Indoor air - Part 8: Determination of local mean ages of air in buildings for characterizing ventilation conditions

ISO 16000-8:2007 describes the use of single tracer gas for determining the local mean age of air as an indicator of ventilation conditions in a building. The procedures include concentration decay and homogeneous constant emission.
The described methods are intended for air quality studies and can be used for checking whether the building ventilation requirements are met, estimating the adequacy of ventilation in buildings with indoor air quality problems, and characterizing the strength and distribution of indoor emission sources.  
In principle, the methods can be applied to all indoor spaces, regardless of the type of ventilation used and the state of mixing of air between zones. The prevailing ventilation conditions need not be disturbed by the measurement.
ISO 16000-8:2007 does not address the details of the analytical methods for tracer gases.

Air intérieur - Partie 8: Détermination des âges moyens locaux de l'air dans des bâtiments pour caractériser les conditions de ventilation

L'ISO 16000-8:2007 décrit l'utilisation d'un seul gaz traceur en vue de déterminer l'âge local moyen de l'air comme indicateur des conditions de ventilation à l'intérieur d'un bâtiment. Les procédures spécifiées incluent la décroissance de la concentration et l'émission homogène constante.
Les méthodes décrites sont conçues pour les études sur la qualité de l'air et peuvent être utilisées pour vérifier la conformité aux exigences en matière de ventilation des bâtiments, évaluer l'adéquation de la ventilation dans des bâtiments ayant des problèmes de qualité de l'air intérieur; et caractériser l'intensité et la répartition des sources internes d'émission.
En principe, ces méthodes sont applicables pour tous les espaces intérieurs, quel que soit le type de ventilation utilisé et l'état du mélange de l'air interzones. Il n'est pas nécessaire de perturber les conditions de ventilation dominantes pour les besoins du mesurage.
L'ISO 16000-8:2007 ne détaille pas les méthodes d'analyse des gaz traceurs.

Notranji zrak - 8. del: Določevanje lokalne srednje starosti zraka v stavbah za karakterizacijo prezračevalnih pogojev

Ta del standarda ISO 16000 opisuje uporabo posameznega sledilnega plina za določevanje lokalne srednje starosti zraka kot kazalnika prezračevalnih pogojev v stavbi. Postopki zajemajo razgradnjo koncentracije in homogeno konstantno emisijo. Opisane metode so namenjene za študije kakovosti zraka in jih je mogoče uporabljati za
a) preverjanje izpolnjevanja zahtev glede prezračevanja stavb,
b) ocenjevanje ustreznosti prezračevanja v stavbah s težavami s kakovostjo notranjega zraka in
c) karakterizacijo moči in razporeditve notranjih virov emisij.
Metode je načeloma mogoče uporabiti za vse notranje prostore, ne glede na vrsto uporabljenega prezračevanja in stanje mešanja zraka med območji. Ni nujno, da merjenje vpliva na prevladujoče prezračevalne pogoje. Ta del standarda ISO 16000 ne obravnava podrobnosti analiznih metod za sledilne pline. Razpoložljivost takih analiznih storitev naj bi se preverila pred načrtovanjem dejanskih terenskih meritev.

General Information

Status
Published
Public Enquiry End Date
19-Feb-2013
Publication Date
17-Mar-2013
Technical Committee
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
08-Mar-2013
Due Date
13-May-2013
Completion Date
18-Mar-2013
Standard
SIST ISO 16000-8:2013
English language
47 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day
Standard
ISO 16000-8:2007 - Indoor air
English language
41 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 16000-8:2007 - Air intérieur
French language
43 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)


2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.Air intérieur - Partie 8: Détermination des âges moyens locaux de l'air dans des bâtiments pour caractériser les conditions de ventilationIndoor air - Part 8: Determination of local mean ages of air in buildings for characterizing ventilation conditions13.040.20Kakovost okoljskega zrakaAmbient atmospheresICS:Ta slovenski standard je istoveten z:ISO 16000-8:2007SIST ISO 16000-8:2013en01-april-2013SIST ISO 16000-8:2013SLOVENSKI
STANDARD
Reference numberISO 16000-8:2007(E)© ISO 2007
INTERNATIONAL STANDARD ISO16000-8First edition2007-06-15Corrected version2007-10-15Indoor air — Part 8: Determination of local mean ages of air in buildings for characterizing ventilation conditions Air intérieur — Partie 8: Détermination des âges moyens locaux de l'air dans des bâtiments pour caractériser les conditions de ventilation SIST ISO 16000-8:2013

©
ISO 2007 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel.
+ 41 22 749 01 11 Fax
+ 41 22 749 09 47 E-mail
copyright@iso.org Web
www.iso.org Published in Switzerland
ii
Explanation of some terms and definitions.13 Annex B (informative)
General requirements of tracer gases, background contents and methods of detection of the most important ones.14 Annex C (informative)
Estimation of uncertainty of measured local mean ages of air.17 Annex D (informative)
Examples of measurement procedure, calculation and estimation of uncertainty.20 Annex E (informative)
Air quality relevance of local mean age of air and expression of results.37 Bibliography.41
INTERNATIONAL STANDARD ISO 16000-8:2007(E) © ISO 2007 – All rights reserved 1Indoor air — Part 8: Determination of local mean ages of air in buildings for characterizing ventilation conditions 1 Scope This part of ISO 16000 describes the use of single tracer gas for determining the local mean age of air as an indicator of ventilation conditions in a building. The procedures include concentration decay and homogeneous constant emission. The described methods are intended for air quality studies and can be used for a) checking whether the building ventilation requirements are met, b) estimating the adequacy of ventilation in buildings with indoor air quality problems, and c) characterizing the strength and distribution of indoor emission sources. In principle, the methods can be applied to all indoor spaces, regardless of the type of ventilation used and the state of mixing of air between zones. The prevailing ventilation conditions need not be disturbed by the measurement. This part of ISO 16000 does not address the details of the analytical methods for tracer gases. The availability of such analysis services should be checked before planning actual field measurements. 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 12569, Thermal performance of buildings — Determination of air change in buildings — Tracer gas dilution method Guide to the expression of uncertainty in measurement (GUM), BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIML, 1993 1) 3 Terms and definitions For the purposes of this document, the terms and definitions given in ISO 12569 and the following apply.
1) Corrected and reprinted in 1995. To be republished as ISO/IEC Guide 98-3. SIST ISO 16000-8:2013

ventilation parameter, which describes the length of time the air at a specific location has on average spent within the building NOTE See A.1 for a further explanation of this term. 3.3 ventilated system the building space, which can exchange air directly or indirectly with the space of interest NOTE At the border of the ventilated system, there is no other inflow of air than outdoor air. 3.4 zone space within the building where air mixing is sufficient to create an essentially uniform concentration of a tracer gas released anywhere within that space NOTE 1 To be considered a zone, the space should not exhibit concentration differences larger than 20 % of the mean. NOTE 2 A zone can be part of a room, an entire room or even include several rooms. 3.5 zone mean age of air ventilation parameter, which describes the length of time the air in a zone has on average spent within the building NOTE In the case of complete mixing within a zone, this is equal to the local mean age of air at any point within the zone. 4 Principles of tracer gas measurements for determining of ventilation conditions 4.1 General principles Tracer gas techniques for measuring ventilation rely on the possibility of differentiating between air that is already within a space of interest and new air coming into that space. This means that it shall be able either to mark the air already in the space and follow how the marked air is replaced by new ventilation air or, alternatively, to mark the incoming air and measure how this marked ventilation air is distributed through the space. It should be observed that air flowing into a specified zone from other zones that have a lower or higher concentration of tracer gas would influence the result of the measurement. Therefore, it is important to keep to the prescribed boundary conditions that are different for different tracer gas methods. If the ventilation condition is to be determined in a zone, which has no inflow of air from other parts of the building (single isolated zone), it is not necessary to inject tracer gas or mark the air in other parts of the building in order to obtain correct results. However, if the zone can exchange air with other parts of the building, which is usually the case, special strategies for tracer gas injection in those connected zones shall be followed in order to avoid ambiguous results. It should also be noted that the closing of doors to a room does not necessarily lead to zero inflow of air from other parts of the building. Such means of restricting a normally occurring airflow will also change the ventilation of a room from that which would otherwise prevail. SIST ISO 16000-8:2013

(4) First, the logarithm of the tracer gas concentration versus time should be plotted and inspected. If the plot is linear from t = t0, the local mean age of air can be directly evaluated from the inverse of the absolute value of the slope: linear1τλ= (5) If the logarithmic plot shows curvature, the plot should be inspected for the beginning of the linear segment of the plot. The slope of the linear segment is evaluated and λtail is set equal to the absolute value of the slope. Next, choose one of the measurements within the linear part of the plot as the endpoint for the numerical integration (concentration = ϕe at time te). Perform the numerical integration from t = t0 to t = te and add ϕe/λtail according to Equation (3) to get an approximation of the concentration integral from t = t0 to t = ∞. Finally, the local mean age of air is calculated from the integral through division by the concentration at the beginning of the decay (0ttϕ=) according to Equation (1). SIST ISO 16000-8:2
...


