SIST ISO 16000-3:2023
(Main)Indoor air - Part 3: Determination of formaldehyde and other carbonyl compounds in indoor and test chamber air - Active sampling method
Indoor air - Part 3: Determination of formaldehyde and other carbonyl compounds in indoor and test chamber air - Active sampling method
This document specifies a determination of formaldehyde (HCHO) and other carbonyl compounds (aldehydes and ketones) in air. The method is specific to formaldehyde but, with modification, at least 12 other aromatic as well as saturated and unsaturated aliphatic carbonyl compounds can be detected and quantified. It is suitable for determination of formaldehyde and other carbonyl compounds in the approximate concentration range 1 µg/m3 to 1 mg/m3. The sampling method gives a time-weighted average (TWA) sample. It can be used for long-term (1 h to 24 h) or short-term (5 min to 60 min) sampling of air for formaldehyde.
This document specifies a sampling and analysis procedure for formaldehyde and other carbonyl compounds that involves collection from air on to adsorbent cartridges coated with 2,4-dinitrophenylhydrazine (DNPH) and subsequent analysis of the hydrazones formed by high performance liquid chromatography (HPLC) with detection by ultraviolet absorption[12],[16]. The method is not suitable for longer chained or unsaturated carbonyl compounds.
Air intérieur - Partie 3: Dosage du formaldéhyde et d'autres composés carbonylés dans l'air intérieur et dans l'air des chambres d'essai - Méthode par échantillonnage actif
Le présent document spécifie un dosage du formaldéhyde (HCHO) et d’autres composés carbonylés (aldéhydes et cétones) dans l’air. La méthode est spécifique au formaldéhyde. Toutefois, si elle est modifiée, au moins 12 autres composés carbonylés aromatiques et aliphatiques saturés et insaturés peuvent être détectés et quantifiés. Elle convient au dosage du formaldéhyde et d'autres composés carbonylés dans la plage de concentration comprise entre environ 1 µg/m3 et 1 mg/m3. La méthode d’échantillonnage fournit un résultat moyen pondéré dans le temps (TWA). Elle peut être utilisée pour l’échantillonnage du formaldéhyde dans l’air à long terme (1 h à 24 h) ou à court terme (5 min à 60 min).
Le présent document spécifie un mode opératoire d'échantillonnage et d'analyse pour le formaldéhyde et d'autres composés carbonylés qui implique un prélèvement de l'air dans des cartouches adsorbantes imprégnées de 2,4-dinitrophénylhydrazine (DNPH) et une analyse ultérieure des hydrazones formées par chromatographie en phase liquide à haute performance (CLHP) avec détection par absorption ultraviolette.[12],[16] La méthode n'est pas adaptée pour les composés carbonylés à plus longues chaînes ou insaturés.
Notranji zrak - 3. del: Določevanje formaldehida in drugih karbonilnih spojin v notranjem zraku in zraku v preskusnih komorah - Metoda aktivnega vzorčenja
Ta dokument določa ugotavljanje formaldehida (HCHO) in drugih karbonilnih spojin (aldehidov in ketonov) v zraku. Metoda je specifična za formaldehid, vendar se lahko s spremembami uporablja za določevanje in kvantifikacijo najmanj 12 drugih aromatskih, nasičenih in nenasičenih alifatskih karbonilnih spojin. Primerna je za določevanje formaldehida in drugih karbonilnih spojin v približnem območju koncentracije od 1 μg/m3 do 1 mg/m3. Metoda vzorčenja podaja časovno tehtani povprečni (TWA) vzorec. Uporablja se lahko za dolgoročno (od 1 do 24 ur) ali kratkoročno (od 5 do 60 min) vzorčenje zraka za formaldehid.
Ta dokument določa postopek za vzorčenje in analizo formaldehida in drugih karbonilnih spojin, ki vključuje zbiranje iz zraka v kasete za adsorpcijo, prevlečene z 2,4-dinitrofenilhidrazinom (DNPH), ter poznejšo analizo hidrazonov, nastalih s tekočinsko kromatografijo visoke ločljivosti (HPLC), z zaznavanjem prek ultravijolične absorpcije[12],[16]. Metoda ni ustrezna za daljše verižne ali nenasičene karbonilne spojine.
General Information
Relations
Standards Content (Sample)
SLOVENSKI STANDARD
01-september-2023
Nadomešča:
SIST ISO 16000-3:2012
Notranji zrak - 3. del: Določevanje formaldehida in drugih karbonilnih spojin v
notranjem zraku in zraku v preskusnih komorah - Metoda aktivnega vzorčenja
Indoor air - Part 3: Determination of formaldehyde and other carbonyl compounds in
indoor and test chamber air - Active sampling method
Air intérieur - Partie 3: Dosage du formaldéhyde et d'autres composés carbonylés dans
l'air intérieur et dans l'air des chambres d'essai - Méthode par échantillonnage actif
Ta slovenski standard je istoveten z: ISO 16000-3:2022
ICS:
13.040.20 Kakovost okoljskega zraka Ambient atmospheres
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
INTERNATIONAL ISO
STANDARD 16000-3
Third edition
2022-09
Indoor air —
Part 3:
Determination of formaldehyde
and other carbonyl compounds in
indoor and test chamber air — Active
sampling method
Air intérieur —
Partie 3: Dosage du formaldéhyde et d'autres composés carbonylés
dans l'air intérieur et dans l'air des chambres d'essai — Méthode par
échantillonnage actif
Reference number
© ISO 2022
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Principle . 2
5 Limitations and interferences . 2
5.1 General . 2
5.2 Ozone interference . 3
6 Safety measures . 4
7 Apparatus . 4
7.1 Sampling . 4
7.2 Sample preparation . 4
7.3 Sample analysis . . 6
8 Reagents and materials . 7
9 Preparation of reagents and cartridges . 7
9.1 Purification of 2,4-dinitrophenylhydrazine . 7
9.2 Preparation of DNPH formaldehyde derivative . 8
9.3 Preparation of DNPH formaldehyde standards . 8
9.4 Preparation of DNPH coated silica gel cartridges . 9
9.4.1 General . 9
9.4.2 DNPH coating solution. 9
9.4.3 Coating of silica gel cartridges . 9
10 Procedure .10
10.1 Sample collection . . . 10
10.2 Process blanks .12
10.3 Sample analysis .12
10.3.1 Sample preparation .12
10.3.2 Sample desorption .12
10.3.3 HPLC calibration . 13
10.3.4 HPLC analysis for formaldehyde . 15
10.3.5 HPLC analysis of other aldehydes and ketones . 17
11 Calculations .19
12 Performance criteria and quality assurance .20
12.1 General . 20
12.2 Standard operating procedures (SOPs) . 20
12.3 HPLC system performance . 21
12.4 Sample loss . 21
12.5 Measurement plan . 21
13 Precision and uncertainty .21
14 Test report .22
Annex A (informative) Melting points of DNPH carbonyl derivatives .23
Annex B (informative) Precision and uncertainty.24
Bibliography .26
iii
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/
iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 146, Air quality, Subcommittee SC 6,
Indoor air.
This third edition cancels and replaces the second edition (ISO 16000-3:2011), which has been
technically revised.
The main changes are as follows:
— clarification of the suitability of the method for acrolein measurements.
A list of all parts in the ISO 16000 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.
iv
Introduction
This document is intended to be used for characterizing indoor air following the sampling strategy
specified in ISO 16000-2. It is applicable to formaldehyde and other carbonyl compounds. It has been
tested for 14 aldehydes and ketones. Formaldehyde is the simplest carbonyl compound, with one
carbon, one oxygen and two hydrogen atoms. In its monomolecular state, it is a colourless, pungent,
reactive gas. It has been used in the production of urea-formaldehyde resins, adhesives, and insulating
foams. Emissions from particle (chip) board and wall insulation are the major sources of formaldehyde
in indoor air.
Formaldehyde is collected by passing air through a reactive medium that converts the compound to a
derivative of lower vapour pressure that is more efficiently retained by the sampler and can be easily
analysed. This document determines formaldehyde and other carbonyl compounds by reaction with
2,4 dinitrophenylhydrazine coated on to a sorbent to convert them to their corresponding hydrazones,
which can be recovered and measured with high sensitivity, precision, and accuracy. Other carbonyl
compounds that may be emitted into air from solvents, adhesives, cosmetics, and other sources can also
be determined using this document.
[12]
The sampling procedure is based on US EPA method TO-11A .
[15]
Formaldehyde and certain other carbonyl compounds have a high toxic potential .
[7][8] [2]–[6]
ISO 16017 and ISO 12219 also focus on volatile organic compound (VOC) measurements.
Instead of systematic IUPAC nomenclature, traditional names are used in this document. Some
equivalent names are:
— acetaldehyde: ethanal;
— acetone: 2-propanone;
— butyraldehyde: butanal;
— capronaldehyde: hexanal;
— formaldehyde: methanal;
— isovaleraldehyde: 3-methylbutanal;
— propionaldehyde: propanal;
— m-tolualdehyde: 3-methylbenzaldehyde;
— o-tolualdehyde: 2-methylbenzaldehyde;
— p-tolualdehyde: 4-methylbenzaldehyde;
— valeraldehyde: pentanal.
v
INTERNATIONAL STANDARD ISO 16000-3:2022(E)
Indoor air —
Part 3:
Determination of formaldehyde and other carbonyl
compounds in indoor and test chamber air — Active
sampling method
WARNING — Persons using this document should be familiar with normal laboratory practice.
This document does not purport to address all of the safety problems, if any, associated with its
use. It is the responsibility of the user to establish appropriate safety and health practices and to
ensure compliance with any national regulatory conditions.
1 Scope
This document specifies a determination of formaldehyde (HCHO) and other carbonyl compounds
(aldehydes and ketones) in air. The method is specific to formaldehyde but, with modification, at least
12 other aromatic as well as saturated and unsaturated aliphatic carbonyl compounds can be detected
and quantified. It is suitable for determination of formaldehyde and other carbonyl compounds in the
3 3
approximate concentration range 1 µg/m to 1 mg/m . The sampling method gives a time-weighted
average (TWA) sample. It can be used for long-term (1 h to 24 h) or short-term (5 min to 60 min)
sampling of air for formaldehyde.
This document specifies a sampling and analysis procedure for formaldehyde and other
carbonyl compounds that involves collection from air on to adsorbent cartridges coated with
2,4-dinitrophenylhydrazine (DNPH) and subsequent analysis of the hydrazones formed by high
[12],[16]
performance liquid chromatography (HPLC) with detection by ultraviolet absorption . The
method is not suitable for longer chained or unsaturated carbonyl compounds.
This document applies to the determination of:
acetaldehyde 2,5-dimethylbenzaldehyde m-tolualdehyde
acetone formaldehyde o-tolualdehyde
benzaldehyde isovaleraldehyde p-tolualdehyde
butyraldehyde propionaldehyde valeraldehyde
capronaldehyde
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories
3 Terms and definitions
No terms and definitions are listed in this document.
ISO and IEC maintain terminology databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at https:// www .electropedia .org/
4 Principle
The method specified in this document involves drawing air through a cartridge containing silica gel
coated with 2,4-dinitrophenylhydrazine (DNPH) reagent. The principle of the method is based on the
specific reaction of a carbonyl group with DNPH in the presence of an acid to form stable derivatives
according to the reaction shown in Figure 1. The DNPH derivatives are analysed for the parent
aldehydes and ketones utilizing high performance liquid chromatography (HPLC) with UV detection
or diode array detection. The detection has been extended to other carbonyl compounds that can be
determined as outlined in 10.3.5.
This document instructs the user on how to prepare sampling cartridges from commercially available
chromatographic grade silica gel cartridges by the application of acidified DNPH to each cartridge.
Alternatively, pre-coated DNPH silica gel cartridges are available and are recommended since they
are generally more uniform in manufacture and possess lower blank levels. However, if commercial
cartridges are used, they shall be demonstrated to meet the performance criteria of this document.
Another advantage of commercial cartridges is that they are available with larger particle size silica gel
that results in a lower pressure drop across the cartridge. These low pressure drop cartridges can be
more suitable for sampling air using battery-powered personal sampling pumps.
Carbonyl compound 2,4-Dinitrophenylhydrazine DNPH deriative
(aldehyde or ketone) (DNPH)
Key
R, R' H, alkyl group, aromatic group
Figure 1 — Reaction of carbonyl compounds to form 2,4-dinitrophenylhydrazones
5 Limitations and interferences
5.1 General
The sampling flow rate specified in this document has been validated for sampling rates up to 1,5 l/
min. This flow rate limitation is principally due to the high pressure drop (>8 kPa at 1,0 l/min) across
the user-prepared silica gel cartridges, which have particle sizes of 55 µm to 105 µm. These cartridges
are not generally compatible with battery-powered pumps used in personal sampling equipment (e.g.
those used by industrial hygienists).
