EN ISO 13506-1:2024
(Main)Protective clothing against heat and flame - Part 1: Test method for complete garments - Measurement of transferred energy using an instrumented manikin (ISO 13506-1:2024)
Protective clothing against heat and flame - Part 1: Test method for complete garments - Measurement of transferred energy using an instrumented manikin (ISO 13506-1:2024)
This document specifies the overall requirements, equipment and calculation methods to provide results that can be used for evaluating the performance of complete garments or protective clothing ensembles exposed to short duration flame engulfment.
This test method establishes a rating system to characterize the thermal protection provided by single-layer and multi-layer garments made of flame resistant materials. The rating is based on the measurement of heat transfer to a full-size manikin exposed to convective and radiant energy in a laboratory simulation of a fire with controlled heat flux, duration and flame distribution. The heat transfer data is summed over a prescribed time to give the total transferred energy. Transferred energy and thermal manikin protection factor (TMPF) assessment methods provide a means to quantify product performance.
The exposure heat flux is limited to a nominal level of 84 kW/m2 and durations of 3 s to 20 s dependant on the risk assessment and expectations from the thermal insulating capability of the garment.
The results obtained apply only to the particular garments or ensembles, as tested, and for the specified conditions of each test, particularly with respect to the heat flux, duration and flame distribution.
This test method covers visual evaluation, observation, inspection and documentation on the overall behaviour of the test specimen(s) before, during and after the exposure. The effects of body position and movement are not addressed in this test method.
The heat flux measurements can also be used to calculate the predicted skin burn injury resulting from the exposure (see ISO 13506-2).
This test method does not simulate high radiant exposures such as those found in arc flash exposures, some types of fire exposures where liquid or solid fuels are involved, nor exposure to nuclear explosions.
NOTE This test method is complex and requires a high degree of technical expertise in both the test setup and operation. Even minor deviations from the instructions in this test method can lead to significantly different test results.
Schutzkleidung gegen Hitze und Flammen - Teil 1: Prüfverfahren für vollständige Bekleidung - Messung der Wärmeübertragung unter Verwendung einer sensorbestückten Prüfpuppe (ISO 13506-1:2024)
Dieses Dokument legt die Gesamtanforderungen, Einrichtungen und Berechnungsverfahren fest, mit denen Ergebnisse erhalten werden, die zur Bewertung der Leistungsfähigkeit vollständiger Bekleidungen oder Schutzkleidungsensembles verwendet werden können, die einer Beflammung von kurzer Dauer ausgesetzt sind.
Dieses Prüfverfahren legt ein Bewertungssystem zur Charakterisierung des Hitzeschutzes fest, der von einlagigen und mehrlagigen, aus flammbeständigen Materialien bestehenden Kleidungsstücken bereitgestellt wird. Die Bewertung beruht auf der Messung der Wärmeübertragung auf eine lebensgroße Prüfpuppe, die bei einer Brandsimulation in einem Labor mit kontrolliertem Wärmestrom sowie kontrollierter Dauer und Flammenverteilung Konvektions– und Strahlungswärme ausgesetzt wird. Die Daten der Wärmeübertragung werden über einen vorgeschriebenen Zeitraum addiert, um das Ergebnis für die gesamte Wärmeübertragung zu erhalten. Bewertungsverfahren für die Wärmeübertragung und den Hitzeschutzfaktor des Schutzes der Prüfpuppe (TMPF, en: thermal manikin protection factor) ermöglichen die Quantifizierung der Produktleistung.
Der Wärmestrom der Exposition ist auf eine Nennstärke von 84 kW/m2 und je nach Risikobewertung und Erwartungen an die Wärmeisolationsfähigkeit des Kleidungsstücks auf eine Dauer von 3 s bis 20 s begrenzt.
Die erhaltenen Messwerte gelten nur für die jeweiligen geprüften Kleidungsstücke oder Kleidungsensembles und nur für die festgelegten Bedingungen jeder Prüfung, insbesondere im Hinblick auf den Wärmestrom, die Expositionsdauer und die Flammenverteilung.
