SIST ISO 18400-201:2018
Soil quality - Sampling - Part 201: Physical pretreatment in the field
Soil quality - Sampling - Part 201: Physical pretreatment in the field
ISO 18400-201:2017 specifies methods for the pretreatment of samples that can be applied "in the field" directly after sampling. Pretreatment methods in this document are limited to:
- sample division methods aimed at reducing the size/volume of the sample;
- the production of composite samples;
- the selection of a specific fraction of the sampled material.
ISO 18400-201:2017
- does not apply to samples required for biological or microbiological examination,
- does not apply to soil materials sampled for the content of volatile components, and
NOTE 1 These soil materials are intended to be sampled according to ISO 22155.
-? does not give instructions for particle size reduction.
NOTE 2 Guidance for particle size reduction is given in ISO 11464, ISO 14507 and ISO 23909.
Qualité du sol - Échantillonnage - Partie 201: Prétraitement physique sur le terrain
ISO 18400-201:2017 spécifie des méthodes pour le prétraitement d'échantillons pouvant être appliqué «sur le terrain» directement après l'échantillonnage. Les méthodes de prétraitement décrites dans le présent document se limitent:
- aux méthodes de division des échantillons dans le but d'en réduire la taille/le volume;
- à la production d'échantillons composites;
- au choix d'une fraction spécifique du matériau échantillonné.
ISO 18400-201:2017
- ne s'applique pas aux échantillons requis pour les examens biologiques et microbiologique,
- ne s'applique pas aux matériaux de sol prélevés pour déterminer la teneur en composés volatils, et
NOTE 1 Ces matériaux de sol sont destinés à être prélevés conformément à l'ISO 22155.
- ne donne pas d'instructions concernant la réduction granulométrique.
NOTE 2 Des lignes directrices sont données dans l'ISO 11464, l'ISO 14507 et l'ISO 23909.
Kakovost tal - Vzorčenje - 201. del: Fizikalna priprava vzorca na terenu
Ta dokument določa metode za predobdelavo vzorcev, ki se lahko opravi »na terenu«
takoj po vzorčenju. Metode za predobdelavo so v tem dokumentu omejene na:
– metode za razdelitev vzorcev, namenjene zmanjšanju velikosti/prostornine vzorca;
– pridobivanje kompozitnih vzorcev;
– izbiranje določene frakcije vzorčenega materiala.
Ta dokument:
– se ne uporablja za vzorce, potrebne za biološke ali mikrobiološke preiskave,
– se ne uporablja za zemeljske materiale, katerih vzorec je bil pridobljen zaradi ugotavljanja vsebnosti hlapljivih sestavin, in
OPOMBA 1: za vzorčenje navedenih zemeljskih materialov se uporablja standard ISO 22155.
– ne podaja navodil za zmanjševanje velikosti delcev.
OPOMBA 2: navodila za zmanjševanje velikosti delcev so podana v standardih ISO 11464, ISO 14507 in ISO 23909.
General Information
Standards Content (Sample)
SLOVENSKI STANDARD
01-julij-2018
.DNRYRVWWDO9]RUþHQMHGHO)L]LNDOQDSULSUDYDY]RUFDQDWHUHQX
Soil quality - Sampling - Part 201: Physical pretreatment in the field
Qualité du sol - Échantillonnage - Partie 201: Prétraitement physique sur le terrain
Ta slovenski standard je istoveten z: ISO 18400-201:2017
ICS:
13.080.05 Preiskava tal na splošno Examination of soils in
general
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
INTERNATIONAL ISO
STANDARD 18400-201
First edition
2017-01
Soil quality — Sampling —
Part 201:
Physical pretreatment in the field
Qualité du sol — Échantillonnage —
Partie 201: Prétraitement physique sur le terrain
Reference number
©
ISO 2017
© ISO 2017, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2017 – All rights reserved
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 2
4 Preliminary considerations . 3
5 Incorporation in the sampling plan . 5
6 General requirements . 5
7 Safety . 6
8 Homogenization . 7
9 Subsampling . 7
9.1 General . 7
9.2 Equipment for subsampling . 7
9.3 Minimum size of the subsample . 8
9.4 Procedure for macro-aggregate reduction by hand . 9
9.5 Subsampling methods . 9
9.5.1 General. 9
9.5.2 Long pile and alternate shovel method .10
9.5.3 Coning and quartering .11
9.5.4 Riffling .12
9.5.5 Application of Tyler divider .12
9.5.6 Application of mechanized turntable (rotating divider) .13
9.6 Selective subsampling based on the particle size .13
9.6.1 General.13
9.6.2 Sieving .14
9.6.3 Hand picking .14
10 Forming composite samples .15
10.1 General .15
10.2 Minimum size of increments or subsamples .16
10.3 Production of composite samples .16
10.3.1 Composite sample based on incremental sampling .16
10.3.2 Composite sample based on parts of individual samples .16
11 Packaging and storage .16
12 Reporting .16
Annex A (informative) Illustrations of apparatus .18
Bibliography .21
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment,
as well as information about ISO’s adherence to the World Trade Organization (WTO) principles in the
Technical Barriers to Trade (TBT) see the following URL: www . i so .org/ iso/ foreword .html
This document was prepared by Technical Committee ISO/TC 190, Soil Quality, Subcommittee SC 2,
Sampling.
A list of all parts in the ISO 18400 series can be found on the ISO website.
iv © ISO 2017 – All rights reserved
Introduction
Pretreatment of samples is usually required before they are tested to determine chemical or other
properties, although there are some situations when any pretreatment would be unacceptable because
it would affect the results.
Sample pretreatment is to preferably take place in the laboratory, as sample integrity can be best
controlled under laboratory conditions. However, under some circumstances, pretreatment may be
started in the field directly after sampling, to obtain a representative laboratory sample from the
material extracted from the ground, or to prepare a composite laboratory sample.
The representativeness of a sample depends on factors like sample size, particle size, particle
shape, contaminant type and concentration, consistence of soil materials and sampling strategy
1)
(see ISO 18400-104 ).
When volatiles are present, the procedures described in ISO 22155 are to be used as appropriate if
possible. No further pretreatment is allowed. Other specified pretreatment methods will result in a
significant loss of volatiles.
Pretreatment comprises one or a combination of the following:
— homogenization;
— sample division: obtaining subsamples of smaller size than the original sample without reducing
the particle size of the individual particles;
— particle size reduction: grinding and crushing the sample in order to reduce the particle size of the
sample without reducing the sample size (mass);
— separation of fractions on the basis of particle sizes (sieving or screening) if only a separate size
fraction of soil is of interest for investigation or on the basis of the physical nature of the materials
(e.g. appearance);
— preparation of composite sample(s).
Several cycles of a number of these activities could be required to derive the test sample (e.g. analytical
sample) from the material extracted from the ground. Except as noted above when pretreatment would
affect the results of subsequent testing or analysis, subsampling is normally required in the laboratory
because the amount of material in the laboratory sample (i.e. that sent from the field to the laboratory)
is almost always larger than the amount of material necessary for the test or analysis.
There might be occasions when it is considered desirable to combine soil material in the field from, for
example different locations into a composite sample. A suitable procedure for doing this is described in
this document.
For reasons explained in Clause 4, only some of the pretreatment measures listed above can be carried
out in the field.
This document is part of a series of sampling standards for soil. The role/position of the International
Standards within the total investigation programme is shown in Figure 1.
NOTE This document is intended to complement ISO 23909 and ISO 22155.
1) Under preparation.
Figure 1 — Links between the essential elements of an investigation programme
NOTE 1 Numbers in circles define the key elements and steps of the investigation programme.
NOTE 2 Figure 1 displays a generic process which can be amended when necessary.
vi © ISO 2017 – All rights reserved
INTERNATIONAL STANDARD ISO 18400-201:2017(E)
Soil quality — Sampling —
Part 201:
Physical pretreatment in the field
1 Scope
This document specifies methods for the pretreatment of samples that can be applied “in the field”
directly after sampling. Pretreatment methods in this document are limited to:
— sample division methods aimed at reducing the size/volume of the sample;
— the production of composite samples;
— the selection of a specific fraction of the sampled material.
This document
— does not apply to samples required for biological or microbiological examination,
— does not apply to soil materials sampled for the content of volatile components, and
NOTE 1 These soil materials are intended to be sampled according to ISO 22155.
— does not give instructions for particle size reduction.
NOTE 2 Guidance for particle size reduction is given in ISO 11464, ISO 14507 and ISO 23909.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 565, Test sieves — Metal wire cloth, perforated metal plate and electroformed sheet — Nominal sizes
of openings
ISO 11074, Soil quality — Vocabulary
ISO 18400-101:2017, Soil quality — Sampling — Framework for the preparation and application of a
sampling plan
2)
ISO 18400-104 , Soil quality — Sampling — Strategies
ISO 18400-105, Soil quality — Sampling — Packaging, transport, storage and preservation of samples
ISO 18400-107, Soil quality — Sampling — Recording and reporting
ISO 22155, Soil quality — Gas chromatographic determination of volatile aromatic and halogenated
hydrocarbons and selected ethers — Static headspace method
DIN 19747, Investigation of solids — Pre-treatment, preparation and processing of samples for chemical,
biological and physical investigations
2) Under preparation. Stage at the time of publication: ISO/DIS 18400-104:2016.
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 11074 apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— IEC Electropedia: available at http:// www .electropedia .org/
— ISO Online browsing platform: available at http:// www .iso .org/ obp
3.1
analytical sample
portion of material, resulting from the original sample or composite sample by means of an appropriate
method of sample pretreatment and having the size (volume/mass) necessary for the desired testing or
analysis
[SOURCE: ISO 11074:2015, 4.1.3]
3.2
laboratory sample
sample intended for laboratory inspection or testing
Note 1 to entry: When the laboratory sample is further prepared (reduced) by subdividing, mixing, grinding, or
by combinations of these operations, the result is the test sample. When no preparation of the laboratory sample
is required, the laboratory sample is the test sample. A test portion is removed from the test sample for the
performance of the test or for analysis.
Note 2 to entry: The laboratory sample is the final sample from the point of view of sample collection but it is the
initial sample from the point of view of the laboratory.
Note 3 to entry: Several laboratory samples can be prepared and sent to different laboratories or to the same
laboratory for different purposes.
[SOURCE: ISO 11074:2015, 4.3.7]
3.3
sample division
(bulk material) activity in sample preparation whereby a sample of bulk material is divided by such
means as riffling, mechanical division, or quartering into separate parts, one or more of which is
retained
[SOURCE: ISO 3534-2:2006, 5.3.8]
3.4
subsample
selected part of a sample
Note 1 to entry: The subsample can be selected by the same method as was used in selecting the original sample,
but need not be so.
[SOURCE: ISO 3534-2:2006, 1.2.19]
3.5
selective subsampling
separation of part of a sample on the basis of grading (i.e. above or below a defined particle size),
appearance or some other attribute
2 © ISO 2017 – All rights reserved
3.6
volatile organic compound
VOC
organic compound that is a gas under normal environmental/atmospheric conditions, although it can
be found in the ground in the solid, liquid and dissolved phase form as well as in the gaseous phase
Note 1 to entry: The US Environmental Protection Agency uses a variety of definitions for VOCs in different
contexts but the one most appropriate here is “an organic compound which has a boiling point below that of
water and which can easily vaporize or volatilize”.
Note 2 to entry: Examples include single-ring aromatic hydrocarbons and other low boiling halogenated
hydrocarbons, which are used as solvents or fuels, and some degradation products.
4 Preliminary considerations
The intention when sampling in the field is almost always to obtain a sufficiently representative sample
of the desired size that can be placed directly in a container for transport to the laboratory. However,
under some circumstances, as described in this document, some pretreatment can be done in the field
to reduce the size of a large field sample to a more manageable size for sending to the laboratory or to
select a particular fraction to form the laboratory sample.