The solid-sorbent sampling procedure is specific for sampling and analysis of formaldehyde.
Interferences in this method are caused by certain isomeric aldehydes or ketones that may be unresolved
by the HPLC system when analysing for other aldehydes and ketones. Any organic compounds that have
the same retention times and significant absorbance at 360 nm as the DNPH derivative of formaldehyde
interfere. Such interferences can often be overcome by altering the separation conditions (e.g. using
alternative HPLC columns or mobile phase compositions).
Formaldehyde contamination of the DNPH reagent is a frequently encountered problem. The DNPH
shall be purified by multiple recrystallizations in UV-grade acetonitrile (ACN). Recrystallization is
accomplished, at 40 °C to 60 °C, by slow evaporation of the solvent to maximize crystal size. Impurity
levels of carbonyl compounds in the DNPH are determined prior to use by HPLC and should be less than
0,15 µg per cartridge.
Exposure of the DNPH coated sampling cartridges to direct sunlight can produce artefacts and should
[17]
be avoided .
Acrolein and crotonaldehyde cannot be accurately quantified by the method. Inaccurate results for
these compounds can result from the formation of multiple derivative peaks and the instability of the
[18]
peak ratios .
Nitrogen dioxide reacts with DNPH. High concentrations of NO (e.g. for gas cooking stoves) can cause
problems as the retention time of the DNPH derivative can be similar to that of the DNPH formaldehyde
[13][14][19]
derivative, depending on the HPLC column and the parameters .
5.2 Ozone interference
If there is suspicion that abnormally high levels of ozone are present in the area being sampled (e.g.
from office copiers), special care should be exercised. Ozone has been shown to interfere negatively by
[20]
reacting with both DNPH and its derivatives (hydrazones) in the cartridge . The extent of interference
depends on the temporal variations of both the ozone and the carbonyl compounds and the duration
of sampling. Significant negative interference from ozone has been observed even at concentrations
3 3 [19]
of formaldehyde and ozone typical of clean ambient air (2 µg/m and 80 µg/m , respectively) .
The presence of ozone in the sample is readily inferred upon analysis by the appearance of new
compounds with retention times shorter than that of the hydrazone of formaldehyde. Figure 2 shows
chromatograms of samples of a formaldehyde-spiked air stream with and without ozone.
Key
A relative absorbance 1 unknown
t time 2 DNPH
A with ozone 3 formaldehyde
B without ozone 4 acetaldehyde
Figure 2 — Cartridge samples of formaldehyde in an air stream with and without ozone
The most direct solution to ozone interference is to remove the ozone before the sampled air reaches
the cartridge. This can be accomplished by the use of an ozone denuder or scrubber placed in front of
the cartridge. Both ozone denuders and scrubber cartridges are commercially available. A denuder can
be constructed of 1 m of copper tubing of outside diameter 0,64 cm and of inside diameter 0,46 cm,
that is filled with a saturated solution of potassium iodide in water, allowed to stand for a few minutes
(e.g. 5 min), drained and dried with a stream of clean air or nitrogen for about 1 h. The capacity of
the ozone denuder as specified is about 200 µg/m h. Test aldehydes (formaldehyde, acetaldehyde,
propionaldehyde, benzaldehyde and p-tolualdehyde) that were dynamically spiked into an ambient
[21]
sample air stream passed through the ozone denuder with practically no losses . Commercial ozone
scrubbers made from a cartridge filled with 300 mg to 500 mg of granular potassium iodide have also
[22]
been found to be effective in removing ozone .
6 Safety measures
2,4-Dinitrophenylhydrazine is explosive in the dry state and shall be handled with extreme care. It
is also toxic (in the rat, LD50 = 654 mg/kg), has been shown to be mutagenic in some tests, and is
irritating to the eyes and skin.
Perchloric acid at concentrations less than 68 % mass fraction is stable and non-oxidizing at room
temperature. However, it is readily dehydrated at temperatures above 160 °C and can cause explosions
on contact with alcohols, wood, cellulose, and other oxidizable materials. It should be stored in a cool,
dry place and used only in a chemical fume hood with caution.
7 Apparatus
Usual laboratory apparatus and in particular the following.
7.1 Sampling
7.1.1 Sampling cartridge packed with silica gel and coated with DNPH in accordance with Clause 9,
or as available commercially.
The cartridge shall contain a minimum quantity of 350 mg of silica gel with a minimum DNPH loading
of 0,29 % mass fraction. The ratio of the silica gel bed diameter to bed length shall not exceed 1:1.
The capacity of the cartridge for formaldehyde shall be at least 75 µg and the collection efficiency at
least 95 % at a sampling rate of 1,5 l/min. Sampling cartridges with very low blank levels and high
performance are commercially available.
NOTE A pressure drop through the user-prepared sample cartridge of about 19 kPa at a sampling rate of
1,5 l/min has been observed. Some commercially available pre-coated cartridges exhibit lower pressure-drops,
which permit the use of battery-operated personal sampling pumps.
7.1.2 Air sampling pump capable of accurately and precisely sampling at a flow rate of 0,1 l/min to
1,5 l/min.
7.1.3 Flow controller: mass flow meters, mass flow controllers, or other suitable device for metering
and setting air flow rates of 0,50 l/min to 1,20 l/min through the sample cartridge (see 10.1 for further
information regarding the flow controller requirements).
7.1.4 Flow calibrator: device to measure the flowrate through the cartridge, accurate to within
0,1 % of the flowrate used, such as an appropriate rotameter, soap-bubble meter or wet test meter.
7.2 Sample preparation
7.2.1 Cartridge containers e.g. borosilicate glass culture tubes (20 mm x 125 mm) with
polypropylene screw caps, or other suitable containers, to transport coated cartridges.
7.2.2 Gloves: non-absorbent gloves. Polythene gloves have been found suitable.
7.2.3 Transportation containers friction-top metal cans (e.g. of volume 4 l) or other suitable
containers, with polyethylene air-bubble packing or other suitable padding, to hold and cushion the
sealed cartridge containers.
NOTE A heat sealable foil-lined plastic pouch of the type included with some commercial pre-coated DNPH-
cartridges can be used for storing a DNPH-coated cartridge after sampling, if appropriate.
7.2.4 Support for coating cartridges. A suitable inert support for holding drying cartridges shall be
used, e.g. a syringe rack (see Figure 3).
7.2.5 Cartridge drying manifold such as a support with gas connectors and with multiple standard
male syringe connectors (see Figure 3).
The apparatus specified in 7.2.4 and 7.2.5 is needed only if users choose to make their own DNPH-
coated cartridges.
a) Rack for coating cartridges
b) Rack for drying DNPH coated cartridges
Key
1 10 ml glass syringes 5 N gas stream
2 test tube rack 6 syringe fitting
3 cartridges 7 waste vials
4 waste beakers
Figure 3 — Syringe rack for coating and drying sample cartridges
7.3 Sample analysis
7.3.1 HPLC system, consisting of
a) a mobile phase reservoir with an outgassing device (e.g. membrane under reduced pressure);
b) a high-pressure pump;
c) an injection valve (automatic sampler with a 25 µl or other convenient loop volume);
d) a C-18 reverse phase (RP) column (e.g. 25 cm, 4,6 mm inside diameter, 5 µm particle size);
e) a UV detector or diode array detector operating at 360 nm;
f) a data recording system.
The DNPH-formaldehyde derivative is determined using isocratic reverse phase HPLC, equipped with
an ultraviolet (UV) absorption detector operated at 360 nm. A blank cartridge is likewise desorbed and
analysed. Formaldehyde and other carbonyl compounds in the sample are identified and quantified by
comparison of their retention times and peak heights or peak areas with those of standard solutions.
NOTE 1 Most commercial HPLC analytical systems are adequate for this application.
NOTE 2 A column oven can be used to assure constant column operating temperature and improve
reproducibility.
7.3.2 Syringes and pipettes.
7.3.2.1 HPLC injection syringes with capacity at least four times the loop volume (see 7.3.1).
7.3.2.2 Syringes with a volume of 10 ml, used to prepare DNPH-coated cartridges (polypropylene
syringes are adequate).
7.3.2.3 Syringe fittings and plugs to connect cartridges to the sampling system and to cap prepared
cartridges.
7.3.2.4 Pipettes positive-displacement, repetitive-dispersing type, with capacities in the 0 ml to
[1]
10 ml range ISO 8655-2 .
8 Reagents and materials
During the analysis, unless otherwise stated, use only reagents of recognized analytical grade, e.g. best
quality grade, grade for chemical analysis or grade for HPLC analysis, and distilled or demineralized
water or water of equivalent purity.
8.1 2,4-Dinitrophenylhydrazine, recrystallized at least twice with UV grade acetonitrile before
use.
8.2 Acetonitrile, UV grade (each batch of solvent should be tested before use).
8.3 Perchloric acid, 60 % mass fraction, ρ = 1,51 kg/l, reagent grade (best source).
8.4 Hydrochloric acid, 36,5 % to 38 % mass fraction ρ = 1,19 kg/l, reagent grade (best source).
8.5 Hydrochloric acid, 2 mol/l reagent grade (best source).
8.6 Formaldehyde, 37 % mass fraction solution, reagent grade (best source).
8.7 Aldehydes and ketones, high purity, used for preparation of DNPH derivative standards
(optional).
8.8 Ethanol or methanol, HPLC grade.
8.9 Nitrogen, high purity grade (best source).
8.10 Charcoal, granular (best source).
8.11 Helium, high purity grade (best source).
9 Preparation of reagents and cartridges
9.1 Purification of 2,4-dinitrophenylhydrazine
Formaldehyde contamination of the DNPH reagent is a frequently encountered problem. The DNPH
(8.1) shall be purified by multiple recrystallizations in UV-grade acetonitrile (8.2). Recrystallization is
accomplished, at 40 °C to 60 °C, by slow evaporation of the solvent to maximize crystal size. Impurity
levels of carbonyl compounds in the DNPH are determined prior to use by HPLC and should be less than
0,15 µg per cartridge and per individual compound.
Prepare a supersaturated solution of DNPH by boiling excess DNPH in 200 ml of acetonitrile for
approximately 1 h. After 1 h, remove and transfer the supernatant to a covered beaker on a hot plate
and allow gradual cooling to 40 °C to 60 °C. Maintain the solution at this temperature (40 °C) until
95 % volume fraction of solvent has evaporated. Decant the solution to waste and rinse the remaining
crystals twice with three times their apparent volume of acetonitrile. Transfer the crystals to another
clean beaker, add 200 ml of acetonitrile, heat to boiling, and again let crystals grow slowly at 40 °C to
60 °C until 95 % volume fraction of the solvent has evaporated. Repeat the rinsing process as specified
above. Take an aliquot of the second rinse, dilute 10 times with acetonitrile, acidify with 1 ml of 3,8 mol/l
perchloric acid (8.3) per 100 ml of DNPH solution, and analyse by HPLC, in accordance with 10.3.4.
WARNING — Carry out this procedure under a properly ventilated hood and behind an explosion
shield.
NOTE An acid is necessary to catalyse the reaction of carbonyl compounds with DNPH. Most strong
inorganic acids such as hydrochloric, sulfuric, phosphoric or perchloric acids perform satisfactorily. In rare
cases, hydrochloric and sulfuric acids cause problems.
An acceptable impurity level is <0,025 µg/ml of formaldehyde hydrazine in recrystallized DNPH reagent
or 0,02 % mass fraction of the DNPH.
If the impurity level is not acceptable for the intended sampling application, repeat recrystallization.
Transfer the purified crystals to an all-glass reagent bottle, add 200 ml of acetonitrile, stopper, shake
gently, and allow to stand overnight. Analyse the supernatant by HPLC according to 10.3.4. If the
impurity level is not satisfactory, pipette off the solution to waste, then add 25 ml of acetonitrile to the
purified crystals. Repeat rinsing with 20 ml portions of acetonitrile until a satisfactorily low impurity
level in the supernatant is confirmed by HPLC analysis.
If the impurity level is satisfactory, add another 25 ml of acetonitrile, stopper, shake the reagent bottle,
then set aside. The saturated solution above the purified crystals is the stock DNPH reagent. Maintain
only a minimum volume of saturated solution adequate for day-to-day operation. This minimizes waste
of purified reagent, should it be necessary to re-rinse the crystals to decrease the level of impurity
for applications requiring more stringent purity specifications. Use clean pipettes when removing
saturated DNPH stock solution for any analytical applications. Do not pour the stock solution from the
reagent bottle.
9.2 Preparation of DNPH formaldehyde derivative
To a portion of the recrystallized DNPH (9.1) add sufficient 2 mol/l HCl (8.5) to obtain an approximately
saturated solution. Add to this solution formaldehyde (8.6) in molar excess of the DNPH. Filter the
DNPH-formaldehyde precipitate, wash it with 2 mol/l HCl and water, and allow it to dry in air.