Dieses Prüfverfahren schließt eine Bewertung durch Sichtprüfung, Beobachtung, Untersuchung und Dokumentierung des Gesamtverhaltens des Prüfstücks/der Prüfstücke vor, während und nach der Exposition ein. Die Auswirkungen von Körperhaltung und Bewegung sind nicht Gegenstand dieses Prüfverfahrens.
Die Wärmestrommessungen können auch zur Berechnung der voraussichtlichen Hautverbrennungen aufgrund der Exposition verwendet werden (siehe ISO 13506 2).
Dieses Prüfverfahren simuliert weder starke Strahlungsbeanspruchung, wie sie bei einer Kurzschlusslichtbogenexposition oder bei einigen Arten der Flammenexposition mit flüssigen oder festen Brennstoffen auftreten können, noch Expositionen durch nukleare Explosionen.
ANMERKUNG Dieses Prüfverfahren ist komplex und erfordert sowohl beim Prüfaufbau als auch bei der Durchführung der Prüfung einen hohen Grad an technischem Sachverstand. Selbst geringfügige Abweichungen von den Anweisungen können bei diesem Prüfverfahren zu signifikant unterschiedlichen Prüfergebnissen führen.
Habillement de protection contre la chaleur et les flammes - Partie 1: Méthode d'essai pour vêtements complets - Mesurage de l'énergie transférée à l'aide d'un mannequin instrumenté (ISO 13506-1:2024)
Le présent document spécifie l'ensemble des exigences, le matériel et les méthodes de calcul donnant des résultats pouvant servir à l'évaluation de la performance de vêtements complets ou d'ensembles de vêtements de protection exposés pendant une courte durée à un embrasement.
Cette méthode d'essai détermine un système de classement pour caractériser la protection thermique apportée par des vêtements monocouches et multicouches constitués de matériaux résistants à la flamme. Le classement s'appuie sur la mesure du transfert de chaleur à un mannequin grandeur nature exposé à une énergie par convection et par rayonnement dans une simulation de feu en laboratoire, avec un flux de chaleur, une durée et une distribution des flammes maîtrisées. Les données de transfert de chaleur sont totalisées sur une durée prescrite pour obtenir l'énergie totale transférée. Une méthode d'évaluation de l'énergie transférée et du facteur de protection du mannequin thermique (TMPF) permet de quantifier les performances du produit.
Le flux de chaleur d'exposition est limité à un niveau nominal de 84 kW/m2 et à des durées d'exposition de 3 s à 20 s en fonction de l'évaluation du risque et des attentes en matière de capacité d'isolation thermique du vêtement.
Les résultats obtenus ne s'appliquent qu'aux vêtements ou ensembles de vêtements particuliers, tels que soumis à essai, et pour les conditions spécifiées de chaque essai, notamment en ce qui concerne le flux de chaleur, la durée et la distribution des flammes.
Cette méthode d'essai couvre l'évaluation visuelle, l'observation, l'inspection et la documentation du comportement global de la ou des éprouvettes avant, pendant et après l'exposition. Les effets associés à la position et aux mouvements du corps ne sont pas traités dans cette méthode d'essai.
Les mesurages du flux de chaleur peuvent également être utilisés pour calculer les brûlures prévisibles résultant de l'exposition (voir ISO 13506-2).
Cette méthode d'essai ne simule pas d'expositions très intenses, telles que les expositions aux arcs électriques, certains types d'exposition à des feux impliquant des combustibles liquides ou solides, ni l'exposition à des explosions nucléaires.
NOTE La présente méthode d'essai est complexe et nécessite un haut niveau d'expertise technique aussi bien pour le montage d'essai que pour la mise en œuvre. Tout écart, même mineur, par rapport aux instructions de la présente méthode d'essai peut conduire à des résultats d'essai nettement différents.
Varovalna obleka pred učinki toplote in ognja - 1. del: Preskusna metoda za kompletna oblačila - Merjenje prenesene energije s preskusno lutko, opremljeno z instrumenti (ISO 13506-1:2024)
Ta dokument določa splošne zahteve, opremo in metode izračuna za zagotavljanje rezultatov, ki jih je mogoče uporabiti za ocenjevanje učinkovitosti kompletnih oblačil ali kompletov varovalnih oblek, kratkotrajno izpostavljenih plamenom.