The direct selection of the material to form the laboratory sample from the material extracted from the
ground when this forms an integral part of the sampling process is described in ISO 18400-102 on the
selection and application of sampling techniques.
When the laboratory sample is received, pretreatment is usually required before testing to determine
chemical or other properties, although there are some situations when any pretreatment would be
unacceptable because it would affect the results (e.g. when volatile organic compounds are present).
Pretreatment is normally required in the laboratory because the amount of material in the laboratory
sample (i.e. that sent from the field to the laboratory) is almost always larger than the amount of
material necessary for the test or analysis.
Pretreatment comprises one or a combination of the following:
— homogenization;
— preparation of a composite sample;
— sample division: obtaining subsamples of smaller size than the original sample without reducing
the particle size of the individual particles;
— particle size reduction: grinding and crushing the sample in order to reduce the particle size of the
sample without reducing the sample size (mass);
— selection of a fraction of a sample on the basis of particle sizes, appearance, or other physical
characteristic.
Several cycles of a number of these activities could be required to derive the test sample (e.g. analytical
sample) from the laboratory sample.
The International Standards on pretreatment (ISO 11464, ISO 14507 and ISO 16720) describe laboratory
procedures for mixing (homogenization), dividing and particle size reduction, in order to provide a
representative sample (e.g. analytical sample) assuming a laboratory sample (i.e. the material received
in the laboratory for inspection or testing) of approximately 1 kg. When the sample received at the
laboratory is larger than about 1 kg, the size of the sample can be reduced following the procedures
described in ISO 23909 (this assumes a sample of about 25 kg is to be reduced in size but the procedures
described are applicable to much larger samples).
ISO 11464, ISO 14507, ISO 16720 and ISO 23909 shall only be used for pretreatment of materials within
their respective scopes and having regard to the need to preserve sample integrity. Inappropriate use
of these International Standards, including ISO 14507, will result in unacceptable loss of volatile organic
compounds (VOCs) (3.6) and other volatiles.
When volatiles are present, the procedures described in DIN 19747 and ISO 22155 shall be used as
appropriate.
NOTE DIN 19747 covers chemical, physical and biological investigations.
Uncertainty about whether a compound should be regarded as volatile or not should trigger a specific
quality scheme to ensure that sample preparation does not introduce bias, cross contamination or other
forms of unacceptable errors. Guidance on quality control is given in ISO 18400-106.
Sample pretreatment should preferably take place in the laboratory, as sample integrity can be best
controlled under laboratory conditions. Among other things, the laboratory should have a range of
equipment available that can be selected on the basis of the size and nature of the sample to be processed.
However, under some circumstances, pretreatment of the material extracted from the ground may be
started in the field directly after sampling. For example, the size of sampling equipment might be such
that more soil material is extracted from the ground than needed. Sample pretreatment “in the field” is
then necessary in order to limit the amount of material to be transported to the laboratory.
The procedures described can be used in the field to limit the amount of material to be transported to
the laboratory. They can be used to produce a laboratory sample of about 1 kg (or larger if required)
which can then be subjected as appropriate to the pretreatment procedures described in ISO 11464,
ISO 14507, ISO 16720 or DIN 19747 or produce a larger sample that can then be subjected in the
laboratory to the procedures described in ISO 23909 to further reduce the size of the sample.
Size reduction, other than the manual crushing of clods and/or macro-aggregates as described
in 9.4, is seldom practical in the field because it requires powered equipment and appropriate
laboratory conditions. Particle size reduction involves a substantial risk of (cross) contamination,
loss of components and loss of soil material. These risks can be properly controlled under laboratory
conditions. Particle size reduction should therefore only be carried out under laboratory conditions.
Effective homogenization can be difficult in the field because it often requires powered equipment
and appropriate laboratory conditions, but can be done provided proper care and equipment is used
(see Clause 8).
Depending on the objective of the investigation programme, it might be that there is only an interest
in part of the soil or soil-like material. For example when “non-soil materials” are present (e.g. bricks,
stones). This might imply that it is desirable to obtain only a specific size fraction of the material, either
through removing the large elements from the sample, or, the other way around, through specifically
selecting the larger parts that are of interest. Sometimes both fractions could be of interest.
Selective subsampling of materials of a particular grading (e.g. below a defined particle size) could be
possible in the field if the material sampled is suitably dry (see 9.6). Sieving or screening is regularly
practised in horticulture and when old mineral waste deposits are being processed on a small-scale to
recover previously discarded materials of value. However, it might not be desirable in a particular case
as it will usually be necessary to record the type and amount of both over-sized particles and under-
sized particles to provide a full characterization of the material being sampled, and it could be difficult
to avoid losses, especially fine materials, while processing the sample. Such processes are best carried
out under laboratory conditions where a range of manual and powered equipment should be available.
As described in this standard (see 9.6.3), a fraction of the field sample may also be formed in the field
(or the laboratory) by “hand-picking” of material from the bulk sample on the basis of particle size,
appearance (e.g. colour), or nature (e.g. wood fragments, coal, organic/vegetable material, asbestos
cement materials). As for sieving, the mass of the material removed should be weighed and recorded as
should the mass of the bulk sample from which it is removed.
The preparation of composite samples is usually an integral part of the sampling process (see
ISO 18400-102), e.g. in cluster sampling numerous small incremental samples roughly equal in size
taken from a small area are placed in the sample container to form the laboratory sample which is then
homogenized in the laboratory as part of the pretreatment process.
4 © ISO 2017 – All rights reserved
In spatial (i.e. area-wide) composite sampling, incremental samples roughly equal in size taken on a
defined sampling pattern across the area of interest (e.g. a field) are placed in the (largish) sample
container to form the laboratory sample which is then homogenized and subsampled in the laboratory
as part of the pretreatment process.
However, there could be occasions when it is considered desirable to combine soil material in the field
from, for example, different locations, into a composite sample. A suitable procedure for doing this is
described in this standard (see Clause 8).
5 Incorporation in the sampling plan
The pretreatment method(s) to be used in the field (if pretreatment is necessary) and the necessary
equipment shall be prescribed in the sampling plan according to ISO 18400-101.
When the circumstances in the field deviate too much from the assumed situation in the sampling plan,
the requirements concerning pretreatment in the plan should be changed. In general, minor changes
that have no effects on the test results may be made in the field by the sampler. If effects on the test
results are to be expected or when in doubt, the sampler shall consult the project manager. This includes
seeking advice on how to proceed if circumstances in the field or weather conditions deviate too much
from the assumed situation in the sampling plan.
The project manager should always be consulted (see Note 1), when
— there is a change in the necessity for pretreatment,
— there is a change in the practicality of pretreatment.
Any changes made to the sampling plan should, like the original requirements in the plan, be in
conformance with this document. The guidance in ISO 18400-101:2017, Clause 6 on the procedure when
changes to the sampling plan are needed during sampling should be followed.
NOTE 1 ISO 18400-101:2017, Clause 6 distinguishes between changes that will not affect the achievement
of the objective of the investigation and those which might affect the achievement of the objective of the
investigation.
NOTE 2 The necessity of pretreatment might change for example when pretreatment was not planned, but
appears to be necessary in light of the coarse soil material to be sampled (the particle size distribution of the soil
material was not adequately identified by the project manager when defining the sampling plan).
NOTE 3 The practicality of pretreatment might change for example due the absence of a clean and unused
surface at the sampling site or due to weather conditions that do not allow sample pretreatment of sufficient
quality.
NOTE 4 As the potential effect of changes in the sample pretreatment will depend on the nature of the
necessary changes, the specific sampling situation and the test to be performed, no further guidance to these
changes is provided in this document.
6 General requirements
There are potential disadvantages in carrying out pretreatment in the field (see Note 1). Before deciding
to do this, the sampling plan should be reviewed to determine whether the necessity to do so can be
avoided by changing the sampling techniques to be employed, e.g. to select techniques that will provide
samples suitable in size for direct transport to the laboratory without pretreatment.
Whatever sample pretreatment is carried out, the defined objectives of the sampling exercise and the
need for samples to be “representative” to avoid bias (or to acknowledge unavoidable or designed bias)
should govern what is done.
When it is considered that pretreatment in the field is unavoidable, consideration should be given to
the establishment of a temporary on-site pretreatment laboratory. This may be a specially constructed
facility or an area within in an existing building adapted for the purpose.
When establishment of a full on-site laboratory is not practical, provision of at least temporary
protection from the weather should be considered (e.g. a canopy over the treatment area).
NOTE 1 Sample pretreatment, either being sample division or the preparation of a composite sample, can
result in significant changes in the composition of the soil material when no or inadequate precautions are taken.
The risk of significant changes depends on the components or characteristics to be tested, the nature of the
soil material, the pretreatment method selected and the (weather) conditions under which the pretreatment is
performed (see also Note 3).
NOTE 2 An on-site pretreatment facility can provide reasonably controlled conditions free of the vagaries
of the weather that can be kept properly clean and, if necessary, provided with powered equipment in a safe
environment.
As field conditions are rarely comparable to laboratory conditions, the types of sample pretreatment
that should be carried out in the field are limited to sample division and the production of composite
samples and/or the selective subsampling of a specific part of the sampled material that is of interest.
Only when laboratory conditions are available on site (there is a sample pretreatment laboratory/facility
present) can the full range of sample pretreatment activities—thus also including particle size
reduction—be carried out directly after sampling.
Integrity of the soil material should always be ensured. Therefore a method, time and place for sample
pretreatment should be chosen that causes the minimum possible risk of changes in the characteristics
of the soil material.
When the aim of the sample pretreatment is to perform selective subsampling, the composition of
the soil material will obviously change, however, care should be taken to ensure that only the desired
changes occur.
Suitable methods for subsampling might be limited by the requirements set by the components to be
analysed or the test to be performed. Expert advice should be sought from the laboratory.
NOTE 3 Some examples of problems that might arise are:
— loss of moisture;
— loss of volatile components;
— aggregate formation of soil material while subsampling due to its moisture content;
— oxidation of newly exposed material following crushing of soil macro-aggregates, etc.;
— soil material sticking to the equipment (e.g. clay);
— loss of fine particles due to air entrainment;
— addition of water due to rain;
— loss of fine particles due to heavy rain;
— presence of oily materials that might adhere selectively to sheeting and tools;
— separation of components including mineral oils due to density differences or other differences in physical
characteristics;
— biodegradation of organic materials and substances.
7 Safety
Pretreatment in the field should be carried out in accordance with the guidance on safety in
ISO 18400-103 and with regard to any other relevant factors.
6 © ISO 2017 – All rights reserved
8 Homogenization
Effective homogenization can be difficult in the field because it often requires powered equipment and
appropriate laboratory conditions, but can be done provided proper care and equipment is used. The
chances of success depend on a variety of factors including in particular on the heterogeneity of the soil
and the property of interest (e.g. how a contaminant is distributed within and on particles).
The procedures described in 9.5 are all intended to ensure as far as practical that the subsample is
sufficiently representative of the larger field sample that is to be reduced in size for the purposes of
the investigation. For example, the first steps in the long pile and alternate shovel method (9.5.2) are
intended to homogenize the sample.
Mixing to obtain bulk sample homogeneity can be achieved by passing and merging the sample three,
four or more times through a mechanical sample splitter (e.g. riffle box, Tyler divider or rotating
[18]
divider).
9 Subsampling
9.1 General
The characteristics of the soil material to be subsampled should be checked against the methods
described in the sampling plan to see whether the prescribed methods are appropriate. The maximum
size of the particles is important, as is the moisture content. The latter is related to the inclination
to macro-aggregate formation and cohesive behaviour. If the prescribed methods are not considered
appropriate, the sampling plan should be amended in accordance with Clause 5.