INTERNATIONAL ISO
STANDARD 16000-8
First edition
2007-06-15
Corrected version
2007-10-15
Indoor air —
Part 8:
Determination of local mean ages of air
in buildings for characterizing ventilation
conditions
Air intérieur —
Partie 8: Détermination des âges moyens locaux de l'air dans des
bâtiments pour caractériser les conditions de ventilation

Reference number
©
ISO 2007
PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

©  ISO 2007
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
ii © ISO 2007 – All rights reserved

Contents Page
Foreword. iv
Introduction . vi
1 Scope . 1
2 Normative references . 1
3 Terms and definitions. 1
4 Principles of tracer gas measurements for determining of ventilation conditions . 2
4.1 General principles. 2
4.2 Selected tracer gas methods. 3
5 Measurement planning. 3
5.1 General. 3
5.2 Identification of the ventilated system . 4
5.3 Identification of zones. 4
5.4 Choice of measurement method. 4
5.5 Determination of measurement points. 5
6 Tracer gases and equipment for determining ventilation conditions . 6
6.1 Choice of tracer gas . 6
6.2 Tracer gas concentration standard. 6
6.3 Equipment for feeding the tracer gas. 6
6.4 Sampling the tracer gas . 7
6.5 Determination of tracer gas concentration . 8
7 Measurement methods. 8
7.1 Decay method . 8
7.2 Active homogeneous emission method. 10
7.3 Passive homogeneous emission method . 11
8 Application of results . 12
9 Test report . 12
Annex A (informative) Explanation of some terms and definitions . 13
Annex B (informative) General requirements of tracer gases, background contents and methods
of detection of the most important ones. 14
Annex C (informative) Estimation of uncertainty of measured local mean ages of air. 17
Annex D (informative) Examples of measurement procedure, calculation and estimation of
uncertainty. 20
Annex E (informative) Air quality relevance of local mean age of air and expression of results. 37
Bibliography . 41

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 16000-8 was prepared by Technical Committee ISO/TC 146, Air quality, Subcommittee SC 6, Indoor air.
ISO 16000 consists of the following parts, under the general title Indoor air :
⎯ Part 1: General aspects of sampling strategy
⎯ Part 2: Sampling strategy for formaldehyde
⎯ Part 3: Determination of formaldehyde and other carbonyl compounds — Active sampling method
⎯ Part 4: Determination of formaldehyde — Diffusive sampling method
⎯ Part 5: Sampling strategy for volatile organic compounds (VOCs)
⎯ Part 6: Determination of volatile organic compounds in indoor and test chamber air by active sampling on ®
Tenax TA sorbent, thermal desorption and gas chromatography using MS/FID
⎯ Part 7: Sampling strategy for determination of airborne asbestos fibre concentrations
⎯ Part 8: Determination of local mean ages of air in buildings for characterizing ventilation conditions
⎯ Part 9: Determination of the emission of volatile organic compounds from building products and furnishing —
Emission test chamber method
⎯ Part 10: Determination of the emission of volatile organic compounds from building products and
furnishing — Emission test cell method
⎯ Part 11: Determination of the emission of volatile organic compounds from building products and
furnishing — Sampling, storage of samples and preparation of test specimens
⎯ Part 12: Sampling strategy for polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins
(PCDDs), polychlorinated dibenzofurans (PCDFs) and polycyclic aromatic hydrocarbons (PAHs)
⎯ Part 13: Determination of total (gas and particle-phase) polychlorinated dioxin-like biphenyls (PCBs) and
polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/PCDFs) — Collection on sorbent-backed filters
iv © ISO 2007 – All rights reserved

⎯ Part 14: Determination of total (gas and particle-phase) polychlorinated dioxin-like biphenyls (PCBs) and
polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/PCDFs) — Extraction, clean-up and analysis by
high-resolution gas chromatography/mass spectrometry
⎯ Part 15: Sampling strategy for nitrogen dioxide (NO )
⎯ Part 16: Detection and enumeration of moulds — Sampling by filtration
⎯ Part 17: Detection and enumeration of moulds — Culture-based method
⎯ Part 23: Performance test for evaluating the reduction of formaldehyde concentrations by sorptive
building materials
The following parts are under preparation:
⎯ Part 18: Detection and enumeration of moulds — Sampling of moulds by impaction
⎯ Part 24: Performance test for evaluating the reduction of the concentrations of volatile organic
compounds and carbonyl compounds (except formaldehyde) by sorptive building materials
⎯ Part 25: Determination of the emission of semi-volatile organic compounds by building products —
Micro-chamber method
Furthermore, the two International Standards, ISO 16017-1 on pumped sampling and ISO 16017-2 on
diffusive sampling, focus on volatile organic compound (VOC) measurements.
This corrected version of ISO 16000-8:2007 incorporates the following corrections:
⎯ Equation (D.2) (and the line of text immediately preceding this equation), Equation (D.5) and
Equation (D.11) have been corrected.
⎯ In Clause 2, the reference to the ISO/IEC Guide 98 was changed and footnote 1) was added.
⎯ In 7.1.5, 7.2.5, 7.3.4, C.1.1 and D.1, the reference to ISO/IEC Guide 98:1995 was changed to GUM:1995.
⎯ In B.3, footnote 1) was renumbered as footnote 2).
Introduction
An adequate air change is of fundamental importance for indoor air quality. Proper ventilation of all buildings is
necessary for the health and comfort of the occupants as well as to protect against damage (e.g. due to
excessive atmospheric humidity). However, the present-day use of tightly sealed windows, for example in
residential and office buildings, can lead to insufficient ventilation. This situation in turn may lead to an
increase in the concentration of substances emitted indoors. Manual ventilation by the occupants or the use of
mechanical ventilation systems is thus required. However, excessive ventilation can lead to discomfort and
increased energy consumption.
Building regulations make provision for ventilation to control moisture and other pollutants. Measurements of
the ventilation conditions allow confirmation of whether these requirements are met in practice. Knowledge of
the ventilation conditions is important in order to be able to analyse the possible causes of poor indoor air
quality. Thus, ideally, sampling and analysis of contaminants indoors should be accompanied by ventilation
measurement, making it possible to estimate the strengths of contaminant sources.
This part of ISO 16000 describes the use of single tracer gas for determining the age of air in a building which
is naturally or mechanically ventilated. The age of air is an important factor in assessing the adequacy of
ventilation. The concept local mean age of air (and its inverse the local effective air change rate) is used for
assessing the ventilation conditions in the building. The mean age of air in a building zone indicates the
average time the air in a zone has spent in the building accumulating contaminants. It is closely connected to
the time it takes to exchange the air within a zone. The concentration of a contaminant released from
continuous indoor sources increases with the length of time the air has spent indoors. The lower the age of air
in a space, the lower the concentration. Normally, the ventilation air is supplied at selected parts of the
building envelope, and seeks its way to the different building spaces. Thus, before the ventilation air reaches a
specific room, a significant portion of the air may have spent time in other rooms, accumulating contaminants.
Therefore, the local mean age of air, which describes how long the air in a particular space has spent indoors,
needs to be considered in relation to air quality.
The purpose of this part of ISO 16000 is to describe the use of ventilation measurement techniques suitable
for air quality studies. For this purpose, the ventilation rate and the air distribution patterns in the building
should be measured for representative conditions of interest.
ISO 12569 describes the use of tracer gas dilution for determining the air change rate in a single zone. The
procedures for tracer gas dilution include concentration decay, constant injection and constant concentration.
ISO 12569 should be used when studying the thermal performance of buildings.
In the case where a zone exchanges air only with the outside (i.e. has no inflow of air from other parts of the
building), the tracer gas concentration within the zone can be characterized with a single value, and the
ventilation conditions are constant over the measurement period; this part of ISO 16000 and ISO 12569
should, in theory, provide identical results. The methods described in this part of ISO 16000 can, however, be
used beyond these conditions, for example in spaces with several zones, which may exchange air with each
other, and in cases where the ventilation conditions vary during the measurement period.

vi © ISO 2007 – All rights reserved

INTERNATIONAL STANDARD ISO 16000-8:2007(E)

Indoor air —
Part 8:
Determination of local mean ages of air in buildings
for characterizing ventilation conditions
1 Scope
This part of ISO 16000 describes the use of single tracer gas for determining the local mean age of air as an
indicator of ventilation conditions in a building. The procedures include concentration decay and
homogeneous constant emission.
The described methods are intended for air quality studies and can be used for
a) checking whether the building ventilation requirements are met,
b) estimating the adequacy of ventilation in buildings with indoor air quality problems, and
c) characterizing the strength and distribution of indoor emission sources.
In principle, the methods can be applied to all indoor spaces, regardless of the type of ventilation used and the
state of mixing of air between zones. The prevailing ventilation conditions need not be disturbed by the
measurement.
This part of ISO 16000 does not address the details of the analytical methods for tracer gases. The availability
of such analysis services should be checked before planning actual field measurements.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.
ISO 12569, Thermal performance of buildings — Determination of air change in buildings — Tracer gas
dilution method
Guide to the expression of uncertainty in measurement (GUM), BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIML,
1)
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 12569 and the following apply.