Check the purity of the DNPH-formaldehyde derivative by melting point determination (165 °C to
166 °C) or HPLC analysis. If the impurity level is not acceptable, recrystallize the derivative in ethanol
(8.8). Repeat the purity check and recrystallize as necessary until an acceptable level of purity (e.g.
99 % mass fraction) is achieved.
The DNPH-formaldehyde derivative should be stored under refrigeration (4 °C) and protected from
light. It should be stable for at least 6 months. Storage under nitrogen (8.9) or argon further prolongs
the lifetime of the derivative.
Melting points of DNPH derivatives of several carbonyl compounds are given in Annex A.
DNPH derivatives of formaldehyde and other carbonyls (8.7) suitable for use as standards are
commercially available both in the form of pure crystals and as individual or mixed stock solutions in
acetonitrile
9.3 Preparation of DNPH formaldehyde standards
Prepare a standard stock solution of the DNPH-formaldehyde derivative by dissolving accurately
weighed amounts in acetonitrile (8.2). Prepare a working calibration standard mix from the standard
stock solution. The concentration of the DNPH-formaldehyde derivative in the standard mix solutions
should be adjusted to reflect the range of concentrations expected in real samples.
Individual stock solutions of approximately 100 mg/l can be prepared by dissolving 10 mg of the solid
derivative in 100 ml of acetonitrile. The individual solution is used to prepare calibration standards
containing the derivative of interest at concentrations of 0,5 µg/ml to 20 µg/ml, that spans the
concentration of interest.
Store all standard solutions in tightly capped containers in a refrigerator and protected from light.
Allow them to equilibrate to room temperature before use. They should be replaced after 4 weeks.
9.4 Preparation of DNPH coated silica gel cartridges
9.4.1 General
This procedure shall be performed in an atmosphere with a very low aldehyde background
concentration. All glassware and plasticware shall be thoroughly cleaned and rinsed with deionized
water and aldehyde-free acetonitrile (8.2). Contact of reagents with laboratory air shall be minimized.
Gloves shall be worn when handling the cartridges.
9.4.2 DNPH coating solution
Pipette 30 ml of saturated DNPH stock solution into a 1 000 ml volumetric flask, then add 500 ml
acetonitrile (8.2). Acidify with 1,0 ml of concentrated HCl (8.5).
The atmosphere above the acidified solution should preferably be filtered through a DNPH-coated silica
gel cartridge, to minimize contamination from laboratory air. Shake solution, then make up to volume
with acetonitrile. Stopper the flask, invert, and shake several times until the solution is homogeneous.
Transfer the acidified solution to a reagent bottle equipped with a positive-displacement dispenser of
capacity in the 0 ml to 10 ml range.
Prime the dispenser and slowly dispense 10 ml to 20 ml to waste. Dispense an aliquot solution to a
sample vial and check the impurity level of the acidified solution by HPLC according to 10.3.4. The
impurity level of formaldehyde should be <0,025 µg/ml.
9.4.3 Coating of silica gel cartridges
Open the cartridge package, connect the short end of the silica gel cartridge (7.1.1) to a 10 ml syringe,
and place it in the syringe rack (7.2.4) as illustrated in Figure 3. Using a positive-displacement repetitive
pipette (7.3.2.4), add 10 ml of acetonitrile (8.2) to each of the syringes. Let liquid drain to waste by
gravity.
Remove any air bubbles that may be trapped between the syringe and the silica cartridge by displacing
them with the acetonitrile in the syringe.
Set the repetitive dispenser, containing the acidified DNPH coating solution, to dispense 7 ml into the
cartridges. Once the effluent flow at the outlet of the cartridge has stopped, dispense 7 ml of the coating
reagent into each of the syringes. Let the coating reagent drain by gravity through the cartridge until
flow at the other end of the cartridge stops. Wipe away the excess liquid at the outlet of each of the
cartridges with clean tissue paper.
Assemble a drying manifold as shown in Figure 3 b). This contains a previously prepared DNPH-coated
cartridge at each of the exit ports (e.g. scrubber or “guard cartridges”). These “guard cartridges” serve
to remove traces of formaldehyde that may be present in the nitrogen (8.9) gas supply. They can be
prepared by drying a few of the newly coated cartridges in accordance with the instructions below and
“sacrificing” these few to ensure the purity of the rest.
Insert cartridge connectors [flared at both ends, 0,64 cm × 2,5 cm outside diameter
polytetrafluoroethylene (PTFE) tubing with inside diameter slightly smaller than the outside diameter
of the cartridge port] on to the long end of the scrubber cartridges.
Remove the cartridges from the syringes and connect the short ends of the cartridges to the open end
of the cartridge connectors already attached to the scrubber cartridges.
Pass nitrogen (8.9) through each of the cartridges at about 300 ml/min to 400 ml/min. Rinse the exterior
surfaces and outlet end of the cartridges with acetonitrile using a Pasteur pipette. After 15 min, stop
the flow of nitrogen, wipe the cartridge exterior free of acetonitrile and remove the dried cartridges.
Plug both ends of the coated cartridge with standard polypropylene male syringe plugs and place the
plugged cartridge in a borosilicate glass culture tube with polypropylene screw caps (7.2.1).
Put a serial number and a lot number label on each of the individual cartridge glass storage containers
and refrigerate the prepared lot until use.
Sampling cartridges have been found to be stable for at least 6 months when stored at 4 °C in the
absence of light.
10 Procedure
10.1 Sample collection
Assemble the sampling system and ensure that the pump (7.1.2) is capable of constant flow rate
throughout the sampling period. The sampling cartridges (7.1.1) can be safely used for sampling air
when the temperature is above 10 °C. If required, add an ozone denuder or scrubber (see 5.2).
Before sample collection, check the system for leaks. Plug the inlet of the cartridge so no flow is
indicated at the outlet end of the pump. The flow meter should not indicate any air flow through the
sampling apparatus.
For unattended or extended sampling periods, a mass flow controller (7.1.3) or, as appropriate, a
compensated personal sampling pump is highly recommended to maintain constant flow. The flow
controller should be set at least 20 % below the fixed maximum air flow rate through the cartridge.
NOTE 1 The silica gel is held in the cartridge between two fine-porosity filter frits. Air flow during sampling
can change as airborne particulates deposit on the front frit. The flow change can be significant when sampling
particulate-laden atmospheres.
Install the entire assembly (including a “dummy” sampling cartridge) and check the flow rate at a value
near the desired rate. Flow rates of 0,5 l/min to 1,2 l/min shall be employed. The total number of moles
of carbonyl in the volume of air sampled shall not exceed that of the DNPH (2 mg or 0,01 mol/cartridge;
1 mg to 2 mg/cartridge for commercially available pre-coated cartridges). In general, a safe estimate of
the sample size should be lower than 75 % of the DNPH mass loading of the cartridge [100 µg to 200 µg
as HCHO, with respect to interferences to be taken into account (see Clause 5)]. Generally, calibration
can be accomplished using a soap-bubble flow meter or calibrated wet test meter (7.1.4) connected to
the flow exit, assuming the system is leak tight.
[10]
NOTE 2 ISO 13137 specifies an appropriate calibration scheme that does not require a sealed flow system
downstream of the pump.
Measure and record the sampling flow rate at the beginning and end of the sampling period to determine
sample volume. If the sampling period exceeds 2 h, the flow rate should be measured at intermediate
points during the sampling period. Include a rotameter to allow observation of the flow rate without
interruption of the sampling process. Alternatively, a sampling pump which directly measures and
continuously records the flow rate can be used.
Before sampling, remove the cartridge container from the friction-top metal can or other suitable
container. Let the cartridge warm to a temperature above 10 °C in the glass tube before connecting it to
the sampling train.
With a commercial pre-coated DNPH cartridge, also let the cartridge warm to a temperature above
10 °C before connecting to the sampling train.
Using gloves (7.2.2), remove the syringe plugs and connect the cartridge to the sampling system with a
syringe adapter fitting. Connect the cartridge to the sampling train so that the short end becomes the
sample inlet.
With commercial pre-coated DNPH cartridges, follow the manufacturer's instructions.
Turn the sampler on and adjust the flow to the desired rate. A typical flow rate through one cartridge is
1,0 l/min and 0,8 l/min for two cartridges in tandem. Operate the sampler for the desired period, with
periodic recording of the sampling variables.
If the ambient air temperature during sampling is below 10 °C, the sampling cartridge should be kept
in a warmer environment. No significant effects of relative humidity have been observed for sampling
under various weather conditions — cold, wet and dry winter months as well as hot and humid summer
months.
At the end of the sampling period, check the flow rate just before stopping the flow. If the flow rates at
the beginning and en
...
INTERNATIONAL ISO
STANDARD 16000-3
Third edition
2022-09
Indoor air —
Part 3:
Determination of formaldehyde
and other carbonyl compounds in
indoor and test chamber air — Active
sampling method
Air intérieur —
Partie 3: Dosage du formaldéhyde et d'autres composés carbonylés
dans l'air intérieur et dans l'air des chambres d'essai — Méthode par
échantillonnage actif
Reference number
© ISO 2022
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Principle . 2
5 Limitations and interferences . 2
5.1 General . 2
5.2 Ozone interference . 3
6 Safety measures . 4
7 Apparatus . 4
7.1 Sampling . 4
7.2 Sample preparation . 4
7.3 Sample analysis . . 6
8 Reagents and materials . 7
9 Preparation of reagents and cartridges . 7
9.1 Purification of 2,4-dinitrophenylhydrazine . 7
9.2 Preparation of DNPH formaldehyde derivative . 8
9.3 Preparation of DNPH formaldehyde standards . 8
9.4 Preparation of DNPH coated silica gel cartridges . 9
9.4.1 General . 9
9.4.2 DNPH coating solution. 9
9.4.3 Coating of silica gel cartridges . 9
10 Procedure .10
10.1 Sample collection . . . 10
10.2 Process blanks .12
10.3 Sample analysis .12
10.3.1 Sample preparation .12
10.3.2 Sample desorption .12
10.3.3 HPLC calibration . 13
10.3.4 HPLC analysis for formaldehyde . 15
10.3.5 HPLC analysis of other aldehydes and ketones . 17
11 Calculations .19
12 Performance criteria and quality assurance .20
12.1 General . 20
12.2 Standard operating procedures (SOPs) . 20
12.3 HPLC system performance . 21
12.4 Sample loss . 21
12.5 Measurement plan . 21
13 Precision and uncertainty .21
14 Test report .22
Annex A (informative) Melting points of DNPH carbonyl derivatives .23
Annex B (informative) Precision and uncertainty.24
Bibliography .26
iii
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/
iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 146, Air quality, Subcommittee SC 6,
Indoor air.
This third edition cancels and replaces the second edition (ISO 16000-3:2011), which has been
technically revised.
The main changes are as follows:
— clarification of the suitability of the method for acrolein measurements.
A list of all parts in the ISO 16000 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.
iv
Introduction
This document is intended to be used for characterizing indoor air following the sampling strategy
specified in ISO 16000-2. It is applicable to formaldehyde and other carbonyl compounds. It has been
tested for 14 aldehydes and ketones. Formaldehyde is the simplest carbonyl compound, with one
carbon, one oxygen and two hydrogen atoms. In its monomolecular state, it is a colourless, pungent,
reactive gas. It has been used in the production of urea-formaldehyde resins, adhesives, and insulating
foams. Emissions from particle (chip) board and wall insulation are the major sources of formaldehyde
in indoor air.
Formaldehyde is collected by passing air through a reactive medium that converts the compound to a
derivative of lower vapour pressure that is more efficiently retained by the sampler and can be easily
analysed. This document determines formaldehyde and other carbonyl compounds by reaction with
2,4 dinitrophenylhydrazine coated on to a sorbent to convert them to their corresponding hydrazones,
which can be recovered and measured with high sensitivity, precision, and accuracy. Other carbonyl
compounds that may be emitted into air from solvents, adhesives, cosmetics, and other sources can also
be determined using this document.
[12]
The sampling procedure is based on US EPA method TO-11A .
[15]
Formaldehyde and certain other carbonyl compounds have a high toxic potential .
[7][8] [2]–[6]
ISO 16017 and ISO 12219 also focus on volatile organic compound (VOC) measurements.
Instead of systematic IUPAC nomenclature, traditional names are used in this document. Some
equivalent names are:
— acetaldehyde: ethanal;
— acetone: 2-propanone;
— butyraldehyde: butanal;
— capronaldehyde: hexanal;
— formaldehyde: methanal;
— isovaleraldehyde: 3-methylbutanal;
— propionaldehyde: propanal;
— m-tolualdehyde: 3-methylbenzaldehyde;
— o-tolualdehyde: 2-methylbenzaldehyde;
— p-tolualdehyde: 4-methylbenzaldehyde;
— valeraldehyde: pentanal.
v
INTERNATIONAL STANDARD ISO 16000-3:2022(E)
Indoor air —
Part 3:
Determination of formaldehyde and other carbonyl
compounds in indoor and test chamber air — Active
sampling method
WARNING — Persons using this document should be familiar with normal laboratory practice.