In the case of very coarse soils, it can be necessary to reduce the particle size of the larger particles
in the field in order to be able to send a representative sample of an acceptable size to the laboratory.
When grinding or crushing “in the field” is truly necessary, measures have to be taken in order to
prevent contamination and/or loss of both components and soil material. Particle sizes in the sampled
material should therefore only be reduced as little as possible, just allowing the laboratory sample to be
of acceptable size.
Everything put into the size reduction process should be reduced in size to pass a predetermined sieve
to avoid selectivity.
The location for subsampling should be chosen carefully and made fit for use, by ensuring a fully
flat surface, cleaning it of all materials that could influence the integrity of the (sub)sample(s) and
by covering with an appropriate material (see below). When all preparations are ready, the sample
pretreatment should be carried out using the prescribed method(s).
Heavy duty plastic sheeting will be suitable in many situations when the work is undertaken using
manual means but will not withstand trafficking, etc. by mechanical equipment. When this is to be
used, canvas, wood, or metal sheeting should be used.
9.2 Equipment for subsampling
All materials and equipment that come in contact with the (sub)sample(s) should be such that they will
not contaminate the (sub)sample(s).
Prior to subsampling, the apparatus and tools used shall be cleaned in order to prevent cross-
contamination. This means that they should be cleaned between processing different samples. The
protective covering to the working area should be cleaned or replaced between processing different
samples.
For subsampling, one or more of the following apparatus, as identified in the sampling plan, is required:
— large heavy-duty plastic sheeting or other protective covering such as wood or metal sheeting
(see 9.1);
— stainless steel spade or shovel;
— mechanical shovel;
— tools for reducing the particle size (e.g. sledge hammer);
— riffle box;
— tools for subsampling (e.g. cross divider, Tyler divider);
— mechanized turntable/rotating dividers.
All equipment used shall comply with relevant International Standards (e.g. ISO 565 for sieves).
NOTE 1 For a description of the equipment used in this document, see ISO 11464.
NOTE 2 A Tyler divider is a device that cuts a representative 1/16th from feed material by systematically
rejecting segments of material flowing down an adjustable 45° or 60° incline (see Figure A.1). It can be used
“batch-wise” or with a continuous feed.
9.3 Minimum size of the subsample
Decisions about the size of subsample required should be based on the guidance provided in
ISO 18400-104. This states that a number of factors govern the size of the subsample to be sent to off-
site laboratories (i.e. the laboratory sample) including:
— the range of pedological, chemical, physical and or biological examinations and tests that are to be
carried out;
— the specific requirements of the laboratory/laboratories carrying out the examinations and tests; and
— the need for samples to be sufficiently representative, taking into account the particle size
distribution and the concentration distribution of the material to be sampled;
with larger samples than required for the testing suite envisaged usually being taken, in case additional
analysis or tests are decided on, in response to site observations and initial results.
The first two of the above points will usually be defined by following an established procedure and/or
discussion with the laboratory/laboratories.
As discussed in ISO 18400-104, the relationship between particle size distribution and the size of
sample or increment required to obtain reliable analytical results for a granular material in which
the properties of interest are inherent within the particles is amenable to theoretical determination.
However, this is not possible when dealing with an inherently complex material such as soil which
might contain solid particles of several types, water, biota, contaminants adhering to particles and
even non-aqueous phases. In these more complex, cases the person designing the sampling exercise
should, in consultation with the laboratory undertaking the planned testing, make a judgement about
the minimum sample size required. A minimum sample size of 500 g to 1 000 g often will be required.
However it should be noted that such a specification will usually be based on assumptions about the
character of the material to be sampled. The sampler should adjust the sample size to take account of
observations in the field (or the results of an earlier Exploratory Investigation, including information
about excessive sampling uncertainty).
NOTE The guidance provided in DIN 18123 regarding the relationship between minimum sample size
and maximum particle size might help when making a decision about the size of sample required. When the
sample contains macro-aggregates, the maximum size of the macro-aggregates determines the minimum size of
the subsamples whenever the macro-aggregates behave like individual particles during subsampling, i.e. when
macro-aggregates are not cut into pieces by the subsampling equipment used (see 9.4 for macro-aggregate size
reduction).
8 © ISO 2017 – All rights reserved
Table 1 — Minimum sample size and maximum particle size
DIN 18123
Maximum particle size Minimum sample size
mm g
10 700
20 2 000
30 4 000
9.4 Procedure for macro-aggregate reduction by hand
Soil macro-aggregates should be regarded as individual “particles” when the method of sampling and
sample pretreatment is not able to sample part of a macro-aggregate.
NOTE When subsampling under field conditions, macro-aggregates behave as individual particles for
instance when a riffle box is used for dividing a moist or clay-like soil. As the particle size is one determinant of
the minimum size of laboratory sample required, it will be preferable to reduce the size of macro-aggregates if
possible during or prior to subsampling so as to reduce the size of laboratory sample required.
As reduction of macro-aggregates by hand will result in a relatively long and intense contact of the sample
with air, this method should only be applied when sample integrity is not influenced during this period.
Macroaggregates should be reduced in size in accordance with the following procedure:
— identify an area of hard surface sheltered from the effects of wind and rain, preferably flat and large
enough to allow ease of access around the whole sample when spread evenly on the surface;
— place a clean protective floor covering to protect the sample from contamination by the surface and
loss of material (9.1 and 9.2);
— place the sample on the protective covering sheeting and spread evenly to identify all macro-
aggregates within the sample;
— use the base of a spade or the head on a sledge hammer (see 9.2) gently to reduce the size of the
macro-aggregates until all oversized material is less than or equal to the required particle size.
If available, suitable machinery may also be used.
9.5 Subsampling methods
9.5.1 General
When subsampling in the field, where materials are likely to be moist and to behave cohesively, sample
division by manual means is preferable (mechanical division is often impossible or will result in biased
subsamples).
Drying before sample reduction may be carried out if this does not influence the sample integrity (e.g.
due to volatilization, biodegradation).
NOTE Subsampling can be performed either mechanically or manually. However, this is only true when the
material is dry and particles can move in a stream of particles on an individual basis. When this is the case,
i.e. the materials are dry and free flowing, it is preferable to use a mechanical system since this will result in
more representative subsamples. If the particles in the sample behave cohesively, mechanical division is often
impossible due to cohesion of soil in the system and subsequent blockage of the divider. And even when the
mechanical division is still possible, mechanical subsampling devices will probably function incorrectly, and
therefore will result in biased subsamples.
If the material is suitably dry, determine the minimum size of the subsample(s) required according
3)
to 9.3 and ISO 18400-104 . When the minimum size of the subsamples is larger than desired and the
maximum particle size is relat
...
INTERNATIONAL ISO
STANDARD 18400-201
First edition
2017-01
Soil quality — Sampling —
Part 201:
Physical pretreatment in the field
Qualité du sol — Échantillonnage —
Partie 201: Prétraitement physique sur le terrain
Reference number
©
ISO 2017
© ISO 2017, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2017 – All rights reserved
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 2
4 Preliminary considerations . 3
5 Incorporation in the sampling plan . 5
6 General requirements . 5
7 Safety . 6
8 Homogenization . 7
9 Subsampling . 7
9.1 General . 7
9.2 Equipment for subsampling . 7
9.3 Minimum size of the subsample . 8
9.4 Procedure for macro-aggregate reduction by hand . 9
9.5 Subsampling methods . 9
9.5.1 General. 9
9.5.2 Long pile and alternate shovel method .10
9.5.3 Coning and quartering .11
9.5.4 Riffling .12
9.5.5 Application of Tyler divider .12
9.5.6 Application of mechanized turntable (rotating divider) .13
9.6 Selective subsampling based on the particle size .13
9.6.1 General.13
9.6.2 Sieving .14
9.6.3 Hand picking .14
10 Forming composite samples .15
10.1 General .15
10.2 Minimum size of increments or subsamples .16
10.3 Production of composite samples .16
10.3.1 Composite sample based on incremental sampling .16
10.3.2 Composite sample based on parts of individual samples .16
11 Packaging and storage .16
12 Reporting .16
Annex A (informative) Illustrations of apparatus .18
Bibliography .21
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment,
as well as information about ISO’s adherence to the World Trade Organization (WTO) principles in the
Technical Barriers to Trade (TBT) see the following URL: www . i so .org/ iso/ foreword .html
This document was prepared by Technical Committee ISO/TC 190, Soil Quality, Subcommittee SC 2,
Sampling.
A list of all parts in the ISO 18400 series can be found on the ISO website.
iv © ISO 2017 – All rights reserved
Introduction
Pretreatment of samples is usually required before they are tested to determine chemical or other
properties, although there are some situations when any pretreatment would be unacceptable because
it would affect the results.
Sample pretreatment is to preferably take place in the laboratory, as sample integrity can be best
controlled under laboratory conditions. However, under some circumstances, pretreatment may be
started in the field directly after sampling, to obtain a representative laboratory sample from the
material extracted from the ground, or to prepare a composite laboratory sample.
The representativeness of a sample depends on factors like sample size, particle size, particle
shape, contaminant type and concentration, consistence of soil materials and sampling strategy
1)
(see ISO 18400-104 ).
When volatiles are present, the procedures described in ISO 22155 are to be used as appropriate if
possible. No further pretreatment is allowed. Other specified pretreatment methods will result in a
significant loss of volatiles.
Pretreatment comprises one or a combination of the following:
— homogenization;
— sample division: obtaining subsamples of smaller size than the original sample without reducing
the particle size of the individual particles;
— particle size reduction: grinding and crushing the sample in order to reduce the particle size of the
sample without reducing the sample size (mass);
— separation of fractions on the basis of particle sizes (sieving or screening) if only a separate size
fraction of soil is of interest for investigation or on the basis of the physical nature of the materials
(e.g. appearance);
— preparation of composite sample(s).
Several cycles of a number of these activities could be required to derive the test sample (e.g. analytical
sample) from the material extracted from the ground. Except as noted above when pretreatment would
affect the results of subsequent testing or analysis, subsampling is normally required in the laboratory
because the amount of material in the laboratory sample (i.e. that sent from the field to the laboratory)
is almost always larger than the amount of material necessary for the test or analysis.
There might be occasions when it is considered desirable to combine soil material in the field from, for
example different locations into a composite sample. A suitable procedure for doing this is described in
this document.
For reasons explained in Clause 4, only some of the pretreatment measures listed above can be carried
out in the field.
This document is part of a series of sampling standards for soil. The role/position of the International
Standards within the total investigation programme is shown in Figure 1.
NOTE This document is intended to complement ISO 23909 and ISO 22155.
1) Under preparation.
Figure 1 — Links between the essential elements of an investigation programme
NOTE 1 Numbers in circles define the key elements and steps of the investigation programme.
NOTE 2 Figure 1 displays a generic process which can be amended when necessary.
vi © ISO 2017 – All rights reserved
INTERNATIONAL STANDARD ISO 18400-201:2017(E)
Soil quality — Sampling —
Part 201:
Physical pretreatment in the field
1 Scope
This document specifies methods for the pretreatment of samples that can be applied “in the field”
directly after sampling. Pretreatment methods in this document are limited to:
— sample division methods aimed at reducing the size/volume of the sample;
— the production of composite samples;
— the selection of a specific fraction of the sampled material.
This document
— does not apply to samples required for biological or microbiological examination,
— does not apply to soil materials sampled for the content of volatile components, and
NOTE 1 These soil materials are intended to be sampled according to ISO 22155.
— does not give instructions for particle size reduction.