Ta preskusna metoda vzpostavlja sistem ocenjevanja za opredelitev toplotne zaščite, ki jo zagotavljajo enoslojna in večslojna oblačila iz ognjevarnih materialov. Ocena temelji na merjenju prenosa toplote na preskusno lutko v naravni velikosti, ki je izpostavljena konvekcijski in sevalni energiji pri laboratorijski simulaciji požara s kontroliranim toplotnim tokom, trajanjem in razpršitvijo plamena. Podatki o prenosu toplote so vsota seštevkov v predpisanem času, da se dobi vrednost skupne prenesene energije. Metode ocenjevanja prenesene energije in faktorja toplotne zaščite lutke (TMPF) omogočajo kvantifikacijo učinkovitosti izdelka.
Toplotni tok izpostavljenosti je omejen na nazivno raven 84 kW/m2 in trajanje od 3 do 20 sekund, kar je odvisno od ocene tveganja in pričakovanj glede toplotne izolacijske zmogljivosti oblačila.
Rezultati veljajo samo za posamezna preskušena oblačila ali komplete oblačil in za določene pogoje vsakega preskusa, zlasti v povezavi s toplotnim tokom, trajanjem in razpršitvijo plamena.
Ta preskusna metoda zajema vizualno ocenjevanje, opazovanje, pregledovanje in dokumentiranje splošnega vedenja preskušancev pred in med izpostavljenostjo ter po njej. Ta preskusna metoda ne obravnava učinkov položaja in gibanja telesa.
Meritve toplotnega toka je mogoče uporabiti tudi za izračun predvidenih kožnih opeklin zaradi izpostavljenosti (glej standard ISO 13506-2).
Ta preskusna metoda ne simulira visoke izpostavljenosti sevanju, na primer pri izpostavljenosti električnim oblokom, nekaterim vrstam požarov, pri katerih gorijo tekoča ali trdna goriva, ali pri izpostavljenosti jedrskim eksplozijam.
OPOMBA: Ta preskusna metoda je kompleksna in zahteva visoko stopnjo tehničnega znanja tako pri postavitvi kot izvedbi preskusa. Že manjše odstopanje od navodil pri tej preskusni metodi lahko znatno spremeni rezultate preskusa.
General Information
Relations
Standards Content (Sample)
SLOVENSKI STANDARD
01-november-2024
Nadomešča:
SIST EN ISO 13506-1:2017
Varovalna obleka pred učinki toplote in ognja - 1. del: Preskusna metoda za
kompletna oblačila - Merjenje prenesene energije s preskusno lutko, opremljeno z
instrumenti (ISO 13506-1:2024)
Protective clothing against heat and flame - Part 1: Test method for complete garments -
Measurement of transferred energy using an instrumented manikin (ISO 13506-1:2024)
Schutzkleidung gegen Hitze und Flammen - Teil 1: Prüfverfahren für vollständige
Bekleidung - Messung der Wärmeübertragung unter Verwendung einer
sensorbestückten Prüfpuppe (ISO 13506-1:2024)
Habillement de protection contre la chaleur et les flammes - Partie 1: Méthode d'essai
pour vêtements complets - Mesurage de l'énergie transférée à l'aide d'un mannequin
instrumenté (ISO 13506-1:2024)
Ta slovenski standard je istoveten z: EN ISO 13506-1:2024
ICS:
13.340.10 Varovalna obleka Protective clothing
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
EN ISO 13506-1
EUROPEAN STANDARD
NORME EUROPÉENNE
June 2024
EUROPÄISCHE NORM
ICS 13.340.10 Supersedes EN ISO 13506-1:2017
English Version
Protective clothing against heat and flame - Part 1: Test
method for complete garments - Measurement of
transferred energy using an instrumented manikin (ISO
13506-1:2024)
Habillement de protection contre la chaleur et les Schutzkleidung gegen Hitze und Flammen - Teil 1:
flammes - Partie 1: Méthode d'essai pour vêtements Prüfverfahren für vollständige Bekleidung - Messung
complets - Mesurage de l'énergie transférée à l'aide der Wärmeübertragung unter Verwendung einer
d'un mannequin instrumenté (ISO 13506-1:2024) sensorbestückten Prüfpuppe (ISO 13506-1:2024)
This European Standard was approved by CEN on 22 June 2024.
CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and
United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2024 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN ISO 13506-1:2024 E
worldwide for CEN national Members.
Contents Page
European foreword . 3
European foreword
This document (EN ISO 13506-1:2024) has been prepared by Technical Committee ISO/TC 94
"Personal safety -- Personal protective equipment" in collaboration with Technical Committee CEN/TC
162 “Protective clothing including hand and arm protection and lifejackets” the secretariat of which is
held by DIN.
This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by December 2024, and conflicting national standards
shall be withdrawn at the latest by December 2024.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
This document supersedes EN ISO 13506-1:2017.
Any feedback and questions on this document should be directed to the users’ national standards
body/national committee. A complete listing of these bodies can be found on the CEN website.
According to the CEN-CENELEC Internal Regulations, the national standards organizations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria,
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland,
Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of
North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and the
United Kingdom.
Endorsement notice
The text of ISO 13506-1:2024 has been approved by CEN as EN ISO 13506-1:2024 without any
modification.
International
Standard
ISO 13506-1
Second edition
Protective clothing against heat
2024-06
and flame —
Part 1:
Test method for complete
garments — Measurement of
transferred energy using an
instrumented manikin
Habillement de protection contre la chaleur et les flammes —
Partie 1: Méthode d'essai pour vêtements complets — Mesurage
de l'énergie transférée à l'aide d'un mannequin instrumenté
Reference number
ISO 13506-1:2024(en) © ISO 2024
ISO 13506-1:2024(en)
© ISO 2024
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii
ISO 13506-1:2024(en)
Contents Page
Foreword .v
Introduction .vi
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 2
4 Overview . 4
4.1 General .4
4.2 Heat flux - energy balance on the sensor .4
4.3 Assumptions to achieve the required heat flux .5
5 Apparatus . 6
5.1 Instrumented manikin .6
5.2 Posture of the manikin .9
5.3 Manikin sensors .10
5.3.1 Principle .10
5.3.2 Number of manikin sensors .11
5.3.3 Manikin sensor-measuring capability . 12
5.3.4 Manikin sensor specification . 12
5.3.5 Manikin sensor positioning .14
5.3.6 Manikin heat flux validation .14
5.4 Data acquisition system .16
5.5 Computer software program .16
5.5.1 General .16
5.5.2 Incident heat flux .17
5.5.3 Exposure heat flux .17
5.5.4 Thermal manikin protection factor (TMPF) .17
5.5.5 Transferred energy .18
5.6 Flame exposure chamber .19
5.6.1 General .19
5.6.2 Chamber size . . .19
5.6.3 Chamber air flow . .19
5.6.4 Chamber isolation .19
5.6.5 Chamber air exhaust system .19
5.6.6 Chamber safety devices .19
5.7 Fuel and delivery system . 20
5.7.1 General . 20
5.7.2 Fuel . 20
5.7.3 Fuel delivery and shut-off system . 20
5.7.4 Burner system . 20
5.8 Image recording equipment .21
5.9 Safety checklist .21
5.10 Laboratory capability demonstration . 22
6 Sampling and test specimens .22
6.1 General . 22
6.2 Number of test specimens . 22
6.3 Size of test specimen . 22
6.4 Specimen preparation . 23
6.4.1 Conditioning . 23
6.4.2 Optional laundering . 23
6.5 Standard reference garment design . 23
7 Pre-requisites for products implementing this test method .24
8 Procedure .25
8.1 Preparation of test apparatus . 25
iii
ISO 13506-1:2024(en)
8.1.1 General . 25
8.1.2 Manikin sensor check. 25
8.1.3 Flame exposure chamber purging . 26
8.1.4 Confirming safe operation conditions and lighting of pilot flames . 26
8.1.5 Gas line charging . 26
8.1.6 Confirmation of nude and garment exposure conditions . 26
8.2 Specimen testing procedure . .27
8.2.1 General .27
8.2.2 Dressing the manikin .27
8.2.3 Recording the specimen identification, test conditions and test observations . 28
8.2.4 Starting the image recording system . 28
8.2.5 Setting time for heat transfer data acquisition . 29
8.2.6 Exposure of the test specimen . 29
8.2.7 Recording of specimen response remarks . 29
8.2.8 Calculation of surface incident heat flux and transferred energy . 29
8.2.9 Still images . . 29
8.3 Preparing for the next test exposure . 29
9 Test report .30
9.1 General . 30
9.2 Specimen identification . 30
9.3 Exposure conditions . 30
9.4 Results for each specimen .31
9.4.1 General .31
9.4.2 Heat flux data of each manikin sensor .31
9.4.3 Thermal manikin protection factor .31