1) Corrected and reprinted in 1995. To be republished as ISO/IEC Guide 98-3.
3.1
homogeneous emission
strategy to inject tracer gas in such a way that the injection rate per unit volume is equal in all parts of
ventilated system
3.2
local mean age of air
ventilation parameter, which describes the length of time the air at a specific location has on average spent
within the building
NOTE See A.1 for a further explanation of this term.
3.3
ventilated system
the building space, which can exchange air directly or indirectly with the space of interest
NOTE At the border of the ventilated system, there is no other inflow of air than outdoor air.
3.4
zone
space within the building where air mixing is sufficient to create an essentially uniform concentration of a
tracer gas released anywhere within that space
NOTE 1 To be considered a zone, the space should not exhibit concentration differences larger than 20 % of the mean.
NOTE 2 A zone can be part of a room, an entire room or even include several rooms.
3.5
zone mean age of air
ventilation parameter, which describes the length of time the air in a zone has on average spent within the
building
NOTE In the case of complete mixing within a zone, this is equal to the local mean age of air at any point within the
zone.
4 Principles of tracer gas measurements for determining of ventilation conditions
4.1 General principles
Tracer gas techniques for measuring ventilation rely on the possibility of differentiating between air that is
already within a space of interest and new air coming into that space. This means that it shall be able either to
mark the air already in the space and follow how the marked air is replaced by new ventilation air or,
alternatively, to mark the incoming air and measure how this marked ventilation air is distributed through the
space.
It should be observed that air flowing into a specified zone from other zones that have a lower or higher
concentration of tracer gas would influence the result of the measurement. Therefore, it is important to keep to
the prescribed boundary conditions that are different for different tracer gas methods.
If the ventilation condition is to be determined in a zone, which has no inflow of air from other parts of the
building (single isolated zone), it is not necessary to inject tracer gas or mark the air in other parts of the
building in order to obtain correct results. However, if the zone can exchange air with other parts of the
building, which is usually the case, special strategies for tracer gas injection in those connected zones shall be
followed in order to avoid ambiguous results. It should also be noted that the closing of doors to a room does
not necessarily lead to zero inflow of air from other parts of the building. Such means of restricting a normally
occurring airflow will also change the ventilation of a room from that which would otherwise prevail.
2 © ISO 2007 – All rights reserved

4.2 Selected tracer gas methods
4.2.1 General
This part of ISO 16000 describes the strategies for tracer gas injection and measurement in spaces that
cannot be regarded as single isolated zones. ISO 12569 presents the tracer gas dilution methods for spaces
that can be characterized as a single zone. If the ventilation conditions are constant over the measurement
period, and the space of interest can be regarded as a single isolated zone, the methods presented in this part
of ISO 16000 and ISO 12569 are, in theory, identical. Under these conditions, the local mean age of air would
be the same as the inverse of the air change rate determined using ISO 12569.
4.2.2 Decay method
The principle of the decay method is to mark the air in the ventilated system with tracer gas and determine the
rate at which the marked air is replaced with unmarked air.
The zone to be measured and all other zones in the building with which the zone of interest can exchange air
directly or indirectly shall be marked with a common initial tracer gas concentration. Such a strategy will
prevent air coming from other parts of the building from being regarded as “clean ventilation air” to a greater
extent than its actual delivered ventilation power.
The concentration history is recorded as a function of time. The local mean age of air is obtained from the
quotient of the integral of the concentration versus time and the initial concentration.
−1
The decay method can generally be used without problems up to air change rate n = 10 h .
4.2.3 Active homogeneous emission method
In the active homogeneous emission method, tracer gas is fed at measured constant rates into the zones by a
suitable adjustable flow injection device. The injection rates shall be proportional to the zone volumes. The
steady state tracer gas concentration of room air is measured using a suitable gas analyser. The local mean
age of air is obtained from the quotient of the steady state concentration and the injection rate per unit volume.
The zone to be measured and all other zones in the building with which the pertinent zone can exchange air
directly or indirectly shall be equipped with constant homogenous emission of tracer gas.
4.2.4 Passive homogeneous emission method
In the passive homogeneous emission method, tracer gas is emitted at known constant rates into the zones
using diffusion sources. The emission rates shall be proportional to the zone volumes. The steady state tracer
gas concentration of room air is measured by collecting an integrating sample in a sorbent tube (actively using
an air sampling pump or passively using diffusion sampling) and analysing this sample afterwards in an
especially equipped laboratory. The local mean age of air is obtained from the quotient of the steady state
concentration and the emission rate per unit volume.
The zone to be measured and all other zones in the building with which the zone of interest can exchange air
directly or indirectly shall be equipped with constant homogenous emission of tracer gas.
The use of this method requires a special analysis service able to analyse the sample from the sorbent tube in
order to determine the amount of the tracer gas in the sample.
5 Measurement planning
5.1 General
Before measurement of the local mean ages of air in a building space, the purpose of the measurement shall
be clearly defined. Also, knowledge of the type of building and the particular characteristics of that part of the
building that is to be investigated are essential for the choice of tracer gas technique and the detailed planning
of the test.
The ventilation rate and the air distribution patterns in the building should be measured at representative
conditions of interest. These conditions should not be disturbed by the measurement, unless it is the purpose
of experiment to test the effect of different conditions, of for example door opening, window opening, etc.
The homogenous emission method using sampling on adsorbent tubes is especially suitable for determining
the ventilation conditions in the context of air quality studies. Depending on the requirement, short-term
(pumped sampling of a few litres of air) or long-term measurements (passive sampling during days to several
weeks) can be carried out. In the investigation of indoor air quality (IAQ) problems, the ventilation
measurements usually accompany the actual measurement of pollutant. An advantage of this measurement
method is the possibility to simultaneously determine the local mean ages of air and the pollutant
concentration.
In determination of “air change” (“airflow rate” or “air change rate”), for example using the methods described
in ISO 12569, only the total airflow rate to the ventilated system is of concern. Such measurements are
therefore restricted to buildings or other enclosures that can be treated as a single zone. In those methods, it
shall therefore be ensured that there is complete mixing of air between all spaces within the ventilated system
during the measurement.
5.2 Identification of the ventilated system
In planning the test, the “ventilated system” to which the space of interest belongs shall first be identified,
because all spaces within the ventilated system shall be tagged with tracer gas. The ventilated system is
defined as the building space, which can exchange air directly or indirectly with the space of interest. At the
border of the ventilated system, there shall not be any inflow of air other than outdoor air. Thus, a part of a
building should only be considered a ventilated system if it has negligible inflow of air from other parts of the
building (for example via doorways, air leakage or return air ducts). The location of pollutant sources should
also be taken into account to ensure that polluted air is not misinterpreted as outdoor air. In practice, this
means, for example that
⎯ for a single family house, all rooms including the cellar (unless there is an airtight door) should be
included in the ventilated system, and
⎯ for a flat in an apartment building, all rooms in the studied apartment (and in some cases also the
staircase) should be included in the ventilated system.
5.3 Identification of zones
A zone is a space within the ventilated system where it can be assumed that the air mixing is sufficient to
ensure a uniform concentration of air tracer gas. Within the ventilated system, there may be several spaces
that can be regarded as zones. All such zones should be identified and their volumes measured. The zone-
volumes are needed in order to calculate the amount of tracer gas to be injected in the different zones. Small
closed spaces with only extract air (e.g. bathrooms), or without any supply of outdoor air (e.g. closets) do not
need any tracer gas injection. The volume of small closed spaces, which may receive some supply of outside
air should be added to the volume of any connected zone. Large rooms and long corridors may be subdivided
into two or more zones.
5.4 Choice of measurement method
5.4.1 General
The choice of the measurement method depends on the type and size of the building, the intended
measurement time, the purpose of the measurement, and the availability of equipment and analysis service.
4 © ISO 2007 – All rights reserved

5.4.2 Type of building
5.4.2.1 Simple buildings (e.g. small to moderate-sized dwellings that can be characterized with one
to four zones)
When the number of zones is small, it is relatively easy to achieve an initial homogeneous tracer gas
concentration within the whole ventilated system. For short-term measurements, the decay method is
therefore best suited.
5.4.2.2 Complex buildings (e.g. office buildings and other structures in which the ventilated system
comprises several zones)
In this case, it may be very difficult to achieve the necessary condition for the decay method of equal initial
tracer gas concentration in all zones. The homogeneous emission method may therefore be better suited than
the decay method in this case.
5.4.3 Measurement period
5.4.3.1 Short-term conditions of interest
The decay method is the most practical method to monitor short-term ventilation conditions in simple buildings,
while the passive homogeneous emission method with pumped sampling is better suited for complex buildings.
5.4.3.2 Long-term time variation of interest
Though repeated use of the decay method is feasible in buildings with few zones, the most appropriate choice
for long-term measurement in all types of buildings is the homogeneous emission method. The purpose may
be to monitor the change of ventilation conditions as a function of time, for example in order to investigate the
effect of weather conditions or to test the effect of different ventilation strategies. This requires active air
sampling using continuous monitoring of tracer gas concentration or repeated sampling using syringes, bags,
evacuated gas tubes or pumped collection tubes. The active homogeneous emission method is suitable for
measuring time-varying conditions in simple buildings, while passive homogeneous emission with active
sampling is better suited for complex buildings.
5.4.3.3 Long-term average conditions of interest
The purpose may be to investigate only the time average of the mean ages of air in different parts of a
building. Advantages of this monitoring strategy are that short-term variations in ventilation are levelled out
and that the result is directly coupled to the average exposure to contaminants (or dose) generated indoors.
The most appropriate choice for monitoring average conditions is the passive homogeneous emission method
using passive sampling or integrating sampling using pumps.
5.5 Determination of measurement points
The suitable number and distribution of measurement points are determined from the purpose of the
measurement. Air sampling is necessary only in those zones where it is of interest to determine the local
mean age of air. If the purpose is to map the distribution patterns of ventilation air within the building,
measurements should be performed in several zones, while sampling in only one or a few zones is necessary
to get information on local ventilation conditions. Sampling shall be performed at places which are thought to
be representative of the zones. It shall not be attempted close to the tracer gas sources (minimum 1 m
distance) or close to an air supply terminal. Irrespective of the purpose of the measurement, at minimum of
three measurement points should be used in order to gain information of the range of variation. When
performing a manual sampling, the sample can advantageously be taken at different positions in the zone. If
the purpose is to gain information on the total ventilation flow rate or air exchange efficiency in the building
(see E.2), sampling should also be performed close to identifiable air exhaust points.
6 Tracer gases and equipment for determining ventilation conditions
6.1 Choice of tracer gas
Apart from being able to analyse at low concentration with available measurement equipment, tracer gases
shall be harmless to health and should fulfil other requirements.
Annex B (informative) provides information on choosing tracer gases based on accepted practice.
6.2 Tracer gas concentration standard
The tracer gas should be used within safe limits for concentration. If the source is pure tracer gas, avoid gas
volumes that could create inadvertent hazards. An extremely large pressurized cylinder of pure gas, for
example, could momentarily create unsafe concentrations in a small room. Avoid conditions where the amount
of tracer gas that may be absorbed onto surfaces and into subordinate enclosures is significant.
Avoid the use of radioactive tracer gases.
The required amount of tracer gas depends on the sensitivity of the detection method, the ventilation rate and
the size of the rooms.
6.3 Equipment for feeding the tracer gas
6.3.1 Decay technique
The purpose of tracer gas feeding for the decay technique is to achieve a uniform concentration of tracer gas
throughout the ventilated system.
Choose one of the following apparatus for injecting tracer gas.
⎯ Graduated syringe, or other container of known volume with a means for controlled release of its content.
⎯ Compressed tracer gas supply, with a flow rate measurement and control device.
Choose a technique for creating a uniform initial concentration in the ventilated system from one or more of
the following.
a) Fans that permit good mixing within and between zones.
b) Injection lines that dispense tracer gas via manifolds or switches. All parts of the injection lines shall be
clearly labelled “Tracer Gas Only” and shall be keyed to the location that receives the tracer gas.
c) Swinging doors. After tracer gas injection in all zones, the doors between zones may be swung back
and forth to increase interzonal mixing.
Injection lines should be purged to ensure delivery of known tracer gas volume to a given zone.
All artificial mixing shall be turned off and doors reset to their desired state (open/closed) at the moment of the
start of the decay measurement.
NOTE Leaks in injection lines can release tracer gas at unwanted locations and in uncontrolled unwanted
concentrations.
6.3.2 Active homogeneous emission technique
The purpose of feeding the tracer gas is to achieve a homogeneous emission rate of the tracer gas within the
ventilated system. This means that the constant tracer gas injection rate in each zone of the ventilated system
shall be proportional to the zone volume. The following steps are necessary for this:
6 © ISO 2007 – All rights reserved