NOTE 2 Guidance for particle size reduction is given in ISO 11464, ISO 14507 and ISO 23909.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 565, Test sieves — Metal wire cloth, perforated metal plate and electroformed sheet — Nominal sizes
of openings
ISO 11074, Soil quality — Vocabulary
ISO 18400-101:2017, Soil quality — Sampling — Framework for the preparation and application of a
sampling plan
2)
ISO 18400-104 , Soil quality — Sampling — Strategies
ISO 18400-105, Soil quality — Sampling — Packaging, transport, storage and preservation of samples
ISO 18400-107, Soil quality — Sampling — Recording and reporting
ISO 22155, Soil quality — Gas chromatographic determination of volatile aromatic and halogenated
hydrocarbons and selected ethers — Static headspace method
DIN 19747, Investigation of solids — Pre-treatment, preparation and processing of samples for chemical,
biological and physical investigations
2) Under preparation. Stage at the time of publication: ISO/DIS 18400-104:2016.
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 11074 apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— IEC Electropedia: available at http:// www .electropedia .org/
— ISO Online browsing platform: available at http:// www .iso .org/ obp
3.1
analytical sample
portion of material, resulting from the original sample or composite sample by means of an appropriate
method of sample pretreatment and having the size (volume/mass) necessary for the desired testing or
analysis
[SOURCE: ISO 11074:2015, 4.1.3]
3.2
laboratory sample
sample intended for laboratory inspection or testing
Note 1 to entry: When the laboratory sample is further prepared (reduced) by subdividing, mixing, grinding, or
by combinations of these operations, the result is the test sample. When no preparation of the laboratory sample
is required, the laboratory sample is the test sample. A test portion is removed from the test sample for the
performance of the test or for analysis.
Note 2 to entry: The laboratory sample is the final sample from the point of view of sample collection but it is the
initial sample from the point of view of the laboratory.
Note 3 to entry: Several laboratory samples can be prepared and sent to different laboratories or to the same
laboratory for different purposes.
[SOURCE: ISO 11074:2015, 4.3.7]
3.3
sample division
(bulk material) activity in sample preparation whereby a sample of bulk material is divided by such
means as riffling, mechanical division, or quartering into separate parts, one or more of which is
retained
[SOURCE: ISO 3534-2:2006, 5.3.8]
3.4
subsample
selected part of a sample
Note 1 to entry: The subsample can be selected by the same method as was used in selecting the original sample,
but need not be so.
[SOURCE: ISO 3534-2:2006, 1.2.19]
3.5
selective subsampling
separation of part of a sample on the basis of grading (i.e. above or below a defined particle size),
appearance or some other attribute
2 © ISO 2017 – All rights reserved
3.6
volatile organic compound
VOC
organic compound that is a gas under normal environmental/atmospheric conditions, although it can
be found in the ground in the solid, liquid and dissolved phase form as well as in the gaseous phase
Note 1 to entry: The US Environmental Protection Agency uses a variety of definitions for VOCs in different
contexts but the one most appropriate here is “an organic compound which has a boiling point below that of
water and which can easily vaporize or volatilize”.
Note 2 to entry: Examples include single-ring aromatic hydrocarbons and other low boiling halogenated
hydrocarbons, which are used as solvents or fuels, and some degradation products.
4 Preliminary considerations
The intention when sampling in the field is almost always to obtain a sufficiently representative sample
of the desired size that can be placed directly in a container for transport to the laboratory. However,
under some circumstances, as described in this document, some pretreatment can be done in the field
to reduce the size of a large field sample to a more manageable size for sending to the laboratory or to
select a particular fraction to form the laboratory sample.
The direct selection of the material to form the laboratory sample from the material extracted from the
ground when this forms an integral part of the sampling process is described in ISO 18400-102 on the
selection and application of sampling techniques.
When the laboratory sample is received, pretreatment is usually required before testing to determine
chemical or other properties, although there are some situations when any pretreatment would be
unacceptable because it would affect the results (e.g. when volatile organic compounds are present).
Pretreatment is normally required in the laboratory because the amount of material in the laboratory
sample (i.e. that sent from the field to the laboratory) is almost always larger than the amount of
material necessary for the test or analysis.
Pretreatment comprises one or a combination of the following:
— homogenization;
— preparation of a composite sample;
— sample division: obtaining subsamples of smaller size than the original sample without reducing
the particle size of the individual particles;
— particle size reduction: grinding and crushing the sample in order to reduce the particle size of the
sample without reducing the sample size (mass);
— selection of a fraction of a sample on the basis of particle sizes, appearance, or other physical
characteristic.
Several cycles of a number of these activities could be required to derive the test sample (e.g. analytical
sample) from the laboratory sample.
The International Standards on pretreatment (ISO 11464, ISO 14507 and ISO 16720) describe laboratory
procedures for mixing (homogenization), dividing and particle size reduction, in order to provide a
representative sample (e.g. analytical sample) assuming a laboratory sample (i.e. the material received
in the laboratory for inspection or testing) of approximately 1 kg. When the sample received at the
laboratory is larger than about 1 kg, the size of the sample can be reduced following the procedures
described in ISO 23909 (this assumes a sample of about 25 kg is to be reduced in size but the procedures
described are applicable to much larger samples).
ISO 11464, ISO 14507, ISO 16720 and ISO 23909 shall only be used for pretreatment of materials within
their respective scopes and having regard to the need to preserve sample integrity. Inappropriate use
of these International Standards, including ISO 14507, will result in unacceptable loss of volatile organic
compounds (VOCs) (3.6) and other volatiles.
When volatiles are present, the procedures described in DIN 19747 and ISO 22155 shall be used as
appropriate.
NOTE DIN 19747 covers chemical, physical and biological investigations.
Uncertainty about whether a compound should be regarded as volatile or not should trigger a specific
quality scheme to ensure that sample preparation does not introduce bias, cross contamination or other
forms of unacceptable errors. Guidance on quality control is given in ISO 18400-106.
Sample pretreatment should preferably take place in the laboratory, as sample integrity can be best
controlled under laboratory conditions. Among other things, the laboratory should have a range of
equipment available that can be selected on the basis of the size and nature of the sample to be processed.
However, under some circumstances, pretreatment of the material extracted from the ground may be
started in the field directly after sampling. For example, the size of sampling equipment might be such
that more soil material is extracted from the ground than needed. Sample pretreatment “in the field” is
then necessary in order to limit the amount of material to be transported to the laboratory.
The procedures described can be used in the field to limit the amount of material to be transported to
the laboratory. They can be used to produce a laboratory sample of about 1 kg (or larger if required)
which can then be subjected as appropriate to the pretreatment procedures described in ISO 11464,
ISO 14507, ISO 16720 or DIN 19747 or produce a larger sample that can then be subjected in the
laboratory to the procedures described in ISO 23909 to further reduce the size of the sample.
Size reduction, other than the manual crushing of clods and/or macro-aggregates as described
in 9.4, is seldom practical in the field because it requires powered equipment and appropriate
laboratory conditions. Particle size reduction involves a substantial risk of (cross) contamination,
loss of components and loss of soil material. These risks can be properly controlled under laboratory
conditions. Particle size reduction should therefore only be carried out under laboratory conditions.
Effective homogenization can be difficult in the field because it often requires powered equipment
and appropriate laboratory conditions, but can be done provided proper care and equipment is used
(see Clause 8).
Depending on the objective of the investigation programme, it might be that there is only an interest
in part of the soil or soil-like material. For example when “non-soil materials” are present (e.g. bricks,
stones). This might imply that it is desirable to obtain only a specific size fraction of the material, either
through removing the large elements from the sample, or, the other way around, through specifically
selecting the larger parts that are of interest. Sometimes both fractions could be of interest.
Selective subsampling of materials of a particular grading (e.g. below a defined particle size) could be
possible in the field if the material sampled is suitably dry (see 9.6). Sieving or screening is regularly
practised in horticulture and when old mineral waste deposits are being processed on a small-scale to
recover previously discarded materials of value. However, it might not be desirable in a particular case
as it will usually be necessary to record the type and amount of both over-sized particles and under-
sized particles to provide a full characterization of the material being sampled, and it could be difficult
to avoid losses, especially fine materials, while processing the sample. Such processes are best carried
out under laboratory conditions where a range of manual and powered equipment should be available.
As described in this standard (see 9.6.3), a fraction of the field sample may also be formed in the field
(or the laboratory) by “hand-picking” of material from the bulk sample on the basis of particle size,
appearance (e.g. colour), or nature (e.g. wood fragments, coal, organic/vegetable material, asbestos
cement materials). As for sieving, the mass of the material removed should be weighed and recorded as
should the mass of the bulk sample from which it is removed.
The preparation of composite samples is usually an integral part of the sampling process (see
ISO 18400-102), e.g. in cluster sampling numerous small incremental samples roughly equal in size
taken from a small area are placed in the sample container to form the laboratory sample which is then
homogenized in the laboratory as part of the pretreatment process.
4 © ISO 2017 – All rights reserved
In spatial (i.e. area-wide) composite sampling, incremental samples roughly equal in size taken on a
defined sampling pattern across the area of interest (e.g. a field) are placed in the (largish) sample
container to form the laboratory sample which is then homogenized and subsampled in the laboratory
as part of the pretreatment process.
However, there could be occasions when it is considered desirable to combine soil material in the field
from, for example, different locations, into a composite sample. A suitable procedure for doing this is
described in this standard (see Clause 8).
5 Incorporation in the sampling plan
The pretreatment method(s) to be used in the field (if pretreatment is necessary) and the necessary
equipment shall be prescribed in the sampling plan according to ISO 18400-101.
When the circumstances in the field deviate too much from the assumed situation in the sampling plan,
the requirements concerning pretreatment in the plan should be changed. In general, minor changes
that have no effects on the test results may be made in the field by the sampler. If effects on the test
results are to be expected or when in doubt, the sampler shall consult the project manager. This includes
seeking advice on how to proceed if circumstances in the field or weather conditions deviate too much
from the assumed situation in the sampling plan.
The project manager should always be consulted (see Note 1), when
— there is a change in the necessity for pretreatment,
— there is a change in the practicality of pretreatment.
Any changes made to the sampling plan should, like the original requirements in the plan, be in
conformance with this document. The guidance in ISO 18400-101:2017, Clause 6 on the procedure when
changes to the sampling plan are needed during sampling should be followed.
NOTE 1 ISO 18400-101:2017, Clause 6 distinguishes between changes that will not affect the achievement
of the objective of the investigation and those which might affect the achievement of the objective of the
investigation.
NOTE 2 The necessity of pretreatment might change for example when pretreatment was not planned, but
appears to be necessary in light of the coarse soil material to be sampled (the particle size distribution of the soil
material was not adequately identified by the project manager when defining the sampling plan).
NOTE 3 The practicality of pretreatment might change for example due the absence of a clean and unused
surface at the sampling site or due to weather conditions that do not allow sample pretreatment of sufficient
quality.
NOTE 4 As the potential effect of changes in the sample pretreatment will depend on the nature of the
necessary changes, the specific sampling situation and the test to be performed, no further guidance to these
changes is provided in this document.
6 General requirements
There are potential disadvantages in carrying out pretreatment in the field (see Note 1). Before deciding
to do this, the sampling plan should be reviewed to determine whether the necessity to do so can be
avoided by changing the sampling techniques to be employed, e.g. to select techniques that will provide
samples suitable in size for direct transport to the laboratory without pretreatment.
Whatever sample pretreatment is carried out, the defined objectives of the sampling exercise and the
need for samples to be “representative” to avoid bias (or to acknowledge unavoidable or designed bias)
should govern what is done.
When it is considered that pretreatment in the field is unavoidable, consideration should be given to
the establishment of a temporary on-site pretreatment laboratory. This may be a specially constructed
facility or an area within in an existing building adapted for the purpose.
When establishment of a full on-site laboratory is not practical, provision of at least temporary
protection from the weather should be considered (e.g. a canopy over the treatment area).
