑reinforced plastic laminates (four‑point bending)
- ISO 1209‑1 / ISO 1209‑2 - Testing rigid cellular materials / sandwich structures
- ISO 10350‑1 / ISO 10350‑2 - Data presentation for plastics (fibre‑reinforced compound guidance)
- ISO 291 - Standard atmospheres for conditioning and testing
- ISO 294‑1 / ISO 20753 - Specimen moulding and multipurpose specimen guidance
Keywords: EN ISO 178:2019, flexural properties, plastics testing, three‑point bending test, flexural strength, flexural modulus, test specimen, conditioning, quality control.
Frequently Asked Questions
EN ISO 178:2019 is a standard published by the European Committee for Standardization (CEN). Its full title is "Plastics - Determination of flexural properties (ISO 178:2019)". This standard covers: This document specifies a method for determining the flexural properties of rigid and semi-rigid plastics under defined conditions. A preferred test specimen is defined, but parameters are included for alternative specimen sizes for use where appropriate. A range of test speeds is included. The method is used to investigate the flexural behaviour of the test specimens and to determine the flexural strength, flexural modulus and other aspects of the flexural stress/strain relationship under the conditions defined. It applies to a freely supported beam, loaded at midspan (three-point loading test). The method is suitable for use with the following range of materials: — thermoplastic moulding, extrusion and casting materials, including filled and reinforced compounds in addition to unfilled types; rigid thermoplastics sheets; — thermosetting moulding materials, including filled and reinforced compounds; thermosetting sheets. In agreement with ISO 10350-1[5] and ISO 10350-2[6], this document applies to fibre-reinforced compounds with fibre lengths ≤7,5 mm prior to processing. For long-fibre-reinforced materials (laminates) with fibre lengths >7,5 mm, see ISO 14125[7]. The method is not normally suitable for use with rigid cellular materials or sandwich structures containing cellular material. In such cases, ISO 1209-1[3] and/or ISO 1209-2[4] can be used. NOTE 1 For certain types of textile-fibre-reinforced plastic, a four-point bending test is used. This is described in ISO 14125. The method is performed using specimens which can be either moulded to the specified dimensions, machined from the central section of a standard multipurpose test specimen (see ISO 20753) or machined from finished or semi-finished products, such as mouldings, laminates, or extruded or cast sheet. The method specifies the preferred dimensions for the test specimen. Tests which are carried out on specimens of different dimensions, or on specimens which are prepared under different conditions, can produce results which are not comparable. Other factors, such as the test speed and the conditioning of the specimens, can also influence the results. NOTE 2 Especially for injection moulded semi-crystalline polymers, the thickness of the oriented skin layer, which is dependent on the moulding conditions, also affects the flexural properties. The method is not suitable for the determination of design parameters but can be used in materials testing and as a quality control test.
This document specifies a method for determining the flexural properties of rigid and semi-rigid plastics under defined conditions. A preferred test specimen is defined, but parameters are included for alternative specimen sizes for use where appropriate. A range of test speeds is included. The method is used to investigate the flexural behaviour of the test specimens and to determine the flexural strength, flexural modulus and other aspects of the flexural stress/strain relationship under the conditions defined. It applies to a freely supported beam, loaded at midspan (three-point loading test). The method is suitable for use with the following range of materials: — thermoplastic moulding, extrusion and casting materials, including filled and reinforced compounds in addition to unfilled types; rigid thermoplastics sheets; — thermosetting moulding materials, including filled and reinforced compounds; thermosetting sheets. In agreement with ISO 10350-1[5] and ISO 10350-2[6], this document applies to fibre-reinforced compounds with fibre lengths ≤7,5 mm prior to processing. For long-fibre-reinforced materials (laminates) with fibre lengths >7,5 mm, see ISO 14125[7]. The method is not normally suitable for use with rigid cellular materials or sandwich structures containing cellular material. In such cases, ISO 1209-1[3] and/or ISO 1209-2[4] can be used. NOTE 1 For certain types of textile-fibre-reinforced plastic, a four-point bending test is used. This is described in ISO 14125. The method is performed using specimens which can be either moulded to the specified dimensions, machined from the central section of a standard multipurpose test specimen (see ISO 20753) or machined from finished or semi-finished products, such as mouldings, laminates, or extruded or cast sheet. The method specifies the preferred dimensions for the test specimen. Tests which are carried out on specimens of different dimensions, or on specimens which are prepared under different conditions, can produce results which are not comparable. Other factors, such as the test speed and the conditioning of the specimens, can also influence the results. NOTE 2 Especially for injection moulded semi-crystalline polymers, the thickness of the oriented skin layer, which is dependent on the moulding conditions, also affects the flexural properties. The method is not suitable for the determination of design parameters but can be used in materials testing and as a quality control test.