9.4.4 Transferred energy .31
9.4.5 Other information that may be reported.32
9.5 Observations .32
Annex A (informative) Considerations for conducting tests and using test results .33
Annex B (informative) Interlaboratory test data analysis .34
Annex C (normative) Calibration and validation procedure .36
Annex D (informative) Burner stand alignment for flame engulfment .39
Annex E (informative) Elements of a computer software program .42
Bibliography .44
iv
ISO 13506-1:2024(en)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out through
ISO technical committees. Each member body interested in a subject for which a technical committee
has been established has the right to be represented on that committee. International organizations,
governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely
with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are described
in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types
of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the
ISO/IEC Directives, Part 2 (see www.iso.org/directives).
ISO draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent
rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a)
patent(s) which may be required to implement this document. However, implementers are cautioned that
this may not represent the latest information, which may be obtained from the patent database available at
www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions
related to conformity assessment, as well as information about ISO's adherence to the World Trade
Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 94, Personal safety — Protective clothing
and equipment, Subcommittee SC 13, Protective clothing, in collaboration with the European Committee
for Standardization (CEN) Technical Committee CEN/TC 162, Protective clothing including hand and arm
protection and lifejackets, in accordance with the Agreement on technical cooperation between ISO and CEN
(Vienna Agreement).
This second edition cancels and replaces the first edition (ISO 13506-1:2017), which has been technically
revised.
The main changes are as follows:
— revision of definitions (see Clause 3);
— heat flux, requirements and its definition (see Clauses 4 and 5);
— female manikin (see Clause 5 and rest of document);
— manikin sensor calibration (see Clause 5);
— heat flux symmetry (see Clause 5);
— thermal manikin protection factor (TMPF) (see Clause 5);
— transferred energy and its calculation (see Clause 5);
— interlaboratory test data analysis results (see Annex B);
— calibration and validation procedure (see Annex C).
A list of all parts in the ISO 13506 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.
v
ISO 13506-1:2024(en)
Introduction
The purpose of heat and flame-resistant protective clothing is to shield the wearer from hazards that can
cause skin burn injury. The clothing is made from one or more materials. The evaluation of materials for
potential use in this type of clothing generally involves two steps. First, the materials are tested to gauge
their ability to limit flame spread. They are then tested to determine the rate of transferred energy through
them when exposed to a particular hazard. A variety of bench scale test methods are used in these two steps.
Bench scale test methods permit testing fabrics, seams, zippers, pockets, badges, buttons or other closures,
metal and plastic clips or other features that can be included in a complete garment. Once suitable materials
are identified, they are made into complete garments or ensembles. The overall design and performance of
the garment can be assessed on a manikin-fire exposure system. This test method is not designed to measure
material properties directly, but to evaluate the interaction of material behaviour and garment design.
In this test method, a stationary, upright adult-sized manikin (male or female) is dressed in a complete
garment and exposed to a laboratory simulation of a fire with controlled heat flux, duration and flame
distribution. The average incident heat flux to the exterior of the garment is 84 kW/m , a value similar to
those used in ISO 9151, ISO 6942 and ISO 17492. The protection offered by the test specimens is evaluated
through quantitative measurements and observations. Heat flux sensors fitted to the surface of the manikin
are used to measure the heat flux variation with time and location on the manikin and to determine the
total energy absorbed over the data-gathering period. The data gathering period is selected to ensure that
the total energy transferred has been completed. These measurements are suitable for use in predicting
skin burn injury (see ISO 13506-2).