a) metering the tracer gas emission rate in each zone (This can be performed directly using a pressurized
cylinder that is brought into the zone and controlling the gas emission rate via pressure regulator and flow
meter, or by using injection lines connecting a remotely located tracer gas source to the zone.);
b) ensuring complete mixing within zones may be necessary in large zones. (This can be achieved by
operating one or more fans or by distributing the injection to several points throughout the zone.)
6.3.3 Passive homogeneous emission technique
The purpose of feeding the tracer gas is to achieve a homogeneous emission rate of the tracer gas within the
ventilated system. This means that the constant tracer gas injection rate in each zone of the ventilated system
is proportional to the zone volume. The following steps are necessary for this:
a) emitting the tracer gas in each zone using diffusion sources with known emission rates;
b) ensuring complete mixing within zones may be necessary in large zones. (This can be achieved by using
one or more fans. Multiple diffusion vials with known emission rates may be required for larger zones.)
The fact that the tracer gas emission rate from diffusion sources is strongly temperature dependant, shall be
taken into consideration when distributing passive tracer gas sources. The temperature should also be logged
at representative locations throughout the measurement period.
6.4 Sampling the tracer gas
6.4.1 Sampling methods
The sampling methods described below are suitable for both decay and homogeneous emission methods,
depending on the analytical method used for the tracer gas.
Sampling should be carried out at representative points, and should never be located close to air supplies and
windows.
6.4.2 Continuous automatic sampling
The gas analyser is usually connected to the measurement points by one or more inert gas sample tubes
through which air is drawn with a pump to the gas analyser. When sampling from several locations, the
sampling locations can be chosen via automatically or manually operated multi-port valves. It is important that
a sampling tube is flushed with new sample just before introduction into the analysing instrument.
6.4.3 Manual sample collection
With manual sample collection methods, a sample is first collected using a suitable container (syringe, bag or
evacuated gas container). The sample is then analysed in the laboratory.
Materials used in manual sample collectors shall be non-absorbent, non-reactive and impermeable for the
tracer gas in use. Depending on the tracer gas, the list of suitable materials may include, for example, glass,
copper, stainless steel, polypropylene, polyethylene and polyamide.
Care should be taken when collecting manual samples in rooms with a normally closed door. Opening the
door and entering the room may introduce a large unwanted amount of air exchange between the two
connected zones. An easy and often used practice is to install a tube from the room to the adjacent room
through the keyhole, draw one or two syringe samples for purging the tube and take the next sample for
analysis.
6.4.4 Solid sorbent samplers
In the active solid sorbent sampling method, room air is drawn (continuously or intermittently) through a solid
sorbent suited to the tracer gas in use for the sampling period. After sampling, which shall be performed using
a calibrated sampling pump, the loaded samplers are desorbed (using thermal desorption or solvent
extraction) to determine the sorbed amount of tracer gas and hence the tracer gas concentration in the
sampled air. Pumped sampling using solid sorbent tubes is appropriate for continuous sampling periods of up
to a few hours and for intermittent sampling for several days. When using intermittent pumped sampling,
measures should be taken to minimize diffusion of air into the sorbent in between pump periods, e.g. using a
capillary restriction.
For long-term sampling, which can extend over one to several weeks, passive sampling using diffusive solid
sorption samplers can advantageously be used. The sampling rate of passive samplers shall be carefully
calibrated for the type of tracer gas use.
When using the homogeneous emission technique, sample collection points should always be at least 1 m
from the nearest tracer gas injection point.
6.5 Determination of tracer gas concentration
From the continuous sample collection system, the tracer gas/air mixture under test is passed directly, or via
sample tubes, into a gas analyser to determine its tracer gas content. Manually taken air samples and solid
sorbent tubes are usually analysed afterwards in a laboratory. If solid sorbent sample collectors are used,
thermal desorption or solvent extraction is necessary in order to introduce the tracer gas sample into the gas
analyser.
The gas analyser shall be suitable for the measuring task (sample gas volume, analytical period, cross-
sensitivities), the tracer gas used and the tracer gas concentration. The gas analyser accuracy should be
known.
For the tracer gases listed in Table B.1, infrared (IR) gas analysers or gas chromatography (GC) are suitable
for determination of concentration. GC with an appropriate detector, e.g. ECD (electron capture detector) or
MS (mass spectrometry), enables particularly sensitive tracer gas analysis.
7 Measurement methods
7.1 Decay method
7.1.1 Principles of the measurement technique
In the decay method, the tracer gas is injected into the zones and uniformly distributed throughout the whole
ventilated system. The local mean age of air, τ , is calculated from the decay of tracer gas concentration.

ϕdt

t
τ = (1)
ϕ
tt=
where
t is the time, in hours (h);
3 3
ϕ is the initial tracer gas concentration (e.g. in cm /m ) at time t = t (start of decay). This should be
tt= 0
equal in all zones.
The initial tracer gas concentration, ϕ , should be chosen to be at least 100 times the detection limit of the
tt=
analysis system.
The volume v of (pure) tracer gas to be injected into a zone (zone volume V ) is given by Equation (2):
p p
vV=⋅ϕ (2)
pptt=
7.1.2 Preparations and planning of the test
The planning steps described in Clause 5 are advantageously performed in advance using a plan or sketch of
the building space to be investigated.
8 © ISO 2007 – All rights reserved

7.1.3 Measurement procedure
After tracer gas is injected in all zones and mixed to ensure a uniform tracer gas concentration in the
ventilated system, sample collection is started using one of the methods mentioned in 6.4. Sample collection
is advantageously performed at equal time intervals in each zone of interest. Sample collection should
proceed for at least twice the assumed mean age of air (e.g. for a period of 4 h for a normally ventilated
dwelling). In order to get satisfactory data for analysis of the decay course, at least seven samples should be
collected in each zone of interest during that time. When performing manual sample collection, care should be
taken to minimize unnecessary disturbance of air distribution when entering rooms through a normally closed
door.
The purpose of the tracer gas injection is to achieve an initial homogeneous concentration of the tracer gas
within the ventilated system. In a building with multiple zones, this is best achieved if the injected amounts are
proportional to the zone volumes and well distributed into the zone volumes by some mixing devices. Refer to
the equipment for tracer gas distribution and mixing described in 6.3.1.
All artificial mixing shall be turned off and doors reset to their desired state (open/close) at the moment of the
start of the decay measurement.
Before decay measurement starts, field personnel should, if possible, verify that the tracer gas concentration
is equal in all zones of the ventilated system. In the case of a large zone (e.g. room volume greater than
500 m or ceiling heights greater than 4 m), or if it is suspected that there may be pronounced air paths in the
room, a uniform initial concentration should be verified by determining the concentration at various points in
that room. In such rooms, where incomplete mixing may be suspected, decay measurements at different
positions may also be appropriate.
7.1.4 Evaluation and calculation of the results
The integral in Equation (1) is usually evaluated numerically from the measured tracer gas concentration
history using a suitable numerical integration technique (e.g. the trapezoid method). When a zone exchanges
air with another connected zone, the first part of concentration decay is usually not purely exponential.
However, after some time the decay will always approach an exponential decay. It is therefore sufficient to
perform the numerical integration to the time t when an exponential decay has been ascertained (linear
e
logarithmic plot) and add the area under the “tail” of the decay assuming exponential behaviour.
t
∞∞
e
⎛⎞
ϕϕϕ
ttt=t
−−λ ()tt⎜⎟
0ee
tail e
⎜⎟
ϕϕddtt=+ϕ⋅e dt=∆t +ϕ +.+ϕ + + (3)
∫∫tt∫t=+t ⎜⎟t11∆t t+()n−∆t
e00
⎜⎟
22 λ
⎝⎠ tail
0 tt
0 e
where λ is the absolute value of the slope from a plot of the logarithm of concentration as a function of time
tail
in the last exponential part of the decay according to Equation (4).
lnϕϕ=−ln λ (tt− ) (4)
tt=t tail e
e
First, the logarithm of the tracer gas concentration versus time should be plotted and inspected. If the plot is
linear from t = t , the local mean age of air can be directly evaluated from the inverse of the absolute value of
the slope:
τ = (5)
λ
linear
If the logarithmic plot shows curvature, the plot should be inspected for the beginning of the linear segment of
the plot. The slope of the linear segment is evaluated and λ is set equal to the absolute
...