This document does not purport to address all of the safety problems, if any, associated with its
use. It is the responsibility of the user to establish appropriate safety and health practices and to
ensure compliance with any national regulatory conditions.
1 Scope
This document specifies a determination of formaldehyde (HCHO) and other carbonyl compounds
(aldehydes and ketones) in air. The method is specific to formaldehyde but, with modification, at least
12 other aromatic as well as saturated and unsaturated aliphatic carbonyl compounds can be detected
and quantified. It is suitable for determination of formaldehyde and other carbonyl compounds in the
3 3
approximate concentration range 1 µg/m to 1 mg/m . The sampling method gives a time-weighted
average (TWA) sample. It can be used for long-term (1 h to 24 h) or short-term (5 min to 60 min)
sampling of air for formaldehyde.
This document specifies a sampling and analysis procedure for formaldehyde and other
carbonyl compounds that involves collection from air on to adsorbent cartridges coated with
2,4-dinitrophenylhydrazine (DNPH) and subsequent analysis of the hydrazones formed by high
[12],[16]
performance liquid chromatography (HPLC) with detection by ultraviolet absorption . The
method is not suitable for longer chained or unsaturated carbonyl compounds.
This document applies to the determination of:
acetaldehyde 2,5-dimethylbenzaldehyde m-tolualdehyde
acetone formaldehyde o-tolualdehyde
benzaldehyde isovaleraldehyde p-tolualdehyde
butyraldehyde propionaldehyde valeraldehyde
capronaldehyde
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories
3 Terms and definitions
No terms and definitions are listed in this document.
ISO and IEC maintain terminology databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at https:// www .electropedia .org/
4 Principle
The method specified in this document involves drawing air through a cartridge containing silica gel
coated with 2,4-dinitrophenylhydrazine (DNPH) reagent. The principle of the method is based on the
specific reaction of a carbonyl group with DNPH in the presence of an acid to form stable derivatives
according to the reaction shown in Figure 1. The DNPH derivatives are analysed for the parent
aldehydes and ketones utilizing high performance liquid chromatography (HPLC) with UV detection
or diode array detection. The detection has been extended to other carbonyl compounds that can be
determined as outlined in 10.3.5.
This document instructs the user on how to prepare sampling cartridges from commercially available
chromatographic grade silica gel cartridges by the application of acidified DNPH to each cartridge.
Alternatively, pre-coated DNPH silica gel cartridges are available and are recommended since they
are generally more uniform in manufacture and possess lower blank levels. However, if commercial
cartridges are used, they shall be demonstrated to meet the performance criteria of this document.
Another advantage of commercial cartridges is that they are available with larger particle size silica gel
that results in a lower pressure drop across the cartridge. These low pressure drop cartridges can be
more suitable for sampling air using battery-powered personal sampling pumps.
Carbonyl compound 2,4-Dinitrophenylhydrazine DNPH deriative
(aldehyde or ketone) (DNPH)
Key
R, R' H, alkyl group, aromatic group
Figure 1 — Reaction of carbonyl compounds to form 2,4-dinitrophenylhydrazones
5 Limitations and interferences
5.1 General
The sampling flow rate specified in this document has been validated for sampling rates up to 1,5 l/
min. This flow rate limitation is principally due to the high pressure drop (>8 kPa at 1,0 l/min) across
the user-prepared silica gel cartridges, which have particle sizes of 55 µm to 105 µm. These cartridges
are not generally compatible with battery-powered pumps used in personal sampling equipment (e.g.
those used by industrial hygienists).
The solid-sorbent sampling procedure is specific for sampling and analysis of formaldehyde.
Interferences in this method are caused by certain isomeric aldehydes or ketones that may be unresolved
by the HPLC system when analysing for other aldehydes and ketones. Any organic compounds that have
the same retention times and significant absorbance at 360 nm as the DNPH derivative of formaldehyde
interfere. Such interferences can often be overcome by altering the separation conditions (e.g. using
alternative HPLC columns or mobile phase compositions).
Formaldehyde contamination of the DNPH reagent is a frequently encountered problem. The DNPH
shall be purified by multiple recrystallizations in UV-grade acetonitrile (ACN). Recrystallization is
accomplished, at 40 °C to 60 °C, by slow evaporation of the solvent to maximize crystal size. Impurity
levels of carbonyl compounds in the DNPH are determined prior to use by HPLC and should be less than
0,15 µg per cartridge.
Exposure of the DNPH coated sampling cartridges to direct sunlight can produce artefacts and should
[17]
be avoided .
Acrolein and crotonaldehyde cannot be accurately quantified by the method. Inaccurate results for
these compounds can result from the formation of multiple derivative peaks and the instability of the
[18]
peak ratios .
Nitrogen dioxide reacts with DNPH. High concentrations of NO (e.g. for gas cooking stoves) can cause
problems as the retention time of the DNPH derivative can be similar to that of the DNPH formaldehyde
[13][14][19]
derivative, depending on the HPLC column and the parameters .
5.2 Ozone interference
If there is suspicion that abnormally high levels of ozone are present in the area being sampled (e.g.
from office copiers), special care should be exercised. Ozone has been shown to interfere negatively by
[20]
reacting with both DNPH and its derivatives (hydrazones) in the cartridge . The extent of interference
depends on the temporal variations of both the ozone and the carbonyl compounds and the duration
of sampling. Significant negative interference from ozone has been observed even at concentrations
3 3 [19]
of formaldehyde and ozone typical of clean ambient air (2 µg/m and 80 µg/m , respectively) .
The presence of ozone in the sample is readily inferred upon analysis by the appearance of new
compounds with retention times shorter than that of the hydrazone of formaldehyde. Figure 2 shows
chromatograms of samples of a formaldehyde-spiked air stream with and without ozone.
Key
A relative absorbance 1 unknown
t time 2 DNPH
A with ozone 3 formaldehyde
B without ozone 4 acetaldehyde
Figure 2 — Cartridge samples of formaldehyde in an air stream with and without ozone
The most direct solution to ozone interference is to remove the ozone before the sampled air reaches
the cartridge. This can be accomplished by the use of an ozone denuder or scrubber placed in front of
the cartridge. Both ozone denuders and scrubber cartridges are commercially available. A denuder can
be constructed of 1 m of copper tubing of outside diameter 0,64 cm and of inside diameter 0,46 cm,
that is filled with a saturated solution of potassium iodide in water, allowed to stand for a few minutes
(e.g. 5 min), drained and dried with a stream of clean air or nitrogen for about 1 h. The capacity of
the ozone denuder as specified is about 200 µg/m h. Test aldehydes (formaldehyde, acetaldehyde,
propionaldehyde, benzaldehyde and p-tolualdehyde) that were dynamically spiked into an ambient
[21]
sample air stream passed through the ozone denuder with practically no losses . Commercial ozone
scrubbers made from a cartridge filled with 300 mg to 500 mg of granular potassium iodide have also
[22]
been found to be effective in removing ozone .
6 Safety measures
2,4-Dinitrophenylhydrazine is explosive in the dry state and shall be handled with extreme care. It
is also toxic (in the rat, LD50 = 654 mg/kg), has been shown to be mutagenic in some tests, and is
irritating to the eyes and skin.
Perchloric acid at concentrations less than 68 % mass fraction is stable and non-oxidizing at room
temperature. However, it is readily dehydrated at temperatures above 160 °C and can cause explosions
on contact with alcohols, wood, cellulose, and other oxidizable materials. It should be stored in a cool,
dry place and used only in a chemical fume hood with caution.
7 Apparatus
Usual laboratory apparatus and in particular the following.
7.1 Sampling
7.1.1 Sampling cartridge packed with silica gel and coated with DNPH in accordance with Clause 9,
or as available commercially.
The cartridge shall contain a minimum quantity of 350 mg of silica gel with a minimum DNPH loading
of 0,29 % mass fraction. The ratio of the silica gel bed diameter to bed length shall not exceed 1:1.
The capacity of the cartridge for formaldehyde shall be at least 75 µg and the collection efficiency at
least 95 % at a sampling rate of 1,5 l/min. Sampling cartridges with very low blank levels and high
performance are commercially available.
NOTE A pressure drop through the user-prepared sample cartridge of about 19 kPa at a sampling rate of
1,5 l/min has been observed. Some commercially available pre-coated cartridges exhibit lower pressure-drops,
which permit the use of battery-operated personal sampling pumps.
7.1.2 Air sampling pump capable of accurately and precisely sampling at a flow rate of 0,1 l/min to
1,5 l/min.
7.1.3 Flow controller: mass flow meters, mass flow controllers, or other suitable device for metering
and setting air flow rates of 0,50 l/min to 1,20 l/min through the sample cartridge (see 10.1 for further
information regarding the flow controller requirements).
7.1.4 Flow calibrator: device to measure the flowrate through the cartridge, accurate to within
0,1 % of the flowrate used, such as an appropriate rotameter, soap-bubble meter or wet test meter.
7.2 Sample preparation
7.2.1 Cartridge containers e.g. borosilicate glass culture tubes (20 mm x 125 mm) with
polypropylene screw caps, or other suitable containers, to transport coated cartridges.
7.2.2 Gloves: non-absorbent gloves. Polythene gloves have been found suitable.
7.2.3 Transportation containers friction-top metal cans (e.g. of volume 4 l) or other suitable
containers, with polyethylene air-bubble packing or other suitable padding, to hold and cushion the
sealed cartridge containers.
NOTE A heat sealable foil-lined plastic pouch of the type included with some commercial pre-coated DNPH-
cartridges can be used for storing a DNPH-coated cartridge after sampling, if appropriate.
7.2.4 Support for coating cartridges. A suitable inert support for holding drying cartridges shall be
used, e.g. a syringe rack (see Figure 3).
7.2.5 Cartridge drying manifold such as a support with gas connectors and with multiple standard
male syringe connectors (see Figure 3).
The apparatus specified in 7.2.4 and 7.2.5 is needed only if users choose to make their own DNPH-
coated cartridges.
a) Rack for coating cartridges
b) Rack for drying DNPH coated cartridges
Key
1 10 ml glass syringes 5 N gas stream
2 test tube rack 6 syringe fitting
3 cartridges 7 waste vials
4 waste beakers
Figure 3 — Syringe rack for coating and drying sample cartridges
7.3 Sample analysis
7.3.1 HPLC system, consisting of
a) a mobile phase reservoir with an outgassing device (e.g. membrane under reduced pressure);
b) a high-pressure pump;
c) an injection valve (automatic sampler with a 25 µl or other convenient loop volume);
d) a C-18 reverse phase (RP) column (e.g. 25 cm, 4,6 mm inside diameter, 5 µm particle size);
e) a UV detector or diode array detector operating at 360 nm;
f) a data recording system.
The DNPH-formaldehyde derivative is determined using isocratic reverse phase HPLC, equipped with
an ultraviolet (UV) absorption detector operated at 360 nm. A blank cartridge is likewise desorbed and
analysed. Formaldehyde and other carbonyl compounds in the sample are identified and quantified by
comparison of their retention times and peak heights or peak areas with those of standard solutions.
NOTE 1 Most commercial HPLC analytical systems are adequate for this application.
NOTE 2 A column oven can be used to assure constant column operating temperature and improve
reproducibility.
7.3.2 Syringes and pipettes.
7.3.2.1 HPLC injection syringes with capacity at least four times the loop volume (see 7.3.1).
7.3.2.2 Syringes with a volume of 10 ml, used to prepare DNPH-coated cartridges (polypropylene
syringes are adequate).
7.3.2.3 Syringe fittings and plugs to connect cartridges to the sampling system and to cap prepared
cartridges.
7.3.2.4 Pipettes positive-displacement, repetitive-dispersing type, with capacities in the 0 ml to
[1]
10 ml range ISO 8655-2 .
8 Reagents and materials
During the analysis, unless otherwise stated, use only reagents of recognized analytical grade, e.g. best
quality grade, grade for chemical analysis or grade for HPLC analysis, and distilled or demineralized
water or water of equivalent purity.
8.1 2,4-Dinitrophenylhydrazine, recrystallized at least twice with UV grade acetonitrile before
use.
8.2 Acetonitrile, UV grade (each batch of solvent should be tested before use).
8.3 Perchloric acid, 60 % mass fraction, ρ = 1,51 kg/l, reagent grade (best source).
8.4 Hydrochloric acid, 36,5 % to 38 % mass fraction ρ = 1,19 kg/l, reagent grade (best source).
8.5 Hydrochloric acid, 2 mol/l reagent grade (best source).
8.6 Formaldehyde, 37 % mass fraction solution, reagent grade (best source).
8.7 Aldehydes and ketones, high purity, used for preparation of DNPH derivative standards
(optional).