EN ISO 178:2019 is classified under the following ICS (International Classification for Standards) categories: 83.080.01 - Plastics in general. The ICS classification helps identify the subject area and facilitates finding related standards.
EN ISO 178:2019 has the following relationships with other standards: It is inter standard links to EN ISO 178:2010, EN ISO 178:2010/A1:2013. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.
You can purchase EN ISO 178:2019 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of CEN standards.
Standards Content (Sample)
SLOVENSKI STANDARD
01-julij-2019
Nadomešča:
SIST EN ISO 178:2011
SIST EN ISO 178:2011/A1:2014
Polimerni materiali - Določanje upogibnih lastnosti (ISO 178:2019)
Plastics - Determination of flexural properties (ISO 178:2019)
Kunststoffe - Bestimmung der Biegeeigenschaften (ISO 178:2019)
Plastiques - Détermination des propriétés en flexion (ISO 178:2019)
Ta slovenski standard je istoveten z: EN ISO 178:2019
ICS:
83.080.01 Polimerni materiali na Plastics in general
splošno
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
EN ISO 178
EUROPEAN STANDARD
NORME EUROPÉENNE
May 2019
EUROPÄISCHE NORM
ICS 83.080.01 Supersedes EN ISO 178:2010
English Version
Plastics - Determination of flexural properties (ISO
178:2019)
Plastiques - Détermination des propriétés en flexion Kunststoffe - Bestimmung der Biegeeigenschaften (ISO
(ISO 178:2019) 178:2019)
This European Standard was approved by CEN on 23 March 2019.
CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania,
Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Turkey and United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2019 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN ISO 178:2019 E
worldwide for CEN national Members.
Contents Page
European foreword . 3
European foreword
This document (EN ISO 178:2019) has been prepared by Technical Committee ISO/TC 61 "Plastics" in
collaboration with Technical Committee CEN/TC 249 “Plastics” the secretariat of which is held by NBN.
This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by November 2019, and conflicting national standards
shall be withdrawn at the latest by November 2019.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
This document supersedes EN ISO 178:2010.
According to the CEN-CENELEC Internal Regulations, the national standards organizations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria,
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia,
France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta,
Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Turkey and the United Kingdom.
Endorsement notice
The text of ISO 178:2019 has been approved by CEN as EN ISO 178:2019 without any modification.
INTERNATIONAL ISO
STANDARD 178
Sixth edition
2019-04
Plastics — Determination of flexural
properties
Plastiques — Détermination des propriétés en flexion
Reference number
ISO 178:2019(E)
©
ISO 2019
ISO 178:2019(E)
© ISO 2019
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2019 – All rights reserved
ISO 178:2019(E)
Contents Page
Foreword .iv
1 Scope . 1
2 Normative references . 1
3 Terms, definitions and symbols . 2
4 Principle . 5
5 Test machine . 5
5.1 General . 5
5.2 Test speed . 6
5.3 Supports and loading edge . 6
5.4 Force- and deflection-measuring systems . 6
5.4.1 Introductory remarks . 6
5.4.2 Definition of precision and accuracy requirements . 6
5.4.3 Deflection measurement . 8
5.5 Equipment for measuring the width and thickness of the test specimens . 9
6 Test specimens. 9
6.1 Shape and dimensions . 9
6.1.1 General. 9
6.1.2 Preferred specimen type . 9
6.1.3 Other test specimens .10
6.2 Anisotropic materials .10
6.3 Preparation of test specimens .11
6.3.1 From moulding, extrusion and casting compounds .11
6.3.2 From sheets .11
6.4 Specimen inspection .11
6.5 Number of test specimens .12
7 Atmosphere for conditioning and testing .12
8 Procedure.12
9 Calculation and expression of results .16
9.1 Flexural stress .16
9.2 Flexural strain .16
9.3 Flexural modulus .16
9.4 Statistical parameters .17
9.5 Significant figures .17
10 Precision .17
11 Test report .17
Annex A (informative) Precision statement .19
Annex B (informative) Influence of changes in test speed on the measured values of
flexural properties .21
Annex C (normative) Compliance correction for Type III-tests .22
Annex D (informative) Relation between tensile and flexural modulus: Theoretical
expectations and experimental observations .24
Bibliography .25
ISO 178:2019(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following
URL: www .iso .org/iso/foreword .html.