NORME ISO
INTERNATIONALE 16000-8
Première édition
2007-06-15
Air intérieur —
Partie 8:
Détermination des âges moyens
locaux de l’air dans des bâtiments pour
caractériser les conditions de ventilation
Indoor air —
Part 8: Determination of local mean ages of air in buildings for
characterizing ventilation conditions
Numéro de référence
©
ISO 2007
DOCUMENT PROTÉGÉ PAR COPYRIGHT
Droits de reproduction réservés. Sauf prescription différente, aucune partie de cette publication ne peut être reproduite ni utilisée sous
quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l’accord écrit
de l’ISO à l’adresse ci-après ou du comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Version française parue en 2012
Publié en Suisse
ii © ISO 2007 – Tous droits réservés

Sommaire Page
Avant-propos .iv
Introduction .vi
1 Domaine d’application . 1
2 Références normatives . 1
3 Termes et définitions . 1
4 Principes des mesurages utilisant un gaz traceur pour déterminer les conditions
de ventilation . 2
4.1 Principes généraux . 2
4.2 Méthodes d’injection du gaz traceur . 3
5 Programme de mesurage . 4
5.1 Généralités . 4
5.2 Identification du système ventilé . 4
5.3 Identification des zones . 4
5.4 Choix de la méthode de mesurage . 5
5.5 Détermination des points de mesure . 5
6 Gaz traceurs et équipements permettant de déterminer les conditions de ventilation . 6
6.1 Choix du gaz traceur . 6
6.2 Étalon de gaz traceur . 6
6.3 Équipement d’alimentation en gaz traceur . 6
6.4 Échantillonnage du gaz traceur . 7
6.5 Détermination de la concentration en gaz traceur . 8
7 Méthodes de mesurage . 9
7.1 Méthode de décroissance . 9
7.2 Méthode d’émission homogène active .10
7.3 Méthode d’émission homogène passive . 11
8 Application des résultats .12
9 Rapport d’essai .13
Annexe A (informative) Explication de certains termes et définitions .14
Annexe B (informative) Exigences générales, teneurs de fond et méthodes de détection des principaux
gaz traceurs .15
Annexe C (informative) Estimation de l’incertitude de mesure de l’âge local moyen de l’air .18
Annexe D (informative) Exemples de procédures de mesurage, de calcul et d’estimation
de l’incertitude .21
Annexe E (informative) Pertinence de l’âge local moyen de l’air dans le cadre de la qualité de l’air et
expression des résultats .39
Bibliographie .43
Avant-propos
L’ISO (Organisation internationale de normalisation) est une fédération mondiale d’organismes nationaux de
normalisation (comités membres de l’ISO). L’élaboration des Normes internationales est en général confiée aux
comités techniques de l’ISO. Chaque comité membre intéressé par une étude a le droit de faire partie du comité
technique créé à cet effet. Les organisations internationales, gouvernementales et non gouvernementales,
en liaison avec l’ISO participent également aux travaux. L’ISO collabore étroitement avec la Commission
électrotechnique internationale (CEI) en ce qui concerne la normalisation électrotechnique.
Les Normes internationales sont rédigées conformément aux règles données dans les Directives ISO/CEI, Partie 2.
La tâche principale des comités techniques est d’élaborer les Normes internationales. Les projets de Normes
internationales adoptés par les comités techniques sont soumis aux comités membres pour vote. Leur publication
comme Normes internationales requiert l’approbation de 75 % au moins des comités membres votants.
L’attention est appelée sur le fait que certains des éléments du présent document peuvent faire l’objet de droits
de propriété intellectuelle ou de droits analogues. L’ISO ne saurait être tenue pour responsable de ne pas avoir
identifié de tels droits de propriété et averti de leur existence.
L’ISO 16000-8 a été élaborée par le comité technique ISO/TC 146, Qualité de l’air, sous-comité SC 6, Air intérieur.
L’ISO 16000 comprend les parties suivantes, présentées sous le titre général Air intérieur:
— Partie 1: Aspects généraux de la stratégie d’échantillonnage
— Partie 2: Stratégie d’échantillonnage du formaldéhyde
— Partie 3: Dosage du formaldéhyde et d’autres composés carbonylés — Méthode par échantillonnage actif
— Partie 4: Dosage du formaldéhyde — Méthode par échantillonnage diffusif
— Partie 5: Stratégie d’échantillonnage pour les composés organiques volatils (COV)
— Partie 6: Dosage des composés organiques volatils dans l’air intérieur des locaux et enceintes d’essai
par échantillonnage actif sur le sorbant Tenax TA®, désorption thermique et chromatographie en phase
gazeuse utilisant MS ou MS/FID
— Partie 7: Stratégie d’échantillonnage pour la détermination des concentrations en fibres d’amiante en
suspension dans l’air
— Partie 8: Détermination des âges moyens locaux de l’air dans des bâtiments pour caractériser les conditions
de ventilation
— Partie 9: Dosage de l’émission de composés organiques volatils de produits de construction et d’objets
d’équipement — Méthode de la chambre d’essai d’émission
— Partie 10: Dosage de l’émission de composés organiques volatils de produits de construction et d’objets
d’équipement — Méthode de la cellule d’essai d’émission
— Partie 11: Dosage de l’émission de composés organiques volatils de produits de construction et d’objets
d’équipement — Échantillonnage, conservation des échantillons et préparation d’échantillons pour essai
— Partie 12: Stratégie d’échantillonnage des polychlorobiphényles (PCB), des polychlorodibenzo-p-dioxines
(PCDD), des polychlorodibenzofuranes (PCDF) et des hydrocarbures aromatiques polycycliques (HAP)
— Partie 13: Dosage des polychlorobiphényles (PCB) de type dioxine et des polychlorodibenzo-p-dioxines
(PCDD)/polychlorodibenzofuranes (PCDF) totaux (en phase gazeuse et en phase particulaire) — Collecte
sur des filtres adsorbants
— Partie 14: Dosage des polychlorobiphényles (PCB) de type dioxine et des polychlorodibenzo-p-dioxines
(PCDD)/polychlorodibenzofuranes (PCDF) totaux (en phase gazeuse et en phase particulaire) — Extraction,
purification et analyse par chromatographie en phase gazeuse haute résolution et spectrométrie de masse
iv © ISO 2007 – Tous droits réservés

— Partie 15: Stratégie d’échantillonnage du dioxyde d’azote (NO )
— Partie 16: Détection et dénombrement des moisissures — Échantillonnage par filtration
— Partie 17: Détection et dénombrement des moisissures — Méthode par culture
— Partie 23: Essai de performance pour l’évaluation de la réduction des concentrations en formaldéhyde par
des matériaux de construction sorptifs
Les parties suivantes sont en cours d’élaboration:
— Partie 18: Détection et dénombrement des moisissures — Échantillonnage par impaction
— Partie 24: Essai de performance pour l’évaluation de la réduction des concentrations en composés
organiques volatils (sauf formaldéhyde) par des matériaux de construction sorptifs
— Partie 25: Dosage de l’émission de composés organiques semi-volatils des produits de construction —
Méthode de la micro-chambre
En outre, les deux Normes internationales, ISO 16017-1 concernant l’échantillonnage par pompage et
ISO 16017-2 concernant l’échantillonnage par diffusion, traitent plus particulièrement des mesurages des
composés organiques volatils (COV).
La présente édition en français correspond à la version corrigée de l’ISO 16000-8, publiée en anglais en date
du 2007-10-15.
Introduction
Un renouvellement adéquat de l’air est fondamental pour la qualité de l’air intérieur. Une bonne ventilation de
tous les bâtiments est nécessaire pour la santé et le confort des occupants ainsi que pour la protection contre
les dommages (dus à une humidité atmosphérique excessive, par exemple). À l’heure actuelle, toutefois, du
fait d’un niveau d’isolation élevé des fenêtres, par exemple dans les habitations et les bureaux, la ventilation
peut s’avérer insuffisante. Cela peut conduire à une augmentation des concentrations en substances émises à
l’intérieur des bâtiments. Une ventilation manuelle par les occupants ou l’utilisation de systèmes de ventilation
mécanique est de ce fait requise. Cependant, une ventilation excessive peut induire un inconfort et une hausse
de la consommation d’énergie.
La réglementation relative aux bâtiments spécifie des exigences de ventilation visant à assurer la maîtrise de
l’humidité et des polluants. Le mesurage des conditions de ventilation permet de confirmer le respect de ces
exigences dans la pratique. Il est important de connaître les conditions de ventilation pour pouvoir analyser les
causes d’une éventuelle mauvaise qualité de l’air intérieur. Idéalement, il convient donc que l’échantillonnage
et l’analyse des contaminants présents dans l’air intérieur soient accompagnés de mesurages de la ventilation,
afin d’estimer l’intensité des sources de contaminants.
La présente partie de l’ISO 16000 décrit l’utilisation d’un seul gaz traceur en vue de déterminer l’âge de l’air
dans un bâtiment dont la ventilation est naturelle ou mécanique. L’âge de l’air est un facteur important dans
l’évaluation de la qualité de la ventilation. Le concept d’âge local moyen de l’air (et son complémentaire, le taux
effectif de renouvellement d’air local) est utilisé pour évaluer les conditions de ventilation dans le bâtiment. L’âge
moyen de l’air d’une zone d’un bâtiment désigne la durée moyenne de séjour de l’air dans une zone, à l’intérieur
d’un bâtiment, accumulant ainsi des contaminants. Cette durée est étroitement liée au temps nécessaire à
l’échange de l’air dans une zone donnée. La concentration d’un contaminant libéré par des sources internes
au bâtiment augmente parallèlement au temps de séjour de cet air à l’intérieur des bâtiments. Plus l’âge local
moyen de l’air d’un espace est petit, plus la concentration est faible. En principe, l’air de ventilation alimente les
parties spécifiques du bâtiment et il est acheminé dans les différents espaces du bâtiment. Par conséquent,
avant d’atteindre la pièce prévue, une part importante de l’air ventilé peut avoir séjourné dans d’autres pièces,
accumulant ainsi des contaminants. Il est donc nécessaire de considérer l’âge local moyen de l’air (soit la
durée moyenne de séjour de l’air mesuré en un point spécifique, à l’intérieur d’un bâtiment) en relation avec la
qualité de l’air.
La présente partie de l’ISO 16000 vise à décrire l’utilisation de techniques de mesurage de la ventilation
adaptées aux études de la qualité de l’air. À cet effet, il convient de mesurer le débit de ventilation et les modèles
de distribution de l’air à l’intérieur du bâtiment dans des conditions représentatives des conditions étudiées.
L’ISO 12569 décrit l’utilisation de la dilution du gaz traceur en vue de la détermination du taux de renouvellement
de l’air à l’intérieur d’une seule zone. Parmi les procédures de dilution du gaz traceur, citons les méthodes de
décroissance de la concentration, d’injection constante et de concentration constante. Il convient d’utiliser
l’ISO 12569 pour étudier les performances thermiques des bâtiments.
Lorsque l’échange de l’air se fait uniquement entre une zone et l’extérieur (c’est-à-dire absence d’entrée d’air
provenant d’autres parties du bâtiment), la concentration en gaz traceur à l’intérieur de la zone peut être
caractérisée par une valeur unique, et les conditions de ventilation sont constantes tout au long de la période
de mesurage; la présente partie de l’ISO 16000 et l’ISO 12569 devraient, en principe, fournir des résultats
identiques. Les méthodes décrites dans la présente partie de l’ISO 16000 peuvent toutefois être utilisées au-
delà de ces conditions, par exemple dans des espaces comportant plusieurs zones pouvant échanger entre
elles de l’air et lorsque les conditions de ventilation varient pendant la période de mesurage.
vi © ISO 2007 – Tous droits réservés