8.8 Ethanol or methanol, HPLC grade.
8.9 Nitrogen, high purity grade (best source).
8.10 Charcoal, granular (best source).
8.11 Helium, high purity grade (best source).
9 Preparation of reagents and cartridges
9.1 Purification of 2,4-dinitrophenylhydrazine
Formaldehyde contamination of the DNPH reagent is a frequently encountered problem. The DNPH
(8.1) shall be purified by multiple recrystallizations in UV-grade acetonitrile (8.2). Recrystallization is
accomplished, at 40 °C to 60 °C, by slow evaporation of the solvent to maximize crystal size. Impurity
levels of carbonyl compounds in the DNPH are determined prior to use by HPLC and should be less than
0,15 µg per cartridge and per individual compound.
Prepare a supersaturated solution of DNPH by boiling excess DNPH in 200 ml of acetonitrile for
approximately 1 h. After 1 h, remove and transfer the supernatant to a covered beaker on a hot plate
and allow gradual cooling to 40 °C to 60 °C. Maintain the solution at this temperature (40 °C) until
95 % volume fraction of solvent has evaporated. Decant the solution to waste and rinse the remaining
crystals twice with three times their apparent volume of acetonitrile. Transfer the crystals to another
clean beaker, add 200 ml of acetonitrile, heat to boiling, and again let crystals grow slowly at 40 °C to
60 °C until 95 % volume fraction of the solvent has evaporated. Repeat the rinsing process as specified
above. Take an aliquot of the second rinse, dilute 10 times with acetonitrile, acidify with 1 ml of 3,8 mol/l
perchloric acid (8.3) per 100 ml of DNPH solution, and analyse by HPLC, in accordance with 10.3.4.
WARNING — Carry out this procedure under a properly ventilated hood and behind an explosion
shield.
NOTE An acid is necessary to catalyse the reaction of carbonyl compounds with DNPH. Most strong
inorganic acids such as hydrochloric, sulfuric, phosphoric or perchloric acids perform satisfactorily. In rare
cases, hydrochloric and sulfuric acids cause problems.
An acceptable impurity level is <0,025 µg/ml of formaldehyde hydrazine in recrystallized DNPH reagent
or 0,02 % mass fraction of the DNPH.
If the impurity level is not acceptable for the intended sampling application, repeat recrystallization.
Transfer the purified crystals to an all-glass reagent bottle, add 200 ml of acetonitrile, stopper, shake
gently, and allow to stand overnight. Analyse the supernatant by HPLC according to 10.3.4. If the
impurity level is not satisfactory, pipette off the solution to waste, then add 25 ml of acetonitrile to the
purified crystals. Repeat rinsing with 20 ml portions of acetonitrile until a satisfactorily low impurity
level in the supernatant is confirmed by HPLC analysis.
If the impurity level is satisfactory, add another 25 ml of acetonitrile, stopper, shake the reagent bottle,
then set aside. The saturated solution above the purified crystals is the stock DNPH reagent. Maintain
only a minimum volume of saturated solution adequate for day-to-day operation. This minimizes waste
of purified reagent, should it be necessary to re-rinse the crystals to decrease the level of impurity
for applications requiring more stringent purity specifications. Use clean pipettes when removing
saturated DNPH stock solution for any analytical applications. Do not pour the stock solution from the
reagent bottle.
9.2 Preparation of DNPH formaldehyde derivative
To a portion of the recrystallized DNPH (9.1) add sufficient 2 mol/l HCl (8.5) to obtain an approximately
saturated solution. Add to this solution formaldehyde (8.6) in molar excess of the DNPH. Filter the
DNPH-formaldehyde precipitate, wash it with 2 mol/l HCl and water, and allow it to dry in air.
Check the purity of the DNPH-formaldehyde derivative by melting point determination (165 °C to
166 °C) or HPLC analysis. If the impurity level is not acceptable, recrystallize the derivative in ethanol
(8.8). Repeat the purity check and recrystallize as necessary until an acceptable level of purity (e.g.
99 % mass fraction) is achieved.
The DNPH-formaldehyde derivative should be stored under refrigeration (4 °C) and protected from
light. It should be stable for at least 6 months. Storage under nitrogen (8.9) or argon further prolongs
the lifetime of the derivative.
Melting points of DNPH derivatives of several carbonyl compounds are given in Annex A.
DNPH derivatives of formaldehyde and other carbonyls (8.7) suitable for use as standards are
commercially available both in the form of pure crystals and as individual or mixed stock solutions in
acetonitrile
9.3 Preparation of DNPH formaldehyde standards
Prepare a standard stock solution of the DNPH-formaldehyde derivative by dissolving accurately
weighed amounts in acetonitrile (8.2). Prepare a working calibration standard mix from the standard
stock solution. The concentration of the DNPH-formaldehyde derivative in the standard mix solutions
should be adjusted to reflect the range of concentrations expected in real samples.
Individual stock solutions of approximately 100 mg/l can be prepared by dissolving 10 mg of the solid
derivative in 100 ml of acetonitrile. The individual solution is used to prepare calibration standards
containing the derivative of interest at concentrations of 0,5 µg/ml to 20 µg/ml, that spans the
concentration of interest.
Store all standard solutions in tightly capped containers in a refrigerator and protected from light.
Allow them to equilibrate to room temperature before use. They should be replaced after 4 weeks.
9.4 Preparation of DNPH coated silica gel cartridges
9.4.1 General
This procedure shall be performed in an atmosphere with a very low aldehyde background
concentration. All glassware and plasticware shall be thoroughly cleaned and rinsed with deionized
water and aldehyde-free acetonitrile (8.2). Contact of reagents with laboratory air shall be minimized.
Gloves shall be worn when handling the cartridges.
9.4.2 DNPH coating solution
Pipette 30 ml of saturated DNPH stock solution into a 1 000 ml volumetric flask, then add 500 ml
acetonitrile (8.2). Acidify with 1,0 ml of concentrated HCl (8.5).
The atmosphere above the acidified solution should preferably be filtered through a DNPH-coated silica
gel cartridge, to minimize contamination from laboratory air. Shake solution, then make up to volume
with acetonitrile. Stopper the flask, invert, and shake several times until the solution is homogeneous.
Transfer the acidified solution to a reagent bottle equipped with a positive-displacement dispenser of
capacity in the 0 ml to 10 ml range.
Prime the dispenser and slowly dispense 10 ml to 20 ml to waste. Dispense an aliquot solution to a
sample vial and check the impurity level of the acidified solution by HPLC according to 10.3.4. The
impurity level of formaldehyde should be <0,025 µg/ml.
9.4.3 Coating of silica gel cartridges
Open the cartridge package, connect the short end of the silica gel cartridge (7.1.1) to a 10 ml syringe,
and place it in the syringe rack (7.2.4) as illustrated in Figure 3. Using a positive-displacement repetitive
pipette (7.3.2.4), add 10 ml of acetonitrile (8.2) to each of the syringes. Let liquid drain to waste by
gravity.
Remove any air bubbles that may be trapped between the syringe and the silica cartridge by displacing
them with the acetonitrile in the syringe.
Set the repetitive dispenser, containing the acidified DNPH coating solution, to dispense 7 ml into the
cartridges. Once the effluent flow at the outlet of the cartridge has stopped, dispense 7 ml of the coating
reagent into each of the syringes. Let the coating reagent drain by gravity through the cartridge until
flow at the other end of the cartridge stops. Wipe away the excess liquid at the outlet of each of the
cartridges with clean tissue paper.
Assemble a drying manifold as shown in Figure 3 b). This contains a previously prepared DNPH-coated
cartridge at each of the exit ports (e.g. scrubber or “guard cartridges”). These “guard cartridges” serve
to remove traces of formaldehyde that may be present in the nitrogen (8.9) gas supply. They can be
prepared by drying a few of the newly coated cartridges in accordance with the instructions below and
“sacrificing” these few to ensure the purity of the rest.
Insert cartridge connectors [flared at both ends, 0,64 cm × 2,5 cm outside diameter
polytetrafluoroethylene (PTFE) tubing with inside diameter slightly smaller than the outside diameter
of the cartridge port] on to the long end of the scrubber cartridges.
Remove the cartridges from the syringes and connect the short ends of the cartridges to the open end
of the cartridge connectors already attached to the scrubber cartridges.
Pass nitrogen (8.9) through each of the cartridges at about 300 ml/min to 400 ml/min. Rinse the exterior
surfaces and outlet end of the cartridges with acetonitrile using a Pasteur pipette. After 15 min, stop
the flow of nitrogen, wipe the cartridge exterior free of acetonitrile and remove the dried cartridges.
Plug both ends of the coated cartridge with standard polypropylene male syringe plugs and place the
plugged cartridge in a borosilicate glass culture tube with polypropylene screw caps (7.2.1).
Put a serial number and a lot number label on each of the individual cartridge glass storage containers
and refrigerate the prepared lot until use.
Sampling cartridges have been found to be stable for at least 6 months when stored at 4 °C in the
absence of light.
10 Procedure
10.1 Sample collection
Assemble the sampling system and ensure that the pump (7.1.2) is capable of constant flow rate
throughout the sampling period. The sampling cartridges (7.1.1) can be safely used for sampling air
when the temperature is above 10 °C. If required, add an ozone denuder or scrubber (see 5.2).
Before sample collection, check the system for leaks. Plug the inlet of the cartridge so no flow is
indicated at the outlet end of the pump. The flow meter should not indicate any air flow through the
sampling apparatus.
For unattended or extended sampling periods, a mass flow controller (7.1.3) or, as appropriate, a
compensated personal sampling pump is highly recommended to maintain constant flow. The flow
controller should be set at least 20 % below the fixed maximum air flow rate through the cartridge.
NOTE 1 The silica gel is held in the cartridge between two fine-porosity filter frits. Air flow during sampling
can change as airborne particulates deposit on the front frit. The flow change can be significant when sampling
particulate-laden atmospheres.
Install the entire assembly (including a “dummy” sampling cartridge) and check the flow rate at a value
near the desired rate. Flow rates of 0,5 l/min to 1,2 l/min shall be employed. The total number of moles
of carbonyl in the volume of air sampled shall not exceed that of the DNPH (2 mg or 0,01 mol/cartridge;
1 mg to 2 mg/cartridge for commercially available pre-coated cartridges). In general, a safe estimate of
the sample size should be lower than 75 % of the DNPH mass loading of the cartridge [100 µg to 200 µg
as HCHO, with respect to interferences to be taken into account (see Clause 5)]. Generally, calibration
can be accomplished using a soap-bubble flow meter or calibrated wet test meter (7.1.4) connected to
the flow exit, assuming the system is leak tight.
[10]
NOTE 2 ISO 13137 specifies an appropriate calibration scheme that does not require a sealed flow system
downstream of the pump.
Measure and record the sampling flow rate at the beginning and end of the sampling period to determine
sample volume. If the sampling period exceeds 2 h, the flow rate should be measured at intermediate
points during the sampling period. Include a rotameter to allow observation of the flow rate without
interruption of the sampling process. Alternatively, a sampling pump which directly measures and
continuously records the flow rate can be used.
Before sampling, remove the cartridge container from the friction-top metal can or other suitable
container. Let the cartridge warm to a temperature above 10 °C in the glass tube before connecting it to
the sampling train.
With a commercial pre-coated DNPH cartridge, also let the cartridge warm to a temperature above
10 °C before connecting to the sampling train.
Using gloves (7.2.2), remove the syringe plugs and connect the cartridge to the sampling system with a
syringe adapter fitting. Connect the cartridge to the sampling train so that the short end becomes the
sample inlet.
With commercial pre-coated DNPH cartridges, follow the manufacturer's instructions.
Turn the sampler on and adjust the flow to the desired rate. A typical flow rate through one cartridge is
1,0 l/min and 0,8 l/min for two cartridges in tandem. Operate the sampler for the desired period, with
periodic recording of the sampling variables.
If the ambient air temperature during sampling is below 10 °C, the sampling cartridge should be kept
in a warmer environment. No significant effects of relative humidity have been observed for sampling
under various weather conditions — cold, wet and dry winter months as well as hot and humid summer
months.
At the end of the sampling period, check the flow rate just before stopping the flow. If the flow rates at
the beginning and end of the sampling period differ by more than 10 %, the sample should be marked
as suspect.
If there is the need to convert the concentrations to standard conditions (temperature and pressure) by
calculation, temperature and pressure have to be measured during sampling.
Immediately after sampling, remove the cartridge (using gloves) from the sampling system, cap with
the original end plugs, and place it back in the original labelled container. Seal with PTFE tape, and
place in a friction-top can (7.2.3) containing 2 cm to 5 cm depth of granular charcoal (8.10) or in another
suitable container with appropriate padding. If appropriate, a heat-sealable foil-lined plastic pouch may
be used for storing the exposed cartridge. Refrigerate the exposed sample cartridge until analysis. The
refrigeration period prior to analysis should not exceed 30 days.