This document was prepared by ISO/TC 61, Plastics, Subcommittee SC 2, Mechanical properties.
This sixth edition cancels and replaces the fifth edition (ISO 178:2010), which has been technically
revised. It also incorporates the Amendment ISO 178:2010/Amd.1:2013. The main changes compared to
the previous edition are as follows:
— differentiating calibration requirements according to the type of test;
— the introduction of deflectometers;
— the reinstatement of procedures for compliance correction;
— the addition of a new Annex D showing the relation between tensile and flexural modulus.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www .iso .org/members .html.
iv © ISO 2019 – All rights reserved
INTERNATIONAL STANDARD ISO 178:2019(E)
Plastics — Determination of flexural properties
1 Scope
This document specifies a method for determining the flexural properties of rigid and semi-rigid
plastics under defined conditions. A preferred test specimen is defined, but parameters are included for
alternative specimen sizes for use where appropriate. A range of test speeds is included.
The method is used to investigate the flexural behaviour of the test specimens and to determine the
flexural strength, flexural modulus and other aspects of the flexural stress/strain relationship under the
conditions defined. It applies to a freely supported beam, loaded at midspan (three-point loading test).
The method is suitable for use with the following range of materials:
— thermoplastic moulding, extrusion and casting materials, including filled and reinforced compounds
in addition to unfilled types; rigid thermoplastics sheets;
— thermosetting moulding materials, including filled and reinforced compounds; thermosetting sheets.
[5] [6]
In agreement with ISO 10350-1 and ISO 10350-2 , this document applies to fibre-reinforced
compounds with fibre lengths ≤7,5 mm prior to processing. For long-fibre-reinforced materials
[7]
(laminates) with fibre lengths >7,5 mm, see ISO 14125 .
The method is not normally suitable for use with rigid cellular materials or sandwich structures
[3] [4]
containing cellular material. In such cases, ISO 1209-1 and/or ISO 1209-2 can be used.
NOTE 1 For certain types of textile-fibre-reinforced plastic, a four-point bending test is used. This is described
in ISO 14125.
The method is performed using specimens which can be either moulded to the specified dimensions,
machined from the central section of a standard multipurpose test specimen (see ISO 20753) or machined
from finished or semi-finished products, such as mouldings, laminates, or extruded or cast sheet.
The method specifies the preferred dimensions for the test specimen. Tests which are carried out on
specimens of different dimensions, or on specimens which are prepared under different conditions, can
produce results which are not comparable. Other factors, such as the test speed and the conditioning of
the specimens, can also influence the results.
NOTE 2 Especially for injection moulded semi-crystalline polymers, the thickness of the oriented skin layer,
which is dependent on the moulding conditions, also affects the flexural properties.
The method is not suitable for the determination of design parameters but can be used in materials
testing and as a quality control test.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 291, Plastics — Standard atmospheres for conditioning and testing
ISO 293, Plastics — Compression moulding of test specimens of thermoplastic materials
ISO 294-1:2017, Plastics — Injection moulding of test specimens of thermoplastic materials — Part 1:
General principles, and moulding of multipurpose and bar test specimens
ISO 178:2019(E)
ISO 295, Plastics — Compression moulding of test specimens of thermosetting materials
ISO 2602, Statistical interpretation of test results — Estimation of the mean — Confidence interval
ISO 2818, Plastics — Preparation of test specimens by machining
ISO 7500-1, Metallic materials — Calibration and verification of static uniaxial testing machines — Part 1:
Tension/compression testing machines — Calibration and verification of the force-measuring system
ISO 9513, Metallic materials — Calibration of extensometer systems used in uniaxial testing
ISO 10724-1, Plastics — Injection moulding of test specimens of thermosetting powder moulding compounds
(PMCs) — Part 1: General principles and moulding of multipurpose test specimens
ISO 16012, Plastics — Determination of linear dimensions of test specimens
ISO 20753, Plastics — Test specimens
3 Terms, definitions and symbols
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https: //www .iso .org/obp
— IEC Electropedia: available at http: //www .electropedia .org
3.1
test speed
v
rate of relative movement between the specimen supports and the loading edge
Note 1 to entry: It is expressed in millimetres per minute (mm/min).