The fire simulations are dynamic. The heat flux resulting from the exposure is neither constant nor uniform
over the surface of the manikin/garment. Under these conditions, the results are expected to have more
variability than carefully controlled bench scale tests (interlaboratory results are found in Annex B).
Fit of the garment on the manikin is important. Variations in garment design and how the manikin is dressed
by the operator can influence the test results. A test garment or specimen size is selected by the laboratory
from the size range provided by the manufacturer to properly fit the laboratory’s manikin. Variations in the
fit of the test garment that can occur when sitting, bending or moving are not evaluated.
Most manikins do not have sensors on the hands and feet, but it is possible to assess some aspects of hand
protection depending upon the specific design of the hands. All manikins contain heat flux sensors in the
head. The reason for this is that many outer garments include an integral hood, but not gloves or footwear.
Tests for gloves and footwear are covered by other ISO documents for specific end uses.
The method described in this document as an optional part in the fire fighter standards ISO 11999-3,
[11]
EN 469 and as an optional part in the industrial heat and flame protective clothing standard ISO 11612.
The National Fire Protection Association (NFPA) specifies a test method similar to the one described in this
[13]
document as part of a certification process for garments (see NFPA 2112 ).
vi
International Standard ISO 13506-1:2024(en)
Protective clothing against heat and flame —
Part 1:
Test method for complete garments — Measurement of
transferred energy using an instrumented manikin
1 Scope
This document specifies the overall requirements, equipment and calculation methods to provide results
that can be used for evaluating the performance of complete garments or protective clothing ensembles
exposed to short duration flame engulfment.
This test method establishes a rating system to characterize the thermal protection provided by single-layer
and multi-layer garments made of flame resistant materials. The rating is based on the measurement of
heat transfer to a full-size manikin exposed to convective and radiant energy in a laboratory simulation of
a fire with controlled heat flux, duration and flame distribution. The heat transfer data is summed over a
prescribed time to give the total transferred energy. Transferred energy and thermal manikin protection
factor (TMPF) assessment methods provide a means to quantify product performance.
The exposure heat flux is limited to a nominal level of 84 kW/m and durations of 3 s to 20 s dependant on
the risk assessment and expectations from the thermal insulating capability of the garment.
The results obtained apply only to the particular garments or ensembles, as tested, and for the specified
conditions of each test, particularly with respect to the heat flux, duration and flame distribution.
This test method covers visual evaluation, observation, inspection and documentation on the overall
behaviour of the test specimen(s) before, during and after the exposure. The effects of body position and
movement are not addressed in this test method.
The heat flux measurements can also be used to calculate the predicted skin burn injury resulting from the
exposure (see ISO 13506-2).
This test method does not simulate high radiant exposures such as those found in arc flash exposures, some
types of fire exposures where liquid or solid fuels are involved, nor exposure to nuclear explosions.
NOTE This test method is complex and requires a high degree of technical expertise in both the test setup and
operation. Even minor deviations from the instructions in this test method can lead to significantly different test
results.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.
ISO 3801, Textiles — Woven fabrics — Determination of mass per unit length and mass per unit area
ISO 11610, Protective clothing — Vocabulary
ISO 13506-2:2024, Protective clothing against heat and flame — Part 2: Skin burn injury prediction —
Calculation requirements and test cases
ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories
ISO 13506-1:2024(en)
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 11610 and the following apply.
ISO and IEC maintain terminology databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at https:// www .electropedia .org/
3.1
absorbed energy
q
net
net energy (3.7) absorbed by the sensor that accounts for all modes of heat transfer interacting with the
sensor surface when exposed to the incident energy (3.16)
Note 1 to entry: The energy balance including losses unique for each sensor type are detailed in the respective sensor
technology documents.
Note 2 to entry: See Figure 1 in 4.2 for a schematic representation of this definition.
3.2
associated area
area of body region per sensor
Note 1 to entry: See Table 3.