NOTE 1 Sample pretreatment, either being sample division or the preparation of a composite sample, can
result in significant changes in the composition of the soil material when no or inadequate precautions are taken.
The risk of significant changes depends on the components or characteristics to be tested, the nature of the
soil material, the pretreatment method selected and the (weather) conditions under which the pretreatment is
performed (see also Note 3).
NOTE 2 An on-site pretreatment facility can provide reasonably controlled conditions free of the vagaries
of the weather that can be kept properly clean and, if necessary, provided with powered equipment in a safe
environment.
As field conditions are rarely comparable to laboratory conditions, the types of sample pretreatment
that should be carried out in the field are limited to sample division and the production of composite
samples and/or the selective subsampling of a specific part of the sampled material that is of interest.
Only when laboratory conditions are available on site (there is a sample pretreatment laboratory/facility
present) can the full range of sample pretreatment activities—thus also including particle size
reduction—be carried out directly after sampling.
Integrity of the soil material should always be ensured. Therefore a method, time and place for sample
pretreatment should be chosen that causes the minimum possible risk of changes in the characteristics
of the soil material.
When the aim of the sample pretreatment is to perform selective subsampling, the composition of
the soil material will obviously change, however, care should be taken to ensure that only the desired
changes occur.
Suitable methods for subsampling might be limited by the requirements set by the components to be
analysed or the test to be performed. Expert advice should be sought from the laboratory.
NOTE 3 Some examples of problems that might arise are:
— loss of moisture;
— loss of volatile components;
— aggregate formation of soil material while subsampling due to its moisture content;
— oxidation of newly exposed material following crushing of soil macro-aggregates, etc.;
— soil material sticking to the equipment (e.g. clay);
— loss of fine particles due to air entrainment;
— addition of water due to rain;
— loss of fine particles due to heavy rain;
— presence of oily materials that might adhere selectively to sheeting and tools;
— separation of components including mineral oils due to density differences or other differences in physical
characteristics;
— biodegradation of organic materials and substances.
7 Safety
Pretreatment in the field should be carried out in accordance with the guidance on safety in
ISO 18400-103 and with regard to any other relevant factors.
6 © ISO 2017 – All rights reserved
8 Homogenization
Effective homogenization can be difficult in the field because it often requires powered equipment and
appropriate laboratory conditions, but can be done provided proper care and equipment is used. The
chances of success depend on a variety of factors including in particular on the heterogeneity of the soil
and the property of interest (e.g. how a contaminant is distributed within and on particles).
The procedures described in 9.5 are all intended to ensure as far as practical that the subsample is
sufficiently representative of the larger field sample that is to be reduced in size for the purposes of
the investigation. For example, the first steps in the long pile and alternate shovel method (9.5.2) are
intended to homogenize the sample.
Mixing to obtain bulk sample homogeneity can be achieved by passing and merging the sample three,
four or more times through a mechanical sample splitter (e.g. riffle box, Tyler divider or rotating
[18]
divider).
9 Subsampling
9.1 General
The characteristics of the soil material to be subsampled should be checked against the methods
described in the sampling plan to see whether the prescribed methods are appropriate. The maximum
size of the particles is important, as is the moisture content. The latter is related to the inclination
to macro-aggregate formation and cohesive behaviour. If the prescribed methods are not considered
appropriate, the sampling plan should be amended in accordance with Clause 5.
In the case of very coarse soils, it can be necessary to reduce the particle size of the larger particles
in the field in order to be able to send a representative sample of an acceptable size to the laboratory.
When grinding or crushing “in the field” is truly necessary, measures have to be taken in order to
prevent contamination and/or loss of both components and soil material. Particle sizes in the sampled
material should therefore only be reduced as little as possible, just allowing the laboratory sample to be
of acceptable size.
Everything put into the size reduction process should be reduced in size to pass a predetermined sieve
to avoid selectivity.
The location for subsampling should be chosen carefully and made fit for use, by ensuring a fully
flat surface, cleaning it of all materials that could influence the integrity of the (sub)sample(s) and
by covering with an appropriate material (see below). When all preparations are ready, the sample
pretreatment should be carried out using the prescribed method(s).
Heavy duty plastic sheeting will be suitable in many situations when the work is undertaken using
manual means but will not withstand trafficking, etc. by mechanical equipment. When this is to be
used, canvas, wood, or metal sheeting should be used.
9.2 Equipment for subsampling
All materials and equipment that come in contact with the (sub)sample(s) should be such that they will
not contaminate the (sub)sample(s).
Prior to subsampling, the apparatus and tools used shall be cleaned in order to prevent cross-
contamination. This means that they should be cleaned between processing different samples. The
protective covering to the working area should be cleaned or replaced between processing different
samples.
For subsampling, one or more of the following apparatus, as identified in the sampling plan, is required:
— large heavy-duty plastic sheeting or other protective covering such as wood or metal sheeting
(see 9.1);
— stainless steel spade or shovel;
— mechanical shovel;
— tools for reducing the particle size (e.g. sledge hammer);
— riffle box;
— tools for subsampling (e.g. cross divider, Tyler divider);
— mechanized turntable/rotating dividers.
All equipment used shall comply with relevant International Standards (e.g. ISO 565 for sieves).
NOTE 1 For a description of the equipment used in this document, see ISO 11464.
NOTE 2 A Tyler divider is a device that cuts a representative 1/16th from feed material by systematically
rejecting segments of material flowing down an adjustable 45° or 60° incline (see Figure A.1). It can be used
“batch-wise” or with a continuous feed.
9.3 Minimum size of the subsample
Decisions about the size of subsample required should be based on the guidance provided in
ISO 18400-104. This states that a number of factors govern the size of the subsample to be sent to off-
site laboratories (i.e. the laboratory sample) including:
— the range of pedological, chemical, physical and or biological examinations and tests that are to be
carried out;
— the specific requirements of the laboratory/laboratories carrying out the examinations and tests; and
— the need for samples to be sufficiently representative, taking into account the particle size
distribution and the concentration distribution of the material to be sampled;
with larger samples than required for the testing suite envisaged usually being taken, in case additional
analysis or tests are decided on, in response to site observations and initial results.
The first two of the above points will usually be defined by following an established procedure and/or
discussion with the laboratory/laboratories.
As discussed in ISO 18400-104, the relationship between particle size distribution and the size of
sample or increment required to obtain reliable analytical results for a granular material in which
the properties of interest are inherent within the particles is amenable to theoretical determination.
However, this is not possible when dealing with an inherently complex material such as soil which
might contain solid particles of several types, water, biota, contaminants adhering to particles and
even non-aqueous phases. In these more complex, cases the person designing the sampling exercise
should, in consultation with the laboratory undertaking the planned testing, make a judgement about
the minimum sample size required. A minimum sample size of 500 g to 1 000 g often will be required.
However it should be noted that such a specification will usually be based on assumptions about the
character of the material to be sampled. The sampler should adjust the sample size to take account of
observations in the field (or the results of an earlier Exploratory Investigation, including information
about excessive sampling uncertainty).
NOTE The guidance provided in DIN 18123 regarding the relationship between minimum sample size
and maximum particle size might help when making a decision about the size of sample required. When the
sample contains macro-aggregates, the maximum size of the macro-aggregates determines the minimum size of
the subsamples whenever the macro-aggregates behave like individual particles during subsampling, i.e. when
macro-aggregates are not cut into pieces by the subsampling equipment used (see 9.4 for macro-aggregate size
reduction).
8 © ISO 2017 – All rights reserved
Table 1 — Minimum sample size and maximum particle size
DIN 18123
Maximum particle size Minimum sample size
mm g
10 700
20 2 000
30 4 000
9.4 Procedure for macro-aggregate reduction by hand
Soil macro-aggregates should be regarded as individual “particles” when the method of sampling and
sample pretreatment is not able to sample part of a macro-aggregate.
NOTE When subsampling under field conditions, macro-aggregates behave as individual particles for
instance when a riffle box is used for dividing a moist or clay-like soil. As the particle size is one determinant of
the minimum size of laboratory sample required, it will be preferable to reduce the size of macro-aggregates if
possible during or prior to subsampling so as to reduce the size of laboratory sample required.
As reduction of macro-aggregates by hand will result in a relatively long and intense contact of the sample
with air, this method should only be applied when sample integrity is not influenced during this period.
Macroaggregates should be reduced in size in accordance with the following procedure:
— identify an area of hard surface sheltered from the effects of wind and rain, preferably flat and large
enough to allow ease of access around the whole sample when spread evenly on the surface;
— place a clean protective floor covering to protect the sample from contamination by the surface and
loss of material (9.1 and 9.2);
— place the sample on the protective covering sheeting and spread evenly to identify all macro-
aggregates within the sample;
— use the base of a spade or the head on a sledge hammer (see 9.2) gently to reduce the size of the
macro-aggregates until all oversized material is less than or equal to the required particle size.
If available, suitable machinery may also be used.
9.5 Subsampling methods
9.5.1 General
When subsampling in the field, where materials are likely to be moist and to behave cohesively, sample
division by manual means is preferable (mechanical division is often impossible or will result in biased
subsamples).
Drying before sample reduction may be carried out if this does not influence the sample integrity (e.g.
due to volatilization, biodegradation).
NOTE Subsampling can be performed either mechanically or manually. However, this is only true when the
material is dry and particles can move in a stream of particles on an individual basis. When this is the case,
i.e. the materials are dry and free flowing, it is preferable to use a mechanical system since this will result in
more representative subsamples. If the particles in the sample behave cohesively, mechanical division is often
impossible due to cohesion of soil in the system and subsequent blockage of the divider. And even when the
mechanical division is still possible, mechanical subsampling devices will probably function incorrectly, and
therefore will result in biased subsamples.
If the material is suitably dry, determine the minimum size of the subsample(s) required according
3)
to 9.3 and ISO 18400-104 . When the minimum size of the subsamples is larger than desired and the
maximum particle size is related to the size of macro-aggregates, the macro-aggregate size can be
reduced according to 9.4. The subsampling process shall be stopped when the size of the subsample is
3)
equal to or larger than the size of sample required as determined by reference to 9.3 and ISO 18400-104
(see also Table 1).
Based on the boundary conditions as given in the subsequent paragraphs and practical experience, one
of the following subsampling methods should be chosen:
— long pile and alternate shovel method (see 9.5.2);
— coning and quartering (see 9.5.3);
— riffling (see 9.5.4);
— application of Tyler divider (see 9.5.5);
— application of mechanized turntable (rotating divider) (see 9.5.6).
9.5.2 Long pile and alternate shovel method
This subsampling method is suitable for samples in excess of approximately 100 kg. The procedure is as
follows:
— identify an area of hard surface sheltered from the effects of wind and rain, preferably flat and large
enough to allow ease of access around the whole sample when spread on the surface;
— place a clean protective floor covering to protect the sample from contaminati
...