3.2
flexural stress
σ
f
nominal stress at the outer surface of the test specimen at midspan
Note 1 to entry: It is calculated from the relationship given in Formula (5).
Note 2 to entry: It is expressed in megapascals (MPa).
3.3
flexural stress at break
σ
fB
flexural stress at break of the test specimen
Note 1 to entry: It is expressed in megapascals (MPa).
Note 2 to entry: See Figure 1, curves a and b.
3.4
flexural strength
σ
fM
maximum flexural stress (3.2) sustained by the test specimen during a bending test
Note 1 to entry: It is expressed in megapascals (MPa).
Note 2 to entry: See Figure 1, curves a and b.
2 © ISO 2019 – All rights reserved
ISO 178:2019(E)
3.5
flexural stress at conventional deflection
σ
fc
flexural stress at the conventional deflection, s (3.7)
C
Note 1 to entry: It is expressed in megapascals (MPa).
Note 2 to entry: See also Figure 1, curve c.
3.6
deflection
s
distance over which the top or bottom surface of the test specimen at midspan deviates from its original
position during flexure
Note 1 to entry: It is expressed in millimetres (mm).
3.7
conventional deflection
s
C
deflection (3.6) equal to 1,5 times the thickness, h, of the test specimen
Note 1 to entry: It is expressed in millimetres (mm).
Note 2 to entry: Using a span, L, of 16h, the conventional deflection corresponds to a flexural strain (3.8) of 3,5 %.
3.8
flexural strain
ε
f
nominal fractional change in length of an element of the outer surface of the test specimen at midspan
Note 1 to entry: It is expressed as a dimensionless ratio or a percentage (%).
Note 2 to entry: It is calculated in accordance with the relationships given in Formulae (6) and (7).
ISO 178:2019(E)
Key
curve a specimen that breaks before yielding
curve b specimen that gives a maximum and then breaks before the conventional deflection, s
C
curve c specimen that neither gives a maximum nor breaks before the conventional deflection, s
C
Figure 1 — Typical curves of flexural stress, σ, versus flexural strain, ε, and deflection, s
f f
3.9
flexural strain at break
ε
fB
flexural strain at which the test specimen breaks
Note 1 to entry: It is expressed as a dimensionless ratio or a percentage (%).
Note 2 to entry: See Figure 1, curves a and b.
3.10
flexural strain at flexural strength
ε
fM
flexural strain at maximum flexural stress
Note 1 to entry: It is expressed as a dimensionless ratio or a percentage (%).
Note 2 to entry: See Figure 1, curves a and b.
3.11
modulus of elasticity in flexure
flexural modulus
E
f
ratio of the stress difference, σ − σ , to the corresponding strain difference,
f2 f1
ε (= 0,002 5) − ε (= 0,000 5)
f2 f1
Note 1 to entry: It is expressed in megapascals (MPa).
Note 2 to entry: The flexural modulus is only an approximate value of Young's modulus.
Note 3 to entry: See Formula (9).
4 © ISO 2019 – All rights reserved
ISO 178:2019(E)
3.12
rigid plastic
plastic that has a modulus of elasticity in flexure (3.11) or, if that is not applicable, then in tension, greater
than 700 MPa under a given set of conditions
[SOURCE: ISO 472:2013, 2.884, modified — Note to entry has been omitted.]
3.13
semi rigid plastic
plastic that has a modulus of elasticity in flexure (3.11) or, if that is not applicable, then in tension,
between 70 MPa and 700 MPa under a given set of conditions
[SOURCE: ISO 472:2013, 2.909, modified — Note to entry has been omitted.]
3.14
span between specimen supports
L
distance between the points of contact between the test specimen and the test specimen supports
Note 1 to entry: It is expressed in millimetres (mm).
Note 2 to entry: See Figure 2.
3.15
flexural strain rate
r
rate at which the flexural strain (3.8) increases during a test
−1
Note 1 to entry: It is expressed in percent per minute (% ⋅ min ).