3.3
data acquisition period
time elapsed during which data is recorded during a test
3.5
data calculation period
defined time over which data are used for a calculation
3.6
conditioning
keeping samples under standard conditions of temperature and relative humidity for a minimum period of time
3.7
energy
heat flux (3.13) integrated over a specified time period multiplied by associated area (3.2)
Note 1 to entry: Energy is expressed in joules (J).
3.8
exposure duration
exposure time
time from the initial opening of the valves nearest to the burner to the closing of the same valve (8.2.6.)
3.9
exposure heat flux
incident heat flux averaged among the manikin sensors during data calculation period
3.10
fire
rapid oxidation process which is a chemical reaction of fuel and oxygen resulting in the evolution of light,
heat and combustion products in varying intensities
Note 1 to entry: The fuel can be a form of solid, dust, aerosol or a gas of an ignitable substance. The fire will last as long
as there is a combustible fuel-air mixture.
ISO 13506-1:2024(en)
3.11
flame distribution
spatial distribution of the flame engulfment from the test facility burners which provides a controlled
exposure heat flux (3.9) over the manikin surface
3.12
garment ease
difference between body (manikin) dimensions and garment dimensions
3.13
heat flux
heat through a surface area perpendicular to the direction of heat flow
2 2 2
Note 1 to entry: Heat flux is expressed in kW/m . For any conversion from kW/m to cal/cm .s; the following ratio is to
be used 4,184 J = 1 cal.
3.13.1
absorbed heat flux
net heat flux (3.13) absorbed by the sensor that accounts for all modes of heat transfer interacting with the
sensor surface when exposed to the incident heat flux (3.13.2)
3.13.2
incident heat flux
heat flux (3.13) to which a test item or sensor is exposed
Note 1 to entry: for incident heat flux to manikin sensors, see fig on energy balance (4.2)
3.14
heat flux sensor
manikin sensor
device, fulfilling the requirements of this document, capable of measuring the heat flux (3.13) to the
manikin's surface under test conditions, or of providing data that can be used to calculate the heat flux
3.15
incident energy
energy (3.7) to which a sensor is exposed during a nude exposure (3.18)
3.15.1
total incident energy
sum of the incident energy (3.16) of a specified set of manikin sensors (3.15) during the nude exposure for the
specified time period
3.16
instrumented manikin
model representing an adult-sized human (male or female) which is fitted with manikin sensors (3.15) in
the surface
3.17
nude exposure
test performed on the uncovered surface of the instrumented manikin (3.17)
3.18
maximum absorbed heat flux
highest value of absorbed heat flux (3.13.1) calculated from the recorded output of a manikin sensor (3.15)
during a test
ISO 13506-1:2024(en)
3.19
transferred energy
absorbed energy (3.1) by a single sensor under the test item
Note 1 to entry: Each manikin sensor has an associated area (3.2). It is assumed that the measured energy transferred
for each manikin sensor is uniform over this associated area. Some manikins have a sensor layout that has the same
area associated with each manikin sensor, others do not.
3.19.1
total transferred energy
sum of the transferred energy (3.20) of a specified set of covered manikin sensors (3.15) over the data
calculation period (3.5)
Note 1 to entry: Total transferred energy can refer to either the whole covered area of the manikin or to a specific
covered manikin region.
3.20
thermal manikin protection factor
TMPF
factor representing the overall protective garment or ensemble performance as a function of exposure and
test specimen mass
4 Overview
4.1 General
The method evaluates the thermal protective performance of the test specimen, which is either a garment or
an ensemble. The protective performance is a function of both the materials of construction and design. The
average incident heat flux is 84 kW/m with an exposure duration of 3 s to 20 s.
The performance standard shall indicate all the necessary boundary conditions of the test such as but not
limited to pass/fail criteria, the exposure time, test garment preparation, the minimum number of samples
to be tested, etc. (see Clause 7).
The conditioned test specimen is placed on a stationary upright adult-size manikin and exposed to a
laboratory simulation of a fire with controlled heat flux, duration and flame distribution. The test procedure,
data acquisition, result calculations and preparation of the test report are performed with computer
hardware and software programs (see Annex E).