NORME INTERNATIONALE ISO 16000-8:2007(F)
Air intérieur —
Partie 8:
Détermination des âges moyens locaux de l’air dans des
bâtiments pour caractériser les conditions de ventilation
1 Domaine d’application
La présente partie de l’ISO 16000 décrit l’utilisation d’un seul gaz traceur en vue de déterminer l’âge local
moyen de l’air comme indicateur des conditions de ventilation à l’intérieur d’un bâtiment. Les procédures
spécifiées incluent la décroissance de la concentration et l’émission homogène constante.
Les méthodes décrites sont conçues pour les études sur la qualité de l’air et peuvent être utilisées pour:
a) vérifier la conformité aux exigences en matière de ventilation des bâtiments;
b) évaluer l’adéquation de la ventilation dans des bâtiments ayant des problèmes de qualité de l’air intérieur; et
c) caractériser l’intensité et la répartition des sources internes d’émission.
En principe, ces méthodes sont applicables pour tous les espaces intérieurs, quel que soit le type de ventilation
utilisé et l’état du mélange de l’air interzones. Il n’est pas nécessaire de perturber les conditions de ventilation
dominantes pour les besoins du mesurage.
La présente partie de l’ISO 16000 ne détaille pas les méthodes d’analyse des gaz traceurs. Il convient de
vérifier la disponibilité de moyens d’analyse avant de programmer des mesurages sur site.
2 Références normatives
Les documents de référence suivants sont indispensables pour l’application du présent document. Pour les
références datées, seule l’édition citée s’applique. Pour les références non datées, la dernière édition du
document de référence s’applique (y compris les éventuels amendements).
ISO 12569, Performances thermiques des bâtiments — Détermination du renouvellement d’air dans les
bâtiments — Méthode de dilution de gaz traceurs
1)
Guide pour l’expression de l’incertitude de mesure (GUM), BIPM, CEI, IFCC, ISO, IUPAC, IUPAP, OIML, 1993
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions donnés dans l’ISO 12569 ainsi que les suivants
s’appliquent.
3.1
émission homogène
mode d’injection du gaz traceur tel que le débit d’injection par unité de volume est identique dans toutes les
parties du système ventilé
1) Corrigé et réimprimé en 1995. À republier en tant que Guide ISO/CEI 98-3.
3.2
âge local moyen de l’air
paramètre de ventilation décrivant la durée moyenne de séjour de l’air mesuré en un point spécifique, à
l’intérieur d’un bâtiment
NOTE Voir A.1 pour une explication plus détaillée de ce terme.
3.3
système ventilé
à l’intérieur d’un bâtiment, espace ayant la capacité d’échanger de l’air, directement ou indirectement, avec
l’espace soumis à essai
NOTE L’environnement immédiat du système ventilé n’est exposé à aucune entrée d’air autre que l’air extérieur.
3.4
zone
à l’intérieur d’un bâtiment, espace dans lequel le mélange d’air est suffisant pour créer une concentration
essentiellement uniforme d’un gaz traceur libéré n’importe où dans cet espace
NOTE 1 Pour que l’espace soit considéré comme une zone, il convient qu’il ne présente pas de différences de
concentration supérieures à 20 % de la moyenne.
NOTE 2 Une zone peut être une subdivision d’une pièce ou constituer une pièce entière, voire être composée de
plusieurs pièces.
3.5
âge moyen de l’air de la zone
paramètre de ventilation décrivant la durée moyenne de séjour de l’air mesuré dans une zone, à l’intérieur
d’un bâtiment
NOTE Lorsque le mélange de l’air d’une zone est homogène, l’âge moyen de l’air de la zone est égal à l’âge local
moyen de l’air en tout point de la zone.
4 Principes des mesurages utilisant un gaz traceur pour déterminer les conditions
de ventilation
4.1 Principes généraux
Les techniques utilisant un gaz traceur pour mesurer la ventilation reposent sur la possibilité de différencier l’air
se trouvant déjà dans un espace donné et l’air entrant dans cet espace. Cela signifie que les techniques doivent
permettre soit de marquer l’air se trouvant déjà dans l’espace étudié et évaluer le débit de remplacement de
l’air existant par l’air entrant, soit de marquer l’air entrant et de mesurer la distribution de cet air de ventilation
au sein de cet espace.
Il convient de noter que l’air entrant dans une zone donnée, provenant de zones qui présentent des concentrations
en gaz traceur plus faibles ou plus élevées, est susceptible d’avoir une incidence sur le résultat du mesurage. Il est
par conséquent important de respecter les conditions limites spécifiées, qui varient suivant la méthode de mesurage.
Si les conditions de ventilation doivent être déterminées dans une zone qui n’est pas exposée à une entrée
d’air provenant d’autres parties du bâtiment (zone isolée), il n’est pas nécessaire d’injecter un gaz traceur ou
de marquer l’air des autres parties du bâtiment pour obtenir des résultats corrects. Toutefois, si un échange
d’air est possible entre la zone étudiée et les autres parties du bâtiment, ce qui est généralement le cas, des
procédures spéciales doivent être mises en œuvre pour l’injection du gaz traceur dans ces zones liées afin
d’éviter l’obtention de résultats ambigus. Il convient également de noter que la fermeture des portes d’une
pièce n’empêche pas totalement l’entrée de l’air provenant des autres parties du bâtiment. De tels moyens de
restreindre un flux d’air naturel modifient également la ventilation normale d’une pièce par rapport à celle qui
prévaudrait autrement.
2 © ISO 2007 – Tous droits réservés