If samples are to be transported to a central laboratory for analysis, the duration of the non-refrigerated
period should be kept to a minimum, preferably less than 2 days.
Calculate the average sample flow rate from Formula (1)
qq++.+q
12 n
q = (1)
V
n
where
q is the average flow rate, in millimetres per minute;
V
q , q …q are the flow rates determined at beginning, end and intermediate points during sampling;
1 2 n
n is the number of points averaged.
The total flow is then calculated using Formula (2):
()tt−×q
...
NORME ISO
INTERNATIONALE 16000-3
Troisième édition
2022-09
Air intérieur —
Partie 3:
Dosage du formaldéhyde et
d'autres composés carbonylés
dans l'air intérieur et dans l'air des
chambres d'essai — Méthode par
échantillonnage actif
Indoor air —
Part 3: Determination of formaldehyde and other carbonyl
compounds in indoor and test chamber air — Active sampling method
Numéro de référence
DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2022
Tous droits réservés. Sauf prescription différente ou nécessité dans le contexte de sa mise en œuvre, aucune partie de cette
publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique,
y compris la photocopie, ou la diffusion sur l’internet ou sur un intranet, sans autorisation écrite préalable. Une autorisation peut
être demandée à l’ISO à l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Case postale 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Genève
Tél.: +41 22 749 01 11
E-mail: copyright@iso.org
Web: www.iso.org
Publié en Suisse
ii
Sommaire Page
Avant-propos .iv
Introduction .v
1 Domaine d'application .1
2 Références normatives .1
3 Termes et définitions . 2
4 Principe. 2
5 Limites et interférences . 2
5.1 Généralités . 2
5.2 Interférence due à l’ozone . 3
6 Mesures de sécurité . 4
7 Appareillage . 5
7.1 Échantillonnage . 5
7.2 Préparation de l’échantillon . 5
7.3 Analyse de l’échantillon . 7
8 Réactifs et matériaux . 7
9 Préparation des réactifs et des cartouches . 8
9.1 Purification de la 2,4-dinitrophénylhydrazine . 8
9.2 Préparation du dérivé DNPH-formaldéhyde . 9
9.3 Préparation des étalons DNPH-formaldéhyde . 9
9.4 Préparation des cartouches de gel de silice imprégnées de DNPH . 9
9.4.1 Généralités . 9
9.4.2 Solution d’imprégnation de DNPH . 10
9.4.3 Imprégnation des cartouches de gel de silice . 10
10 Mode opératoire .11
10.1 Prélèvement de l’échantillon . 11
10.2 Blancs de procédé .12
10.3 Analyse de l’échantillon . 13
10.3.1 Préparation de l’échantillon . 13
10.3.2 Désorption de l’échantillon . 13
10.3.3 Étalonnage CLHP .13
10.3.4 Analyse CLHP du formaldéhyde . 16
10.3.5 Analyse CLHP d’autres aldéhydes et cétones . 18
11 Calculs .20
12 Critères de performance et assurance qualité .22
12.1 Généralités . 22
12.2 Procédures normalisées d'exploitation (SOP) . 22
12.3 Performance du système CLHP . 22
12.4 Perte d’échantillon .22
12.5 Plan de mesurage . 23
13 Fidélité et incertitude .23
14 Rapport d’essai .23
Annexe A (informative) Points de fusion des dérivés DNPH-carbonylés .25
Annexe B (informative) Fidélité et incertitude .26
Bibliographie .28
iii
Avant-propos
L’ISO (Organisation internationale de normalisation) est une fédération mondiale d’organismes
nationaux de normalisation (comités membres de l’ISO). L’élaboration des Normes internationales est
en général confiée aux comités techniques de l’ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l’ISO participent également aux travaux.
L’ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui
concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier de prendre note des différents
critères d'approbation requis pour les différents types de documents ISO. Le présent document a été
rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2 (voir www.
iso.org/directives).
L’attention est attirée sur le fait que certains des éléments du présent document peuvent faire l’objet de
droits de propriété intellectuelle ou de droits analogues. L’ISO ne saurait être tenue pour responsable
de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant
les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de
l’élaboration du document sont indiqués dans l’Introduction et/ou dans la liste des déclarations de
brevets rédigées par l’ISO (voir www.iso.org/brevets).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données
pour information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un
engagement.
Pour une explication de la nature volontaire des normes, de la signification des termes et expressions
spécifiques de l’ISO liés à l’évaluation de la conformité, ou pour toute autre information au sujet de
l’adhésion de l’ISO aux principes de l’Organisation mondiale du commerce (OMC) concernant les
obstacles techniques au commerce (OTC), voir le lien suivant: www.iso.org/iso/fr/avant-propos.html.
Le présent document a été élaboré par le comité technique ISO/TC 146, Qualité de l’air, sous-comité SC 6,
Air intérieur.
Cette troisième édition annule et remplace la deuxième édition (ISO 16000-3:2011), qui a fait l'objet
d'une révision technique.
Les principales modifications sont les suivantes:
— clarification de l’adéquation de la méthode de quantification de l’acroléine.
Une liste de toutes les parties de la série ISO 16000 se trouve sur le site web de l’ISO.
Il convient que l’utilisateur adresse tout retour d’information ou toute question concernant le présent
document à l’organisme national de normalisation de son pays. Une liste exhaustive desdits organismes
se trouve à l'adresse www.iso.org/fr/members.html.
iv
Introduction
Le présent document est destiné à être utilisé pour caractériser l’air intérieur selon la technique
d’échantillonnage spécifiée dans l’ISO 16000-2. Il est applicable au formaldéhyde et à d’autres composés
carbonylés. Il a été soumis à essai pour 14 aldéhydes et cétones. Le formaldéhyde est le composé
carbonylé le plus simple, avec un atome de carbone, un atome d’oxygène et deux atomes d’hydrogène.
Sous sa forme mono-moléculaire, c'est un gaz réactif incolore et âcre. Il est utilisé dans la production
de résines, d’adhésifs et de mousses isolantes d’urée formaldéhyde. Les émissions des panneaux de
particules (copeaux) et des isolations murales sont les principales sources de formaldéhyde dans l’air
intérieur.
Le formaldéhyde est collecté en faisant passer de l’air à travers un milieu réactif qui convertit le composé
en un dérivé de pression de vapeur inférieure qui est plus efficacement retenu par l’échantillonneur
et peut être aisément analysé. Le présent document permet de doser le formaldéhyde et d'autres
composés carbonylés par réaction avec de la 2,4-dinitrophénylhydrazine imprégnée sur un sorbant
pour les convertir en leurs hydrazones correspondantes, qui peuvent être récupérées et mesurées avec
une haute sensibilité, précision et justesse. Les autres composés carbonylés qui peuvent être émis dans
l’air par les solvants, les adhésifs, les produits cosmétiques et d’autres sources peuvent également être
déterminés en utilisant le présent document.
[12]
Le mode opératoire d’échantillonnage repose sur la méthode TO-11A de l’Agence américaine de
protection de l’environnement (EPA).
[15]
Le formaldéhyde et certains autres composés carbonylés ont un fort potentiel toxique .
[7][8] [2]–[6]
L’ISO 16017 et l’ISO 12219 portent plus particulièrement sur les mesurages relatifs aux
composés organiques volatils (COV).
Dans le présent document, les noms traditionnels sont utilisés à la place de la nomenclature systématique
de l'IUPAC. Quelques noms équivalents sont:
— acétaldéhyde: éthanal;
— acétone: 2-propanone;
— butyraldéhyde: butanal;
— capronaldéhyde: hexanal;
— formaldéhyde: méthanal;
— isovaléraldéhyde: 3-méthylbutanal;
— propionaldéhyde: propanal;
— m-tolualdéhyde: 3-méthylbenzaldéhyde;
— o-tolualdéhyde: 2-méthylbenzaldéhyde;
— p-tolualdéhyde: 4-méthylbenzaldéhyde;
— valéraldéhyde: pentanal.
v
NORME INTERNATIONALE ISO 16000-3:2022(F)
Air intérieur —
Partie 3:
Dosage du formaldéhyde et d'autres composés carbonylés
dans l'air intérieur et dans l'air des chambres d'essai —
Méthode par échantillonnage actif
AVERTISSEMENT — Il convient que l’utilisateur du présent document connaisse bien les
pratiques courantes de laboratoire. Le présent document n’a pas pour but de traiter tous les
problèmes de sécurité qui sont, le cas échéant, liés à son utilisation. Il incombe à l’utilisateur
d’établir des pratiques appropriées en matière d’hygiène et de sécurité, et de s’assurer de la
conformité à la réglementation nationale en vigueur.
1 Domaine d'application
Le présent document spécifie un dosage du formaldéhyde (HCHO) et d’autres composés carbonylés
(aldéhydes et cétones) dans l’air. La méthode est spécifique au formaldéhyde. Toutefois, si elle est
modifiée, au moins 12 autres composés carbonylés aromatiques et aliphatiques saturés et insaturés
peuvent être détectés et quantifiés. Elle convient au dosage du formaldéhyde et d'autres composés
3 3
carbonylés dans la plage de concentration comprise entre environ 1 µg/m et 1 mg/m . La méthode
d’échantillonnage fournit un résultat moyen pondéré dans le temps (TWA). Elle peut être utilisée pour
l’échantillonnage du formaldéhyde dans l’air à long terme (1 h à 24 h) ou à court terme (5 min à 60 min).
Le présent document spécifie un mode opératoire d'échantillonnage et d'analyse pour le formaldéhyde
et d'autres composés carbonylés qui implique un prélèvement de l'air dans des cartouches adsorbantes
imprégnées de 2,4-dinitrophénylhydrazine (DNPH) et une analyse ultérieure des hydrazones formées
par chromatographie en phase liquide à haute performance (CLHP) avec détection par absorption
[12],[16]
ultraviolette. La méthode n'est pas adaptée pour les composés carbonylés à plus longues chaînes
ou insaturés.
Le présent document s’applique au dosage des composés suivants:
acétaldéhyde 2,5-diméthylbenzaldéhyde m-tolualdéhyde
acétone formaldéhyde o-tolualdéhyde
benzaldéhyde isovaléraldéhyde p-tolualdéhyde
butyraldéhyde propionaldéhyde valéraldéhyde
capronaldéhyde
2 Références normatives
Les documents suivants sont cités dans le texte de sorte qu’ils constituent, pour tout ou partie de leur
contenu, des exigences du présent document. Pour les références datées, seule l’édition citée s’applique.
Pour les références non datées, la dernière édition du document de référence s'applique (y compris les
éventuels amendements).
ISO/IEC 17025, Exigences générales concernant la compétence des laboratoires d'étalonnages et d'essais
3 Termes et définitions
Aucun terme n’est défini dans le présent document.
L’ISO et l’IEC tiennent à jour des bases de données terminologiques destinées à être utilisées en
normalisation, consultables aux adresses suivantes:
— ISO Online browsing platform: disponible à l’adresse https:// www .iso .org/ obp
— IEC Electropedia: disponible à l’adresse https:// www .electropedia .org/
4 Principe
La méthode spécifiée dans le présent document implique l’aspiration d’air dans une cartouche
contenant du gel de silice imprégnée de réactif 2,4-dinitrophénylhydrazine (DNPH). Le principe de la
méthode repose sur la réaction spécifique d’un groupe carbonyle avec la DNPH en présence d'un acide
pour former des dérivés stables selon la réaction indiquée à la Figure 1. Les dérivés DNPH sont analysés
en termes de présence d'aldéhydes et de cétones apparentées en utilisant la chromatographie en phase
liquide à haute performance (CLHP) avec une détection UV ou une détection à barrette de diodes. La
détection a été élargie à d'autres composés carbonylés qui peuvent être dosés comme indiqué en 10.3.5.
Le présent document indique à l’utilisateur comment préparer des cartouches d’échantillonnage à
partir de cartouches de gel de silice de qualité chromatographique disponibles dans le commerce, par
application de DNPH acidifiée sur chaque cartouche. Des cartouches de gel de silice pré-imprégnées
de DNPH sont également disponibles et sont recommandées car elles présentent en général une
fabrication plus uniforme et possèdent des niveaux de blanc moindres. Cependant, si des cartouches
commerciales sont utilisées, elles doivent répondre aux critères de performance du présent document.
Un autre avantage des cartouches commerciales est qu'elles sont disponibles avec un gel de silice dont
la granulométrie est plus élevée, ce qui entraîne une moindre chute de pression dans la cartouche. Ces
cartouches à faible chute de pression peuvent être plus appropriées à l'échantillonnage de l'air au moyen
de pompes de prélèvement individuelles alimentées par batterie.