Energy transferred through the test specimen during and after the exposure is measured by manikin
[15][16]
sensors . These measurements shall be used to calculate the total energy transferred to the surface of
the manikin.
NOTE 1 The results are used to calculate the degree of predicted skin burn injury and total predicted skin burn
injury areas resulting from the exposure as described in ISO 13506-2. The predicted skin burn injury information is
used in the calculation of the thermal manikin protection factor.
Identification of the test garment, test conditions, comments and response of the test specimen to the
exposure are recorded and are included as part of the test report. The performance of the test specimen
is indicated by the calculated total transferred energy through the test specimen over the data acquisition
period, thermal manikin protection factor (TMPF) and the way the test specimen responds to the test
exposure.
NOTE 2 This test method can be used for other purposes such as for research on fabrics and garment designs,
comparison of garment ensembles, or evaluation of any garment or ensemble to particular applications or end use
standards or specifications.
4.2 Heat flux - energy balance on the sensor
When energy from flames impinges a manikin sensor, its energy balance of convective heat and radiant heat
on the surface of the manikin sensor and the losses - it is critical to using the right calibration techniques
ISO 13506-1:2024(en)
and making the adequate correction (see Annex C). The energy definitions in clause 3 are better understood
when looking at Figure 1. When a garment covers the sensor or even touches the sensor, a number of
additional factors apply which are described in more detail in C.3.
a f
Control volume. q
convection.
b g
q T
inc,radiant. surface.
c h
q q
inc,radiant walls. losses.
d i
q q
inc,radiant reflected. net.
e j
q Sensing surface.
emitted,radiant.
Figure 1 — Energy balance on the surface of a manikin sensor
qq=+ααqq+− q − q (1)
netinc,,radiantinc radiantw,,alls incconvectiveraddiante, mittedlosses
where
q net absorbed heat flux by the surface;
net
α absorptivity of the surface;
q the radiant heat flux striking the sensor surface from the flame;
inc,radiant
q the radiant heat flux striking the sensor surface from the walls;
inc,radiant,walls
q convection heat from the flame to the sensor surface [h(T – T ), where h = con-
inc,convective flame surface
vection heat transfer coefficient, W/m ·°C];
q radiant heat flux emitted by the sensor surface to the flame and surroundings [εσT , where
radiant,emitted
ε = α (Kirchhoff’s law), σ = Stefan Boltzmann constant, and T is in K];
q heat losses from the side and back of the sensor due to its mounting in the manikin shell
losses
(specific to each sensor technology).
The q reflected shown in Figure 1, does not heat the sensor surface. It is included in Figure 1 for
inc,radiant
completeness of the energy flows between the flame and the sensor surface. The amount reflected equals
(1 − α) q .
inc,radiant
4.3 Assumptions to achieve the required heat flux
For the purposes of this test, the following conditions are assumed when calculating the incident heat flux:
[18]
— the heat is 60 % radiative and 40 % convective (Kemp et al.) ;
— the temperature of the flame on the manikin is 1 100 °C;
— the paint used to cover the surface of the thermal energy sensor has an α = 0,9.
ISO 13506-1:2024(en)
NOTE Different sensors react differently to the incident energy (approximately 40 % convective energy in the
incident nude exposure). Take care when making corrections for absorbed energy under the test specimen as the
air gap between the inside of the garment and the sensor as the distribution of heat flux (conduction, radiant, and
convection) is unknown and could result in a higher or lower protection value attributed to the fabric or ensemble.
5 Apparatus
5.1 Instrumented manikin
An upright manikin in the shape and size of a female or male adult human shall be used [see Figure 2].
The manikin shall consist of a head, a chest/back, an abdomen/buttocks, arms, hands, legs and feet.
Representative dimensions are provided for the male form in Table 1 and for the female form in Table 2.
Figure 3 contains a visual key of dimension locations
The arms should be able to rotate through a sufficient arc at the shoulder to ease the garment donning and
doffing on the manikin.
Figure 2 — Example of an instrumented thermal manikin and partial view of torch stands
(burner system)
NOTE 1 Only six burners of the total are shown in Figure 2 (see 5.7.4).
...








Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...