4 Principle
A test specimen of rectangular cross-section, resting on two supports, is deflected by means of a
loading edge acting on the specimen midway between the supports. The test specimen is deflected in
this way at a constant rate at midspan until rupture occurs at the outer surface of the specimen or until
a maximum strain of 5 % (see 3.8) is reached, whichever occurs first. During this procedure, the force
applied to the specimen and the resulting deflection of the specimen at midspan are measured.
This document specifies two methods: method A and method B. Method A uses a strain rate of
1 %/min throughout the test. Method B uses two different strain rates: 1 %/min for the determination
of the flexural modulus and 5 %/min or 50 %/min, depending on the ductility of the material, for the
determination of the remainder of the flexural stress-strain curve.
NOTE 1 The strain rates mentioned above are to be interpreted as nominal ones. Nominal test speeds are
calculated using Formula (4). For the machine settings the best fitting ones are selected from Table 1.
NOTE 2 For materials exhibiting nonlinear stress/strain behaviour, the flexural properties are only
nominal. The formulae given have been derived assuming linear elastic behaviour and are valid for deflections
of the specimen that are small compared to its thickness. With the preferred specimen (which measures
80 mm × 10 mm × 4 mm) at the conventional flexural strain of 3,5 % and a span-to-thickness ratio, L/h, of 16, the
deflection is 1,5h. Flexural tests are more appropriate for stiff and brittle materials showing small deflections at
break than for very soft and ductile ones.
5 Test machine
5.1 General
The machine shall comply with ISO 7500-1 and ISO 9513 and the requirements given in 5.2 to 5.4.
ISO 178:2019(E)
5.2 Test speed
The test machine shall be capable of maintaining the test speed, as specified in Table 1.
Table 1 — Recommended values of the test speed, v
Test speed, v Tolerance
mm/min %
a
1 ±20
2 ±20
5 ±20
10 ±20
20 ±10
50 ±10
100 ±10
200 ±10
500 ±10
a
The lowest speed is used for specimens with thicknesses between
1 mm and 3,5 mm (see also 8.5).
5.3 Supports and loading edge
Two supports and a central loading edge shall be arranged as shown in Figure 2. The supports and the
loading edge shall be parallel to within ±0,2 mm over the width of the test specimen.
The radius, R , of the loading edge and the radius, R , of the supports shall be as follows:
1 2
R = 5,0 mm ± 0,2 mm;
R = 2,0 mm ± 0,2 mm for test specimen thicknesses ≤3 mm;
R = 5,0 mm ± 0,2 mm for test specimen thicknesses >3 mm.
The span, L, shall be adjustable.
5.4 Force- and deflection-measuring systems
5.4.1 Introductory remarks
Flexural tests, according to the specific requirements on the data to be obtained, can be differentiated in
several classes, comprising different complexity and requirements on accuracy. This starts with simple
tests for obtaining flexural strength only on the one hand and on the other hand necessitates the use of
a deflectometer to obtain the deflection accurately and free of compliance effects of the machine. The
compliance of flexural testing machines has several possible sources (play and deformations in fixtures,
deformations in the load train, and deformations of the load cell). Precise and true determination of
deflection is especially important for the determination of the flexural modulus, for which the use of
uncorrected crosshead displacement is not suitable. For a repeatable determination of flexural modulus
results a compliance correction shall be applied or, preferably, a deflectometer shall be used.
5.4.2 Definition of precision and accuracy requirements
Table 2 defines objectives of testing in increasing order of test complexity and appertaining need for
accuracy. A good precision without absolute accuracy as indicated in type III-tests can be sufficient in
many quality control environments when properties are to be supervised over periods of time only.
Accurate, meaning true and precise, results as indicated in type IV-tests are needed if the results are to
be compared between laboratories. Different types of deflection measurement and different accuracy
6 © ISO 2019 – All rights reserved
ISO 178:2019(E)
requirements for the deflection measurement are therefore defined, based on the needs on precision
and trueness of the test results.