Composé carbonylé 2,4-Dinitrophénylhydrazine Dérivé DNPH
(aldéhyde ou cétone) (DNPH)
Légende
R, R' H, groupe alkyle, groupe aromatique
Figure 1 — Réaction des composés carbonylés pour former des 2,4-dinitrophénylhydrazones
5 Limites et interférences
5.1 Généralités
Le débit d'échantillonnage spécifié dans le présent document a été validé pour des vitesses
d'échantillonnage pouvant atteindre 1,5 l/min. Cette limite de débit est principalement liée à
l'importante chute de pression (>8 kPa à 1,0 l/min) dans les cartouches de gel de silice préparées par
l'utilisateur, qui possèdent des tailles de particules de 55 µm à 105 µm. Généralement, ces cartouches
ne sont pas compatibles avec les pompes alimentées par batterie utilisées dans les équipements
d’échantillonnage individuels (par exemple, ceux utilisés par les hygiénistes industriels).
Le mode opératoire d’échantillonnage sur sorbant solide est spécifique à l’échantillonnage et à l’analyse
du formaldéhyde. Dans la présente méthode, des interférences sont provoquées par certains aldéhydes
ou cétones isomères qui peuvent ne pas être séparés par le système CLHP lors de l'analyse d'autres
aldéhydes et cétones. Tous les composés organiques qui ont un même temps de rétention et une même
absorbance significative à 360 nm que le dérivé DNPH du formaldéhyde interfèrent. Ces interférences
peuvent souvent être supprimées en modifiant les conditions de séparation (par exemple, en utilisant
d’autres colonnes CLHP ou d’autres compositions de phase mobile).
La contamination par le formaldéhyde du réactif DNPH est un problème fréquent. La DNPH doit être
purifiée par de multiples recristallisations dans de l’acétonitrile (ACN) de qualité UV. La recristallisation
est effectuée entre 40 °C et 60 °C, par lente évaporation du solvant, de façon à maximiser la taille
des cristaux. Les niveaux d’impureté des composés carbonylés dans la DNPH sont déterminés avant
utilisation, par CLHP, et il convient qu’ils soient inférieurs à 0,15 µg par cartouche.
Il convient d’éviter toute exposition à la lumière directe du soleil des cartouches d’échantillonnage
[17]
imprégnées de DNPH qui peut produire des artéfacts .
L’acroléine et le crotonaldéhyde peuvent ne pas être quantifiés avec précision par cette méthode. La
[18]
formation de multiples pics dérivés et l’instabilité des rapports de pic peuvent induire des résultats
imprécis pour ces composés.
Le dioxyde d'azote réagit avec la DNPH. De fortes concentrations en NO (par exemple pour les
gazinières) peuvent engendrer des problèmes car le temps de rétention du dérivé DNPH peut être
[13]
similaire à celui du dérivé DNPH du formaldéhyde, en fonction de la colonne CLHP et des paramètres
[14][19]
.
5.2 Interférence due à l’ozone
Il convient de prêter une attention particulière en cas de suspicion de niveaux d'ozone anormalement
élevés dans la zone d'échantillonnage (par exemple les photocopieurs de bureau). L’ozone s’est avérée
interférer négativement en réagissant avec la DNPH et ses dérivés (les hydrazones) dans la cartouche.
[20]
Le degré d’interférence dépend des variations temporelles de l’ozone et des composés carbonylés,
ainsi que de la durée d’échantillonnage. Une importante interférence négative de l’ozone a été observée,
même à des concentrations en formaldéhyde et en ozone typiques de l’air ambiant propre (2 µg/m et
3 [19]
80 µg/m , respectivement). Lors de l’analyse, la présence d’ozone dans l’échantillon est facilement
décelée par l’apparition de nouveaux composés dont les temps de rétention sont plus courts que ceux de
l’hydrazone de formaldéhyde. La Figure 2 illustre des chromatogrammes d’échantillons d’un flux d’air
dopé en formaldéhyde avec et sans ozone.
Légende
A absorbance relative 1 inconnu
t temps 2 DNPH
A avec ozone 3 formaldéhyde
B sans ozone 4 acétaldéhyde
Figure 2 — Échantillons de formaldéhyde de la cartouche dans un flux d’air avec et sans ozone
La solution la plus directe pour résoudre le problème d’interférence de l’ozone consiste à éliminer
l’ozone avant que l’air échantillonné n’atteigne la cartouche. Pour cela, un décomposeur ou un épurateur
d'ozone placé en face de la cartouche peut être utilisé. Les décomposeurs ou les cartouches épuratrices
d’ozone sont disponibles dans le commerce. Un décomposeur peut être équipé d'un tuyau en cuivre
de 1 m de 0,64 cm de diamètre extérieur et de 0,46 cm de diamètre intérieur, rempli d'une solution
aqueuse saturée d'iodure de potassium, laissé au repos pendant quelques minutes (par exemple
5 min), purgé et séché avec un flux d'air ou d'azote propre pendant environ 1 h. La capacité du
décomposeur d'ozone tel que spécifié est d'environ 200 µg/m h. Les aldéhydes d'essai (formaldéhyde,
acétaldéhyde, propionaldéhyde, benzaldéhyde et p-tolualdéhyde) de dopage dynamique dans un flux
d'air d'échantillonnage ambiant ont traversé le décomposeur d'ozone avec pratiquement aucune perte.
[21]
Les épurateurs d’ozone commerciaux constitués d’une cartouche remplie avec 300 mg à 500 mg
[22]
d’iodure de potassium granulaire se sont également révélés efficaces pour éliminer l’ozone .
6 Mesures de sécurité
La 2,4-dinitrophénylhydrazine est explosive à l’état sec et doit être manipulée avec un soin tout
particulier. Elle est également toxique (chez le rat, LD = 654 mg/kg). Certains essais ont démontré
qu'elle est mutagène et irritante pour la peau et les yeux.
L’acide perchlorique est stable et non oxydant à température ambiante, à des concentrations inférieures
à 68 % en fraction massique. Cependant, il est facilement déshydraté à des températures supérieures
à 160 °C et peut provoquer des explosions au contact des alcools, du bois, de la cellulose et d’autres
matériaux oxydables. Il convient de le stocker dans un endroit sec et frais et de l’utiliser avec précaution,
sous une hotte d’aspiration uniquement.
7 Appareillage
Matériel courant de laboratoire et en particulier ce qui suit.
7.1 Échantillonnage
7.1.1 Cartouche d'échantillonnage garnie de gel de silice et imprégnée de DNPH conformément à
l'Article 9, ou cartouche disponible dans le commerce.
La cartouche doit contenir une quantité minimale de 350 mg de gel de silice avec une charge minimale
de DNPH de 0,29 % en fraction massique. Le rapport du diamètre du lit à la longueur du lit du gel de silice
ne doit pas dépasser 1:1. La capacité de la cartouche pour le formaldéhyde doit être d'au moins 75 µg et
l'efficacité de prélèvement d'au moins 95 % à un débit d'échantillonnage de 1,5 l/min. Des cartouches
d'échantillonnage à très faibles niveaux de blanc et à haute performance sont disponibles dans le
commerce.
NOTE Une chute de pression d’environ 19 kPa a été observée dans la cartouche d’échantillonnage préparée
par l’utilisateur, à un débit d'échantillonnage de 1,5 l/min. Certaines cartouches pré-imprégnées disponibles dans
le commerce présentent des chutes de pression moindres, ce qui permet d'utiliser des pompes de prélèvement
individuelles alimentées par batterie.
7.1.2 Pompe de prélèvement d'air, capable d'échantillonner avec justesse et précision à un débit
de 0,1 l/min à 1,5 l/min.
7.1.3 Régulateur de débit: débitmètres massiques, régulateurs de débit massiques, ou tout autre
dispositif approprié pour mesurer et régler les débits d'air entre 0,50 l/min et 1,20 l/min dans la
cartouche d'échantillonnage (voir 10.1 pour plus d'informations concernant les exigences du Régulateur
de débit).
7.1.4 Appareil d'étalonnage de débit: dispositif permettant de mesurer le débit à travers la
cartouche, précis à 0,1 % du débit utilisé, tel qu’un rotamètre, un débitmètre à lame de savon ou un
compteur humide.
7.2 Préparation de l’échantillon
7.2.1 Récipients pour cartouches, par exemple tubes de culture en verre borosilicaté
(20 mm × 125 mm) avec bouchons à vis en polypropylène, ou autres récipients appropriés, pour
transporter les cartouches imprégnées.
7.2.2 Gants: gants non absorbants. Des gants en polyéthylène se sont avérés appropriés.
7.2.3 Récipients de transport, boîtiers métalliques à couvercle hermétique (par exemple d'un
volume de 4 l) ou autres récipients appropriés, avec emballage à bulles d'air en polyéthylène ou
autre rembourrage approprié, pour contenir et protéger les récipients pour cartouche fermés
hermétiquement.
NOTE Un sachet en plastique thermosoudable du type inclus avec certaines cartouches commerciales pré-
imprégnées de DNPH peut être utilisé pour stocker une cartouche imprégnée de DNPH après l'échantillonnage, si
approprié.
7.2.4 Support pour l’imprégnation des cartouches. Un support inerte approprié pour contenir les
cartouches en cours de séchage doit être utilisé, par exemple un rack pour seringues (voir Figure 3).
7.2.5 Rampe de séchage des cartouches, tel qu'un support avec des raccords à gaz et avec plusieurs
connecteurs mâles pour seringues normalisés (voir Figure 3).
L’appareillage spécifié en 7.2.4 et 7.2.5 n’est nécessaire que si les utilisateurs choisissent de fabriquer
leurs propres cartouches imprégnées de DNPH.
a) Rack pour l’imprégnation des cartouches
b) Rack pour le séchage des cartouches imprégnées de DNPH
Légende
1 seringues en verre de 10 ml 5 flux de gaz N
2 rack pour tubes à essai 6 raccord pour seringues
3 cartouches 7 flacons pour déchets
4 béchers pour déchets
Figure 3 — Rack pour seringues pour l’imprégnation et le séchage des cartouches
d’échantillonnage
7.3 Analyse de l’échantillon
7.3.1 Système CLHP, constitué:
a) d’un réservoir de phase mobile équipé d'un dispositif de dégazage (par exemple membrane sous
pression réduite);
b) d'une pompe à haute pression;
c) d'une vanne d'injection (échantillonneur automatique d'un volume de 25 µl ou d'un autre volume de
boucle approprié);
d) d'une colonne C-18 à phase inversée (par exemple, 25 cm, diamètre intérieur de 4,6 mm, taille des
particules de 5 µm);
e) d'un détecteur UV ou d'un détecteur à barrette de diodes fonctionnant à 360 nm;
f) d’un système d’enregistrement de données.
Le dérivé DNPH-formaldéhyde est dosé par CLHP à phase inversée isocratique, équipée d'un détecteur
par absorption UV fonctionnant à 360 nm. Une cartouche à blanc est également désorbée et analysée. Le
formaldéhyde et les autres composés carbonylés présents dans l'échantillon sont identifiés et quantifiés
en comparant leurs temps de rétention et leurs hauteurs ou surfaces de pic avec ceux des solutions
étalons.
NOTE 1 La plupart des systèmes d’analyse CLHP commerciaux conviennent à cette application.
NOTE 2 Un four peut être utilisé pour garantir une température de fonctionnement constante dans la colonne
et pour améliorer la reproductibilité.
7.3.2 Seringues et pipettes.
7.3.2.1 Seringues d'injection CLHP, d'une capacité d'au moins quatre fois le volume de boucle
(voir 7.3.1).
7.3.2.2 Seringues, d'un volume de 10 ml, utilisées pour préparer les cartouches imprégnées de DNPH
(les seringues en polypropylène conviennent).
7.3.2.3 Raccords et bouchons pour seringues, pour raccorder les cartouches au système
d'échantillonnage et pour boucher les cartouches préparées.
7.3.2.4 Pipettes, volumétriques et de type à distribution répétitive, d'une capacité de 0 ml à 10 ml,
[1]
ISO 8655-2 .
8 Réactifs et matériaux
Au cours de l'analyse, sauf indication contraire, utiliser uniquement des réactifs de qualité analytique
reconnue, par exemple de qualité optimale, de qualité appropriée pour l'analyse chimique ou de qualité
appropriée pour l'analyse CLHP et de l'eau distillée ou déminéralisée ou de l'eau de pureté équivalente.
8.1 2,4-Dinitrophénylhydrazine, recristallisée au moins deux fois à l'aide d'acétonitrile de
qualité UV avant utilisation.
8.2 Acétonitrile, de qualité UV (il convient de soumettre à essai chaque lot de solvant avant
utilisation).
8.3 Acide perchlorique, 60 % en fraction massique, ρ = 1,51 kg/l, qualité réactif (meilleure origine).
8.4 Acide chlorhydrique, 36,5 % à 38 % en fraction massique, ρ = 1,19 kg/l, qualité réactif (meilleure
origine).
