ISO/TC 85/SC 2/WG 22 - Dosimetry and related protocols in medical applications of ionizing radiation
Dosimétrie et protocoles pour les applications médicales relatives aux rayonnements ionisants
General Information
This document addresses the measurement methods, procedures and uncertainty estimation for the measurement, using a personal dosimeter, of the effective dose to the caregiver in the vicinity of the patient treated with radioiodine to ablate the thyroid. The general requirements for the patient and caregiver and a guidance (see Annex A) for designated expert on instructing caregivers of discharged patients is considered to effectively measure the effective dose to the caregiver in the vicinity of the patient.
- Standard12 pagesEnglish languagesale 15% off
- Draft12 pagesEnglish languagesale 15% off
This document specifies the dose assessment method when an RPLD is used for dosimetry audit in external high-energy X-ray beam radiotherapy. The dosimetry for electron beams and X-ray beams of stereotactic radiotherapy, gamma‑ray of brachytherapy is not included in this version. This document addresses RPLD handling, measurement method, conversion of measured value to dose, necessary correction coefficient, and the performance requirements for RPLD systems, including the reader.
- Standard17 pagesEnglish languagesale 15% off
- Standard18 pagesFrench languagesale 15% off
This document describes rules for the procedures, applications, and systems of thermoluminescence dosimetry (TLD) for dose measurements according to the probe method. It is particularly applicable to solid "TL detectors", i.e. rods, chips, and microcubes, made from LiF:Mg,Ti or LiF:Mg,Cu,P in crystalline or polycrystalline form. It is not applicable to LiF powders because their use requires special procedures. The probe method encompasses the arrangement, particularly in a water phantom or in a tissue-equivalent phantom, of single TL detectors or of "TL probes", i.e. sets of TL detectors arranged in thin-walled polymethyl methacrylate (PMMA) casings. The purpose of these rules is to guarantee the reliability and the accuracy indispensable in clinical dosimetry when applied on or in the patient or phantom. This document applies to dosimetry in teletherapy with both photon radiation from 20 keV to 50 MeV and electron radiation from 4 MeV to 25 MeV, as well as in brachytherapy with photon-emitting radionuclides. These applications are complementary to the use of ionization chambers.
- Standard41 pagesEnglish languagesale 15% off
- Standard43 pagesFrench languagesale 15% off
ISO 21439:2009 specifies methods for the determination of absorbed-dose distributions in water or tissue that are required prior to initiating procedures for the application of beta radiation in ophthalmic tumour and intravascular brachytherapy]. Recommendations are given for beta-radiation source calibration, dosemetry measurements, dose calculation, dosemetric quality assurance, as well as for beta-radiation brachytherapy treatment planning. Guidance is also given for estimating the uncertainty of the absorbed dose to water. ISO 21439:2009 is applicable to “sealed” radioactive sources, such as plane and concave surface sources, source trains of single seeds, line sources, shell and volume sources, for which only the beta radiation emitted is of therapeutic relevance. The standardization of procedures in clinical dosemetry described in ISO 21439:2009 serves as a basis for the reliable application of beta-radiation brachytherapy. The specific dosemetric methods described in ISO 21439:2009 apply to sources for the curative treatment of ophthalmic disease, for intravascular brachytherapy treatment, for overcoming the problem of restenosis and for other clinical applications using beta radiation. ISO 21439:2009 is geared towards organizations wishing to establish reference methods in dosemetry aiming at clinical demands for an appropriately small uncertainty of the delivered dose. ISO 21439:2009 does not exclude the possibility that there can be other methods leading to the same or smaller measurement uncertainties.
- Standard92 pagesEnglish languagesale 15% off
ISO 28057:2014 describes rules for the procedures, applications, and systems of thermoluminescence dosimetry (TLD) for dose measurements according to the probe method. It is particularly applicable to solid "TL detectors", i.e. rods, chips, and microcubes, made from LiF:Mg,Ti or LiF:Mg,Cu,P in crystalline or polycrystalline form. The probe method encompasses the arrangement, particularly in a water phantom or in a tissue-equivalent phantom, of single TL detectors or of "TL probes", i.e. sets of TL detectors arranged in thin-walled polymethyl methacrylate (PMMA) casings. The purpose of these rules is to guarantee the reliability and the accuracy indispensable in clinical dosimetry when applied on or in the patient or phantom. ISO 28057:2014 applies to dosimetry in teletherapy with both photon radiation from 20 keV to 50 MeV and electron radiation from 4 MeV to 25 MeV, as well as in brachytherapy with photon-emitting radionuclides. These applications are complementary to the use of ionization chambers.
- Standard40 pagesEnglish languagesale 15% off
- Standard40 pagesEnglish languagesale 15% off
- Standard41 pagesFrench languagesale 15% off
- Standard41 pagesFrench languagesale 15% off