Key
1 test specimen h thickness of specimen
2 support base plate F applied force
3 deflectometer position l length of specimen
4 supports L length of span between supports
R radius of loading edge R radius of supports
1 2
Figure 2 — Position of test specimen and deflectometer at start of test
ISO 178:2019(E)
Table 2 — Types of tests and calibration requirements
Types (I-IV)
of tests in increasing order of complexity and requirements for accuracy
Required objective Stress/strength only Stress/strength/ Stress/strength/ Stress/strength/
of testing strains > 1 % strains/repeat- strains/true and
able and precise precise = accurate
modulus modulus
Property I II III IV
σ × × × ×
fB
σ × × × ×
fM
σ × × ×
fC
s × × ×
C
ε × × ×
fB
ε × × ×
fM
E × ×
f
Calibration requirement
Force ISO 7500-1, class 1
Deflection measure- — ISO 9513, Class 2 ISO 9513, Class 2 plus ISO 9513, Class 1 plus
ment condition set in 5.4.3 condition set in 5.4.3
Type of deflection — Crosshead displace- Crosshead displace- Direct measurement
measurement ment ment with compli- using a deflectometer
ance correction
5.4.3 Deflection measurement
The machine shall be capable of continuously recording the crosshead displacement with an accuracy
conforming to the class of ISO 9513 indicated in Table 2. This shall be valid over the whole range of
deflections to be measured. Non-contact systems may be used provided they meet the accuracy
requirements stated above. The measurement system shall not be influenced by machine compliance.
When determining the flexural modulus as indicated in type IV, the deflection-measuring system, in
accordance with ISO 9513 Class 1, shall be capable of measuring the change in deflection to an accuracy
of 1 % of the relevant value or better, corresponding to ± 3,4 µm for a support span, L, of 64 mm and a
specimen thickness, h, of 4,0 mm (see Figure 3).
For type III tests the deflection-measuring system, in accordance with ISO 9513 Class 2, shall be
capable of measuring the change in deflection to an accuracy of 2 % of the relevant value or better,
corresponding to ±6,8 µm for a support span, L, of 64 mm and a specimen thickness, h, of 4,0 mm.
Other support spans and specimen thicknesses will lead to different requirements for the accuracy of
the deflection-measuring system.
For the determination of the flexural modulus using the crosshead displacement a
...
SIST EN ISO 178:2019 표준 문서는 고 rigid 및 semi-rigid 플라스틱의 굽힘 특성을 정의된 조건 하에 측정하는 방법을 규명하고 있습니다. 이 표준은 특정 시험 샘플 크기를 정의하지만, 적절한 경우 대체 샘플 크기에 대한 파라미터도 포함되어 있어 유연성을 제공합니다. 시험 속도 범위도 포함되어 있어 다양한 실험 조건을 적용할 수 있습니다. 이 방법은 시험 샘플의 굽힘 행동을 조사하고, 굽힘 강도, 굽힘 모듈러스 및 굽힘 응력/변형 관계의 다른 측면을 결정하기 위해 사용됩니다. 세 점 하중을 가하는 자유 지지 빔에서 테스트가 수행되어 플라스틱의 기계적 성질을 심층적으로 이해하는 데 기여합니다. 이 방법은 다양한 재료에 적합하게 설계되어 있습니다. 여기에는 필드 및 강화 화합물뿐 아니라 비충진형의 열가소성 성형, 압출 및 주조 재료가 포함됩니다. 또한 열 경화성 성형 재료와 필드 및 강화 화합물, 열 경화성 시트도 포함됩니다. ISO 10350-1 및 ISO 10350-2와 연계하여, 처리 전 섬유 길이가 7.5mm 이하인 섬유 강화 화합물에 적합합니다. 단, 7.5mm를 초과하는 긴 섬유 강화 재료(적층체)에 대해서는 ISO 14125를 참조해야 합니다. 본문에서는 특정 텍스타일 섬유 강화 플라스틱의 경우 4점 굽힘 테스트를 사용하는데, 이는 ISO 14125에서 설명되어 있습니다. 시험 샘플은 정해진 치수에 맞춰 성형하거나, 표준 다목적 시험 샘플의 중앙 부분에서 가공하거나, 완제품 또는 반제품에서 가공할 수 있습니다. 시험 샘플의 치수가 다르거나 준비 조건이 다른 경우 비교 가능한 결과를 생성할 수 없으므로, 이 표준은 시험 샘플의 선호 치수를 명시하고 있습니다. 또한, 시험 속도나 시험 샘플의 상태와 같은 다른 요인이 결과에 영향을 미칠 수 있습니다. 특히, 주입 성형된 반 결정질 폴리머의 경우, 성형 조건에 따라 결정되는 방향성 스킨 층의 두께가 굽힘 특성에 미치는 영향을 강조하고 있습니다. 이 방법은 설계 파라미터의 결정에는 적합하지 않지만, 재료 테스트 및 품질 관리 테스트로 활용될 수 있습니다. SIST EN ISO 178:2019는 플라스틱의 굽힘 특성을 측정하기 위한 신뢰성 있는 가이드라인을 제공하여, 해당 산업에서 요구되는 기준을 준수하는 데 중요한 작품입니다.