NORME ISO
INTERNATIONALE 18400-201
Première édition
2017-01
Qualité du sol — Échantillonnage —
Partie 201:
Prétraitement physique sur le terrain
Soil quality — Sampling —
Part 201: Physical pretreatment in the field
Numéro de référence
©
ISO 2017
DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2017, Publié en Suisse
Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée
sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie, l’affichage sur
l’internet ou sur un Intranet, sans autorisation écrite préalable. Les demandes d’autorisation peuvent être adressées à l’ISO à
l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2017 – Tous droits réservés
Sommaire Page
Avant-propos .iv
Introduction .v
1 Domaine d’application . 1
2 Références normatives . 1
3 Termes et définitions . 2
4 Considérations préliminaires . 3
5 Incorporation au plan d’échantillonnage . 5
6 Exigences générales . 6
7 Sécurité . 7
8 Homogénéisation . 7
9 Sous-échantillonnage . 7
9.1 Généralités . 7
9.2 Matériel de sous-échantillonnage . 8
9.3 Taille minimale du sous-échantillon . 8
9.4 Procédure de réduction manuelle des macro-agrégats .10
9.5 Méthodes de sous-échantillonnage .10
9.5.1 Généralités .10
9.5.2 Méthode par tas longitudinal et pelletées alternées .11
9.5.3 Quartage .12
9.5.4 Division d’un échantillon .13
9.5.5 Utilisation d’un diviseur Tyler.14
9.5.6 Utilisation d’un plateau tournant mécanique (diviseur rotatif) .14
9.6 Sous-échantillonnage sélectif basé sur la granulométrie.15
9.6.1 Généralités .15
9.6.2 Tamisage .15
9.6.3 Prélèvement manuel .16
10 Préparation d’échantillons composites .16
10.1 Généralités .16
10.2 Taille minimale des prélèvements élémentaires ou des sous-échantillons .18
10.3 Production des échantillons composites .18
10.3.1 Échantillon composite basé sur un échantillonnage incrémentiel .18
10.3.2 Échantillon composite basé sur des parties d’échantillons individuels .18
11 Emballage et stockage .18
12 Notification .18
Annexe A (informative) Illustrations des appareillages .19
Bibliographie .22
Avant-propos
L’ISO (Organisation internationale de normalisation) est une fédération mondiale d’organismes
nationaux de normalisation (comités membres de l’ISO). L’élaboration des Normes internationales est
en général confiée aux comités techniques de l’ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l’ISO participent également aux travaux.
L’ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui
concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier de prendre note des différents
critères d’approbation requis pour les différents types de documents ISO. Le présent document a été
rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2 (voir www
.iso .org/ directives).
L’attention est attirée sur le fait que certains des éléments du présent document peuvent faire l’objet de
droits de propriété intellectuelle ou de droits analogues. L’ISO ne saurait être tenue pour responsable
de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant
les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de
l’élaboration du document sont indiqués dans l’Introduction et/ou dans la liste des déclarations de
brevets reçues par l’ISO (voir www .iso .org/ brevets).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données
pour information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un
engagement.
Pour une explication de la nature volontaire des normes, la signification des termes et expressions
spécifiques de l’ISO liés à l’évaluation de la conformité, ou pour toute information au sujet de l’adhésion
de l’ISO aux principes de l’Organisation mondiale du commerce (OMC) concernant les obstacles
techniques au commerce (OTC), voir le lien suivant: w w w . i s o .org/ avant -propos.
Le présent document a été élaboré par le comité technique ISO/TC 190, Qualité du sol, sous-comité SC 2,
Échantillonnage.
Une liste de toutes les parties de la série ISO 18400 se trouve sur le site Web de l’ISO.
iv © ISO 2017 – Tous droits réservés
Introduction
Le prétraitement des échantillons est habituellement requis avant qu’ils ne soient soumis à analyse
pour déterminer leurs propriétés chimiques et autres, bien qu’il existe certaines situations où le
prétraitement serait inacceptable parce qu’il pourrait affecter les résultats.
Il est préférable que le prétraitement de l’échantillon soit effectué en laboratoire, car l’intégrité de
l’échantillon est idéalement garantie dans les conditions qui y règnent. Toutefois, dans certaines
circonstances, il est possible que le prétraitement commence sur le terrain, directement après
l’échantillonnage, afin d’obtenir, à partir du matériau extrait du sol, un échantillon représentatif pour
laboratoire, ou pour préparer un échantillon composite pour le laboratoire.
La représentativité d’un échantillon dépend de facteurs tels que la taille de l’échantillon, la granulométrie,
la forme des particules, le type de polluants et la concentration en polluants, la cohérence des matériaux
1)
du sol et la stratégie d’échantillonnage (voir l’ISO 18400-104 .
Lorsque des composés volatils sont présents, il est nécessaire d’appliquer, si possible selon le cas, les
procédures décrites dans l’ISO 22155. Aucun autre prétraitement n’est autorisé. D’autres méthodes de
prétraitement spécifiées donneront lieu à une perte significative de composés volatils.
Le prétraitement comprend une des activités suivantes ou une combinaison de celles-ci:
— homogénéisation;
— division d’un échantillon: obtention de sous-échantillons de taille inférieure à celle de l’échantillon
d’origine, sans réduction granulométrique des particules individuelles;
— réduction granulométrique: concassage ou broyage de l’échantillon afin de réduire la granulométrie
de l’ensemble de l’échantillon sans en réduire sa taille (masse);
— séparation de fractions sur la base de la granulométrie (tamisage ou tri) seulement si une fraction
granulométrique distincte de sol présente un intérêt pour l’investigation, ou sur la base de la nature
physique des matériaux (par exemple, l’aspect);
— préparation d’un ou de plusieurs échantillons composites.
Il est possible que plusieurs cycles des trois premières activités soient nécessaires pour obtenir
l’échantillon pour essai (par exemple, échantillon pour analyse) à partir de l’échantillon pour laboratoire.
Sauf si, comme mentionné ci-dessus, un prétraitement est susceptible d’affecter les résultats de
l’analyse ou des essais ultérieurs, un sous-échantillonnage est normalement requis au laboratoire parce
que la quantité de matériau dans l’échantillon pour le laboratoire (c’est-à-dire celui envoyé du terrain au
laboratoire) est presque toujours plus importante que la quantité de matériau nécessaire pour l’essai ou
l’analyse.
Il est possible que, dans certaines circonstances, on souhaite combiner, sur le terrain, un matériau de
sol, par exemple provenant de différents emplacements, pour constituer un échantillon composite. Le
présent document décrit une procédure appropriée pour réaliser cette opération.
Pour les raisons exposées à l’Article 4, seules certaines mesures de prétraitement énumérées ci-dessus
peuvent être effectuées sur le terrain.
Le présent document fait partie d’une série de normes d’échantillonnage des sols. Le rôle/la fonction
des Normes internationales au sein du programme d’investigation globale est illustré(e) à la Figure 1.
NOTE Le présent document est destiné à être complémentaire de l’ISO 23909 et de l’ISO 22155.
1) En cours d’élaboration.
Figure 1 — Liens entre les éléments essentiels d’un programme d’investigation
NOTE 1 Les chiffres figurant dans les cercles définissent les éléments clés du programme d’investigation.
NOTE 2 La Figure 1 présente un processus générique qui peut être modifié si nécessaire.
vi © ISO 2017 – Tous droits réservés
NORME INTERNATIONALE ISO 18400-201:2017(F)
Qualité du sol — Échantillonnage —
Partie 201:
Prétraitement physique sur le terrain
1 Domaine d’application
Le présent document spécifie des méthodes pour le prétraitement d’échantillons pouvant être appliqué
«sur le terrain» directement après l’échantillonnage. Les méthodes de prétraitement décrites dans le
présent document se limitent:
— aux méthodes de division des échantillons dans le but d’en réduire la taille/le volume;
— à la production d’échantillons composites;
— au choix d’une fraction spécifique du matériau échantillonné.
Le présent document
— ne s’applique pas aux échantillons requis pour les examens biologiques et microbiologique,
— ne s’applique pas aux matériaux de sol prélevés pour déterminer la teneur en composés volatils, et
NOTE 1 Ces matériaux de sol sont destinés à être prélevés conformément à l’ISO 22155.
— ne donne pas d’instructions concernant la réduction granulométrique.
NOTE 2 Des lignes directrices sont données dans l’ISO 11464, l’ISO 14507 et l’ISO 23909.
2 Références normatives
Les documents suivants cités dans le texte constituent, pour tout ou partie de leur contenu, des
exigences du présent document. Pour les références datées, seule l’édition citée s’applique. Pour les
références non datées, la dernière édition du document de référence s’applique (y compris les éventuels
amendements).
ISO 565, Tamis de contrôle — Tissus métalliques, tôles métalliques perforées et feuilles électroformées —
Dimensions nominales des ouvertures
ISO 11074, Qualité du sol — Vocabulaire
ISO 18400-101:2017, Qualité du sol — Échantillonnage — Partie 101: Cadre pour la préparation et
l’application d’un plan d’échantillonnage
2)
ISO 18400-104 , Qualité du sol — Échantillonnage — Partie 104: Stratégies
ISO 18400-105, Qualité du sol — Échantillonnage — Partie 105: Emballage, transport, stockage et
conservation des échantillons
ISO 18400-107, Qualité du sol — Échantillonnage — Partie 107: Enregistrement et notification
ISO 22155, Qualité du sol — Dosage des hydrocarbures aromatiques et halogénés volatils et de certains
éthers par chromatographie en phase gazeuse — Méthode par espace de tête statique
2) En cours d’élaboration. Stade à la date de publication: ISO/DIS 18400-104:2016.
DIN 19747, Étude des solides — Prétraitement d’échantillon, préparation d’échantillon et remise à neuf
d’échantillon pour des études chimiques, biologiques et physiques
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions donnés dans l’ISO 11074 ainsi que les
suivants s’appliquent.
L’ISO et l’IEC tiennent à jour des bases de données terminologiques destinées à être utilisées en
normalisation, consultables aux adresses suivantes:
— IEC Electropedia: disponible à l’adresse http:// www .electropedia .org/ .
— ISO Online browsing platform: disponible à l’adresse http:// www .iso .org/ obp.
3.1
échantillon pour analyse
prise de matériau, issue de l’échantillon d’origine ou d’un échantillon composite, au moyen d’une
méthode appropriée de traitement préalable des échantillons, et ayant la taille (volume/masse)
nécessaire pour les essais ou l’analyse souhaités
[SOURCE: ISO 11074:2015, 4.1.3]
3.2
échantillon pour laboratoire
échantillon destiné à être utilisé pour un contrôle ou pour des essais en laboratoire
Note 1 à l’article: Quand l’échantillon pour laboratoire est préparé (réduit) par subdivision, mélange, broyage
ou par combinaison de ces opérations, on obtient un échantillon pour essai. En l’absence de toute préparation,
l’échantillon pour laboratoire constitue l’échantillon pour essai. Pour effectuer l’essai ou l’analyse, prélever une
prise d’essai dans cet échantillon.
Note 2 à l’article: L’échantillon pour laboratoire est l’échantillon final du point de vue de la collecte de l’échantillon
mais du point de vue du laboratoire, il est l’échantillon initial.
Note 3 à l’article: Plusieurs échantillons pour laboratoire peuvent être préparés et envoyés soit au même
laboratoire, soit à des laboratoires différents, selon les besoins.
[SOURCE: ISO 11074:2015, 4.3.7]
3.3
division d’un échantillon
(matériau en vrac) processus de préparation d’échantillon dans lequel un échantillon de matériau en
vrac est divisé en sous-échantillons, par exemple par diviseur à couloirs, division mécanique ou division
par quartage, dont une ou plusieurs sont conservées
[SOURCE: ISO 3534-2:2006, 5.3.8]
3.4
sous-échantillon
partie tirée d’un échantillon
Note 1 à l’article: Le sous-échantillon peut être choisi par la même méthode que celle utilisée pour la sélection de
l’échantillon d’origine, sans nécessairement que cela soit le cas.
[SOURCE: ISO 3534-2:2006, 1.2.19]
3.5
sous-échantillonnage sélectif
séparation d’une partie d’un échantillon sur la base de la granularité (c’est-à-dire au-dessus ou au-
dessous d’une granulométrie définie), de l’aspect ou de tout autre attribut
2 © ISO 2017 – Tous droits réservés
3.6
composé organique volatil
COV
composé organique sous forme de gaz dans des conditions environnementales/atmosphériques
normales, mais pouvant être présent dans le sol sous forme de phase solide, liquide et dissoute, ainsi
qu’en phase gazeuse
Note 1 à l’article: Bien que l’agence américaine de protection de l’environnement (US Environmental Protection
Agency) utilise diverses définitions des COV dans des contextes différents, la plus appropriée dans le présent
contexte est la suivante: « composé organique dont le point d’ébullition est inférieur à celui de l’eau et qui peut
facilement s’évaporer ou se volatiliser ».