8.5 Acide chlorhydrique, 2 mol/l, qualité réactif (meilleure origine).
8.6 Formaldéhyde, solution à 37 % en fraction massique, qualité réactif (meilleure origine).
8.7 Aldéhydes et cétones, pureté élevée, utilisés pour la préparation des étalons des dérivés DNPH
(facultatif).
8.8 Éthanol ou méthanol, de qualité CLHP.
8.9 Azote, degré de pureté élevé (meilleure origine).
8.10 Charbon de bois, granulaire (meilleure origine).
8.11 Hélium, degré de pureté élevé (meilleure origine).
9 Préparation des réactifs et des cartouches
9.1 Purification de la 2,4-dinitrophénylhydrazine
La contamination par le formaldéhyde du réactif DNPH est un problème fréquent. La DNPH (8.1) doit être
purifiée par de multiples recristallisations dans de l’acétonitrile de qualité UV (8.2). La recristallisation
est effectuée entre 40 °C et 60 °C, par lente évaporation du solvant, de façon à maximiser la taille
des cristaux. Les niveaux d’impureté des composés carbonylés dans la DNPH sont déterminés avant
utilisation par CLHP, et il convient qu’ils soient inférieurs à 0,15 µg par cartouche et par composé.
Préparer une solution sursaturée de DNPH en faisant bouillir l’excédent de DNPH dans 200 ml
d’acétonitrile pendant environ 1 h. Après 1 h, retirer et transférer le surnageant dans un bécher
fermé sur une plaque chauffante et laisser refroidir progressivement entre 40 °C et 60 °C. Maintenir
cette solution à cette température (40 °C) jusqu’à ce qu’une fraction volumique de 95 % du solvant
s’évapore. Décanter la solution non réutilisable et rincer deux fois les cristaux restants avec trois
fois leur volume apparent d’acétonitrile. Transférer les cristaux dans un autre bécher propre, ajouter
200 ml d'acétonitrile, chauffer jusqu'à ébullition et laisser une nouvelle fois les cristaux grossir
lentement entre 40 °C et 60 °C jusqu’à ce qu’une fraction volumique de 95 % du solvant s’évapore.
Répéter l’opération de rinçage comme spécifié ci-dessus. Prélever une aliquote du deuxième rinçage,
diluer 10 fois avec de l’acétonitrile, acidifier avec 1 ml d’acide perchlorique à 3,8 mol/l (8.3) pour 100 ml
de solution DNPH et analyser par CLHP, conformément à 10.3.4.
AVERTISSEMENT — Effectuer cette opération sous une hotte correctement ventilée et derrière
un écran anti-explosion.
NOTE Un acide est nécessaire pour catalyser la réaction des composés carbonylés avec la DNPH. La plupart
des acides inorganiques forts (acides chlorhydrique, sulfurique, phosphorique ou perchlorique) se comportent
de manière satisfaisante. Les acides chlorhydrique et sulfurique engendrent des problèmes, mais ces cas restent
rares.
Un niveau d’impureté acceptable est < 0,025 µg/ml d’hydrazine de formaldéhyde dans le réactif DNPH
recristallisé ou 0,02 % en fraction massique de DNPH.
Si le niveau d’impureté est inacceptable pour l’application d’échantillonnage prévue, répéter
la recristallisation. Transférer les cristaux purifiés dans un flacon pour réactifs tout en verre,
ajouter 200 ml d’acétonitrile, boucher, agiter doucement et laisser reposer toute une nuit. Analyser le
surnageant par CLHP conformément à 10.3.4. Si le niveau d’impureté n’est pas satisfaisant, introduire à
la pipette la solution non réutilisable puis ajouter 25 ml d’acétonitrile aux cristaux purifiés. Répéter le
rinçage avec des prises de 20 ml d'acétonitrile jusqu'à ce qu'un niveau d'impureté suffisamment faible
dans le surnageant soit confirmé par analyse CLHP.
Si le niveau d’impureté est satisfaisant, ajouter encore 25 ml d'acétonitrile, boucher et agiter le flacon
pour réactifs, puis laisser au repos. La solution saturée au-dessus des cristaux purifiés est la solution
mère de réactif DNPH. Conserver uniquement un volume minimal de solution saturée approprié pour
une utilisation au jour le jour. Cela permet de réduire au minimum les déchets de réactif purifié, s'il
s'avérait nécessaire de rincer une nouvelle fois les cristaux pour réduire le niveau d'impureté pour les
applications requérant des spécifications de pureté plus strictes. Utiliser des pipettes propres pour
éliminer la solution mère de DNPH saturée pour toutes les applications d’analyse. Ne pas verser la
solution mère depuis le flacon pour réactifs.
9.2 Préparation du dérivé DNPH-formaldéhyde
Ajouter suffisamment de HCl à 2 mol/l (8.5) à une prise de DNPH recristallisée (9.1) pour obtenir
une solution approximativement saturée. Ajouter à cette solution du formaldéhyde (8.6) en excédent
molaire de la DNPH. Filtrer le précipité DNPH-formaldéhyde, le rincer avec du HCl à 2 mol/l et de l’eau,
et le laisser sécher à l’air.
Contrôler la pureté du dérivé DNPH-formaldéhyde en déterminant le point de fusion (entre 165 °C
et 166 °C) ou en effectuant une analyse CLHP. Si le taux d’impureté n’est pas acceptable, recristalliser
le dérivé dans de l’éthanol (8.8). Vérifier de nouveau la pureté et recristalliser si nécessaire jusqu’à
atteindre un niveau de pureté acceptable (par exemple 99 % en fraction massique).
Il convient que le dérivé DNPH-formaldéhyde soit conservé au frais (4 °C) et à l’abri de la lumière. Il
convient qu’il reste stable pendant au moins 6 mois. Le stockage sous azote (8.9) ou argon permet de
prolonger la durée de vie du dérivé.
Les points de fusion des dérivés DNPH de plusieurs composés carbonylés sont donnés à l’Annexe A.
Les dérivés DNPH de formaldéhyde et d'autres composés carbonylés (8.7) prévus pour être utilisés
comme étalons sont disponibles dans le commerce à la fois sous la forme de cristaux purs et sous la
forme de solutions mères individuelles ou mélangées dans de l’acétonitrile.
9.3 Préparation des étalons DNPH-formaldéhyde
Préparer une solution mère étalon du dérivé DNPH-formaldéhyde en dissolvant des quantités pesées
avec précision dans de l’acétonitrile (8.2). Préparer un mélange étalon de travail à partir de la solution
mère étalon. Il convient d’ajuster la concentration du dérivé DNPH-formaldéhyde dans les solutions
étalons mélangées de façon à refléter la gamme de concentrations attendue dans les échantillons réels.
Des solutions mères individuelles d’environ 100 mg/l peuvent être préparées en dissolvant 10 mg
du dérivé solide dans 100 ml d’acétonitrile. La solution individuelle est utilisée pour préparer des
étalons contenant le dérivé étudié à des concentrations de 0,5 µg/ml à 20 µg/ml, gamme qui couvre la
concentration d'intérêt.
Stocker toutes les solutions étalons dans des récipients bien fermés, au réfrigérateur et à l’abri de la
lumière. Les laisser s’équilibrer à température ambiante avant utilisation. Il convient de les remplacer
au bout de 4 semaines.
9.4 Préparation des cartouches de gel de silice imprégnées de DNPH
9.4.1 Généralités
Cette opération doit être effectuée dans une atmosphère à très faible concentration de fond en
aldéhydes. L’ensemble de la verrerie et de l’appareillage en plastique doit être soigneusement nettoyé
et rincé avec de l’eau déionisée et de l’acétonitrile (8.2) exempt d’aldéhydes. Tout contact des réactifs
avec l’air du laboratoire doit être réduit au minimum. Porter des gants en lors de la manipulation des
cartouches.
9.4.2 Solution d’imprégnation de DNPH
Introduire à la pipette 30 ml de solution mère de DNPH saturée dans une fiole jaugée de 1 000 ml, puis
ajouter 500 ml d’acétonitrile (8.2). Acidifier avec 1,0 ml de HCl concentré (8.5).
Il est préférable de filtrer l’atmosphère au-dessus de la solution acidifiée dans une cartouche de gel de
silice imprégnée de DNPH, de façon à réduire au minimum toute contamination par l’air du laboratoire.
Agiter la solution puis compléter au volume avec de l’acétonitrile. Boucher la fiole, la renverser et l’agiter
plusieurs fois jusqu’à ce que la solution soit homogène. Transférer la solution acidifiée dans un flacon
pour réactifs équipé d’un distributeur volumétrique d’une capacité de 0 ml à 10 ml.
Amorcer le distributeur et verser lentement 10 ml à 20 ml de solution non réutilisable. Verser une
solution aliquote dans un flacon pour échantillons et contrôler le niveau d'impureté de la solution
acidifiée par CLHP, conformément à 10.3.4. Il convient que le niveau d'impureté de formaldéhyde
soit < 0,025 µg/ml.
9.4.3 Imprégnation des cartouches de gel de silice
Ouvrir l’emballage de la cartouche, raccorder l’extrémité courte de la cartouche de gel de silice (7.1.1)
à une seringue de 10 ml et la placer dans le rack pour seringues (7.2.4), comme illustré à la Figure 3. À
l'aide d'une pipette volumétrique à distribution répétitive (7.3.2.4), ajouter 10 ml d’acétonitrile (8.2)
dans chaque seringue. Laisser le liquide s’écouler par gravité.
Éliminer toutes les bulles d’air susceptibles d’être piégées entre la seringue et la cartouche de silice en
les déplaçant avec l’acétonitrile contenu dans la seringue.
Le distributeur répétitif contenant la solution d’imprégnation de DNPH acidifiée doit être réglé pour
introduire 7 ml dans les cartouches. Une fois que l’écoulement effluent au niveau de la sortie de la
cartouche s’est arrêté, verser 7 ml du réactif d’imprégnation dans chaque seringue. Laisser le réactif
d’imprégnation s’écouler par gravité dans la cartouche jusqu’à ce que le débit au niveau de l’autre
extrémité de la cartouche s’arrête. À l’aide d'un papier de soie propre, essuyer l'excédent de liquide au
niveau de la sortie de chaque cartouche.
Assembler une rampe de séchage comme indiqué à la Figure 3 b). Cette dernière contient une cartouche
imprégnée de DNPH préalablement préparée au niveau de chaque orifice de sortie (par exemple
cartouches épuratrices ou «cartouches de garde »). Ces «cartouches de garde» servent à éliminer les
traces de formaldéhyde pouvant être présentes dans l’alimentation en gaz azote (8.9). Elles peuvent être
préparées en séchant quelques cartouches fraîchement imprégnées conformément aux instructions ci-
dessous et en «sacrifiant» ces quelques cartouches de façon à garantir la pureté du reste.
Insérer les raccords pour cartouches [évasés aux deux extrémités, tuyau en polytétrafluoroéthylène
(PTFE) d'un diamètre extérieur de 0,64 cm × 2,5 cm avec un diamètre intérieur légèrement plus petit
que le diamètre extérieur de l'orifice de la cartouche] sur l'extrémité longue des cartouches épuratrices.
Retirer les cartouches des seringues et raccorder les extrémités courtes des cartouches sur l’extrémité
ouverte des raccords pour cartouches déjà fixés aux cartouches épuratrices.
Faire passer de l’azote (8.9) dans chaque cartouche à environ 300 ml/min à 400 ml/min. À l'aide
d'une pipette Pasteur, rincer les surfaces extérieures et l'extrémité de sortie des cartouches avec de
l’acétonitrile. Après 15 min, arrêter l’écoulement d’azote, essuyer l’extérieur de la cartouche pour
nettoyer l’acétonitrile et retirer les cartouches séchées. Boucher les deux extrémités de la cartouche
imprégnée avec les bouchons pour seringues mâles en polypropylène normalisés et placer la cartouche
dans un tube de culture en verre borosilicaté équipé de bouchons à vis en polypropylène (7.2.1).
Placer une étiquette portant le numéro de série et le numéro de lot sur chaque récipient de stockage en
verre contenant les cartouches et réfrigérer le lot préparé jusqu’à utilisation.
Les cartouches d’échantillonnage sont reconnues stables pendant au moins 6 mois lorsqu’elles sont
conservées à 4 °C et à l’abri de la lumière.
10 Mode opératoire
10.1 Prélèvement de l’échantillon
Assembler le système d’échantillonnage et vérifier que la pompe (7.1.2) est capable d’un débit constant
tout au long de la période d’échantillonnage. Les cartouches d’échantillonnage (7.1.1) peuvent être
utilisées en toute sécurité pour échantillonner l’air lorsque la température est supérieure à 10 °C. Si
nécessair
...












Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...