4.2 Méthodes d’injection du gaz traceur
4.2.1 Généralités
La présente partie de l’ISO 16000 décrit les stratégies d’injection et de mesurage du gaz traceur dans les
espaces qui ne peuvent pas être considérés comme zone unique isolée. L’ISO 12569 présente les méthodes
de dilution du gaz traceur pour les espaces qui peuvent être qualifiés de zone unique. Si les conditions de
ventilation sont constantes tout au long du mesurage et si l’espace étudié peut être considéré comme une
zone unique isolée, les méthodes décrites dans la présente partie de l’ISO 16000 et dans l’ISO 12569 sont
théoriquement identiques. Dans de telles conditions, l’âge local moyen de l’air serait égal à l’inverse du taux de
renouvellement de l’air déterminé selon l’ISO 12569.
4.2.2 Méthode de décroissance
La méthode de décroissance consiste à marquer l’air du système ventilé à l’aide du gaz traceur et à déterminer
la vitesse à laquelle l’air marqué est remplacé par de l’air non marqué.
La zone à mesurer ainsi que toutes les autres zones du bâtiment avec lesquelles la zone étudiée peut avoir
des échanges d’air, directement ou indirectement, doivent être marquées à l’aide d’un gaz traceur de même
concentration initiale. Cette méthode permet d’éviter que l’air ventilé issu d’autres parties du bâtiment ne soit
considéré comme plus propre qu’il ne l’est en réalité, compte tenu de la puissance de ventilation réelle.
L’évolution de la concentration est enregistrée en fonction du temps. L’âge local moyen de l’air est obtenu en
calculant le quotient de l’intégrale de la concentration en fonction du temps sur la concentration initiale.
La méthode de décroissance peut généralement être utilisée, sans difficultés, jusqu’à un taux de renouvellement
−1
de l’air de n = 10 h .
4.2.3 Méthode d’émission homogène active
Dans le cas de la méthode d’émission homogène active, le gaz traceur est injecté dans les zones à un débit
constant mesuré via un dispositif d’injection à débit réglable approprié. Le débit d’injection doit être proportionnel
au volume de la zone. En régime permanent, la concentration moyenne du gaz traceur dans le local étudié
est mesurée à l’aide d’un analyseur de gaz. L’âge local moyen de l’air est obtenu en calculant le quotient de la
concentration de l’air ambiant à l’équilibre sur le débit d’injection par unité de volume.
La zone à mesurer ainsi que toutes les autres zones du bâtiment avec lesquelles la zone étudiée peut avoir
des échanges d’air, directement ou indirectement, doivent être dotées d’un dispositif d’émission homogène
du gaz traceur.
4.2.4 Méthode d’émission homogène passive
Dans le cas de la méthode d’émission homogène passive, le gaz traceur est émis à un débit constant connu
dans les zones à l’aide de sources de diffusion. Le débit d’émission doit être proportionnel au volume de la
zone. La concentration du gaz traceur à l’équilibre dans l’air ambiant est mesurée en prélevant un échantillon
intégrateur d’air sur un tube à adsorption (de manière active au moyen d’une pompe d’échantillonnage d’air ou
de manière passive par échantillonnage par diffusion) et en analysant ultérieurement cet échantillon dans un
laboratoire spécialisé équipé en conséquence. L’âge local moyen de l’air est obtenu en calculant le quotient de
la concentration de l’air ambiant à l’équilibre sur le débit d’émission par unité de volume.
La zone à mesurer ainsi que toutes les autres zones du bâtiment avec lesquelles la zone étudiée peut avoir
des échanges d’air, directement ou indirectement, doivent être dotées d’un dispositif d’émission homogène
du gaz traceur.
La mise en œuvre de cette méthode nécessite une analyse spéciale de l’échantillon prélevé dans le tube à
adsorption afin de déterminer la quantité de gaz traceur dans l’échantillon.
5 Programme de mesurage
5.1 Généralités
Préalablement au mesurage de l’âge local moyen de l’air d’un bâtiment, l’objectif du mesurage doit être
clairement défini. Il est essentiel de connaître le type de bâtiment et les spécificités de la partie du bâtiment
soumise à essai pour choisir la technique d’émission du gaz traceur et le détail du déroulement de l’essai.
Il convient de mesurer la vitesse de ventilation et les modèles de distribution de l’air à l’intérieur du bâtiment
dans des conditions représentatives des conditions étudiées. Il convient que ces conditions ne soient pas
perturbées par le mesurage, sauf si l’essai a pour objectif d’étudier différentes conditions (par exemple
l’ouverture d’une porte, d’une fenêtre, etc.).
La méthode d’émission homogène utilisant l’échantillonnage sur tubes à adsorption est particulièrement
adaptée à la détermination des conditions de ventilation dans le cadre d’études de la qualité de l’air. Suivant
le cas, il est possible de réaliser des mesurages à court terme (échantillonnage par pompage de quelques
litres d’air) ou à long terme (échantillonnage passif allant de plusieurs jours à plusieurs semaines). Lors de la
recherche de problèmes liés à la qualité de l’air intérieur, les mesurages de la ventilation accompagnent les
mesurages réalisés sur le polluant à proprement parler. L’un des avantages de cette méthode de mesure est la
possibilité de déterminer simultanément l’âge local moyen de l’air et la concentration en polluant.
Lors de la détermination du «renouvellement de l’air» («débit d’entrée» ou «taux de renouvellement de l’air»),
par exemple à l’aide des méthodes décrites dans l’ISO 12569, seul le débit total d’entrée dans le système
ventilé est pris en compte. Ces mesurages sont par conséquent limités aux bâtiments ou autres enceintes
pouvant être considérés comme une zone indépendante. Par conséquent, dans le cadre de ces méthodes, il
faut veiller à ce que le mélange de l’air soit distribué de manière homogène entre tous les espaces du système
ventilé pendant le mesurage.
5.2 Identification du système ventilé
Lors de la programmation de l’essai, le «système ventilé» auquel appartient l’espace étudié doit dans un
premier temps être identifié, car tous les espaces composant le système ventilé doivent être marqués à l’aide
du gaz traceur. À l’intérieur d’un bâtiment, le système ventilé est l’espace ayant la capacité d’échanger de l’air,
directement ou indirectement, avec l’espace soumis à essai. L’environnement immédiat du système ventilé
ne doit être exposé à aucune entrée d’air autre que l’air extérieur. Par conséquent, il convient qu’une partie
du bâtiment soit considérée comme un système ventilé seulement si elle n’est que faiblement exposée aux
entrées d’air provenant d’autres parties du bâtiment (par exemple via les portes, une fuite d’air ou les conduits
d’air de reprise). Il convient également que l’emplacement des sources de polluants soit pris en compte afin
d’éviter la confusion entre l’air contaminé et l’air extérieur. En pratique, cela signifie par exemple que:
— pour une maison, il convient d’inclure dans le système ventilé toutes les pièces, y compris la cave (sauf si
la porte de celle-ci est hermétique); et
— pour un appartement, il convient d’inclure dans le système ventilé toutes les pièces de l’appartement (et
dans certains cas, l’escalier).
5.3 Identification des zones
Une zone est un espace au sein du système ventilé dans lequel il est possible d’obtenir un mélange de
l’air suffisant pour assurer une concentration homogène de gaz traceur. Le système ventilé peut comporter
plusieurs espaces qui peuvent être considérés comme des zones. Il convient d’identifier toutes ces zones
et de mesurer leurs volumes respectifs. Il est nécessaire de connaître les volumes de zone pour calculer la
quantité de gaz traceur à injecter dans les différentes zones. Il n’est pas nécessaire d’injecter un gaz traceur
dans les petits espaces confinés qui contiennent uniquement de l’air d’extraction (par exemple une salle de
bain) ou qui ne sont pas alimentés en air extérieur (par exemple un placard). Il convient d’ajouter le volume des
petits espaces confinés susceptibles d’être alimentés en air extérieur au volume de toute zone rattachée. Les
grandes pièces et les longs couloirs peuvent être subdivisés en plusieurs zones.
4 © ISO 2007 – Tous droits réservés

5.4 Choix de la méthode de mesurage
5.4.1 Généralités
Le choix de la méthode de mesurage dépend du type et de la taille du bâtiment, du temps de mesurage prévu,
de l’objectif du mesurage et de la disponibilité des équipements et des moyens d’analyse.
5.4.2 Type de bâtiment
5.4.2.1 Bâtiments simples (par exemple les logements de petite taille à taille moyenne pouvant être
caractérisés avec une ou quatre zones)
Lorsque le nombre de zones est réduit, il est relativement facile d’obtenir une concentration initiale homogène
du gaz traceur dans l’ensemble du système ventilé. Pour les mesurages à court terme, la méthode de
décroissance est donc la mieux adaptée.
5.4.2.2 Bâtiments complexes (par exemple les immeubles de bureaux et autres structures dans
lesquelles le système ventilé comprend plusieurs zones)
Dans ce cas, il peut être très difficile d’obtenir les conditions nécessaires à la méthode de décroissance
dans le sens où il est difficile d’obtenir initialement une concentration homogène de gaz traceur dans toutes
les zones. La méthode d’émission homogène peut par conséquent s’avérer plus adaptée que la méthode de
décroissance.
5.4.3 Période de mesurage
5.4.3.1 Conditions à court terme
La méthode de décroissance est la méthode la plus pratique pour surveiller les conditions de ventilation à court
terme dans des bâtiments simples tandis que la méthode d’émission homogène passive avec échantillonnage
par pompage est particulièrement appropriée aux bâtiments complexes.
5.4.3.2 Variation à long terme
Même si une utilisation répétée de la méthode de décroissance est possible dans les bâtiments comportant
un nombre limité de zones, le choix le plus approprié pour un mesurage à long terme, quel que soit le type de
bâtiment, est la méthode d’émission homogène. L’objectif peut être de surveiller les variations des conditions
de ventilation dans le temps, par exemple afin d’évaluer l’effet des conditions météorologiques ou l’effet de
différentes méthodes de ventilation. Cela nécessite un échantillonnage actif de l’air et une surveillance continue
de la concentration en gaz traceur ou un échantillonnage répété à l’aide de seringues, de vessies, de tubes
sous vide ou de tubes de prélèvement par pompage. La méthode d’émission homogène active permet de
mesurer les conditions qui varient dans le temps dans des bâtiments simples, tandis que la méthode d’émission
homogène passive utilisant l’échantillonnage actif est particulièrement appropriée aux bâtiments complexes.
5.4.3.3 Conditions moyennes à long terme
L’objectif peut être de rechercher uniquement la moyenne temporelle des âges moyens de l’air dans les
différentes parties d’un bâtiment. L’avantage de cette méthode de surveillance est que les variations de la
ventilation à court terme sont atténuées et que le résultat est directement corrélé à l’exposition moyenne aux
contaminants (ou dose) générés à l’intérieur. La méthode la plus adaptée à la surveillance des conditions
moyennes est la méthode d’émission homogène passive utilisant l’échantillonnage passif ou par intégration au
moyen de pompes.
5.5 Détermination des points de mesure
Le nombre et la distribution appropriés des points de mesure sont déterminés en fonction des objectifs du
mesurage. L’échantillonnage de l’air n’est nécessaire que dans les zones où il s’agit de déterminer l’âge local
moyen de l’air. Si l’objet est de caractériser les modèles de distribution de la ventilation à l’intérieur du bâtiment,
il convient de réaliser les mesurages dans plusieurs zones, alors que l’échantillonnage dans une seule zone
ou dans quelques zones s’avère nécessaire pour obtenir des informations sur les conditions de ventilation
locales. L’échantillonnage doit être réalisé dans des emplacements considérés comme représentatifs des
zones. Il ne doit pas être réalisé à proximité des sources de gaz traceur (1 m de distance au minimum) ou d’un
terminal d’alimentation en air. Indépendamment de l’objectif du mesurage, il convient d’utiliser au minimum trois
points de mesure afin d’obtenir des informations sur la gamme de variation. Pour l’échantillonnage manuel,
il est préférable de prélever l’échantillon en différentes positions dans la zone. Lorsqu’il s’agit d’obtenir des
informations sur le débit de ventilation total ou l’efficacité de l’échange d’air dans le bâtiment (voir E.2), il
convient également de réaliser l’échantillonnage à proximité de points d’extraction de l’air identifiables.
6 Gaz traceurs et équipements permettant de déterminer les conditions de ventilation
6.1 Choix du gaz traceur
Outre la possibilité de réaliser des analyses à de faibles concentrations à l’aide d’appareils de mesure adéquats,
il est nécessaire que les gaz traceurs soient sans danger pour la santé et il convient qu’ils satisfassent à
d’autres exigences.
L’Annexe B (informative) fournit des informations sur le choix des gaz traceurs, fondées sur des pratiques acceptées.
6.2 Étalon de gaz traceur
Il convient d’utiliser le gaz traceur dans des limites de concentration sûres. Si la source est un gaz traceur
pur, éviter d’utiliser des volumes de gaz susceptibles de causer des accidents. Par exemple, une bouteille
pressurisée de gaz pur de grande capacité placée dans un local de dimensions réduites peut être à l’origine
de concentrations momentanément dangereuses. Éviter de créer des situations dans lesquelles la quantité de
gaz traceur susceptible d’être absorbée sur les surfaces et les enceintes adjacentes est importante.
Éviter l’utilisation de gaz traceurs radioactifs.
La quantité de gaz traceur requise dépend de la sensibilité de la méthode de détection, de la vitesse de
ventilation et de la taille des pièces.
6.3 Équipement d’alimentation en gaz traceur
6.3.1 Technique de décroissance
Dans le cadre de la technique de décroissance, l’objectif est d’obtenir une concentration uniforme en gaz
traceur dans tout le système ventilé.
L’appareil d’injection du gaz traceur doit être choisi parmi les appareils suivants:
— Seringue graduée, ou autre récipient de volume connu doté d’un dispositif doseur.
— Source d’alimentation comprimée, dotée d’un dispositif de mesure et de régulation du débit de gaz traceur.
La technique permettant d’obtenir une concentration initiale uniforme dans le système ventilé doit être choisie
parmi les techniques suivantes:
a) Ventilateurs permettant un bon mélange intra-zone et interzones.
b) Lignes d’injection assurant l’alimentation en gaz traceur via des manifolds ou des interrupteurs / contacteurs.
Toutes les parties des lignes d’injection doivent clairement porter la mention «gaz traceur uniquement» et
porter un code renvoyant à l’emplacement qui reçoit le gaz traceur.
c) Portes pivotantes. Après injection du gaz traceur dans toutes les zones, les portes interzones peuvent
être actionnées plusieurs fois afin de favoriser le mélange interzones.
6 © ISO 2007 – Tous droits réservés