Note 2 à l’article: On peut citer comme exemples les hydrocarbures aromatiques monocycliques et autres
hydrocarbures halogénés à bas point d’ébullition, utilisés comme solvants ou carburants, ainsi que certains
produits de dégradation.
4 Considérations préliminaires
Lors d’un échantillonnage sur le terrain, dans la plupart des cas, le but est d’obtenir un échantillon
suffisamment représentatif et de la taille requise pouvant être placé directement dans un conteneur
pour le transport au laboratoire. Toutefois, dans certaines circonstances, comme cela est décrit dans
le présent document, certains prétraitements peuvent être effectués sur le terrain afin de réduire la
taille d’un grand échantillon in situ à une taille plus facile à gérer pour l’envoyer au laboratoire ou pour
choisir une fraction particulière pour constituer l’échantillon pour laboratoire.
Le choix direct du matériau pour constituer l’échantillon pour laboratoire à partir du matériau extrait
du sol lorsque cela fait partie intégrante du processus d’échantillonnage est décrit dans l’ISO 18400-102,
qui traite du choix et de l’application des techniques d’échantillonnage.
Après réception de l’échantillon pour laboratoire, un prétraitement de l’échantillon est habituellement
requis avant que celui-ci ne soit soumis à essai pour déterminer ses propriétés chimiques et autres, bien
qu’il existe des situations dans lesquelles tout prétraitement serait inacceptable parce qu’il affecterait
les résultats (par exemple, lorsque des composés organiques volatils sont présents). Un prétraitement
est normalement requis au laboratoire parce que la quantité de matériau dans l’échantillon pour
laboratoire (c’est-à-dire celui envoyé du terrain au laboratoire) est presque toujours plus importante
que la quantité de matériau nécessaire pour l’essai ou l’analyse.
Le prétraitement comprend une des activités suivantes ou une combinaison de celles-ci:
— homogénéisation;
— préparation d’un échantillon composite;
— division d’un échantillon: obtention de sous-échantillons de taille inférieure à celle de l’échantillon
d’origine, sans réduction granulométrique des particules individuelles;
— réduction granulométrique: concassage ou broyage de l’échantillon afin de réduire la granulométrie
de l’ensemble de l’échantillon sans réduire sa taille (masse);
— choix d’une fraction d’échantillon basé sur la granulométrie, l’aspect ou autre caractéristique
physique.
Il est possible que plusieurs cycles d’un certain nombre de ces activités soient nécessaires pour obtenir
l’échantillon pour essai (par exemple échantillon pour analyse) à partir de l’échantillon pour laboratoire.
Les Normes internationales sur le prétraitement (ISO 11464, ISO 14507 et ISO 16720) décrivent
des procédures de laboratoire pour le mélange (homogénéisation), la division et la réduction
granulométrique, afin de fournir un échantillon représentatif (par exemple échantillon pour analyse)
en supposant un échantillon pour laboratoire (c’est-à-dire le matériau reçu au laboratoire pour un
contrôle ou pour des essais) d’environ 1 kg. Lorsque l’échantillon reçu au laboratoire a une masse
supérieure à environ 1 kg, la taille de l’échantillon peut être réduite en suivant les procédures décrites
dans l’ISO 23909 (ceci suppose que la taille d’un échantillon d’environ 25 kg doit être réduite, mais les
procédures décrites s’appliquent à des échantillons de taille beaucoup plus importante).
L’ISO 11464, l’ISO 14507, l’ISO 16720 et l’ISO 23909 doivent uniquement être utilisées aux fins de
prétraitement des matériaux dans leurs domaines d’application respectifs et en tenant compte
de la nécessité de préserver l’intégrité de l’échantillon. L’utilisation inappropriée de ces Normes
internationales, y compris l’ISO 14507, donnera lieu à une perte inacceptable de composés organiques
volatils (COV) (3.6) et d’autres composés volatils.
Lorsque des composés volatils sont présents, les procédures décrites dans la DIN 19747 et l’ISO 22155
doivent être appliquées, selon le cas.
NOTE La DIN 19747 traite d’études chimiques, biologiques et physiques.
Pour lever toute incertitude quant à la nature volatile d’un composé, il convient de mettre en œuvre une
démarche qualité spécifique permettant de s’assurer que la préparation d’échantillon n’introduit pas de
biais, de contamination croisée ou autres formes d’erreurs inacceptables. L’ISO 18400-106 fournit des
lignes directrices pour le contrôle de la qualité.
Il est préférable que le prétraitement de l’échantillon soit effectué en laboratoire, car l’intégrité de
l’échantillon est idéalement garantie dans les conditions qui y règnent. Il convient que le laboratoire
dispose, entre autres, d’une variété de matériels pouvant être choisis selon la taille et la nature de
l’échantillon à traiter. Toutefois, dans certaines circonstances, il est possible que le prétraitement du
matériau extrait du sol commence sur le terrain, directement après l’échantillonnage. Par exemple, la
taille du matériel d’échantillonnage peut être telle que la quantité de matériau extraite du sol soit plus
importante que nécessaire. Le prétraitement «sur le terrain» des échantillons est alors nécessaire afin
de limiter la quantité de matériau à transporter au laboratoire.
Les procédures décrites peuvent être appliquées sur le terrain pour limiter la quantité de matériau à
transporter au laboratoire. Ces procédures peuvent être utilisées pour produire un échantillon pour
laboratoire d’environ 1 kg (ou plus si nécessaire), qui pourra ensuite être soumis, selon le cas, aux
procédures de prétraitement décrites dans l’ISO 11464, l’ISO 14507, l’ISO 16720 ou la DIN 19747, ou de
produire un échantillon de plus grande taille qui pourra ensuite être soumis, par le laboratoire, aux
procédures décrites dans l’ISO 23909 afin de réduire la taille de l’échantillon.
La réduction granulométrique, autre que le concassage manuel de mottes et/ou de macro-agrégats tel
que décrit en 9.4, est rarement pratiquée sur le terrain car elle nécessite un matériel mécanisé et des
conditions de laboratoire appropriées. La réduction granulométrique implique un risque important
de contamination (croisée), de perte de composés et de perte de matériau de sol. Ces risques peuvent
être contrôlés de façon adéquate dans des conditions de laboratoire. Par conséquent, il convient que la
réduction granulométrique soit uniquement effectuée dans des conditions de laboratoire.
L’homogénéisation effective peut s’avérer difficile à obtenir sur le terrain car elle nécessite souvent
un matériel mécanisé et des conditions de laboratoire appropriées, mais elle est réalisable à condition
d’être effectuée avec un soin particulier et un matériel adapté (voir Article 8).
Selon l’objectif du programme d’investigation, il se peut que l’intérêt porte uniquement sur une partie
du sol ou du matériau de type sol. Par exemple, lorsque des matériaux « autres que des matériaux de
sol » sont présent (par exemple briques, pierres). Cela peut signifier qu’il est souhaitable d’obtenir
uniquement une fraction granulométrique spécifique du matériau, soit en éliminant les éléments de
grande taille de l’échantillon, soit en choisissant spécifiquement les parties de grande taille présentant
un intérêt. Il arrive parfois que les deux fractions présentent un intérêt.
Le sous-échantillonnage sélectif de matériaux d’une granularité particulière (par exemple inférieure à
une granulométrie définie) peut être possible sur le terrain si le matériau prélevé est suffisamment sec
(voir 9.6). Le tamisage ou le tri sont régulièrement pratiqués en horticulture et lorsque de vieux dépôts
de déchets minéraux sont traités à petite échelle pour récupérer des matériaux d’intérêt préalablement
rejetés. Toutefois, il est possible que cela ne soit pas souhaité dans un cas particulier où il sera en
général nécessaire d’enregistrer le type et la quantité de particules de grande taille et de particules
de plus petite taille pour assurer une caractérisation du matériau échantillonné et où il serait difficile
4 © ISO 2017 – Tous droits réservés
d’éviter les pertes, notamment de matériaux fins, lors du traitement de l’échantillon. Les conditions
qui conviennent le mieux à ces processus sont les conditions de laboratoire où il convient que divers
matériels manuels et mécanisés soient disponibles.
Comme décrit dans la présente norme (voir 9.6.3), une fraction de l’échantillon in situ peut être
également constituée sur le terrain (ou au laboratoire) par «prélèvement manuel» de matériau dans
l’échantillon en vrac sur la base de la granulométrie, de l’aspect (par exemple la couleur), ou de la nature
(par exemple fragments de bois, charbon, matériau organique/végétal, matériau en ciment-amiante).
Comme pour le tamisage, il convient que la masse de matériau enlevée soit pesée et enregistrée ainsi
que la masse de l’échantillon en vrac dans lequel elle a été enlevée.
Habituellement, la préparation d’échantillons composites fait partie intégrante du processus
d’échantillonnage (voir l’ISO 18400-102), par exemple, dans un échantillonnage de zone, de nombreux
petits échantillons élémentaires, de taille approximativement égale et prélevés dans une petite zone,
sont placés dans le conteneur d’échantillon pour constituer l’échantillon pour laboratoire qui est ensuite
homogénéisé au laboratoire conformément au processus de prétraitement.
Lors d’un échantillonnage composite spatial (c’est-à-dire sur l’ensemble de la zone), des échantillons
élémentaires, de taille approximativement égale et prélevés sur une grille d’échantillonnage définie à
travers la zone étudiée (par exemple un champ), sont placés dans le (grand) conteneur d’échantillon
pour constituer l’échantillon pour laboratoire qui sera ensuite homogénéisé et subdivisé en sous-
échantillons au laboratoire, conformément au processus de prétraitement.
Cependant, il est possible que, dans certaines circonstances, on souhaite combiner, sur le terrain, un
matériau de sol, par exemple provenant de différents emplacements, pour constituer un échantillon
composite. La présente norme décrit une procédure appropriée pour réaliser cette opération
(voir Article 8).
5 Incorporation au plan d’échantillonnage
La ou les méthodes de prétraitement à utiliser sur le terrain (si un prétraitement est nécessaire)
ainsi que le matériel nécessaire doivent être prescrits dans le plan d’échantillonnage conformément à
l’ISO 18400-101.
Lorsque les circonstances présentes sur le terrain s’écartent excessivement de la situation présumée
décrite dans le plan d’échantillonnage, il convient de modifier les exigences relatives au prétraitement
spécifiées dans le plan. En général, des changements mineurs n’ayant aucune incidence sur les résultats
d’essai peuvent être effectués sur le terrain par l’échantillonneur. Si une incidence sur les résultats
d’essai est suspectée ou avérée, l’échantillonneur soit consulter le chef de projet. Cela inclut de solliciter
un avis sur la manière de procéder si les circonstances sur le terrain ou les conditions météorologiques
s’écartent excessivement de la situation escomptée dans le plan d’échantillonnage.
Il convient de toujours consulter le chef de projet (voir Note 1)
— s’il y a un changement dans la nécessité d’effectuer un prétraitement,
— s’il y a un changement dans la faisabilité d’un prétraitement.
Il convient que toute modification apportée au plan d’échantillonnage, comme pour les exigences
initiales spécifiées dans le plan, soit conforme au présent document. Il convient de suivre les lignes
directrices données dans l’ISO 18400-101:2017, Article 6 concernant la procédure à suivre lorsque des
modifications du plan d’échantillonnage sont nécessaires durant l’échantillonnage.