標準EN ISO 178:2019は、剛性および半剛性のプラスチック材料の曲げ特性を特定の条件下で測定するための方法を規定しています。この文書の範囲は、試験中の材料の挙動を調査し、曲げ強度、曲げ弾性率、及び曲げ応力/ひずみ関係の他の側面を評価することにあります。特に自由支持のビームに作用する三点曲げ試験を適用し、様々な試験速度が考慮されています。 この標準の強みは、剛性熱可塑性材料や熱硬化性材料を含む広範な材料に適用可能である点です。具体的には、充填剤や強化剤を含む成形、押出し、鋳造材料が含まれ、さらに剛性熱可塑性シートや熱硬化性シートの試験にも対応しています。また、加工前の繊維長が7.5mm以下の繊維強化複合材料にも適用され、8mm以上の長繊維強化材料についてはISO 14125に参照しています。このように、多様な材料に対応できることは、材料試験および品質管理の観点から大きな利点です。 試験の信頼性についても重要で、標準は試験体の推奨寸法を明確に規定しており、異なる寸法や条件で試験を行った場合、結果が比較できない可能性があることを警告しています。試験速度や試験体の条件も結果に影響を与えるため、これらの要因の管理も要求されます。特に、射出成形された半結晶性ポリマーにおいては、成形条件に依存する層の厚さが曲げ特性に影響を及ぼすことに留意が必要です。 ただし、この方法は設計パラメータの決定には通常適しておらず、材料試験および品質管理試験としての利用が推奨されています。特にテキスタイル繊維強化プラスチックの場合は、ISO 14125で定義された四点曲げ試験が適用されることも留意すべき点です。 以上のように、EN ISO 178:2019は、プラスチック材料の曲げ特性を評価するための明確な基準を提供し、多様な材料に対する適用性と信頼性の高い試験手法を確立しています。
The EN ISO 178:2019 standard provides a comprehensive and technically robust method for determining the flexural properties of rigid and semi-rigid plastics, making it a crucial document for materials testing within the plastics industry. This standard's well-defined scope clearly outlines its applicability to a range of materials, including thermoplastic and thermosetting compounds, which enhances its relevance to manufacturers and researchers alike. One of the notable strengths of this standard is its inclusion of a preferred test specimen, along with parameters for alternative specimen sizes. This flexibility allows for a broader range of applications without compromising the reliability of results. Moreover, the standard accommodates various test speeds, making it adaptable to different testing environments and operational requirements. The method focuses on a three-point loading test, which is a widely recognized technique for evaluating flexural behavior. It specifies the conditions needed to ensure accurate determination of flexural strength, flexural modulus, and the stress-strain relationship, thus providing critical insights into material performance. Importantly, the standard is geared towards practical applications, allowing users to prepare specimens through various means, such as moulding, machining, or utilizing finished products. This aspect is particularly beneficial for businesses that require consistent quality control processes. However, it is essential to note that the method has defined limitations, particularly regarding its applicability to certain material types like rigid cellular materials or sandwich structures with cellular components. Instead, users are directed to alternative standards for those materials, ensuring that the EN ISO 178:2019 is used appropriately within its intended scope. The standard's specifications pertaining to specimen dimensions and testing conditions underline the importance of uniformity in results, which is crucial for comparative analysis in materials science. Additionally, the notes provided on factors that influence flexural properties, such as the thickness of the oriented skin layer in injection molded semi-crystalline polymers, reflect the standard's thorough approach to accuracy in testing outcomes. Overall, EN ISO 178:2019 serves as a vital reference for those involved in the study and application of plastics, reinforcing its significance in quality assurance and engineering processes within the industry. Its structured methodology and comprehensive guidelines ensure that users can conduct effective testing while adhering to internationally recognized standards.











Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...