Il convient de purger les lignes d’injection afin de permettre la distribution d’un volume connu de gaz traceur
souhaité dans une zone donnée.
Au début du mesurage à l’aide de la technique de décroissance, tout dispositif de mélange artificiel doit être
coupé et les portes remises dans l’état souhaité (ouvertes/fermées).
NOTE D’éventuelles fuites au niveau des lignes d’injection peuvent libérer du gaz traceur dans des emplacements
non souhaités, à des concentrations non contrôlées.
6.3.2 Technique d’émission homogène active
Dans le cadre de cette technique, l’objectif est d’obtenir un débit d’émission homogène du gaz traceur dans le
système ventilé. À cet effet, le débit d’injection constant du gaz traceur dans chaque zone du système ventilé
doit être proportionnel au volume de la zone. Par conséquent, les étapes suivantes sont nécessaires:
a) régulation du débit d’émission du gaz traceur dans chaque zone (À cet effet, il est possible de placer une
bouteille pressurisée dans la zone étudiée et de réguler le débit d’émission du gaz traceur par le biais d’un
régulateur de pression et d’un débitmètre ou d’utiliser des lignes d’injection reliant une source distante de
gaz traceur à la zone.);
b) lorsque les zones sont grandes, il peut s’avérer nécessaire d’homogénéiser le mélange à l’intérieur de
ces zones (À cet effet, il est possible d’utiliser un ou plusieurs ventilateurs ou d’injecter le gaz traceur en
plusieurs points de la zone.).
6.3.3 Technique d’émission homogène passive
Dans le cadre de cette technique, l’objectif est d’obtenir un débit d’émission homogène du gaz traceur dans le
système ventilé. Cela signifie que le débit d’injection constant du gaz traceur dans chaque zone du système
ventilé doit être proportionnel au volume de la zone. À cet effet, les étapes suivantes sont nécessaires:
a) injection du gaz traceur dans chaque zone à l’aide de sources de diffusion dont les débits d’émission sont
connus;
b) lorsque les zones sont grandes, une homogénéisation du mélange peut s’avérer nécessaire. (À cet effet, il
est possible d’utiliser un ou plusieurs ventilateurs. Pour les zones plus importantes, il peut être nécessaire
d’utiliser plusieurs flacons de diffusion dont les débits d’émission sont connus.).
Le fait que le débit d’émission du gaz traceur depuis les sources de diffusion soit fortement dépendant de la
température doit être pris en considération lors de la distribution passive des sources de gaz traceur. Il convient
également de consigner la température aux emplacements représentatifs pendant toute la période de mesurage.
6.4 Échantillonnage du gaz traceur
6.4.1 Méthodes d’échantillonnage
Les méthodes d’échantillonnage décrites ci-après sont appropriées pour les techniques de décroissance et
d’émission homogène, suivant la méthode d’analyse utilisée pour le gaz traceur.
Il convient de réaliser l’échantillonnage en des points représentatifs, c’est-à-dire éloignés des arrivées d’air et
des fenêtres.
6.4.2 Échantillonnage automatique continu
L’analyseur de gaz est généralement relié aux points de mesure par le biais d’un ou de plusieurs tubes de
prélèvement de gaz inerte par lesquels l’air est aspiré dans l’analyseur de gaz via une pompe. Lorsque
l’échantillonnage est réalisé en plusieurs emplacements, les points de mesure peuvent être choisis par le biais
de vannes à plusieurs orifices à commande automatique ou manuelle. Il est important de purger le tube de
prélèvement avec un nouvel échantillon juste avant l’introduction dans l’instrument d’analyse.
6.4.3 Prélèvement manuel
Dans le cadre des méthodes manuelles de prélèvement, un échantillon est d’abord prélevé à l’aide d’un
récipient approprié (seringue, vessie ou récipient sous vide). L’échantillon est ensuite analysé en laboratoire.
Les matériaux constitutifs des préleveurs manuels doivent être non absorbants, non réactifs et imperméables
au gaz traceur utilisé. Suivant le gaz traceur, la liste des matériaux appropriés peut inclure par exemple le
verre, le cuivre, l’acier inoxydable, le polypropylène, le polyéthylène et le polyamide.
Il convient d’être vigilant lors du prélèvement manuel d’échantillons dans les pièces dont la porte est normalement
fermée. Le fait d’ouvrir une porte et d’entrer dans la pièce peut introduire un important échange d’air indésirable
entre les deux zones concernées. Une méthode simple et couramment utilisée consiste à installer un tube de
la pièce étudiée dans la pièce adjacente par le trou de la serrure, de prélever un ou deux échantillons à l’aide
de la seringue afin de purger le tube et d’utiliser l’échantillon suivant pour l’analyse.
6.4.4 Préleveurs solides à adsorption
Dans le cadre de la méthode d’échantillonnage sur sorbant solide, l’air ambiant est aspiré (de manière continue
ou intermittente) jusqu’au gaz traceur via un sorbant solide adapté au gaz traceur utilisé pendant la période
d’échantillonnage. Après l’échantillonnage, qui doit être réalisé à l’aide d’une pompe d’échantillonnage étalonnée,
les préleveurs «chargés» sont désorbés (par thermodésorption ou extraction au solvant) afin de déterminer
la quantité du gaz traceur sorbée puis la concentration en gaz traceur de l’échantillon d’air. L’échantillonnage
par pompage sur tubes à adsorption solides est une méthode appropriée pour des périodes d’échantillonnage
continu de quelques heures et pour les périodes plus longues, pouvant aller jusqu’à plusieurs jours. Lorsque
l’échantillonnage est réalisé par pompage intermittent, il convient de veiller à réduire au minimum la diffusion
de l’air dans le sorbant entre les périodes de pompage, en utilisant par exemple un étranglement capillaire.
Pour l’échantillonnage à long terme, qui peut s’étendre sur une à plusieurs semaines, il est préférable d’utiliser
l’échantillonnage passif avec préleveurs solides à adsorption à diffusion passive. Le débit d’échantillonnage
des préleveurs passifs doit être soigneusement étalonné pour le type d’utilisation du gaz traceur.
Dans le cadre de la technique d’émission homogène, il convient que le prélèvement de l’échantillon soit toujours
réalisé à une distance minimale de 1 m du point d’injection du gaz traceur le plus proche.
6.5 Détermination de la concentration en gaz traceur
À partir du système de prélèvement continu de l’échantillon, le mélange gaz traceur/air soumis à essai est
transféré, directement ou par le biais des tubes d’échantillonnage, dans un analyseur de gaz conçu pour
déterminer sa teneur en gaz traceur. Les échantillons d’air prélevés manuellement et les tubes à sorbants
solides sont généralement analysés ultérieurement dans un laboratoire. Si l’échantillon est prélevé à l’aide de
sorbants solides, il est nécessaire de recourir à la thermodésorption ou à l’extraction au solvant pour introduire
l’échantillon de gaz traceur dans l’analyseur de gaz.
L’analyseur de gaz doit être adapté au mesurage à effectuer (volume de l’échantillon de gaz, période d’analyse,
sensibilités croisées), au gaz traceur utilisé et à la concentration en gaz traceur. Il convient que la précision de
l’analyseur de gaz soit connue.
Pour les gaz traceurs du Tableau B.1, les analyseurs de gaz infrarouge (IR)
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...