NOTE 1 L’ISO 18400-101:2017, Article 6 fait la distinction entre des modifications qui n’auront pas d’incidence
sur la réalisation de l’objectif de l’investigation et celles qui pourraient avoir une incidence sur la réalisation de
l’objectif de l’investigation.
NOTE 2 La nécessité d’effectuer un prétraitement peut changer, par exemple, lorsqu’aucun prétraitement n’a
été planifié, mais que sa réalisation paraît nécessaire à la lumière de la fraction grossière du sol à prélever (la
distribution granulométrique du matériau de sol n’a pas été identifiée de façon adéquate par le chef de projet lors
de l’élaboration du plan d’échantillonnage).
NOTE 3 La faisabilité du prétraitement peut changer, par exemple, en raison de l’absence d’une surface propre
et inutilisée sur le site d’échantillonnage ou en raison des conditions météorologiques qui ne permettent pas un
prétraitement des échantillons de qualité suffisante.
NOTE 4 Dans la mesure où l’effet potentiel des modifications du prétraitement des échantillons dépendra de
la nature des modifications nécessaires, de la situation spécifique de l’échantillonnage et de l’essai à effectuer,
aucune autre ligne directrice concernant ces modifications n’est fournie dans le présent document.
6 Exigences générales
La réalisation du prétraitement sur le terrain présente des inconvénients potentiels (voir Note 1). Avant
de prendre une décision à ce propos, il convient de revoir le plan d’échantillonnage afin de déterminer
s’il est possible d’éviter d’effectuer le prétraitement sur le terrain en modifiant les techniques
d’échantillonnage à utiliser, par exemple en choisissant des techniques permettant d’obtenir des
échantillons de taille appropriée qui pourront être transportés au laboratoire sans prétraitement.
Quel que soit le prétraitement des échantillons effectué, il convient que les actions entreprises soient
régies par les objectifs définis de l’échantillonnage et par la nécessité de disposer d’échantillons
«représentatifs» pour éviter un biais (ou pour tenir compte d’un biais inévitable ou calculé).
S’il est considéré qu’un prétraitement sur le terrain est inévitable, il convient d’envisager l’installation
d’un laboratoire temporaire de prétraitement sur le site. Il peut s’agir une installation spécialement
construite à cet effet ou d’une zone adaptée, dans un bâtiment existant.
Si l’installation d’un laboratoire complet sur site n’est pas réalisable, il convient d’envisager au moins
une protection provisoire contre les intempéries (par exemple, un auvent au-dessus de la zone de
traitement).
NOTE 1 Le prétraitement des échantillons, qu’il s’agisse d’une division d’échantillon ou de la préparation
d’un échantillon composite, peut entraîner des changements significatifs dans la composition du matériau de
sol si aucune précaution n’a été prise ou si les précautions prises sont inadéquates. Le risque de changements
significatifs dépend des composés ou des caractéristiques devant être soumises à essai, de la nature du
matériau de sol, de la méthode de prétraitement choisie et des conditions (météorologiques) dans lesquelles le
prétraitement est effectué (voir également Note 3).
NOTE 2 Une installation de prétraitement sur le terrain peut assurer des conditions raisonnablement
contrôlées, indépendantes des aléas climatiques; cette installation peut être conservée dans un bon état de
propreté et, si nécessaire, équipée d’un matériel mécanisé dans un environnement sécurisé.
Dans la mesure où les conditions de terrain sont rarement comparables aux conditions de laboratoire,
les types de prétraitements des échantillons qu’il convient d’effectuer sur le terrain sont limités à la
division d’échantillons et à la production d’échantillons composites et/ou au sous-échantillonnage
sélectif d’une partie spécifique du matériau prélevé présentant un intérêt. Ce n’est que lorsque des
conditions de laboratoire sont disponibles sur le site (présence d’un laboratoire ou d’une installation de
prétraitement des échantillons) que la gamme complète des activités de prétraitement des échantillons
(qui, dans ce cas, englobent également la réduction granulométrique) peut être mise en œuvre
directement après l’échantillonnage.
Il convient que l’intégrité du matériau de sol soit toujours assurée. Par conséquent, il convient de choisir
une méthode, une période et un emplacement pour le prétraitement qui présentent un risque minimal
de modification des caractéristiques du matériau de sol.
Lorsque le but du prétraitement des échantillons est d’effectuer un sous-échantillonnage sélectif, la
composition du matériau de sol changera bien entendu; cependant, il convient de veiller à s’assurer que
les seuls changements qui se produisent sont les changements voulus.
Il est possible que les méthodes appropriées de sous-échantillonnage soient limitées par les exigences
définies par les composants à analyser ou par l’essai à effectuer. Il convient que le laboratoire sollicite
l’avis d’un expert.
NOTE 3 Quelques exemples de problèmes susceptibles de survenir sont:
6 © ISO 2017 – Tous droits réservés
— perte d’humidité;
— perte de composés volatils;
— formation d’agrégats de matériau de sol durant le sous-échantillonnage due à leur teneur en humidité;
— oxydation de matériau nouvellement exposé suite au concassage de macro-agrégats du sol, etc.;
— adhérence du matériau du sol au matériel (par exemple, argile);
— perte de particules fines emportées par le vent;
— ajout d’eau dû à la pluie;
— perte de particules fines dues à de fortes pluies;
— présence de matières huileuses susceptibles d’adhérer sélectivement aux tôles et aux outils;
— séparation de composés, y compris les huiles minérales, due à des masses volumiques différentes ou à d’autres
différences dans les caractéristiques physiques;
— biodégradation de matières et substances organiques.
7 Sécurité
Il convient que le prétraitement sur le terrain soit effectué conformément aux lignes directrices relatives
à la sécurité données dans l’ISO 18400-103 et en tenant compte de tout autre facteur pertinent.
8 Homogénéisation
L’homogénéisation effective peut s’avérer difficile à obtenir sur le terrain car elle nécessite souvent
un matériel mécanisé et des conditions de laboratoire appropriées, mais elle est réalisable à condition
d’être effectuée avec un soin particulier et un matériel adapté. Les chances de réussite dépendent de
divers facteurs, incluant notamment l’hétérogénéité du sol et la propriété d’intérêt (par exemple, la
répartition d’un polluant à l’intérieur et sur des particules).
Toute les procédures décrites en 9.5 ont pour but de veiller autant que possible à ce que le sous-
échantillon soit suffisamment représentatif de l’échantillon de terrain de plus grande taille qui doit être
réduit aux fins de l’investigation. Par exemple, les premières étapes dans la méthode par tas longitudinal
et pelletées alternées (9.5.2) ont pour but d’homogénéiser l’échantillon.
Le mélange pour obtenir un échantillon en vrac homogène peut être réalisé en faisant passer et en
mélangeant l’échantillon trois, quatre fois, ou plus, à travers un diviseur mécanique d’échantillon (par
[17]
exemple répartiteur, diviseur Tyler ou diviseur rotatif) .
9 Sous-échantillonnage
9.1 Généralités
Il convient que les caractéristiques du matériau du sol à échantillonner soient vérifiées par rapport aux
méthodes décrites dans le plan d’échantillonnage pour voir si les méthodes prescrites sont appropriées.
La granulométrie maximale est importante, de même que la teneur en humidité. Cette seconde
caractéristique est liée à la tendance à la formation de macro-agrégats et au comportement cohésif.
Si les méthodes prescrites ne sont pas considérées comme appropriées, il convient de modifier le plan
d’échantillonnage conformément à l’Article 5.
Dans le cas de sols à très forte teneur en éléments grossiers, il peut être nécessaire de procéder à une
réduction granulométrique, sur le site, des particules plus volumineuses, afin de permettre l’envoi au
laboratoire d’un échantillon représentatif et de taille acceptable. Lorsque le broyage ou le concassage
«sur le terrain» est vraiment nécessaire, des mesures doivent être prises pour éviter la contamination
et/ou la perte de composés et de matériau de sol. Par conséquent, il convient de réduire autant que
possible la granulométrie du matériau prélevé, juste pour permettre l’obtention d’un échantillon pour
laboratoire de taille acceptable.
Il convient que la taille de tout élément inclus dans le processus de réduction granulométrique soit
réduite de manière à passer à travers un tamis prédéterminé afin d’éviter la sélectivité.
Il convient que l’emplacement du sous-échantillonnage soit soigneusement choisi et rendu apte à l’usage,
en assurant une surface parfaitement plane, en la débarrassant de tous les matériaux susceptibles
d’avoir une incidence sur l’intégrité du (des) échantillon(s) ou sous-échantillon(s) et en la recouvrant
avec un matériau approprié (voir ci-dessous). Lorsque toutes les préparations ont été mises en œuvre, il
convient que le prétraitement des échantillons soit effectué à l’aide de la (des) méthode(s) prescrite(s).
L’utilisation de bâches en plastique très résistant sera appropriée dans de nombreuses situations
lorsque les travaux sont effectués à l’aide de dispositifs manuels, mais elles ne résistent pas à l’utilisation
de matériels mécaniques, etc. Lorsque de tels matériels sont utilisés, il convient de faire usage de toiles,
de bois, ou de tôles métalliques.
9.2 Matériel de sous-échantillonnage
Il convient que tous les matériaux et équipements qui entrent en contact avec le(s) échantillon(s)
et/ou le(s) sous-échantillon(s) soient tels qu’ils ne contaminent pas le(s) échantillon(s) et le(s) sous-
échantillon(s).
Avant le prétraitement, l’appareillage et les outils qui seront utilisés doivent être nettoyés afin
d’empêcher toute contamination croisée. Cela signifie qu’ils convient de les nettoyer après chaque
traitement d’un échantillon. Il convient que le revêtement de protection de la zone de travail soit nettoyé
ou remplacé après chaque traitement d’un échantillon.
Pour le sous-échantillonnage, un ou plusieurs des équipements suivants, tels qu’ils sont identifiés dans
le plan d’échantillonnage, sont requis:
— de grandes bâches en plastique très résistant ou autre revêtement de protection, tels que les plaques
en bois ou les tôles métalliques (voir 9.1);
— bêche ou pelle en acier inoxydable;
— pelle mécanique;
— outils de réduction granulométrique (par exemple masse);
— répartiteur;
— outils de sous-échantillonnage (par exemple diviseur transversal, diviseur Tyler);
— plateau tournant mécanique ou diviseurs rotatifs.
Tous les équipements utilisés doivent être conformes à des Normes internationales pertinentes (par
exemple l’ISO 565 pour les tamis).
NOTE 1 Pour une description des équipements utilisés dans le présent document, voir l’ISO 11464.
NOTE 2 Un diviseur Tyler est un dispositif servant à découper une fraction représentative correspondant à
1/16ème de la matière d’alimentation en rejetant systématiquement des segments de matériau s’écoulant à un
angle d’inclinaison ajustable de 45° ou 60° (voir Figure A.1). Il peut être utilisé de manière discontinue ou avec
une alimentation continue.
9.3 Taille minimale du sous-échantillon
Il convient que les décisions relatives à la taille requise des sous-échantillons soient prises conformément
aux lignes directrices fournies dans l’ISO 18400-104. Celle-ci stipule qu’un certain nombre de facteurs
8 © ISO 2017 – Tous droits réservés
déterminent la taille du sous-échantillon devant être envoyé à des laboratoires hors site (c’est-à-dire
l’échantillon pour laboratoire), y compris:
— la série d’examens et d’essais pédologiques, chimiques, physiques et/ou biologiques devant être
effectués;
— les exigences spécifiques du ou des laboratoires effectuant les examens et essais; et
— la nécessité de disposer d’échantillons suffisamment représentatifs, en tenant compte de la
distribution granulométrique et de la distribution de la concentration du matériau à prélever.
Avec des échantillons de plus grande taille que celle requise pour la série d’essais prévus générale
...












Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...